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Regularization and Interpolation of Positive Matrices
Kaoru Yamamoto, Yongxin Chen, Lipeng Ning
Tryphon T. Georgiou, and Allen Tannenbaum

Abstract—We construct certain matricial analogues of mass trans-
port for positive definite matrices of equal trace. The framework
aims to devise ways of interpolating positive definite matrices that
tradeoff between “aligning up their eigenstructure” and “scaling the
corresponding eigenvalues”. Motivation for the work is provided by power
spectral analysis of multivariate time series where linear interpolation
between matrix-valued power spectra generates push-pop unrealistic and
undesirable artifacts.

I. INTRODUCTION

The present paper is an attempt to develop a suitable matricial
analogue of optimal mass transport (OMT). The basic problem of
OMT refers to seeking a transportation plan that carries a given
probability distribution to another so that a suitably defined trans-
portation cost is minimized [1], [2], [3]. The original formulation of
the problem by Monge in 1871 was motivated by civil engineering
considerations, namely to transport dirt so as to level the ground.
The mathematical problem achieved significant fame and notoriety
due to inherent technical difficulties which persisted until the 1940’s,
at which time Kantorovich presented a relaxation of OMT in the
form of a linear program. The relevance of this circle of ideas
in the broader setting of resource allocation was already widely
recognized and the impact secured a Nobel prize in Economics for
Kantorovich in 1975. A new transformative phase of development in
optimal mass transport began in the 1990’s [4], [5], [6], [7] motivated
by multitude of applications in physics, probability theory, image
analysis, optimal control etc. In these, OMT was seen as an optimal
control problem and stochastic formulations ensued (see [8], [9], [10]
and the references therein).

The work presented herein is motivated by [11] where a
matrix-valued formulation of OMT was introduced to address certain
issues in spectral analysis of multivariable time series and system
identification. More specifically, recall that the spectral content of
scalar (slowly time-varying) time series is often displayed in the
form of a spectrogram (time-frequency power distribution). The
spectrogram illuminates any time-drift of the spectral content, but
suffers from the perennial trade-off between variability and resolution
(also known as the uncertainty principle of Fourier methods). Tradi-
tionally, windowing, kernel methods, and several other techniques
have been used to enhance spectrograms. An alternative approach,
highlighted in [12], is to interpolate spectral estimates in a suitable
metric so as to track changes in the underlying spectral-content in a
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natural manner. Further, in [13] the authors have argued that OMT
induces the appropriate topology (Wasserstein metric) where small
perturbations correspond to small changes in estimated moments and
vice versa. However, there has been no matrix-valued analogue of the
Wasserstein metric. The work in [11] was perhaps the first attempt
and had its basis in Kantorovich’s idea of seeking a joint density
(matrix-valued in our case) in a suitable product space, necessitating
a prohibitively high computational burden. In the present paper we
explore alternative ideas that are rooted in control. More specifically,
we seek a dynamical evolution that allows rotation of eigenvectors as
well as scales the corresponding eigenvalues so as to generate a path
between end-point matrices. Accordingly, the choice of parameters
(affecting cost) in an optimization problem promotes rotation or
scaling.

Being inspired by the close connection between the heat equa-
tion, the Schrödinger equation and the scalar version of OMT, [2],
[3], we formulate our problem based on some concepts in quantum
mechanics. More specifically, probability density functions are ex-
changed for density matrices ρ, i.e., positive semidefinite Hermitian
matrices with unit trace. Transport is then seen as a flow in the space
of such matrices that minimizes a suitable cost functional.

The insight and techniques gained are aimed towards interpolat-
ing or regularizing sample covariances as well as matrix-valued power
spectral densities of multivariate time series – they both reflect on
how power varies with direction. More specifically, when dynamics
that impact a vectorial process are slowly varying it is of interest
to track changes by interpolating input-output short-window spectral
estimates in a non-parametric manner, e.g., tracking frequencies
of resonances in the spectral content along with a corresponding
direction that couples specific entries. The ability to do so in a
natural manner is even more enabling in array processing where,
changes in spectral content of a matrix-valued spectrogram may
be directly attributed to a moving scatterer. In particular, OMT-
based interpolation prevents push pop artifacts as compared to linear
interpolation (e.g., see [13] for scalar processes).

In the present work we focus on interpolation of matrices.
We see this as the first step towards the development of more
general transport between matrix-valued distributions (i.e., allowing
for a spatial/frequency component). More specifically, at present, we
focus on interpolating positive definite matrices in ways that allow
controlling the correspondence between their eigenstructures. To this
end, we decompose the tangent space of the cones of positive definite
matrices into two subspaces, one that corresponds to rotating the
eigenstructure and another that corresponds to scaling eigenvalues.
In this way, by controlling these two complementing directions, we
construct interpolating flows that have desired properties. Insights into
setting up the problem are drawn from quantum mechanics where the
principle object of study is the time-evolution of noncommutative
operators (i.e., of matrices, when restricted to finite dimensions).
Thus, in order to make the paper self-contained, we include a brief
exposition of certain basic facts from quantum mechanics upon which
we draw insights for the needed analysis.
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The paper is structured as follows. In Section II, we present
certain basic ideas of quantum mechanics that relate to material in
the paper. In Section III we consider the tangent space of the cone of
positive definite matrices. This leads to the material in Section IV on
suitable cost functionals that promote a judicious balance between
rotating the eigenstructure and scaling the eigenvalues. Numerical
examples are discussed in Sections V and VI. Concluding remarks
are provided in Section VII.

Notation: We denote by H the set of n×n Hermitian matrices, S the
set of n×n skew-Hermitian matrices, and H+ the cones of positive-
semidefinite matrices. Since matrices are n×n throughout the paper,
we will not explicitly note dependence on n. The commutator of two
square matrices A,B is denoted by [A,B] := AB −BA.

II. QUANTUM INSIGHTS

The development draws on concepts from quantum mechanics
and, therefore, we begin with a brief account of basics (see standard
references, e.g., [15], for more).

A. Schrödinger equation

The evolution of closed quantum systems, i.e., one having no
interaction with other quantum systems or a heat bath, is given by
the time-dependent Schrödinger equation [15]:

∂ψ

∂t
= Xψ (1)

where ψ ∈ Cn and X is a skew Hermitian matrix1. Equation (1)
describes a unitary evolution for the wave function, in our case, vector
ψ; the quantum system is in a “pure state” in that the density matrix
ρ = ψψ∗ has rank 1. A system is in a mixed state when the density
matrix

ρ =
∑
k

λkψkψ
∗
k

with
∑
k λk = 1, has rank higher than 1. Either way, the density

matrix evolves according to

∂ρ

∂t
= Xρ− ρX =: [X, ρ], (2)

where the derivative is thought of entry-wise. It is evident that if the
system is in a pure state, it remains so, as the rank of

ρ(t) = eXtψ(0)ψ(0)∗e−Xt

remains invariant. Likewise, if the system is in a mixed state

ρ(t) =
∑
k

λk(t)ψk(t)ψ
∗
k(t)

= eXt
(∑

k

λk(t)ψk(0)ψk(0)
∗

)
e−Xt,

the eigenvalues λk(t) of the density matrix remain invariant over
time t, i.e., λk(t) = λk(0) for all t. Thus, the evolution governed
by (2) rotates in the same way the complete set of eigenvectors of
the density matrix without changing the corresponding eigenvalues.

1More generally, ψ belongs to a Hilbert space and accordingly X is a skew
Hermitian operator on that same Hilbert space. Typically X is expressed as
− i

~H where H is a Hamiltonian (Hermitian) operator and ~ is the reduced
Plank constant.

B. Evolution of density matrices

Decoherence and changes in the spectrum of ρ are typically
modeled through coupling with an ancilla which is another quantum
system. The state of the original system is then obtained by tracing
out the ancillatory component of the joint density operator. Lindblad’s
equation, [16], [17], describes precisely such an evolution for the
component of the original system. The Lindblad equation has the
form

∂ρ

∂t
= [X, ρ]−

∑
k

(
1

2
(Ykρ+ ρYk)− ZkρZ∗k

)
where Yk = Z∗kZk. The presence of −ZρZ∗ ensures that trace(ρ)
remains constant while both the eigenvalues and the eigenstructure
may change over time. Alternatively, one may consider more gener-
ally

∂ρ

∂t
= [X, ρ] + u (3)

where trace(u) = 0 so as to preserve the trace of ρ. In fact, in
what follows, we will do exactly that and consider flows in directions
corresponding to traceless component u. Positivity of the flow will be
ensured as an added (convex) condition and will not be intrinsically
encoded in u (as in the Linblad equation where the right hand side
is linear in ρ).

III. TRACE-PRESERVING LINEAR FLOW ON POSITIVE MATRICES

Consider the set of positive semidefinite matrices that are
normalized to have trace one,

D := {ρ ∈ H+ | trace(ρ) = 1}.

As we noted earlier, we seek flows on D that preserve trace. The
tangent space of D at any ρ ∈ D is

Tρ = {u | u ∈ H, trace(u) = 0}.

In this, the subspace of traceless Hermitian components2

Rρ := {[X, ρ] | X ∈ S},

is responsible for rotating the eigensubspaces of ρ as we have noted
in the previous section.

We now seek to identify the orthogonal complement of Rρ so
as to isolate the two directions that are responsible for rotation of
eigenvectors and scaling of eigenvalues3. To this end, consider u ∈ H
such that

trace(u[X, ρ]) = 0 ∀X ∈ S. (4)

Since the trace is invariant under cyclic permutations,

trace([u, ρ]X) = 0 ∀X ∈ S. (5)

But [u, ρ] is already in S, hence it is zero and therefore u must
commute with ρ. Thus, from (4) we have that u is in the orthogonal
complement of Rρ. We summarize our conclusion as follows.

Proposition 1: The tangent space Tρ of D := {ρ ∈ H+ |
trace(ρ) = 1} at ρ ∈ D can be decomposed as the direct sum

Tρ = Rρ ⊕ Cρ

of orthogonal components

Rρ = {[X, ρ] | X ∈ S} and

Cρ = {u | u ∈ H, [u, ρ] = 0, and trace(u) = 0} .

2If X ∈ S and ρ ∈ H, both [X, ρ]∗ = [X, ρ] ∈ H and trace([X, ρ]) = 0.
3The inner product of two matrices is 〈u, v〉 = trace(u′v)
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If X(t) ∈ S and u(t) ∈ Cρ(t) for all t, then trace(ρ(t)) remains
constant with t.

IV. INTERPOLATING FLOWS BETWEEN ρ0 AND ρ1

Following on the previous rationale we may seek paths between
density matrices ρ0 and ρ1, that minimize a suitable cost functional
that allows trading off between the eigenstructure rotation specified
by X(t) ∈ S and the eigenvalue scaling affected by u(t) ∈ H.
Assuming a constant rate of rotation and a constant “drift” of the
spectrum, we formulate the following problem:

Problem 1: Minimize ‖X‖2 + ε‖Z‖2 subject to

ρ̇(t) = [X, ρ(t)] + eXtZe−Xt︸ ︷︷ ︸
u(t)

, for ρ(0) = ρ0, ρ(1) = ρ1,

along with X ∈ S, Z ∈ H, [ρ0, Z] = 0, and trace(Z) = 0.

In the above, the parameter ε ∈ [0,∞) represents a weight
that helps trading off the two alternative mechanisms for shifting
eigenvalues and eigensubspaces to match the two end-point matrices.
In general, “rotation” and “scaling” may vary over time. We readily
verify that u(t) in Problem 1 commutes with ρ(t) as long as Z
commutes with ρ0. Thence, it can be seen that Problem 1 is equivalent
to

minimize ‖X‖2 + ε‖e−Xρ1eX − ρ0‖2 (6a)

subject to X +XT = 0, [ρ0, e
−Xρ1e

X − ρ0] = 0. (6b)

This is a constrained nonlinear optimization problem that we ap-
proach, numerically, using fmincon in MATLAB.

V. EXAMPLE: INTERPOLATION OF DENSITY MATRICES

In this section we highlight how interpolation is effected, via
solving Problem 1, as a proof of concept. Starting from two end-point
density matrices, the framework allows constructing alternative paths
connecting the two where one may tradeoff the two possible ways
that the transition from one to the other may take place, i.e., allowing
for the eigenvalues to adjust by “scaling” and the eigenvectors to
“rotate,” respectively.4

Example 1: Consider the two density matrices

ρ0 =
[
1 0
0 0

]
and ρ1 =

[
0 0
0 1

]
.

On one end, a choice of ε (vanishingly small) in Problem 1 leads to a
path that displays a fade-in/fade-out effect of scaling the eigenvalues,
so as to connect the two end-points (Fig. 1a). No rotation of
eigenvectors takes place. On the other end, for ε large (e.g., ε = 10),
we obtain a path where “rotation” of the eigenvectors is less costly
(Fig. 1b); it is worth noting that in this case, since both matrices have
rank one, the path remains rank one.

Motivation for our framework stems from multivariable time
series analysis where power is often associated (e.g., in sensor arrays
or radar) with the position of dominant scatterers. Fade-in-fade-out
effects when interpolating or smoothing multivariable spectra are
obviously undesirable as they create artifacts. Such fade-in-fade-
out effects may be erroneously interpreted as due to the presence

4The examples we present involve matrices of sizes 2× 2 and 3× 3. This
is solely because we cannot display in a suggestive manner results in higher
dimensions. The computational burden in higher dimensions scales reasonably
well (interpolating 20× 20 matrices requires of the order of 200 [sec] using
general purpose solvers on a laptop with Intel Core i7).

of additional scatterers beyond those that are present. The above
rudimentary example may correspond to the case of two sensors
reading a constant-frequency echo from a scatterer that changes its
relative position with respect to the two. When recorded signals are
correlated, the matrix-valued power spectrum at the corresponding
frequency has (approximately) rank one. Likewise, movement of
the scatterer that corresponds to a path between the two matrices,
ought to have rank one (as in Fig. 1b). This exemplifies the need
for paths that avoid push-pop for the corresponding eigenvalues (as
linear interpolation would – one eigenvalue reducing while another
increasing at the same time).

Example 2: In this we highlight a situation with matrices of higher
dimension (3 in this case). Figure 2 shows a path between two
matrices below

ρ0 =

[
0.2 0 0
0 0.3 0
0 0 0.5

]
and ρ1 =

[
0.5 0 0
0 0.3 0
0 0 0.2

]
.

The solution to (6) with ε = 10 is ρ(t) = eXt(ρ0 + Zt)e−Xt with

X =

[
0 0 2.2
0 0 2.2

−2.2 −2.2 0

]
and Z =

[
0.1 0 0
0 0.2 0
0 0 −0.3

]
.

In this case, we see that both rotation and scaling take place
simultaneously.
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0

(a) Interpolation via adjusting eigenvalues.
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0.5
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(b) Interpolation via rotating eigenvectors.

Fig. 1: Solutions are obtained by solving Problem 1: for illustra-
tion, eigenvectors (shown) are scaled in proportion to corresponding
eigenvalues. Fig. 1a shows a push-pop effect where eigenvalues are
re-scaled whereas Fig. 1b indicates a correspondence through rotation
of the eigenstructure through a path of rank-1 matrices.



4

t = 0

t = 1

Fig. 2: Solutions are obtained by solving Problem 1: for illustra-
tion, eigenvectors (shown) are scaled in proportion to corresponding
eigenvalues. It is seen how eigenstructure rotates while eigenvalues
scale.

VI. EXAMPLE: REGULARIZATION OF NOISY PATHS

Besides interpolation problems, i.e., finding a path for ρ(t)
connecting two density matrices ρ0 and ρ1, the approach allows
solving regularization problems where a smooth path is constructed
to smooth out noisy measurements. More specifically, given a noisy
data set

{ρ̃(ti) | 0 ≤ t1 ≤ . . . ≤ tN ≤ 1, }

we seek a smooth path ρ(t) that approximately fits the data in
a suitable sense. The key is to parameterize the path in a way
consistent with the two “orthogonal” actions of rotating eigenvectors
and scaling eigenvalues (as both may be needed), and penalize one
more (typically, scaling). To this end, we propose the following:

Problem 2: Minimize, over choice of ρ0, X, Z,
N∑
i=1

∥∥∥eXti(ρ0 + Zti)e
−Xti − ρ̃(ti)

∥∥∥
2
,

subject to X ∈ S, Z ∈ H, ρ(·) ≥ 0, [ρ0, Z] = 0 and trace(Z) = 0.

The outcome is shown in Figure. 3. For illustration purposes the
data set ρ̃(ti) is generated by adding a symmetric matrix-valued
(uniform) noise w(t) to a nominal flow eXtρ0e

−Xt for ti ∈
{0.05, 0.1, 0.15, . . . , 1} where

ρ0 =
[
1.0 0
0 0.1

]
and X =

[
0 −1.6
1.6 0

]
.

VII. CONCLUDING REMARKS

We propose an approach to constructing flows on density
matrices. This is intended for interpolation and regularization of
sample covariances and power spectra of multivariable time series.
The general approach is control theoretic in that we select the flow
(tangent direction) that minimizes a suitable cost functional. The
choice of functional allows trading off the two basic mechanisms
(rotating eigenvectors vs. scaling eigenvalues). Judicious balance
between aligning up the eigenstructure and scaling the eigenvalues is
necessitated by the fact that one of the two mechanisms alone may
not suffice in generic situations. The choice of the parameter ε that
dictates the respective tradeoff must be based on the application and
priors on the problem. In closing, we refer the interested reader to
[14] for a parallel alternative formulation of matricial OMT, which
also draws on the connection with quantum mechanics, but along a
different angle altogether.
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(a) Data: noisy matrices ρ̃(ti).
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(b) Regularized path ρ(ti).

Fig. 3: Regularization of noisy matricial data with eigenvectors scaled
according to corresponding eigenvalues.
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