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Abstract—This paper proposes a new approach to analyze
and design distributed robust consensus control protocolsfor
general linear leaderless multi-agent systems (MASs) in presence
of relative-state constraints or uncertainties. First, weshow that
the MAS robust consensus under relative-state constraintsor
uncertainties is equivalent to the robust stability under state
constraints or uncertainties of a transformed MAS. Next, the
transformed MAS under state constraints or uncertainties is
reformulated as a network of Lur’e systems. By employing S-
procedure, Lyapunov theory, and Lasalle’s invariance principle,
a sufficient condition for robust consensus and the design of
robust consensus controller gain are derived from solutions of a
distributed LMI convex problem. Finally, numerical exampl es
are introduced to illustrate the effectiveness of the proposed
theoretical approach.

I. I NTRODUCTION

Multi-agent systems (MASs) and their cooperative control
problems have been extensively studied and applied to many
practical systems, e.g., power grids, wireless sensor networks,
transportation networks, systems biology, etc., because of their
key advantage of achieving global objectives by performing
local measurements and controls at each agent and simultane-
ously collaborating among agents using that local information.
Among many interesting problems, consensus is one of the
most important and intensively investigated issues in MASs
due to its attraction in both theory and applications [1]–[3].

In practical MASs, agents’ inputs or states and the ex-
changed information among agents are subjected to con-
straints or uncertainties due to physical limitations of agents
or uncertain communication channels. Realistic examples are
consensus of vehicles with limited speeds and working space,
smart buildings energy control with temperature and humidity
are required in specific ranges, just to name a few. Therefore,
the MAS consensus under constraints and uncertainties on
the inputs, states, or relative states of agents is a significant,
realistic problem and is worth studying. However, this problem
was not investigated in the early researches on MASs and it
just has been considered in some recent studies [4]–[14].

A constrained consensus problem was investigated in [4]
where the states of agents are required to lie in individual
closed convex sets and the final consensus state must belong
to the non-empty intersection of those sets. Accordingly, a
projected consensus algorithm was proposed and then applied
to distributed optimization problems. Following this research
line, [5] extended the result in [4] to the context where
communication delays exist. In another work, [6] studied
the state increment by utilizing the model predictive control
(MPC) method. However, distributed and fast MPC algorithms
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need to be further developed in order to use in large-scale
MASs. Another direction is to employ the discarded consen-
sus algorithms [7], [8]. Nevertheless, a requirement of these
approaches as well as in [4], [5] is that the initial states of
agents must belong to some sets specified by the constraints,
i.e., the consensus is only local. Moreover, only agents with
single integrator dynamics were considered in [7], [8].

To achieve the global or semi-global consensus in presence
of input or state constraints, some consensus laws were
presented in [9], [10], but they were only for leader-follower
MASs. In other researches, [11]–[13] derived global consensus
under input or state constraints by reformulating the con-
strained MAS as a network of Lur’e systems and employing
Lyapunov theory. The paper [11] considered linear agents with
input saturation but agents’ dynamics is limited to be single-
input. Next, [12] and [13] investigated consensus problemsfor
general linear MASs where outputs of agents are incrementally
bounded or passive and obtained sufficient conditions for
global consensus in the form of LMI convex problems.

On the other hand, the MAS consensus under relative-state
constraints has been recently studied in [14] within a very
special context where the input matrices of agents are identity
matrices and the consensus controller gain is a diagonal matrix.
Then sufficient conditions were proposed for the cases of
2-norm and∞-norm bounded constraints on relative states
of agents. Nevertheless, the consensus is only local and no
consensus controller design was given in [14].

This paper proposes a new approach to analyze and design
distributed robust consensus controllersfor general linear
homogeneous leaderless MASsto achieveglobal consensus
under relative-state constraints or uncertaintieswhich are
in the form of a sector-bounded condition. Our approach
covers broader systems and scenarios than those in the ex-
isting researches, and hence constitutes our first contribution.
Consequently, we further develop the edge dynamics proposed
in [15] to achieve that the currently considered problem is
equivalent to a distributed robust stabilization problem under
state constraints or uncertainties for a transformed MAS.
This serves as our second contribution. Next, the transformed
MAS is rewritten as a network of Lur’e systems and the
robust stabilization problem is formulated as a distributed
convex LMI problem. In comparison with the one in [11]
for a similar type of Lur’e networks, our LMI problem is
less conservative that: (i) employs a more general method
namely the S-procedure; (ii) gives an exponential convergence
to consensus instead of asymptotic convergence. Furthermore,
our consensus controller gain is much more general than the
diagonal one in [14]. Those advantages clearly show our third
contribution.

The following notation and symbols will be used in the
paper.R andC stand for the real and complex sets. Moreover,
1n denotes then× 1 vector with all elements equal to1, and
In denotes then × n identity matrix. Next,⊗ stands for the
Kronecker product,diag{} denotes diagonal or block-diagonal
matrices, andsym(A) denotesA+AT for any real matrixA.
Lastly, ≻ and� denote the positive definiteness and positive
semi-definiteness of a matrix, and similar meanings are used
for ≺ and�.
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II. PROBLEM DESCRIPTION

Consider a MAS consisting ofN identical agents with the
following linear dynamics

ẋi = Axi +Bui, i = 1, . . . , N, (1)

wherexi ∈ Rn is the state vector,ui ∈ Rm is the control input,
A ∈ Rn×n, B ∈ Rn×m. The whole MAS is then described
by

ẋ = (IN ⊗A)x + (IN ⊗B)u, (2)

wherex =
[

xT1 , . . . , x
T
N

]T
, u =

[

uT1 , . . . , u
T
N

]T
. Let G be an

undirected graph representing the information structure in the
MAS, in which each node inG represents an agent and each
edge inG represents the interconnection between two agents.
DenoteL ∈ RN×N andE ∈ RN×M the Laplacian matrix and
the incidence matrix associated withG. ThenL = EET and
ET

1N = 0.
The following assumptions will be employed.

A1: (A,B) is stabilizable.
A2: All eigenvalues ofA is on the closed left half complex

plane.
A3: G is undirected and connected.
Assumptions A1–A2 are necessary and sufficient such that the
consensus can be achieved and stable (see e.g. [16]). Next, the
consensus of agents is defined as follows.

Definition 1: The MAS with linear dynamics of agents
represented by (1) and the information exchange among agents
represented byG is said to reach a consensus if

lim
t→∞

‖xi(t)− xj(t)‖ = 0 ∀ i, j = 1, . . . , N. (3)

Due to physical limitations on the communication range and
bandwidth of agents or uncertain information channels, the
exchanged relative states among agents could be bounded or
contain some uncertainties. To take into account those practical
issues in the control analysis and design, we define in the
following a new state vector and a new control input,

z , (ET ⊗ In)x, w , (ET ⊗ Im)u.

Let L† be the generalized pseudoinverse of the Laplacian
matrixL [17]. Then multiplying both sides of (2) withET⊗In
gives us the following edge dynamics [15],

ż = [(ETL†E)⊗A]z + (IM ⊗B)w. (4)

Sincez composes of all relative states of connected agents, (2)
is consensus if this edge dynamics is stabilized. Moreover,all
relative-state constraints and uncertainties are now represented
in term ofz. Accordingly, the following control scenario shall
be investigated.

• Relative-State Constraints/Uncertainties:For all j ∈
[1,M ], yj,k = φj,k(zj,k)∀ k = 1, . . . , n whereyj,k ∈ R

is the kth component of the signal exchanged through
the edgej; φj,k : R → R is a continuous function that
satisfies the following sector-bounded condition:

(φj,k(zj,k)− σk,1zj,k)(φj,k(zj,k)− σk,2zj,k) ≤ 0

∀ k = 1, . . . , n; ∀ j = 1, . . . ,M,
(5)

whereσk,1, σk,2 ∈ R are known constants,σk,1 < σk,2.

Consequently, we present the control analysis and design
problem considered in this paper.

• Global robust consensus under relative-state con-
straints or uncertainties: For the given linear MAS with
dynamics of agents represented by (1) and the informa-
tion exchange among agents represented byG, find a
condition and a control strategy to achieve consensus of
agents in the sense of (3) subjected to the relative-state
constraints or uncertainties (5), for any initial conditions
of agents.

III. C ONSENSUSANALYSIS AND DESIGN UNDER

RELATIVE -STATE CONSTRAINTS ORUNCERTAINTIES

A. Equivalence to Robust Stabilization in Presence of State
Constraints or Uncertainties

DenoteL̄ = ETL†E andLe = ETE.
Lemma 1: [15] The following statements hold.

(i) Le has exactlyN − 1 non-zero eigenvalues, which are
equal to positive eigenvalues ofL while all other eigen-
values ofLe if exist are0.

(ii) L̄ has exactlyN − 1 non-zero eigenvalues, which are all
equal to1, and other eigenvalues of̄L if exists are0.

Let U ∈ RM×M be an orthogonal matrix that diagonalizes
L̄, and

z̃ , (UT ⊗ In)z, w̃ , (UT ⊗ Im)w.

Subsequently, we obtain from (4) that

˙̃z =
(

Γ̄⊗A
)

z̃ + (IM ⊗B)w̃, (6)

whereΓ̄ = diag{0, IN−1} includes all eigenvalues of̄L in its
diagonal (due to Lemma 1). Now, let us partitionU , the state
and input vectors in (6) as follows,

U =
[

U1 U2

]

, z̃ =

[

z̃1
z̃2

]

, w̃ =

[

w̃1

w̃2

]

, (7)

where U1 ∈ RM×(M−N+1), U2 ∈ RM×(N−1), z̃1 ∈
Rn(M−N+1), z̃2 ∈ Rn(N−1), w̃1 ∈ Rn(M−N+1), w̃2 ∈
Rn(N−1). Then (6) is equivalent to

˙̃z1 = (IM−N+1 ⊗B)w̃1,

˙̃z2 = (IN−1 ⊗A)z̃2 + (IN−1 ⊗B)w̃2,
(8)

and z̃1 = (UT
1 ⊗ In)z, z̃2 = (UT

2 ⊗ In)z.
Let Γ ∈ R(N−1)×(N−1) be the diagonal matrix including

all non-zero eigenvalues ofL in its diagonal, andV ∈ RN×N

is an orthogonal matrix such that

V TLV =

[

0 0
0 Γ

]

. (9)

PartitioningV into [V1, V2] whereV1 ∈ RN , V2 ∈ RN×(N−1).
Then

LV2 = V2Γ ⇔ V T
2 LV2 = Γ, (10)

sinceV T
2 V2 = IN−1.

Denote Φ(z) , [φT1 (z1), . . . , φ
T
M (zM )]T , φj(zj) ,

[φTj,1(zj,1), . . . , φ
T
j,N (zj,M )]T , ∀ z = [zT1 , . . . , z

T
M ]T .
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Theorem 1:Let U2 be chosen asETV2Γ
−1/2, then the

following distributed robust stabilizing controller in presence
of state constraints or uncertainties

w̃ = F
(

UT ⊗ In
)

Φ(z), (11)

for the transformed edge dynamics (8) withF = F ⊗ K,
K ∈ Rm×n and

F =

[

0 0
0 Γ

]

, (12)

is equivalent to the following distributed robust consensus
controller under relative-state constraints or uncertainties (5),

u = (E ⊗K)Φ(z), (13)

for the initial MAS (2). Furthermore,̃z1(t) = 0 ∀ t ≥ 0.
Proof: First, we show that the orthogonality ofU is

satisfied withU2 chosen to beETV2Γ
−1/2. Indeed,UT

2 U1 =
Γ−1/2V T

2 EU1 = 0 since EU1 = 0 due to a fact that
EL̄ = E. Moreover,UT

2 U2 = Γ−1/2V T
2 EE

TV2Γ
−1/2 =

Γ−1/2ΓΓ−1/2 = IN−1.
Next, multiplying to the left of (10) withET gives us

LeE
TV2 = ETV2Γ,

⇔ LeE
TV2Γ

−1/2 = ETV2Γ
1/2,

⇔ Γ−1/2V T
2 ELeE

TV2Γ
−1/2 = Γ−1/2V T

2 EE
TV2Γ

1/2,

⇔ UT
2 LeU2 = Γ. (14)

On the other hand,̄LU1 = 0, which leads toLeU1 = 0 since
LeL̄ = Le. Therefore, we obtain

F = UTLeU ⇔ UFUT = Le. (15)

Consequently,

w̃ = F
(

UT ⊗ In
)

Φ(z),

⇔ [(UTET )⊗ Im]u =
[(

FUT
)

⊗K
]

Φ(z). (16)

SinceUTET = [EU1, EU2]
T = [0, V2Γ

1/2]T and FUT =
[0, ETV2Γ

1/2]T , (16) is equivalent to
[(

Γ1/2V T
2

)

⊗ Im

]

u =
[(

Γ1/2V T
2 E

)

⊗K
]

Φ(z),

⇔ [(V2V
T
2 )⊗ Im]u = [(V2V

T
2 E)⊗K]Φ(z), (17)

by multiplying both to the left and to the right of (17) with
(V2Γ

−1/2)⊗ Im. Note thatV1 = 1√
N
1N , thenV2V T

2 = IN −
V1V

T
1 = IN − 1

N 1N1
T
N . Hence, we obtain[(IN − 1

N 1N1
T
N )⊗

Im]u = [([IN − 1
N 1N1

T
N ]E)⊗K]Φ(z) = (E⊗K)Φ(z), since

1
T
NE = 0. This is equivalent tou = (E ⊗K)Φ(z) + (1N ⊗
Im)u0 for any u0 ∈ Rm. Since we are not interested in self-
feedback inputs for agents,u0 = 0 or equivalently

u = (E ⊗K)Φ(z).

On the other hand, we have

z̃1 = UT
1 z = [(UT

1 E
T )⊗ In]x = 0 ∀ t ≥ 0,

sinceEU1 = 0.
Employing the result of Theorem 1 to the transformed edge

dynamics (8), it can be deduced that we only need to design
a distributed robust stabilizing controller for the subsystem

˙̃z2 = (IN−1 ⊗A)z̃2 + (IN−1 ⊗B)w̃2, (18)

having the following form

w̃2 =
[(

ΓUT
2

)

⊗K
]

Φ(z), (19)

which is directly calculated from (11). Thus, the interesting
result of Theorem 1 is that the distributed robust consensus
design (13) under relative-state constraints or uncertainties for
the initial MAS (2) is equivalent to a simpler problem of syn-
thesizing a distributed robust stabilizing controller (19) under
state constraints or uncertainties for a new MAS (18) which
has lower dimension. In the next section, we will present
an approach to design such a distributed robust stabilizing
controller.

Remark 1: If G is a spanning tree thenM = N − 1 and
henceL̄ = IN−1. Then we do not need the additional trans-
formation (6). Therefore, all results here and in subsequent
sections are derived with̃w2 and z̃2 replaced byw and z,
respectively.

B. Distributed Robust Stabilizing Controller Synthesis

The transformed edge dynamics (18) together with the
robust stabilizing controller (19) can be rewritten in the
following form of a network of Lur’e systems,

˙̃z2 = Az̃2 + Bv,
z = (U2 ⊗ In)z̃2,

v = Φ(z),

(20)

whereA = IN−1 ⊗A, B =
(

ΓUT
2

)

⊗ (BK).
The following theorem presents a sufficient condition for

achieving the robust stabilization of (18) and equivalently the
robust consensus of the initial MAS (2), and then how to
design the consensus controller gainK.

Theorem 2:WhenΣ1 andΣ2 are not multipliers of identity
matrices, the MAS (18) is robustly stabilized by the distributed
stabilizing control law (19) and equivalently the robust consen-
sus under relative-state constraints or uncertainties is achieved
for the initial MAS (2) by the distributed controller (13) if
there exist matricesX ∈ Rn×n, Y ∈ Rm×n andZ ∈ Rm×m

such that the following LMI problem is feasible withǫ > 0,
[

sym(AX + λ2BY Σ2) + ǫX λ2BY + (Σ1 − Σ2)Z

(λ2BY + (Σ1 − Σ2)Z)
T −2Z

]

� 0,

[

sym(AX + λNBY Σ2) + ǫX λNBY + (Σ1 − Σ2)Z

(λNBY + (Σ1 − Σ2)Z)
T −2Z

]

� 0,

X ≻ 0, X is diagonal,
[

Z X
X Ψ−1

]

� 0,

Ψ ≻ 0,Ψ is diagonal.
(21)

Moreover, the controller gainK is calculated byK = Y X−1.
Proof: Consider a Lyapunov functionV (z̃2) = z̃T2 P z̃2

whereP , IN−1 ⊗P , P ∈ Rn, P ≻ 0. Taking the derivative
of V (z̃2) gives us

V̇ (z̃2) = z̃T2
(

PA+ATP
)

z̃2 + 2z̃T2 PBv.
Hence, for allǫ > 0 we have

V̇ (z̃2) + ǫV (z̃2) = z̃T2
(

PA+ATP + ǫP
)

z̃2 + 2z̃T2 PBv.
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We now seekP such thatV̇ (z̃2) + ǫV (z̃2) ≤ 0 as long
as (5) holds. Using the S-procedure [18], suchP exists if
there existψ1,1, . . . , ψ1,n, . . . , ψM,1, . . . , ψM,n which are non-
negative such that

V̇ (z̃2) + ǫV (z̃2)

−
M
∑

j=1

n
∑

k=1

ψj,k(vj,k − σk,1zj,k)(vj,k − σk,2zj,k) ≤ 0. (22)

Let ψj,k = ψk > 0 ∀ j = 1, . . . ,M and Ψ =
diag{ψk}k=1,...,n, then (22) is satisfied if

V̇ (z̃2) + ǫV (z̃2)−
M
∑

j=1

(vj − Σ1zj)
TΨ(vj − Σ2zj) ≤ 0,

⇔
[

z̃2
v

]T [

P1 P2

PT
2 P3

] [

z̃2
v

]

� 0 ⇔
[

P1 P2

PT
2 P3

]

� 0, (23)

whereP1 = PA + ATP + ǫP − IN−1 ⊗ (ΨΣ1Σ2), P2 =
PB + 1

2U
T
2 ⊗ (Ψ(Σ1 +Σ2)), P3 = −IM ⊗Ψ.

Subsequently, employing Schur complement [18] to (23)
results inP1 − P2P

−1
3 PT

2 � 0, which is equivalent to

IN−1 ⊗ (ATP + PA+ ǫP −ΨΣ1Σ2)

+
1

2
Γ⊗ sym(PBK(Σ1 +Σ2)) + Γ2 ⊗ (PBKΨ−1KTBTP )

+
1

4
IN−1 ⊗

[

Ψ(Σ1 +Σ2)
2
]

� 0. (24)

SinceΓ is diagonal, (24) is equivalent to

ATP + PA+ ǫP −ΨΣ1Σ2 + λ2kPBKΨ−1KTBTP

+
1

2
λksym(PBK(Σ1 +Σ2)) +

1

4
Ψ(Σ1 +Σ2)

2 � 0,

⇔ATP + PA+ ǫP + λ2kPBKΨ−1KTBTP

+
1

2
λksym(PBK(Σ1 +Σ2)) +

1

4
Ψ(Σ1 − Σ2)

2 � 0.

Next, denoteX , P−1 and multiplyX both to the left and
to the right of the equation above, we obtain

XAT +AX + ǫX + λ2kBKΨ−1KTBT

+
1

2
λksym(BK(Σ1 +Σ2)X) +

1

4
XΨ(Σ1 − Σ2)

2X � 0.

(25)

If X is diagonal then (25) is equivalent to

sym(AX + λkBY Σ2) + ǫX +
1

2
[λkBY + (Σ1 − Σ2)Z]

× Z−1[λkBY + (Σ1 − Σ2)Z]
T � 0, (26)

whereY , KX , Z = 1
2X

2Ψ. Then using Schur complement
again with (26) leads to
[

sym(AX + λkBY Σ2) + ǫX λkBY + (Σ1 − Σ2)Z

(λkBY + (Σ1 − Σ2)Z)
T −2Z

]

� 0,

(27)
for all k = 2, . . . , N . Sinceλ2 ≤ λ3, . . . , λN−1 ≤ λN , we
can representλi, i = 3, . . . , N − 1 as convex combinations of
λ2 andλN . Thus, we derive (21).

Theorem 3:Suppose thatΣ1 = σ1In andΣ2 = σ2In then
the MAS (18) is robustly stabilized by the distributed stabi-
lizing control law (19) and equivalently the robust consensus

under relative-state constraints or uncertainties is achieved for
the initial MAS (2) by the distributed controller (13) if there
exist matricesX ∈ Rn×n, Y ∈ Rm×n andZ ∈ Rm×m such
that the following LMI problem is feasible withǫ > 0,
[

sym(AX + σ2λ2BY ) + ǫX λ2BY + (σ1 − σ2)Z

(λ2BY + (σ1 − σ2)Z)
T −2Z

]

� 0,

[

sym(AX + σ2λNBY ) + ǫX λNBY + (σ1 − σ2)Z

(λNBY + (σ1 − σ2)Z)
T −2Z

]

� 0,

X ≻ 0,
[

Z X
X Ψ−1

]

� 0,

Ψ ≻ 0,Ψ is diagonal.
(28)

Moreover, the controller gainK is calculated byK = Y X−1.
Proof: Consider the same Lyapunov function as in the

proof of Theorem 2. Then all steps until (25) are also true in
this scenario. Accordingly, substitutingΣ1 = σ1In andΣ2 =
σ2In into (25) gives us

sym(AX + σ2λkBY ) + ǫX +
1

2
[λkBY + (σ1 − σ2)Z]

× Z−1[λkBY + (σ1 − σ2)Z]
T � 0, (29)

whereY , KX ,Z = 1
2XΨX . Then using Schur complement

again with (29) and notes thatλi, i = 3, . . . , N − 1 can be
represented as convex combinations ofλ2 andλN , we obtain
(28).

Remark 2:Recently, there are several existing researches,
e.g. [19], [20], which propose different distributed methods
to approximate the whole eigen-spectrum of the Laplacian
matrix. These methods can be employed to estimateλ2 and
λN before solving the LMI problems (21), (28). As a result,
we can solve (21) and (28) in a distributed fashion.

Remark 3:The difference between Theorem 3 and The-
orem 2 is that the variableX in (28) is not required to
be diagonal while that in (21) is. Therefore, ifΣ1 and Σ2

are multipliers of identity matrices, i.e., the upper and lower
sector slopes for relative state constraints or uncertainties of
all agents are the same then the associated LMI problem is
less conservative and hence its feasibility is increased.

Remark 4:As stated in the introduction, our method to
derive LMI problems (21) and (28) for the Lur’e network (20)
is more general than the method for a similar Lur’e network in
[11]. On the other hand, the problem setting in this paper is in
a different form of Lur’e networks with that in [13]. Therefore,
the obtained results are not similar. More specifically, [13] uses
a linear cooperative input and another nonlinear input witha
different input matrixE satisfying the incrementally passive or
incrementally sector-bounded condition, which is less general
than our sector-bounded condition (5).

IV. N UMERICAL EXAMPLES

A. Practical Consensus of Mobile Robots

Consider a group ofN identical4-wheel robots with front-
wheel steering. The variables and parameters of each robot
are illustrated in Figure 1 where the center of mass is denoted
by Mi whose position in a given coordinate(O, x, y) is
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represented by(xMi, yMi). The rotation and steering angles
are denoted byθi andϕi, respectively. Accordingly,ωi and
vi represent the angular and longitudinal velocity. To take
into account practical factors such as robots’ dimensions and
collision avoidance, we shall investigate the consensus of
the robots’ heading pointsCi instead ofMi. This practical
consensus concept is demonstrated in Figure 1.

 

 

 

 

 

 

 

 

Fig. 1. Demonstration of variables related to a4-wheel robot and the concept
of practical robot consensus.

Next, the robot’s model in term of the coordinates ofCi is
as follows,

ẋi =Mi[vi, ωi]
T , i = 1, . . . , N, (30)

wherexi = [xCi, yCi]
T ; Mi =

[

cos θi −r sin θi
sin θi r cos θi

]

. Denote

ui ,Mi[vi, ωi]
T then each robot can be represented by a set

of two integratorsẋi = ui, i = 1, . . . , N. We have
[

vi
ωi

]

=M−1
i ui =

[

cos θi sin θi
− sin θi/r cos θi/r

]

ui ,

[

ũi,1
ũi,2

]

.

Therefore, the real control inputsvi andϕi to each robot are
computed by

vi = ũi,1; ϕi = arctan
ωi

vi
= arctan

ũi,2
ũi,1

. (31)

Consequently, we consider the constraint‖xi − xj‖∞ ≤ α
on relative states of connected robots, which implies that
the communication range between robots is limited to

√
2α.

This is indeed a robust consensus problem under relative-state
constraints within our framework.

Employing Theorem 3, we solve the LMI problem (28)
with A = 0, B = 1 and obtain −ǫ

λ2σ2

< K < 0. In the
simulation, we setr = 2 [dm], α = 3 [dm], ǫ = 0.4, and
G is a full graph, then chooseK = −0.1 sinceλ2 = 3. The
simulation result in Figure 2 then confirms that the consensus
among robots is achieved even though there is a constraint on
relative state exchange of robots, where the arrows represent
the vectors

−−−→
MiCi of robots. Moreover, Figure 3 shows that

the exchanged relative states of robots always satisfy the given
bounded constraint.

B. Consensus of Oscillator Networks

To further illustrate the proposed approach, we consider a
consensus problem in a network of3 identical linear oscillators
with the following model,

ẋk = Axk +Buk, k = 1, 2, 3, (32)
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Fig. 2. Trajectories of4-wheel robots reaching consensus.
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Fig. 3. Bounded relative coordinates of heading points of4-wheel robots.

where

A =

[

0 1
−1 0

]

, B =

[

0
1

]

, (33)

and the initial conditions of the oscillators are(1,−2); (−3, 1);
(4,−3), respectively. We then assume thatG is a full graph
and the exchanged relative states among agents are bounded
in [−2, 2]. With ǫ = 0.1, solving the LMI problem (28) gives
usK = [−2.3825,−20.6800]. Consequently, Figure 4 reveals
that the oscillators exhibit synchronized oscillations whereas
Figure 5 shows that the relative states of oscillators satisfy the
bounded constraints, i.e., the robust consensus is achieved.

Next, we demonstrate the effectiveness of our approach in
the scenario that the exchanged relative states among agents
contain some uncertainties that results inΣ1 = 0.7I2 and
Σ2 = 1.3I2. Then we solve the LMI problem (28) to obtain
K = [−1.1309,−2.2191]. In the simulation, we randomly
generate those uncertainties in the interval[0.7, 1.3]. We then
observe that the synchronization of oscillators are achieved for
any uncertainties in the given range. Particularly, Figure6–7
display the oscillator network’s responses for a specific case
where the uncertainties on two relative states of oscillators are
1.2789 and0.7946.

V. CONCLUSION

An approach has been proposed in this paper to analyze and
synthesize distributed global robust consensus controllers for
general linear leaderless MASs under relative state constraints
or uncertainties with the following appealing features. First, it
is available for a broader class of MASs and for constraints or
uncertainties described by a sector-bounded condition which
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Fig. 4. Synchronization of oscillators under relative state constraints.

0 10 20 30 40 50 60
−3

−2

−1

0

1

2

Time [s]

1s
t r

el
at

iv
e 

st
at

es

 

 

x
11

−x
21

x
21

−x
31

x
31

−x
11

0 10 20 30 40 50 60
−3

−2

−1

0

1

2

Time [s]

2n
d 

re
la

tiv
e 

st
at

es

 

 

x
12

−x
22

x
22

−x
32

x
32

−x
12

Fig. 5. Bounded relative states of oscillators.
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Fig. 6. Synchronization of oscillators under relative state uncertainties.
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Fig. 7. Relative states of oscillators.

is more general than that in the existing researches. Second, it
shows that the global robust consensus design with relative
state constraints or uncertainties is equivalent to a robust
stabilizing design with state constraints or uncertainties of
a transformed MAS. Third, a sufficient condition for global

robust consensus and the global robust consensus controller
gain are derived from the solutions of a distributed convex
LMI problem which is less conservative than in other studies.
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