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Distributed Nonsmooth Optimization with

Coupled Inequality Constraints via Modified

Lagrangian Function

Shu Liang, Xianlin Zeng, and Yiguang Hong

Abstract

This technical note considers a distributed convex optimization problem with nonsmooth cost func-

tions and coupled nonlinear inequality constraints. To solve the problem, we first propose a modified

Lagrangian function containing local multipliers and a nonsmooth penalty function. Then we construct

a distributed continuous-time algorithm by virtue of a projected primal-dual subgradient dynamics.

Based on the nonsmooth analysis and Lyapunov function, we obtain the existence of the solution to

the nonsmooth algorithm and its convergence.

Index Terms

Distributed optimization, coupled constraint, modified Lagrangian function, primal-dual dynamics,

nonsmooth analysis.

I. INTRODUCTION

Distributed convex optimization has attracted intense research attention in recent years, due to its

theoretic significance and broad applications in many research fields such as sensor networks, smart

grids and social networks. Various models of distributed optimization have been proposed and studied

in the literature. Most works have focused on consensus-based formulations, where each agent estimates

the entire optimal solution via plentiful discrete-time algorithms (e.g., see [1], [2] and the references

therein). Recently, more and more effort has also been done for distributed continuous-time algorithms
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(see [3]–[6] for instance), partly due to the development of its hardware implementation [7] and flexible

application in continuous-time physical systems [8].

Here we consider distributed optimizations with separable cost functions and coupled constraints. In

the presence of a coupled constraint, the feasible region of one agent’s decision variable is influenced

by some other agents’ decision variables. If such a constraint is known by all the related agents, various

algorithms were obtained, such as dual gradient algorithms [9], [10], primal-dual algorithms [11]–[13],

the saddle-point-like algorithm [14], and the distributed Newton-type algorithm [15]. However, coupled

constraints may not be available to each agent in practice, and then the aforementioned algorithms

may not work if there is no central coordinator in the network. To deal with the challenges, [16], [17]

developed distributed initialization-free algorithms for the optimal resource allocation, while [18] proposed

a distributed algorithm for the extended monotropic optimization. Note that [16]–[18] considered coupled

equality constraints. Moreover, [19] proposed a distributed algorithm for coupled inequality constraints,

based on the average consensus technique to estimate the constraint functions along with a local primal-

dual perturbed subgradient method. These distributed algorithms adopted local dynamics to evaluate the

optimal dual solution instead of the original centralized one. On the other hand, all of them have to

further employ auxiliary dynamics in order to guarantee the correctness and convergence, whereas the

distributed design may become quite complicated in the case with coupled inequality constraints.

The objective of this note is to develop a distributed algorithm for nonsmooth convex optimization with

coupled inequality constraints. We propose a modified Lagrangian function such that not only its saddle

point yields the correct optimal solution to the original problem, but also its primal-dual subgradient

dynamics is fully distributed. Particularly, we introduce local multipliers to decouple the constraints and

employ a nonsmooth penalty function for the correctness. Based on this modified Lagrangian function, we

propose a continuous-time projected subgradient algorithm for saddle-point computation. Our algorithm is

fully distributed since each agent updates its local variables according to its local data and the information

of its neighbors, without requiring any center in the network. Moreover, our algorithm only involves

the primal variables and local multipliers, which yields a lower order dynamics than those in existing

algorithms.

The rest organization is as follows: Section 2 provides necessary preliminaries, while Section 3

formulates the problem. Then Section 4 presents the main results to prove the convergence of our

nonsmooth algorithm, and Section 5 gives two numerical examples. Finally, Section 6 gives some

concluding remarks.

Notations: Denote R
n as the n-dimensional real vector space and R

n
+ as the positive orthant in R

n.

Denote 0 as a vector with each component being zero. For a vector a ∈ R
n, a ≤ 0 (or a < 0) means
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that each component of a is less than or equal to zero (or less than zero). Denote ‖ · ‖ and | · | as the

ℓ2-norm and ℓ1-norm for vectors, respectively. Denote col(x1, ..., xN ) = (xT1 , ..., x
T
n )

T as the column

vector stacked with column vectors x1, ..., xN . For a set Ω ⊂ R
n, rint(Ω) is the relative interior and

dΩ(x) , infy∈Ω ‖y − x‖ is the distance function between point x and set Ω.

II. PRELIMINARIES

In this section, we introduce relevant preliminary knowledge about convex analysis, differential inclu-

sions, and graph theory.

A set C ⊆ R
n is convex if λz1 + (1 − λ)z2 ∈ C for any z1, z2 ∈ C and λ ∈ [0, 1]. For x ∈ C , the

tangent cone to C at x, denoted by TC(x), is defined as

TC(x) ,
{

lim
k→∞

xk − x

tk
|xk ∈ C, tk > 0, and xk → x, tk → 0

}

,

while the normal cone to C at x, denoted by NC(x), is defined as

NC(x) , {v ∈ R
n | vT (y − x) ≤ 0, for all y ∈ C}.

A projection operator is defined as PC(z) , argminx∈C ‖x − z‖, and an operator that projects a point

z ∈ R
n (or a set) onto the tangent cone TC(x) is ΠC(x; z) , PTC(x)(z).

A function f : C → R is said to be convex (or strictly convex) if f(λz1+(1−λ)z2) ≤ (or <) λf(z1)+

(1 − λ)f(z2) for any z1, z2 ∈ C, z1 6= z2 and λ ∈ (0, 1). A function g is said to be a concave function

if −g is a convex function.

A set-valued map F from R
n to R

n is a map associated with any x ∈ R
n a subset F(x) of R

n. F
is said to be upper semicontinuous at x0 ∈ R

n if for any open set E containing F(x0), there exists a

neighborhood D of x0 such that F(D) ⊂ E. We say that F is upper semicontinuous if it is so at every

x0 ∈ R
n. The graph of F , denoted by gphF , is the set consists of all pairs (x, y) satisfying y ∈ F(x).

A differential inclusion can be expressed as follows:

ẋ ∈ F(x), x(0) = x0. (1)

A map x(t) : [0,+∞) → R
n is said to be a solution to (1) if it is absolutely continuous and satisfies the

inclusion for almost all t ∈ [0,+∞).

A graph of a network is denoted by G = (V, E), where V = {1, ..., N} is a set of nodes and E ⊆ V×V
is a set of edges. Node j is said to be a neighbor of node i if {i, j} ∈ E . The set of all the neighbors of

node i is denoted by Ni. G is said to be undirected if (i, j) ∈ E ⇔ (j, i) ∈ E . A path of G is a sequence

of distinct nodes where any pair of consecutive nodes in the sequence has an edge of G. Node j is said
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to be connected to node i if there is a path from j to i. G is said to be connected if any two nodes are

connected. The detailed knowledge about graph theory can be found in [20].

The following lemma collects some results given in [21] that will be used in our analysis.

Lemma 2.1: Let f : X → R be locally Lipschitz continuous and let Ω ⊂ X be a closed convex subset,

where X ⊂ R
n. Then the following statements hold.

1) gph ∂f is closed.

2) If f is convex, then x∗ ∈ argminx∈Ω f(x) if and only if 0 ∈ ∂f(x∗) +NΩ(x
∗).

3) Suppose f has a Lipschitz constant K0 on an open set that contains Ω. When K > K0, x∗ ∈
argminx∈Ω f(x) if and only if x∗ ∈ argminx∈X f(x) +KdΩ(x).

A collection of results in [22] with respect to set-valued maps and differential inclusions are given

below.

Lemma 2.2: The following statements hold.

1) A set-valued map F from R
n to R

n is upper semicontinuous if it has compact values and gphF is

closed.

2) Let F0 from R
n to R

n be a set-valued map and C ⊂ R
n be a closed convex subset. Consider the

following two differential inclusions

ẋ ∈ F0(x)−NC(x), x(0) = x0 ∈ C, (2)

ẋ ∈ ΠC(x,F0(x)), x(0) = x0 ∈ C. (3)

Then x(·) is a solution to (2) if and only if it is a solution to (3).

3) For any x0 ∈ C , there is a solution to the differential inclusion (2) if F0 is upper semicontinuous and

C is compact and convex.

Moreover, we introduce a lemma from [6, Lemma 4.2] which will be used in the convergence analysis.

Lemma 2.3: Let x(t) be a solution to the differential inclusion (1). If z is a Lyapunov stable equilibrium

of (1) and is also a cluster point of x(·), then limt→+∞ x(t) = z.

III. PROBLEM FORMULATION

Consider a multi-agent network with N agents, whose label set is denoted as V = {1, ..., N},

cooperating over a graph G = {V, E}. For each agent i, there are a local decision variable xi ∈ R
ni and a

local constraint set Ωi ⊂ R
ni for i ∈ V . Define x , col(x1, ..., xN ), and define the total cost function of

the network as f(x) ,
∑

i∈V fi(xi), where fi : Ωi → R is a (nonsmooth) local cost function of agent i. In

addition, the agents are subject to coupled inequality constraints in the form of g(x) ,
∑

i∈V gi(xi) ≤ 0,

October 8, 2018 DRAFT
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where gi : Ωi → R
M are continuous mappings for i ∈ V (that is, gi = (gi1, ..., giM )T and gik : Ωi → R

are continuous functions for all i and k). To be strict, the optimization problem can be formulated as:

min
x∈Ω

f(x), s.t. g(x) ≤ 0, (4)

where Ω ,
∏

i∈V Ωi ⊂ R
n1+···+nN denotes the local constraints of N agents.

The following assumption is needed to ensure the well-posedness of problem (4).

Assumption 3.1:

1) (Convexity and continuity) For all i ∈ V , Ωi is compact and convex. On an open set containing Ωi,

fi is strictly convex and gi is convex, and fi and gi are locally Lipschitz continuous.

2) (Slater’s constraint qualification) There exists x̄ ∈ rint(Ω) such that g(x̄) < 0.

3) (Communication topology) The graph G is connected and undirected.

This assumption is quite mild and similar ones are widely used in the literature (e.g., [17]).

The goal of this note is to develop a distributed continuous-time algorithm for solving (4) with each

agent communicating with their neighbors. Moreover, for every i ∈ V , agent i can only access gi(xi)

rather than g(x).

The differences between our problem and those in existing literature are as follows.

• The decision variables can be heterogeneous with possibly different dimensions, in contrast to those

consensus-based models.

• The cost and constraint functions can be nonsmooth, while some projected dynamics [12], [13], [17]

and Newton type method [15] depend on smoothness.

• The coupled constraints may be unavailable to local agents, different from [14]. Also, coupled inequality

constraints are considered as in [19], different from the coupled (affine) equality ones studied in [16]–

[18].

IV. MAIN RESULTS

In this section, we first propose a modified Lagrangian function and then propose a distributed

continuous-time algorithm for the considered optimization problem. Moreover, we prove the existence of

the solution to the nonsmooth algorithm along with the discussions on its convergence and the rate.

A. Lagrangian Function and Distributed Algorithm Design

Consider the following dual problem with respect to the primal one (4),

max
λ≥0

q(λ), q(λ) , min
x∈Ω

L(x, λ), (5)

October 8, 2018 DRAFT
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where L : Ω× R
M
+ → R is the Lagrangian function defined as

L(x, λ) , f(x) + λTg(x). (6)

It has been shown in [9] that the optimal dual solution λ∗ of (5) lies in a compact set D ⊂ R
M
+ , given

by

D , {λ ∈ R
M
+ | ‖λ‖ ≤ f(x̄)− q̃

γ
}, (7)

where x̄ is a Slater point of (4), q̃ = minx∈Ω L(x, λ̃) is a dual function value for an arbitrary λ̃ ≥ 0,

γ = mink=1,...,M{−∑

i∈V gik(x̄i)}.

We present the following lemma, which is a well-known convex optimization result [23].

Lemma 4.1: Under Assumption 3.1, the following statements are equivalent:

1) (Primal-dual characterization) (x∗, λ∗) is a primal-dual solution pair of problems (4) and (5).

2) (Saddle-point characterization) (x∗, λ∗) is a saddle point of Lagrangian function (6), that is,

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗), ∀x ∈ Ω, λ ≥ 0.

3) (KKT characterization) (x∗, λ∗) satisfies

0 ∈ ∂f(x∗) + ∂g(x∗)λ∗ +NΩ(x
∗), 0 ≤ λ∗ ⊥ −g(x∗) ≥ 0.

4) (Minimax characterization) (x∗, λ∗) is a solution of the minimax problem

min
x∈Ω

{max
λ∈D

L(x, λ)}.

Moreover, since f(x) is strictly convex, such x∗ is unique while λ∗ may not be unique.

A centralized projected primal-dual algorithm with respect to L(x, λ) can be written as (referring to

[13]):










ẋ ∈ ΠΩ(x,−∂f(x)− ∂g(x)λ), x(0) ∈ Ω,

λ̇ ∈ ΠR
M
+
(λ,g1(x1) + · · ·+ gN (xN )), λ(0) ∈ R

M
+ ,

which needs a center to broadcast λ and gather g1, ...,gN for the update. In order to develop fully

distributed algorithms without a center, we employ local multipliers and a nonsmooth penalty function

to construct a modified Lagrangian function. To be specific, define

λ , col(λ1, ..., λN ) ∈ R
MN
+ , (8a)

S , {λ ∈ R
MN
+ |λ1 = · · · = λN}, (8b)

φ(λ) ,
1

2

∑

i∈V

∑

j∈Ni

|λi − λj|, (8c)

L̃(x,λ) ,
∑

i∈V

fi(xi) + λT
i gi(xi)−Kφ(λ), (8d)
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where λ is a collection of local multipliers employed for distributed design and S is a cone for the local

multipliers to reach a consensus there. Moreover, φ(λ) serves as a metric of consensus for the multipliers

and L̃(x,λ) is a modified Lagrangian function with a constant K > 0.

The following lemma reveals that the nonsmooth Kφ(λ) plays a role as an exact penalty function for

the consensus of multipliers.

Lemma 4.2: Under Assumption 3.1, for any x ∈ Ω, there holds

argmax
λ∈RMN

+

L̃(x,λ) = argmax
λ∈S

L̃(x,λ),

provided K >
√
NK0, where K0 , maxx∈Ω ‖col(g1(x1), ...,gN (xN ))‖.

Proof: It follows from part 3) in Lemma 2.1 that, for any Kd > K0,

argmax
λ∈S

∑

i∈V

fi(xi) + λT
i gi(xi) = argmax

λ∈RMN
+

∑

i∈V

fi(xi) + λT
i gi(xi)−KddS(λ).

Since φ(λ) = dS(λ) = 0,∀λ ∈ S , it suffices to prove
√
Nφ(λ) > dS(λ) for all λ ∈ R

MN
+ \ S .

On one hand,

d2S(λ) = min
λ̃∈S

‖λ̃−λ‖2 =
N
∑

k=1

∥

∥λk −
λ1 + · · ·+ λN

N

∥

∥

2 ≤ 1

N

N
∑

k=1

N
∑

l=1

‖λk −λl‖2 ≤ 1

N

N
∑

k=1

N
∑

l=1

|λk −λl|2.

On the other hand, since the graph is connected and undirected, there is a path Pkl ⊂ E connecting nodes

k and l for any k, l ∈ V . Then

φ(λ) =
1

2

∑

(i,j)∈E

|λi − λj | ≥
1

2

∑

(i,j)∈Pkl

|λi − λj | ≥ |λk − λl|.

Thus, d2S(λ) ≤ Nφ2(λ) and the equality holds if and only if λ ∈ S , which implies the conclusion.

The correctness of the Lagrangian function L̃(x,λ) to problem (4) is indicated in the following result.

Theorem 4.1: Under Assumption 3.1, the following statements are equivalent:

1) (x∗,λ∗) ∈ Ω×R
MN
+ renders the following equations

0 ∈ ΠΩ(x
∗,−∂xL̃(x∗,λ∗)), (9a)

0 ∈ ΠR
MN
+

(λ∗,−∂λ(−L̃)(x∗,λ∗)). (9b)

2) (x∗,λ∗) is a saddle point of L̃(x,λ) in Ω×R
MN
+ .

3) λ∗ = col(λ∗, ..., λ∗) and (x∗, λ∗) is a saddle point of L(x, λ) in Ω× R
M
+ .

Proof: 1) ⇒ 2): Let (x∗,λ∗) ∈ Ω× R
MN
+ satisfying (9). Then

0 ∈ −∂xL̃(x∗,λ∗)−NΩ(x
∗), (10a)

0 ∈ −∂λ(−L̃)(x∗,λ∗)−NR
MN
+

(λ∗). (10b)
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Since L̃(x,λ) is convex in x and concave in λ (or equivalently, −L̃(x,λ) is convex in λ), it follows

from part 2) in Lemma 2.1 that x∗ is the minimum point of L̃(·,λ∗) in Ω and λ∗ is a maximum point

of L̃(x∗, ·) in R
MN
+ , which implies statement 2).

2) ⇒ 3): Let (x∗,λ∗) be a saddle point of L̃(x,λ) in Ω× R
MN
+ . Then

λ∗ ∈ argmax
λ≥0

L̃(x∗,λ). (11)

It follows from Lemma 4.2 that λ∗ = col(λ∗, ..., λ∗). Substituting this λ∗ into the saddle point inequalities

with respect to L̃(x,λ) yields

x∗ ∈ argmin
x∈Ω

L(x, λ∗) and λ∗ ∈ argmax
λ≥0

L(x∗, λ), (12)

because of the identity L̃(x,λ∗) = L(x, λ∗). Therefore, the conclusion follows.

3) ⇒ 1): Suppose λ∗ = col(λ∗, ..., λ∗) and (x∗, λ∗) is a saddle point of L(x, λ). According to Lemma

4.2, condition (11) holds. Again, from part 2) in Lemma 2.1, condition (10) holds, which implies statement

1).

By Theorem 4.1 and Lemma 4.1, the saddle points of L̃(x,λ) match exactly the saddle points of

L(x, λ), which are in accordance with the optimal primal-dual solutions.

Based on L̃(x,λ), we present a distributed continuous-time algorithm to solve (4) as follows:

∀ i ∈ V :











ẋi ∈ ΠΩi
(xi,−∂xi

L̃(x,λ)), xi(0) ∈ Ωi

λ̇i ∈ ΠR
M
+
(λi,−∂λi

(−L̃)(x,λ)), λi(0) ∈ R
M
+ ,

(13)

where

∂xi
L̃(x,λ) = ∂fi(xi) + ∂gi(xi)λi, −∂λi

(−L̃)(x,λ) = gi(xi)−K
∑

j∈Ni

Sgn(λi − λj),

(the second equality follows because graph G is undirected) and Sgn(·) is the set-valued sign function

with each component defined as

Sgn(y) , ∂|y| =























{1} if y > 0

{−1} if y < 0

[−1, 1] if y = 0

.

For simplicity, we rewrite algorithm (13) in a compact form










ẋ ∈ ΠΩ(x,−∂xL̃(x,λ)), x(0) ∈ Ω

λ̇ ∈ ΠR
MN
+

(λ,−∂λ(−L̃)(x,λ)), λ(0) ∈ R
MN
+ .

(14)

Algorithm (13) is fully distributed since each agent i ∈ V only updates its local variables xi and λi

according to its local functions fi,gi and the information of its neighbors λj , j ∈ Ni.
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Remark 4.1: Some discussions about our method are given below.

• In the original L(x, λ), each gi(xi) shares a common λ and the multiplier λ performs on the coupled

g(x), while, in the modified one L̃(x,λ), all the local parts of cost and constraint functions are gathered

in a decoupled way.

• Our distributed algorithm involves only primal variables and local multipliers without auxiliary dynam-

ics, while some existing distributed algorithms such as those given in [16]–[19] employed auxiliary

dynamics for the convergence.

• From the estimation K0 ≤ ∑N
i=1maxxi∈Ωi

{‖gi(xi)‖} for Lemma 4.2, parameter K can be assigned

via local estimation of each maxxi∈Ωi
‖gi(xi)‖ and calculating the sum in a distributed manner.

B. Existence and Convergence

Dynamics (14) is nonsmooth due to the projection operator and subgradients of the nonsmooth La-

grangian function. Thus, we need to check the existence of its solution (trajectory).

Theorem 4.2: Under Assumption 3.1, for any initial value x(0) ∈ Ω,λ(0) ∈ R
MN
+ , there exists a

solution to (14).

Proof: Let D̃ be the convex hull of λ(0) and
∏N

i=1D, where D is in (7). Then D̃ is compact and

convex. Consider the following differential inclusion










ẋ ∈ ΠΩ(x,−∂xL̃(x,λ))

λ̇ ∈ ΠD̃(λ,−∂λ(−L̃)(x,λ))
. (15)

Since TD̃(λ) ⊂ TRMN
+

(λ),∀λ ∈ D̃, any solution to (15) is also a solution to (14). Thus, it suffices to

prove the existence of solution for (15).

Let F(x,λ) , col(−∂xL̃(x,λ),−∂λ(−L̃)(x,λ)), and C , Ω × D̃. We claim that F is upper

semicontinuous over C . The locally Lipschtiz continuity of f(x),g(x), φ(λ) implies that F has compact

values over the compact set C . Then it suffices to prove gphF is closed due to part 1) in Lemma

2.2. Let {xk,λk} and {ζk, ηk} be sequences in C and R
n1+···+nN × R

MN such that (a) col(ζk, ηk) ∈
F(xk,λk), (b) (xk,λk) converges to (x,λ), and (c) (ζ, η) is a cluster point of the sequence (ζk, ηk).

We can extract a subsequence of (ζk, ηk) (without relabeling) such that limk→+∞(ζk, ηk) = (ζ, η). Since

−∂xL̃(x,λ) = −∂f(x) − diag{∂g1(x), ..., ∂gN (x)}λ, ζk = −αk − βkλk, where αk ∈ ∂f(xk) and

βk ∈ diag{∂g1(xk), ..., ∂gN (xk)}. It follows from part 1) in Lemma 2.1 that limk→+∞ αk = α ∈ ∂f(x)

and limk→+∞ βk = β ∈ diag{∂g1(x), ..., ∂gN (x)} after extracting subsequences of {αk} and {βk}
without relabeling. Therefore, ζ ∈ −∂xL̃(x,λ). Similarly, η ∈ −∂λ(−L̃)(x,λ). Thus, (ζ, η) ∈ F(x,λ),

i.e., gphF is closed.
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Finally, according to part 2) and part 3) in Lemma 2.2, there exists a solution to system (15), which

is also a solution to (14).

Then it is time to show the convergence of our algorithm.

Theorem 4.3: Under Assumption 3.1, algorithm (14) is stable and any of its solutions converges to the

set of saddle points of L̃. Moreover, for any solution (x(t),λ(t)), there exists a saddle point (x∗, λ̃∗) of

L̃ such that

lim
t→+∞

(x(t),λ(t)) = (x∗, λ̃∗). (16)

Proof: For all x,x ∈ Ω,λ,λ ∈ R
MN
+ , the following basic conditions hold, according to the

definitions of projection, normal cone and the convexity-concavity of L̃.

• (projection)

ΠΩ(x,−∂xL̃(x,λ)) ⊂ −∂xL̃(x,λ)−NΩ(x),

ΠR
MN
+

(λ,−∂λ(−L̃)(x,λ)) ⊂ −∂λ(−L̃)(x,λ) −NR
MN
+

(λ),

• (normal cone)

(x− x)Tux ≤ 0, ∀ux ∈ NΩ(x), (λ− λ)Tuλ ≤ 0, ∀uλ ∈ NR
MN
+

(λ),

• (convexity-concavity)

(x− x)T vx ≤ L̃(x,λ)− L̃(x,λ), ∀ vx ∈ ∂xL̃(x,λ),

(λ− λ)T vλ ≤ L̃(x,λ)− L̃(x,λ), ∀ vλ ∈ ∂λ(−L̃)(x,λ).

Therefore,

(x− x)Twx ≤ L̃(x,λ)− L̃(x,λ), ∀wx ∈ ΠΩ(x,−∂xL̃(x,λ)), (17a)

(λ− λ)Twλ ≤ L̃(x,λ)− L̃(x,λ), ∀wλ ∈ ΠR
MN
+

(λ,−∂λ(−L̃)(x,λ)). (17b)

Let (x∗,λ∗) be an equilibrium point of (14), which satisfies (9). From Lemma 4.1 and Theorem 4.1,

x∗ coincides with the unique solution of the primal problem and (x∗,λ∗) is a saddle point of L̃(x,λ).
Define

W (x,λ) , L̃(x,λ∗)− L̃(x∗,λ), ∀x ∈ Ω,λ ≥ 0.

Obviously, W (·) is a locally Lipschitz continuous function. Moreover, since (x∗,λ∗) is a saddle point

of L̃, W (x,λ) ≥ 0 and W (x,λ) = 0 if and only if (x,λ) = (x∗, λ̃∗) for some saddle point (x∗, λ̃∗)

of L̃.
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Consider a Lyapunov function

V (x,λ) =
1

2
‖x− x∗‖2 + 1

2
‖λ− λ∗‖2.

Let (x(t),λ(t)) be any solution to (14). Since ẋ ∈ TΩ(x) and λ̇ ∈ TRMN
+

(λ), we have x(t) ∈ Ω, λ(t) ≥
0, ∀ t ≥ 0. Moreover, it follows from (17) that

d

dt
V (x(t),λ(t)) = (x(t)− x∗)T ẋ(t) + (λ(t)− λ∗)T λ̇(t) ≤ −W (x(t),λ(t)) ≤ 0, (18)

for almost all t ≥ 0. Therefore, (14) is stable.

Furthermore, since W (·) is locally Lipschitz continuous and x(t),λ(t) are absolutely continuous, W (t)

(shorthand for W (x(t),λ(t))) is uniformly continuous in t. We claim that W (t) is Riemann integrable

over the infinite interval [0,+∞). In fact, the Riemann integral of the continuous function W over any

finite interval [0, t) equals to the corresponding Lebesgue integral. Moreover,
∫ t

0 W (τ)dτ is monotonically

increasing since W is nonnegative, and it follows from (18) that the Lebesgue integral of W over the

infinite interval [0,+∞), if exists, must be bounded.

As a result,
∫ +∞
0 W (τ)dτ exists and is finite. Then, by the Barbalat’s lemma, (x(t),λ(t)) converges

to the zeros set of W , which is exactly the set of saddle points of L̃.

Let (x∗, λ̃∗) be a cluster point of (x(t),λ(t)) as t → +∞. Then (x∗, λ̃∗) is a saddle point of L̃.

Define

Ṽ (x,λ) =
1

2
‖x− x∗‖2 + 1

2
‖λ− λ̃∗‖2.

It follows from similar arguments that
˙̃V (t) ≤ −L̃(x(t), λ̃∗) + L̃(x∗,λ(t)) ≤ 0 for almost all t > 0.

Hence, (x∗, λ̃∗) is Lyapunov stable. It follows from Lemma 2.3 that (16) holds.

Finally, we discuss the convergence rate. Define

x̂(t) ,
1

t

∫ t

0
x(τ)dτ, λ̂(t) ,

1

t

∫ t

0
λ(τ)dτ , (19)

where trajectories x(·),λ(·) are in Theorem 4.3.

Theorem 4.4: Under Assumption 3.1, there exists a constant θ0 > 0 such that

‖L̃(x̂(t), λ̂(t))− L̃(x∗, λ̃∗)‖ ≤ θ0
t
, ∀ t > 0. (20)

Proof: Since Ω is convex and x(·) ∈ Ω,λ(·) ∈ R
MN
+ , x̂(t) ∈ Ω, λ̂(t) ∈ R

MN
+ , ∀ t > 0. It follows

from the Jensen’s inequality for the convex-concave L̃ that, for any x ∈ Ω,λ ∈ R
MN
+ ,

1

t

∫ t

0
L̃(x(τ),λ)dτ ≥ L̃(x̂(t),λ), 1

t

∫ t

0
L̃(x,λ(τ))dτ ≤ L̃(x, λ̂(t)). (21)
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Moreover, it follows from (17) that, for almost all τ > 0,

d

dτ
(
1

2
‖x(τ) − x‖2) ≤ L̃(x,λ(τ)) − L̃(x(τ),λ(τ)),

d

dτ
(
1

2
‖λ(τ) − λ‖2) ≤ L̃(x(τ),λ(τ)) − L̃(x(τ),λ).

(22)

For any fixed t > 0, the time average of (22) over integral interval [0, t] with relaxation (21) indicates

−‖x(0) − x‖2
2t

≤ L̃(x, λ̂(t))− 1

t

∫ t

0
L̃(x(τ),λ(τ))dτ,

−‖λ(0)− λ‖2
2t

≤ 1

t

∫ t

0
L̃(x(τ),λ(τ))dτ − L̃(x̂(t),λ),

(23)

Replacing (x,λ) by (x̂(t), λ̂(t)) in (23) yields

∥

∥

1

t

∫ t

0
L̃(x(τ),λ(τ))dτ − L̃(x̂(t), λ̂(t))

∥

∥ ≤ θ1
2t
,

where θ1 , maxt>0{‖x(0) − x̂(t)‖2, ‖λ(0) − λ̂(t)‖2}. Note that (x̂(t), λ̂(t)) are uniformly bounded

for t ∈ [0,+∞) due to (16). Similarly, since L̃(x∗, λ̂(t)) ≤ L̃(x∗, λ̃∗) ≤ L̃(x̂(t), λ̃∗), we have from

replacing (x,λ) by (x∗, λ̃∗) in (23) that

∥

∥

1

t

∫ t

0
L̃(x(τ),λ(τ))dτ − L̃(x∗, λ̃∗)

∥

∥ ≤ θ2
2t
,

where θ2 , max{‖x(0) − x∗‖2, ‖λ(0) − λ̃∗‖2}. Thus, (20) holds with θ0 , (θ1 + θ2)/2.

Theorems 4.1–4.4 provide a complete procedure to prove that algorithm (14) solves problem (4). In

particular, Theorem 4.4 indicates that the value of the Lagrangian function with respect to time average

trajectories converges to the value at saddle points with the convergence rate O(1
t
).

V. NUMERICAL EXAMPLES

In this section, we first take a simple example for illustration and then consider a more practical

example for the performance of our algorithm.

Example 5.1: Consider 4 agents for the optimization problem (4) with nonsmooth cost and constraint

functions:

fi(xi) = (xi,1 + ai,1xi,2)
2 + xi,1 + ai,2xi,2 +

√

x2i,1 + x2i,2, i = 1, 2, 3, 4

and

gi,1(xi) =
√

x2i,1 + x2i,2 − di,1, gi,2(xi) = −xi,1 − xi,2 + di,2,

October 8, 2018 DRAFT
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1 2 3 4

Fig. 1. The communication graph of the four agents.

TABLE I

PARAMETERS SETTING

di ai xi(0)

i = 1 (6, 2) (8, 2) (2, 6)

i = 2 (6, 3) (4, 7) (1, 1)

i = 3 (6, 4) (0.13, 8) (5, 4)

i = 4 (6, 5) (4, 20) (10, 5)

where xi = (xi,1, xi,2) ∈ R
2, di = (di,1, di,2) ∈ R

2 and ai = (ai,1, ai,2) ∈ R
2 for i = 1, 2, 3, 4. The local

constraint sets of the four agents are

Ω1 = {x1 ∈ R
2 | (x1,1 − 2)2 + (x1,2 − 3)2 ≤ 25},

Ω2 = {x2 ∈ R
2 |x2,1 ≥ 0, x2,1 ≥ 0, x2,1 + 2x2,2 ≤ 4},

Ω3 = {x3 ∈ R
2 | 4 ≤ x3,1 ≤ 6, 2 ≤ x3,2 ≤ 5},

Ω4 = {x4 ∈ R
2 | 0 ≤ x4,1 ≤ 15, 0 ≤ x4,1 ≤ 20}.

The communication graph is shown in Fig. 1 and algorithm parameters are listed in Table I. Both

centralized primal-dual algorithm and our distributed algorithm are utilized to solve this problem and the

results are shown in Figs. 2–4. The trajectories of primal variables are both within their local constraint

sets as shown in Figs. 2 and 3, while the Lyapunov functions of the algorithms decrease monotonically

as shown in Fig. 4.

Example 5.2: Consider problem (4) with each local constraint as xi ∈ [0, 1], where each cost function

is

fi(xi) = aix
2
i + ln(1 + bixi) + ci|xi − di|+ eixi,

and the coupled inequality constraints are g(x) = Px − q ≤ 0. We randomly generate coefficients

ai, bi, ci, di, ei ∈ [0, 1], matrices 0M×N ≤ P ≤ 1M1
T
N and q ≥ 0M such that strictly feasible point

exists. We choose the network size as N = 10, 20, 50 and the number of coupled constraints as M = 5.

For each problem setting, we randomly generate 100 communication graphs. Over each graph, we conduct

October 8, 2018 DRAFT
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Fig. 2. The trajectories of agent 1 and agent 2
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Fig. 3. The trajectories of agent 3 and agent 4

the numerical experiment and take the relative error e(t) = maxi=1,...,N |xi(t)−x∗

i |
maxi=1,...,N |x∗

i |
for t = 20, 60, 100. The

average results are shown in Table II, which indicates the effectiveness of our distributed algorithm.

VI. CONCLUSION

In this note, a distributed nonsmooth convex optimization problem with coupled inequality con-

straints has been studied. Based on a modified Lagrangian function constructed via local multipliers
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Fig. 4. The Lyapunov functions

TABLE II

RELATIVE ERROR VS. NETWORK SIZE

t = 20 t = 60 t = 100

N = 10 0.1982 0.0711 0.0143

N = 20 0.5530 0.0290 0.0042

N = 50 0.1391 0.0170 0.0105

and nonsmooth penalty technique, a distributed continuous-time algorithm has been proposed. Also, the

convergence of the nonsmooth dynamics has been proved and the convergence rate has been analyzed.

Additionally, the effectiveness of the algorithm has been illustrated by two numerical examples.
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