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Robust Consensus Analysis and Design under need to be further developed in order to use in large-scale

Relative State Constraints or Uncertainties MASSs. Another direction is to employ the discarded consen-
sus algorithms[[7],[[8]. Nevertheless, a requirement ok¢he

Dinh Hoa NguyenMember, IEEE Tatsuo Narikiyo, approaches as well as inl[4].][5] is that the initial states of
and Michihiro KawanishiMember, IEEE agents must belong to some sets specified by the constraints,
i.e., the consensus is only local. Moreover, only agents wit

, single integrator dynamics were consideredin [7], [8].
Abstract—This paper proposes a new approach to analyze 1, 5 hieve the global or semi-global consensus in presence
and design distributed robust consensus control protocoldor . .
general linear leaderless multi-agent systems (MASs) in psence ©Of input or state constraints, some consensus laws were
of relative-state constraints or uncertainties. First, weshow that presented in[[9],[110], but they were only for leader-folkw
the MAS robust consensus under relative-state constraint®r MASS. In other researche5, [11]-[13] derived global cosaen
uncertainties is equivalent to the robust stability under sate ynder input or state constraints by reformulating the con-

constraints or uncertainties of a transfprmed MAS. N.ex.t, trg strained MAS as a network of Lur'e systems and employing
transformed MAS under state constraints or uncertainties s

reformulated as a network of Lure systems. By employing S- Lyapunov theory. The paper [11] considered linear agertts wi
procedure, Lyapunov theory, and Lasalle’s invariance prirciple, input saturation but agents’ dynamics is limited to be sngl
a sufficient condition for robust consensus and the design of input. Next, [12] and[[13] investigated consensus probléns
robust consensus controller gain are derived from solutios of a  general linear MASs where outputs of agents are increnfgntal
distributed LMI convex problem. Finally, numerical examples ), nqeq or passive and obtained sufficient conditions for
are introduced to illustrate the effectiveness of the propsed .
theoretical approach. global consensus in the form of LMI convex problems.
On the other hand, the MAS consensus under relative-state
constraints has been recently studied [in] [14] within a very
|. INTRODUCTION special context where the input matrices of agents areitgtlent
Multi-agent systems (MASs) and their cooperative contrdhatrices and the consensus controller gain is a diagonaikmat
problems have been extensively studied and applied to maHyen sufficient conditions were proposed for the cases of
practical systems, e.g., power grids, wireless sensorarksy 2-norm andoo-norm bounded constraints on relative states
transportation networks, systems biology, etc., becafigeo  0f agents. Nevertheless, the consensus is only local and no
key advantage of achieving global objectives by performirg@nsensus controller design was givenlinl [14].
local measurements and controls at each agent and simultand his paper proposes a new approach to analyze and design
ously collaborating among agents using that local infoiomat distributed robust consensus controllefsr general linear
Among many interesting problems, consensus is one of themogeneous leaderless MA®s achieveglobal consensus
most important and intensively investigated issues in MASKder relative-state constraints or uncertaintieghich are
due to its attraction in both theory and applicatidns [I}-[3 in the form of asector-bounded conditionOur approach
In practical MASs, agents’ inputs or states and the egovers broader systems and scenarios than those in the ex-
changed information among agents are subjected to cdsting researches, and hence constitutes our first cotitsibu
straints or uncertainties due to physical limitations oérmg Consequently, we further develop the edge dynamics propose
or uncertain communication channels. Realistic examples & [15] to achieve that the currently considered problem is
consensus of vehicles with limited speeds and working spacguivalent to a distributed robust stabilization problemder
smart buildings energy control with temperature and hutyidistate constraints or uncertainties for a transformed MAS
are required in specific ranges, just to name a few. Therefoldlis serves as our second contribution. Next, the transfdrm
the MAS consensus under constraints and uncertainties MAS is rewritten as a network of Lur'e systems and the
the inputs, states, or relative states of agents is a signtfic robust stabilization problem is formulated as a distridute
realistic problem and is worth studying. However, this peatn convex LMI problem. In comparison with the one in_[11]
was not investigated in the early researches on MASs anddt a similar type of Lur'e networks, our LMI problem is
just has been considered in some recent stuflies [4]-[14]. less conservative that: (i) employs a more general method
A constrained consensus problem was investigated]in [aamely the S-procedure; (i) gives an exponential convezge
where the states of agents are required to lie in individu@ consensus instead of asymptotic convergence. Furtmermo
closed convex sets and the final consensus state must bel@wgconsensus controller gain is much more general than the
to the non-empty intersection of those sets. Accordingly, dagonal one in[14]. Those advantages clearly show oud thir
projected consensus algorithm was proposed and then dppfientribution.
to distributed optimization problems. Following this resgh ~ The following notation and symbols will be used in the
line, [5] extended the result in 4] to the context wher@aperR andC stand for the real and complex sets. Moreover,
communication delays exist. In another work] [6] studied. denotes the: x 1 vector with all elements equal th and
the state increment by utilizing the model predictive cohtr I,, denotes the: x n identity matrix. Next,® stands for the
(MPC) method. However, distributed and fast MPC algorithntéronecker producidiag{} denotes diagonal or block-diagonal
matrices, andym(A) denotesA + AT for any real matrixA.
The authors are with Control System Laboratory, Departmeht | astly, - and > denote the positive definiteness and positive
Advanced Science and Technology, Toyota Technologicaltituites, . .. - L .
2-12-1 Hisakata, Tempaku-ku, Nagoya 468-8511, Japan. lEmaS€Mi-definiteness of a matrix, and similar meanings are used
N.DinhHoa.Nguyen@ieee.org, n-tatsuo@toyota-ti.akipya@toyota-ti.acjp for < and <.
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1. PROBLEM DESCRIPTION Consequently, we present the control analysis and design

Consider a MAS consisting oF identical agents with the Problem considered in this paper.
following linear dynamics o Global robust consensus under relative-state con-
straints or uncertainties: For the given linear MAS with

;= Az + Bug,i=1,..., N, @) dynamics of agents represented By (1) and the informa-
wherez; € R" is the state vector,; € R™ is the control input, tion exchange among agents representedgbyfind a
A € R™" B e R"™™m_ The whole MAS is then described condition and a control strategy to achieve consensus of
by agents in the sense dfl(3) subjected to the relative-state
i=(Iy® Az + (Iy ® B)u, (2) constraints or uncertaintiels] (5), for any initial conditso
T . of agents.
wherez = [z1, ... 2%]" ,u=[uf,...,u]] . LetG be an

undirected graph representing the information structnréng
MAS, in which each node iy represents an agent and each
edge inG represents the interconnection between two agents.
DenoteL € RV*N andE € RV*M the Laplacian matrix and A. Equivalence to Robust Stabilization in Presence of State
the incidence matrix associated with ThenL = EET and Constraints or Uncertainties
ET1y =0. o DenoteL = E7L'E and L, = ETE.

The following assumptions will be employed. Lemma 1: [15] The following statements hold.
Al: (A, B) is stabilizable. (i) L. has exactlyN — 1 non-zero eigenvalues, which are
A2: All eigenvalues ofA is on the closed left half complex equal to positive eigenvalues &f while all other eigen-

_ plane. values ofL. if exist are0.
A3: G is undirected and connected. (i) L has exactlyN — 1 non-zero eigenvalues, which are all
Assumptions A1-A2 are necessary and sufficient such that the equal to1, and other eigenvalues df if exists are0.
consensus can be achieved and stable (seé elg. [16]). Next, t Let 7 € RM*M be an orthogonal matrix that diagonalizes
consensus of agents is defined as follows. 7. and

Definition 1: The MAS with linear dynamics of agents '
represented by11) and the information exchange amongsgent

IIl. CONSENSUSANALYSIS AND DESIGN UNDER
RELATIVE-STATE CONSTRAINTS ORUNCERTAINTIES

;2 UTL)z,w2 (U @ I1,)w.

represented by is said to reach a consensus if Subsequently, we obtain froril (4) that
Jim 2 () =z () =0V i j=1,....N. (3) = (T® A) 2+ (In ® B, (6)

Due to physical limitations on the communication range angherel" = diag{0, Iy_;} includes all eigenvalues df in its

bandwidth of agents or uncertain information channels, tagonal (due to Lemnid 1). Now, let us partitidh the state
exchanged relative states among agents could be bounded@f input vectors in{6) as follows,

contain some uncertainties. To take into account thoseipaac

issueg in the control analysis and design, we.define in the U=[Un Us],2= [%1] i = Fﬂ} 7 @
following a new state vector and a new control input, w2
22 (E"® L)z, w2 (BT ® I,)u. where U; € RM*WM=N+1_ 1, ¢ RMxN-1 z ¢

. . RUM-N+1) 5 ¢ RaN-1) 5 ¢ RUM-N+1) 5 ¢
Let LT be the generalized pseudoinverse of the Laplaui@(zv,l) Theif@i) is equivaler:ltjlto 2
matrix L [17]. Then multiplying both sides of{2) witB” ®I,, o
gives us the following edge dynamids [15], zZ1 = (Inj—N41 ® B,

. 8
5= [(ETL'E) ® Alz + (I © B)w. @ 5y = (Iy1 ® A)2a + (In_1 ® B)in, ®)

Sincez composes of all relative states of connected agdits, @)dz1 = (Uf @ I,,)z, Z = (Uy ® I,)z.
is consensus if this edge dynamics is stabilized. Morealer, LetT' € RW-1x(N=1) pe the diagonal matrix including
relative-state constraints and uncertainties are novesemted all non-zero eigenvalues df in its diagonal, and” € RV <V
in term of z. Accordingly, the following control scenario shallis an orthogonal matrix such that
be investigated. 0 0
T
« Relative-State Constraints/Uncertainties:For all j VALV = [0 F] : (9)
(1, M], Yik = ¢j7k(2j7k)Vk =1,...,n Whereyj.,k eR
is the kth component of the signal exchanged througRartitioningV into [Vi, V5] whereV; € RN, V, € RVx(V-1),
the edgej; ¢, : R — R is a continuous function that Then
satisfies the following sector-bounded condition: LVo =Vol' & Vi LV, =T, (10)

(0.6 (2j,k) = Tk,125,6) (D55 (25k) — O,225k) <O (5) SiNceVyve = Iy 1.
Vk:L...,TL; Vj::l,...,M, Denote (I)(Z) 4 [¢,{(2’1),...7¢¥;{(ZM)]T, (257(27) =
T T T _ [T TIT
whereoy 1,02 € R are known constantsy, 1 < oy . [0j1(250), s b (Zian)] T, YV 2 = [z, 2]



Theorem 1:Let U, be chosen a=”V,I'"1/2, then the having the following form
following distributed robust stabilizing controller in ggence _ T
of state constraints or uncertainties w2 = [(FUQ ) ® K] o(2), (19)
which is directly calculated fron{_(11). Thus, the interegti

~ T
w=F (U © I") ®(2), (11) result of Theoreni]l is that the distributed robust consensus
for the transformed edge dynamids (8) with = F ® K, design[[IB) under relative-state constraints or uncei¢sifior
K e R™*™ and the initial MAS (2) is equivalent to a simpler problem of syn-
_100 thesizing a distributed robust stabilizing controllerl(1@der
F ; (12) \ "> :
0 I state constraints or uncertainties for a new MAS] (18) which

is equivalent to the following distributed robust consensias lower dimension. In the next section, we will present
controller under relative-state constraints or uncetiesn(§), an approach to design such a distributed robust stabilizing

controller.
u=(E®K)(2), 13)  Remark 1:If G is a spanning tree thef/ = N — 1 and
for the initial MAS (@). Furthermore; (t) = 0 Y ¢ > 0. henceL = Ix_;. Then we do not need the additional trans-
Proof: First, we show that the orthogonality df is formation [6). Therefore, all results here and in subsetjuen
satisfied withU; chosen to bez”V,I'~1/2. Indeed, UL U, = sections are derived witl, and Z, replaced byw and z,

I''2VTEU; = 0 since EU; = 0 due to a fact that respectively.
EL = E. Moreover,UJ U, = T2V, EETV,I-1/2 =

D12rr=12 = Iy . B. Distributed Robust Stabilizing Controller Synthesis
Next, multiplying to the left of [(T0) with&z" gives us The transformed edge dynamidsJ(18) together with the
L.ETVy = ETV,T, robust stabilizing controller[{19) can be rewritten in the
o LETVT-V/2 = ETY,TY2, following form of a n.etwork of Lur'e systems,
o F_l/Q‘/QTELeET‘/QF_l/z _ 1—‘_1/2V2TEETV2F1/2, 22 = A22 + Bl},
= UzTLeU2 —T. (14) z = (UQ;XUn)Zm (20)
_ v=®(2),
On_the other handLU; = 0, which leads toL.U; = 0 since ( .
L.L = L.. Therefore, we obtain where A= Iy 1 ® A, B= (T'U]) @ (BK).
. . The following theorem presents a sufficient condition for
F=U"LU < UFU" = Le. (15) achieving the robust stabilization ¢f{18) and equivaletitle
Consequently, robust consensus of the initial MA%1(2), and then how to
~ " design the consensus controller g&in
w=F (U ® In) ®(2), Theorem 2:When; and3l; are not multipliers of identity

& [(UTET) @ IyJu= [(FUT) ® K] ®(z).  (16) matrices, the MASI(18) is robustly stabilized by the disttési
) stabilizing control law[(1B) and equivalently the robushsen-
TpT _ T _ 1/21T T _ ) A et
SmC(;U %2 - [EUl,’ EUQ]_ I_ [0, V2T™*]" and FUT = sus under relative-state constraints or uncertaintieshigeaed
[0, EXVRI2]T, (I8) is equivalent to for the initial MAS (2) by the distributed controllef13) if
[(1—\1/2‘/2T) ® Im:| w— Krlm‘/QTE) ® K} o(2) there exist matriceX € R™*™, Y € R™*™ and Z € R™x™
7 such that the following LMI problem is feasible with> 0,

& [(V215) @ InJu = [(12V7 E) ® K]@(2),  (17)

_sym(AX + )\QBYEQ) +eX XNBY + (¥ —3%9)7 <0
by mlJllt/lg)Iy|ng both to the left a?d to the right gﬂlﬂ) with | (\BY + (31 — 5,)2)7 oz =0,
(VoI™%) @ In. Note thatVy = iy, thenlaly' = In = roo Ax L A BYS)) +eX ANBY + (51 — 50)2
ViVl = Iy —+151%. Hence, we obtaif(/y — +1n1%)® \vBY T =0,

1 T - | (ANBY + (31 —32)2) -27

LnJu = [([INn — §1N1N]|E) @ K]®(2) = (E® K)®(2), since s di |
15 E = 0. This is equivalent tas = (E ® K)®(z) + (1y ® X ~ 0, X'Is diagona
In)ug for any uy € R™. Since we are not interested in self- | Z X “ 0

. . -1 = Y%
feedback inputs for agentsy, = 0 or equivalently X v

u=(E®K)(). ¥ - 0, ¥ is diagonal 21)

On the other hand, we have Moreover, the controller gaif is calculated byl = Y X 1.

- Proof: Consider a Lyapunov functio (z2) = 2Pz,
_ T, _ T T _ 2
a=Uiz=[UrE)@Lls=0V1t20, whereP £ Iy_, ® P, P € R", P > 0. Taking the derivative
since EU; = 0. m of V(%) gives us

Employing the result of Theorel 1 to the transformed edge o N AT T\ ~ T
dynamics|[(B), it can be deduced that we only need to design Vig) =% (PA +4 P) %+ 2% PBo.
a distributed robust stabilizing controller for the sulisys Hence, for alle > 0 we have

Zy = (In_1 ® A)Zy + (In—1 @ B)iba, (18) V(%) +€V(%) = 2 (PA+ ATP + €P) 2, + 221 PBu.



We now seekP such thatV(z) + V(%) < 0 as long
as [) holds. Using the S-procedufel[18], suBhexists if
there exist)1 1, ....Y1n,-- -5 ¥, - -, ¥, Which are non-
negative such that

V(Z2) + €V (22)

M
- Z Z%‘,k(l}j,k —ok12k) (Vi — Ok22jk) < 0. (22)
j=1k=1
Let ¥; Yp > 0V j 1,...,M and ¥
diag{vx }k=1.....n, then [22) is satisfied if
M
V(%) + €V (%) — Z (vj — 212))TW(v; — Taz;) <0,

j=1
NE Tre, By [5 P, P,
v P P3| |v]| — PI P;

whereP; = PA+ ATP + eP — In_1 ® (I51%,), Py
PB+ UL @ (U(S1 + ), Ps = Iy @ 0.

] =<0, (23)

Subsequently, employing Schur complement| [18] [fal (2

results inP; — wglpg =< 0, which is equivalent to
INn_1®(ATP + PA+eP — U%%,)

1
+5Te sym(PBK (21 + %)) + I? ® (PBKY'KTBTP)

e e+ )] <0, (24)

Sinil:ef is diagonal,[(2}) is equivalent to
ATP 4+ PA+4¢P — 0% % + M PBKU'KTBTP
+ %/\ksym(PBK(El + ) + %\11(21 +3)2 <0,
AP+ PA+eP+ \;PBKVY 'K"BTP
+ %/\ksym(PBK(El +39)) + %\11(21 — )% <0.

Next, denoteX £ P~! and multiply X both to the left and
to the right of the equation above, we obtain

XAT + AX +eX + \}BKY'KTBT
+ %/\ksym(BK(Zl +32)X) + %X\IJ(El —¥)2X <0.
(25)
If X is diagonal then[(25) is equivalent to
sym(AX 4+ A\, BY33) +eX + %[)\kBY + (31— X92)7]
x Z7YM\BY + (31 — £2)2]7 <0, (26)

under relative-state constraints or uncertainties iseati for
the initial MAS (2) by the distributed controllel {1L3) if the
exist matricesX € R™**™, Y € R™*"™ and Z € R™*™ such
that the following LMI problem is feasible with > 0,

[sym(AX + 09XoBY) +€X MoBY + (01 —02)Z
| (A\BY 4 (01 —02)2)" —27 } =0,
[sym(AX + oo ANBY) +eX ANBY + (01 —02)Z
(ANBY + (01 —09)2)" —27 } =0,
X =0,
z X1
¥ = 0,V is diagonal
(28)

Moreover, the controller gaif is calculated by = Y X 1.
Proof: Consider the same Lyapunov function as in the

proof of TheoreniR. Then all steps unfil{25) are also true in

this scenario. Accordingly, substituting; = 0,7, andXs =

I, into ives us
4y 29) g 1
sym(AX + 09\ BY ) + €X + 5[)\;€BY + (01 — 02) 7]
x ZHABY + (01 — 09)Z]" <0, (29)

whereY £ KX, Z = %X\IJX. Then using Schur complement
again with [29) and notes that,i = 3,..., N — 1 can be
represented as convex combinations\@fand A, we obtain
28). n

Remark 2:Recently, there are several existing researches,
e.g. [19], [20], which propose different distributed medbo
to approximate the whole eigen-spectrum of the Laplacian
matrix. These methods can be employed to estimatand
An before solving the LMI problem$_(21)_(28). As a result,
we can solve[(21) and(R8) in a distributed fashion.

Remark 3:The difference between Theoreoh 3 and The-
orem[2 is that the variableX in (28) is not required to
be diagonal while that in[{21) is. Therefore, ¥, and X,
are multipliers of identity matrices, i.e., the upper anddo
sector slopes for relative state constraints or unceiasiraf
all agents are the same then the associated LMI problem is
less conservative and hence its feasibility is increased.

Remark 4:As stated in the introduction, our method to
derive LMI problems[(211) and{28) for the Lur'e netwofk120)
is more general than the method for a similar Lur’e network in
[17]. On the other hand, the problem setting in this papem is i
a different form of Lur'e networks with that in [13]. Theretfn
the obtained results are not similar. More specifically] [iges

whereY £ KX, Z = %XQ\]]_ Then using Schur complement@ linear cooperative input and another nonlinear input \&ith

again with [26) leads to

sym(AX + AkBYE2) +eX MBY 4+ (31 —%9)7

<0
(ABY + (31 — £9)2)" —27 -

(27)
forall k = 2,...,N. SinceXy < A3,...,Anv_1 < Ay, We

different input matrix® satisfying the incrementally passive or
incrementally sector-bounded condition, which is lessegeh
than our sector-bounded conditidd (5).

IV. NUMERICAL EXAMPLES

can represenk;,i = 3,..., N — 1 as convex combinations of A- Practical Consensus of Mobile Robots

X2 and \y. Thus, we derive[{21). [ | Consider a group oN identical4-wheel robots with front-
Theorem 3:Suppose that; = o011, andX, = o021, then wheel steering. The variables and parameters of each robot

the MAS [I8) is robustly stabilized by the distributed stabiare illustrated in FigurEl1 where the center of mass is denote

lizing control law [I9) and equivalently the robust consensby M; whose position in a given coordinate, z,y) is



represented byx,;, yar;). The rotation and steering angles »

) ) ——3 1st robot
are denoted by, and p;, respectively. Accordinglyw; and » A\ T 2nd robat
v; represent the angular and longitudinal velocity. To take ® %—
into account practical factors such as robots’ dimensians a *
collision avoidance, we shall investigate the consensus of »
the robots’ heading point§’; instead of ;. This practical * \
consensus concept is demonstrated in Fiflire 1.

Y 1. 2 ‘/'
\‘ v 4 2 7 3 3 FT I R VR TR a—
m X Fig. 2. Trajectories oft-wheel robots reaching consensus.
Ym \M
0 X xc p o T X —

Relative x-coordinate
L b o N & oo

Fig. 1. Demonstration of variables related td-wheel robot and the concept
of practical robot consensus. I e A

— Yo Ve

Next, the robot's model in term of the coordinates(gfis
as follows,

Yoo Ves

—,

Relative y-coordinate
L b o N & oo

i‘iZMi[’Ui,wi]T,izl,...,N7 (30)

5 6
Time [s]

cosb; —rsinb;
sinf;  rcost; Fig. 3. Bounded relative coordinates of heading pointg-ofheel robots.
u; & M;[v;,w;]” then each robot can be represented by a set

of two integratorsi; = u;,i = 1,..., N. We have

wherezr; = [xci,ycilt; M; = [ } . Denote

v cosf sin 6 U where 0 1 0
il -1, i i o | Ui
[wz} =M ui = [— sinf;/r cos Oi/r] = |:17,12:| A= [_1 O} B = [1] : (33)
Therefore, the real control inputs and¢; to each robot are and the initial conditions of the oscillators dre —2); (—3,1);
computed by (4,—3), respectively. We then assume thatis a full graph
. wi il o and the exchanged relative states among agents are bounded
v; = U;1; p; = arctan — = arctan —=. (31) in [-2,2]. With € = 0.1, solving the LMI problem[(28) gives

Uj Uil

us K = [—2.3825, —20.6800]. Consequently, Figurld 4 reveals

Consequently, we consider the constraint — 2|l < a that the oscillators exhibit synchronized oscillationseveas

on relative states of connected robots, which implies theigure[5 shows that the relative states of oscillators fyaitiee

the communication range between robots is limited/®2x. bounded constraints, i.e., the robust consensus is achieve

This is indeed a robust consensus problem under relatite-st Next, we demonstrate the effectiveness of our approach in

constraints within our framework. the scenario that the exchanged relative states amongsagent
Employing Theoreni]3, we solve the LMI problem {28kontain some uncertainties that resultsa = 0.71, and

with 4 = 0,B = 1 and obtainy-—~ < K < 0. In the ¥, = 1.31,. Then we solve the LMI probleni(28) to obtain

simulation, we set = 2 [dm], o = 3 [dm], ¢ = 0.4, and K = [-1.1309,—-2.2191]. In the simulation, we randomly

G is a full graph, then choos& = —0.1 since\» = 3. The generate those uncertainties in the intefal, 1.3]. We then

simulation result in Figurg]2 then confirms that the consensgbserve that the synchronization of oscillators are aehidur

among robots is achieved even though there is a constraintity uncertainties in the given range. Particularly, FideH@

relative state exchange of robots, where the arrows repiresgisplay the oscillator network’s responses for a specifi&eca

the vectorsm of robots. Moreover, FigurEl 3 shows thatvhere the uncertainties on two relative states of osciltatwe

the exchanged relative states of robots always satisfyittemg 1.2789 and0.7946.

bounded constraint.

V. CONCLUSION
B. Consensus of Oscillator Networks An approach has been proposed in this paper to analyze and

To further illustrate the proposed approach, we considerSynthesize distributed global robust consensus contsolter

consensus problem in a networkidentical linear oscillators general Im_ea_r Ieaqlerless MAS§ under rel_atlve state cmn_!_ﬂr
with the following model or uncertainties with the following appealing featuresstiit

is available for a broader class of MASs and for constraints o
T = Az, + Bug, k=1,2,3, (32) uncertainties described by a sector-bounded conditiorctwhi
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Fig. 4. Synchronization of oscillators under relative estabnstraints.
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Fig. 5. Bounded relative states of oscillators.
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Fig. 6. Synchronization of oscillators under relative estahcertainties.
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Fig. 7. Relative states of oscillators.

robust consensus and the global robust consensus controlle
gain are derived from the solutions of a distributed convex
LMI problem which is less conservative than in other studies
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