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Abstract

In this paper, we study the simultaneous stability problem of a finite number of locally inter-connected linear subsystems under

practical constraints, including asynchronous and aperiodic sampling, time-varying delays, and measurement errors. We establish

a new Lyapunov-based stability result for such a decentralized system. This system has a particular simple structure of inter-

connections, but it captures some key characteristics of a large class of intermediate models derived from the consensus analysis

of multi-agent systems. The stability result is applicable to the estimation of the maximum allowable inter-sampling periods and

time delays based on individual dynamics and coupling structures in the scenarios of consensus control via asynchronous sampling

of relative states and asynchronous broadcasting of self-sampled states respectively. The asynchrony of aperiodic sampling and the

existence of measurement errors allow the utilization of some kinds of quantizing devices, such as Logarithmic quantizers, in the

process of data sampling, and allow the introduction of a period of dwell time after each update of state measurement to eliminate the

Zeno behavior of events in event-based control. The extension in the case with input saturations and input delays is also discussed.
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I. INTRODUCTION

Due to the attractive advantages in signal processing and transmission, digital devices have found their wide applications in

modern control systems [1]. An analog-to-digital converter is responsible for converting a continuous-time signal into a digital

signal by sampling and quantization. A digital controller gathers all input signals and compute an output to achieve the desired

control purpose. Sampled-data control deals with such hybrid continuous-time and discrete-time systems and usually assumes

that these digital devices share the same clocks and process their data periodically and synchronously [2]. This ideal assumption

can formulate the considered digital systems as standard LTI discrete-time systems by plant discretization and servers as the

basis of many fundamental results, for example, in stability and optimal control [3], [4]. When these digital components, such

as A/D samplers and D/A zero-order holds, work at different frequencies or they are spatially scattered in a large area without a

central clock, the sampled-data systems become inherently asynchronous [5]. Although synchronous sampled-data models may
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be used to approximate the asynchronous ones in some of such cases [6], this treatment could sacrifice some dynamic details in

plants.

Literature Review: Asynchronous sampling has been brought to the attention of researchers in the control community for more

than three decades [7]. It has obtained enormous results, and is now developing rapidly with the growth of multi-agent theory

as one of the main research areas. Generally, asynchronous sampling can be found in the following three types of systems:

(1) Multi-rate systems. Multi-rate sampling is one of the earliest motivating examples for studying asynchronous systems,

where sampling and hold elements work periodically at different rates with irrational ratios [5], [6], [8]–[10]. Examples include

dual-rate linear systems with a single sampler and a single hold [5], [8] and multi-rate linear systems with multiple asynchronous

samplers and zero-order holds [6], [9], [10]. The corresponding control problems include the optimal LQG control [5], [8] and

stability problems [6], [9], [10].

(2) Networked control systems (NCSs). Theoretically, some NCSs can be modeled as multi-rate systems. Due to the long-

distance transmission of information, communication networks in NCSs may suffer from packet loss and time delays [11]–[15]

and often have multiple independent information channels [12]–[14], [16]. To ensure effective information transmission with

reduced costs, asynchronous event-triggered sampling also has been considered in NCSs [14], [15]

(3) Multi-agent systems. The asynchronous property in signal processing becomes more prominent in multi-agent networks, in

which, finite numbers of subsystems, equipped with independent signal-sensing and data-processing devices, are inter-connected

to perform some cooperative tasks [17], [18]. For example, in the formation control of multi-robot systems, each robot should

detect the positions and velocities of other adjacent robots for route planning. However, the installed sensors, such as ultrasonic

sensors or laser sensors, usually cannot monitor all objects in 360-degree coverage at a time. Furthermore, they could also

be affected by environmental interference. So in such cases, it is practically preferable that each robot collects the data of its

neighbors in some order (not necessarily periodically) according to its own schedule and within its sensing/processing capacities.

These kinds of realistic scenarios raise the problem of asynchronous and aperiodic sampling. The sensor scheduling can be

time-driven [19]–[21], event-driven [22], or mixture (of time and event)-driven [23], [24].

With asynchronous sampling, even if the involved digital devices operate periodically, sampled-data systems become non-

periodic and time-varying [8]. Asynchronous sampling can destroy the stability of systems which are stable in synchronous

environments [25], and induce additional time-varying delays in system analysis [26]. So the analysis of asynchronous systems

is more difficult and challenging than their synchronous counterparts, and the asynchronous mechanism also sets a strict

requirement on the robustness of designed controllers or algorithms with respect to aperiodic sensor scheduling, sensing errors

and processing/communcation delays. In asynchronous multi-agent systems, most results have been developed based on the

simple individual models of single-integrators [24] and double-integrators [19], [27], [28], but relatively few studies have been

done on the general linear models, with the exception of the event-triggered control [29]–[31].

Contributions: This paper will establish a Lyapunov-based stability result for an asynchronous multi-agent system with the

consideration of the above-mentioned practical issues and then apply it to solving several representative asynchronous consensus

problems in one framework. The contributions are summarized as follows:

First, we set up a basic stability model for asynchronous coordination of multi-agent systems and solve the problem of how

to estimate the maximum length of sampling intervals by subsystem matrices and inter-connection structures. In the model,

all subsystems, represented by the general linear state-space models, share the same system matrix and feedback matrix. They

communicate with each other via discrete-time signals produced by samplers and zero-order holds. Examples of such a model

without sampling can be found in the coordination analysis of a large range of multi-agent systems [32], [33]. We impose



3

relaxed assumptions on the A/D and D/A devices and information channels, including asynchronous and aperiodic sampling,

measurement errors, and time-varying delays. The proposed result well describes the robustness of the asynchronous sampled-

data system based on the stability of the continuous-time system without sampling. In [26], by a Lyapunov-Krasovskii method

and LMIs, the authors studied the protocol design problem of a similar model. But it is different from ours in the following two

aspects: (1) in our model, given any inter-connection structure, the subsystems are inherently coupled by discrete-time signals; in

[26], the subsystems are coupled by continuous-time signals and the feedback matrices and scheduling protocols for discrete-time

signals need to be designed accordingly; (2) In our model, the information is aperiodically sampled with measurement errors

and transmitted with time delays; in [26], the information is sampled and transmitted according to the proposed Round-Robin

(RR) or Try-Once-Discard (TOD) protocol. Note that the sampling with time-varying periods is also referred to as asynchronous

sampling in [34]–[36] but it is a different definition from the “asynchronous sampling” in this paper.

Second, we solve the sampled-data consensus problems of the following asynchronous multi-agent systems in one framework:

(1) networks of general linear agents with asynchronous sampling of relative states; (2) networks of single-integrators and

marginally stable systems with asynchronous broadcasting of self-sampled states. Feedbacks with relative states and broadcast

communication have been widely used in the consensus and formation control of multi-agent systems; particularly, broadcasting

is an important way of keeping the state average unchanged; see [28], [37]–[39], [41]–[45] and references therein. Our work on

asynchronous broadcasting is partly inspired by this observation and the protocol design method presented for the event-based

control of single-integrator and double-integrator agents in [43]. Due to the challenging difficulties of asynchronous consensus

analysis, the existing results on sampled-data consensus mainly focus on synchronous sampling; that is, all data should be sampled

at the same time with constant or variant frequencies. The involved individual models are usually single-integrators [46], double-

integrators [47]–[49], or second-order oscillators [50]. There are relatively rare reports on asynchronous sampled-data consensus

of general linear agents and they mostly deal with event-triggered consensus [29]–[31], which is intrinsically different from the

time-driven style of asynchrony in this paper. Our work is also different from the previous results based on dynamic outputs of

controllers [19], [27].

Finally, taking advantages of asynchronous sampling and allowable measurement errors, we can extend the obtained results

further to deal with some of the general cases with quantization in discretizing continuous-time signals, and we rigorously prove

the effectiveness of the method for eliminating the Zeno behavior by introducing a dwell time after each measurement in event-

based control. To the best of our knowledge, the related problems on general linear multi-agent systems have not been studied

in the existing literature. This extension is illustrated by the implementation of Logarithmic quantizers [51] and event-triggering

conditions based on state errors [23], [39]. We also show the application of the results in the case with input saturations and

input delays.

This paper is organized as follows. In Section II, we set up the asynchronous sampled-data model and give sufficient conditions

for stability by a Lyapunov-based approach. In Section III, the stability result is applied to solving some asynchronous consensus

problems. In Section IV, further extensions of the stability result are discussed. The paper is concluded in Section V.

Notations: In denotes the identity matrix in R
n×n; ⊗ denotes the Kronecker product; 1n = [1, 1, . . . , 1]T ∈ R

n.

II. LYAPUNOV-BASED ASYNCHRONOUS STABILITY

In this paper, we are interested in the protocol design and robustness/effectiveness analysis in coordinating agents’ states in a

general scenario of aperiodic asynchronous sampling and time-varying transmission delays.
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Assume that there are m subsystems in a multi-agent system with zero-order holds and their states are represented by zi(t),

i = 1, 2, . . . ,m, respectively, in a common state space R
N . The dynamics of subsystem i is given as follows:

żi(t) = Azi(t)−
m
∑

j=1

gijKẑj(t), (1)

where A ∈ R
N×N is the common system matrix of subsystems, gij represents the coupling weight, K ∈ R

N×N can be viewed

as the common state feedback gain, and ẑj(t) is the sampled state of subsystem j.

Let tik, k = 0, 1, 2, . . . , be the sampling instants of zi(t), τ
i
k, k = 0, 1, 2, . . . , be the corresponding time delays in sampling,

transmission, or computation, and eik, k = 0, 1, 2, . . . , be the measurement errors. The sampled state ẑi(t), incorporating time

delays, is given by

ẑi(t) = zi(t
i
k)− eik, t ∈ [tik + τ ik, t

i
k+1 + τ ik+1), k = 0, 1, 2, . . . ,

which is a piece-wise constant function of time t. Here, the sequences of {tik}, {τ ik}, and {eik}1 are completely independent

with respect to different i, and satisfy the following assumption:

Assumption 1: For k = 0, 1, 2, . . . ,

(1) tik+1 − tik ≤ h;

(2) τ ik < tik+1 − tik;

(3) τ ik ≤ τ ;

(4) eik
T
eik ≤ ωẑi(t

i
k + τ ik)

T
ẑi(t

i
k + τ ik),

where h is the maximum sampling period, τ is the maximum time delay, and ω ≥ 0 .

Remark 1: (1) The simultaneous stability model, with each individual represented by system (1), originates from the

consensus coordination of multi-agent systems. Several examples will be given in Section III. Furthermore, this model is

also of interest in the networked situation where some individual systems cannot stabilize themselves by their sampled

self-states especially when they cannot access their own states due to device failure. Particularly, when m = 1, system

(1) can be viewed a networked control system with aperiodic discrete-time signals and time-varying delays, which is also

of its own significance [40].

(2) Assumption 1 (4) says that the measurement error is of multiplicative type and proportional to the measurement. The

additive errors can be modeled as uncertainties, which will be considered in Section III.

(3) It can be shown that Assumption 1 (4) can be ensured by

eik
T
eik ≤ ω

(1 +
√
ω)2

zi(t
i
k)

T zi(t
i
k).

(4) Note that the sequences of {tik}, {τ ik}, and {eik} are only indexed by the ith subsystem. So it can be understood that the

information is transmitted via broadcasting. Another interpretation will be given in Section III.

Denote z(t) = [z1(t)
T z2(t)

T . . . zm(t)T ]T and ẑ(t) = [ẑ1(t)
T ẑ2(t)

T . . . ẑm(t)T ]T . The overall system is given by

ż(t) = (Im ⊗A)z(t)− (G⊗K)ẑ(t), (2)

where G = [gij ] ∈ R
m×m.

Let λAs
denote the largest eigenvalue of (1/2)(A+AT ) and let σA, σG, and σK denote the largest singular values of A, G,

and K , respectively. We have the following result:

1Notations {ti
k
}, {τ i

k
}, and {ei

k
} stand for the sequences ti

0
, ti

1
, . . . , τ i

0
, τ i

1
, . . . , and ei

0
, ei

1
, . . . , respectively.
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Theorem 1: In system (1), assume that there exists a lower bounded function V (t) with the following property:

dV (t)

dt
≤ −µẑ(t)T ẑ(t) + ε(z(t)− ẑ(t))T(z(t)− ẑ(t)), (3)

where µ > 0 and ε > 0. If Assumption 1 holds for all i and there exist some positive numbers α and β, such that

µ− εω(1 +
1

α
)(1 +

1

β
)e2λAs (h+τ)

− ε
(

(1 + α)(1 +
1

β
)σA

2

+ (1 + β)
7

3
σG

2σK
2
)

(h+ τ)2e2λAs (h+τ) > 0,

(4)

then

lim
t→∞

z(t) = 0.

Proof: The proof is based on the method of “analytic synchronization” [18], [19] and given in the Appendix.

Remark 2: (1) In (3), if ε ≤ 0, the stability analysis becomes trivial. So we only consider the case with positive ε.

(2) The left side of (4) is a continuous function with respect to variables h and τ . If h = τ = 0, then the left side converges

to µ− εω as parameters α and β approach to ∞. Therefore, when εω < µ, from (4), it can be seen that we can always

find maximum allowable sampling period h and the corresponding maximum time delay τ to ensure the stability of the

system. However, if εω ≥ µ, then the decrease of V (t) cannot be decided by (3) and thus the stability of system (2)

cannot be decided either.

(3) By Theorem 1, the maximum allowable h and τ can be calculated by (4), where there exists a trade-off between τ and

h. The larger the h is, the smaller the upper bound of allowable time delays is.

III. ASYNCHRONOUS CONSENSUS

Consider a group of n linear autonomous agents interacting with each other through local information flow. Label these agents

with 1 to n and suppose that the i-th agent takes the following dynamics:

ẋi(t) = Axi(t) +Bui(t), (5)

where xi(t) ∈ R
N is the state, ui(t) ∈ R

M is an input signal, called protocol in multi-agent coordination and designed based on

the information received from locally linked agents, and system matrix A and input matrix B are with compatible dimensions.

A. Asynchronous sampling of relative states

Assume that the interaction topology is modeled by an undirected simple graph G with vertices v1, v2, . . . , vn, which represent

the n agents respectively. Assume that there are total m edges, labeled with 1, 2, · · · , m. The existence of an edge (vi, vj)

represents that agents i and j have the capacity of knowing the relative state xi − xj at the same time, and in such a case,

suppose that agents i and j sample the relative state xi − xj at discrete times tijk , and they receive the data xi(t
ij
k ) − xj(t

ij
k )

with measurement error eijk at time tijk + τ ijk , k = 0, 1, 2, . . . . Here, tijk = tjik , τ ijk = τ jik and eijk = −ejik . For different pair of

adjacent agents, the initial sampling of relative states may start at different times, and their subsequent sampling instants are also

independent. This is referred to as asynchrony, which is an intrinsic characteristic in distributed networks without any global

clocks to synchronize agents’ actions. Our assumption about time delay τ ijk is also quite general. Time delay τ ijk can be changing

with respect to k and independent of those on other channels. Let Ni denote the set of all js, such that (vi, vj) exists, and let
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tij(t) = tijk , eij(t) = eijk , t ∈ [tijk + τ ijk , tijk+1 + τ ijk+1), k = 0, 1, 2, . . . . In what follows, if (vi, vj) is indexed by p (the p-th

edge), tpk, τpk , and tp(t) are also used instead of tijk , τ ijk , and tij(t).

With the utilization of zero-order holds, the protocol ui(t) takes the following form:

ui(t) = K
∑

j∈Ni

(xj(t
ij(t))− xi(t

ij(t)) + eij(t)). (6)

We will design the feedback matrix K and give sufficient conditions in terms of sampling period and time delays to ensure that

limt→∞(xi(t)− (1/n)eAt
∑n

j=1 xj(0)) = 0, which implies that the system solves the average consensus problem [37].

Remark 3: In the protocol, we require that tijk = tjik , τ ijk = τ jik and eijk = −ejik , which ensure the symmetry of information

sharing and are the least requirement for distributed average consensus. To get this symmetric information, each pair of adjacent

agents should communicate beforehand to synchronize each mutual sampling and ensure the sampled data, like xi(t
ij
k )−xj(t

ij
k ),

used in both controllers, is updated at the same time. The synchronization of data sampling and controller update for any pair

of adjacent agents is technically possible because it is only based on local communication. In many engineering applications,

such as formation control and attitude alignment, relative states (position, attitude, etc), as a whole, are easily obtainable, which

is one of the reasons why we assume the same time delays on both parts of each relative state [41].

1) Edge dynamics [52]: Assign each edge an arbitrary direction in interaction topology G and define the n × m incidence

matrix D = [dij ] by (see [54])

dij =















1, if vi is the head of the oriented edge j,

−1, if vi is the tail of the oriented edge j,

0, otherwise.

Denote x(t) = [x1(t)
T x2(t)

T . . . xn(t)
T ]T and z(t) = (DT⊗IN )x(t), which is the vector obtained by stacking the relative states

corresponding to edges 1, 2, . . . , m in sequence. Let z(t) = [z1(t)
T z2(t)

T . . . zm(t)T ]T with zp(t) ∈ R
N , p = 1, 2, . . . ,m. For

the pth edge (vj , vi), if it is oriented from vj to vi in the definition of D, denote zp(t) = xi(t)−xj(t), ẑp(t) = zp(t
p(t))−eij(t),

and epk = eijk , k = 0, 1, . . . . Denote ẑ(t) = [ẑ1(t)
T ẑ2(t)

T . . . ẑm(t)T ]T . The system (5) with protocol (6) has the following

equivalent representation:

ẋ(t) = (In ⊗A)x(t) − (D ⊗BK)ẑ(t),

and

ż(t) = (Im ⊗A)z(t)− (DTD ⊗BK)ẑ(t). (7)

Matrix DDT is called the graph Laplacian of G, which is independent of the selection of D [53]. Let the eigenvalues of

DDT be λ1, λ2, · · · , λn in the increasing order. Then λ1 = 0. λ2 is called the algebraic connectivity of G, which is positive

when G is connected [54]. It can be observed that matrices DDT and DTD share the same non-zero eigenvalues with the same

algebraic multiplicities. So DTD also serves the purpose of algebraic characterization of G and is called edge Laplacian [52].

2) Average consensus: The feedback matrix K is designed with the requirement that there exist a positive definite matrix P

and a positive number µ satisfying the following Lyapunov inequalities:

(A+ λiBK)TP + P (A+ λiBK) + 2µIN ≤ 0, i = 2, 3, . . . , n. (8)
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Let λPBKs
denote the largest eigenvalue of (1/2)(PBK +KTBTP ), σ denote the largest singular value of matrix (DTD ⊗

PBK)− 2µInN , σBK denote the largest singular value of matrix BK , and

S = {γ :γ > 0, µ− σ/(2γ) > 0,

γσ/2− µ+ λnλPBKs
> 0}.

Theorem 2: In system (5), assume that (A,B) is stabilizable, the interaction topology G is connected, and Assumption 1 holds

for any i. If there exist positive numbers α and β such that

ω(1+
1

α
)(1 +

1

β
)e2λAs (h+τ)

+
(

(1 + α)(1 +
1

β
)σA

2

+ (1 + β)
7

3
λn

2σBK
2
)

(h+ τ)2e2λAs (h+τ)

< sup
γ∈S

µ− σ
2γ

γσ
2 − µ+ λnλPBKs

,

(9)

then protocol (6) solves the average consensus problem; mathematically,

lim
t→∞

(

xi(t)−
1

n
eAt

n
∑

i=1

xi(0)

)

= 0.

Remark 4: (1) In the proof of Theorem 2, we will see that if there exists γ > 0 such that µ − σ/(2γ) > 0 and γσ/2 −
µ+λnλPBKs

≤ 0, then the derivative of the employed Lyapunov candidate is always negative (in the case with nonzero

ẑ(t); see (13)), and thus the system solves the average consensus problem for any sampling periods, which is usually not

possible for the systems with zero-order holds. So Theorem 2 only considers the case that γ ∈ S.

(2) Since (A,B) is stabilizable, we can always find proper matrices K , P , and positive number µ such that inequalities (8)

holds. One feasible solution K = BTP can be obtained by solving the following Riccati equation in the LQR problem

with 0 < λ ≤ λ2:

PA+ATP − 2λPBBTP = −2µIN . (10)

Note that the above Riccati equation has been used in the design of consensus protocols in the literature [29], [33].

Furthermore, λ can be estimated only by the number of agents without the knowledge of the algebraic connectivity of G
[55].

Proof of Theorem 2: Consider the following Lyapunov candidate:

V (t) =
1

2
z(t)T (Im ⊗ P )z(t).

Then by (7),

dV (t)

dt
=z(t)T (Im ⊗ P )ż(t)

=z(t)T
(

Im ⊗ 1

2
(PA+ATP )−DTD ⊗ PBK

)

z(t)

+ z(t)T (DTD ⊗ PBK)(z(t)− ẑ(t)). (11)
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Let DDT = C−1ΛC, where C−1 = CT and Λ is the diagonal matrix with eigenvalues of DTD in the diagonal positions. In

equation (11), we have that

z(t)T
(

Im ⊗ 1

2
(PA+ATP )−DTD ⊗ PBK

)

z(t)

=x(t)T (C−1 ⊗ IN )(Λ ⊗ 1

2
(PA+ATP )

+ Λ2 ⊗ PBK)(C ⊗ IN )x(t)

≤− x(t)T (C−1 ⊗ IN )(Λ⊗ µIN )(C ⊗ IN )x(t)

≤− µz(t)T z(t). (12)

Substituting inequality (12) into equation (11) gives that

dV (t)

dt
≤− µz(t)T z(t) + z(t)T (DTD ⊗ PBK)(z(t)− ẑ(t))

=− µẑ(t)T ẑ(t)

+ ẑ(t)T ((DTD ⊗ PBK)− 2µInN )(z(t)− ẑ(t))

+ (z(t)−ẑ(t))T(DTD⊗PBK−µInN)(z(t)−ẑ(t)).

Thus, for any γ > 0,

dV (t)

dt
≤− (µ− σ

2γ
)ẑ(t)T ẑ(t)

+(
γσ

2
−µ+λnλPBKs

)(z(t)−ẑ(t))T (z(t)−ẑ(t)).

(13)

For any γ ∈ S, by Theorem 1 and inequality (9), limt→∞ z(t) = 0, and thus limt→∞ V (t) = 0. Let

δ(t) = x(t)− 1n ⊗ 1

n
eAt

n
∑

i=1

xi(0). (14)

Noticing that z(t) = (DT ⊗ IN )δ(t) and δ(t)⊥1nN , we obtain that

V (t) =
1

2
δ(t)TDDT δ(t) ≥ λ2

2
δ(t)T δ(t).

Therefore, limt→∞ δ(t) = 0.

B. Asynchronous broadcasting of self-sampled data

Consider the multi-agent system (5) with an undirected interaction topology G. Different from the sampling of relative states in

the previous subsection, we assume that each agent samples its own state with measurement errors and then broadcasts them to

its neighbors with time delays. When all neighbors get the information, the agent and the neighbors all update their controllers.

Denote the sampling instants of agent i, the associated measurement errors and time delays by tik, eik, and τ ik , k = 0, 1, 2, . . . ,

respectively. Denote x̂i(t) = xi(t
i
k)− eik for t ∈ [tik + τ ik, t

i
k+1 + τ ik+1), k = 0, 1, 2, . . . . Under Assumption 1 (1-3), we give the

following protocol:

ui(t) = K
∑

j∈Ni

(x̂j(t)− x̂i(t)). (15)

The matrix K will be designed later.
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Denote x(t) = [x1(t)
T x2(t)

T . . . xn(t)
T ]T and x̂(t) = [x̂1(t)

T x̂2(t)
T . . . x̂n(t)

T ]T . Substituting equation (15) into

equation (5) gives that

ẋ(t) = (In ⊗A)x(t) − (DDT ⊗BK)x̂(t). (16)

Let δ(t) = [δ1(t)
T δ2(t)

T . . . δn(t)
T ]T be defined by (14) with δi(t) ∈ R

N , and let κ(t) = (1/n)eAt
∑n

i=1 xi(0). For

t ∈ [tik + τ ik, t
i
k+1 + τ ik+1), let δ̂i(t) = δi(t

i
k) − eik and κ̂i(t) = κ(tik), k = 0, 1, . . . , i = 1, 2, . . . , n. Denote δ̂(t) =

[δ̂1(t)
T δ̂2(t)

T . . . δ̂n(t)
T ]T and κ̂(t) = [κ̂1(t)

T κ̂2(t)
T . . . κ̂n(t)

T ]T . Then we have

δ̇(t) = (In ⊗A)δ(t)− (DDT ⊗BK)(δ̂(t) + κ̂(t)), (17)

and δ(t) ⊥ 1nN .

Remark 5: (1) By the definition of incidence matrix D, if the system solves a consensus problem, then the final consensus

trajectory should be κ(t). However, it does not satisfy the differential equation (16) with asynchronous sampling and

unstable system matrix A; that is, (DDT ⊗BK)κ̂(t) 6= 0 in most cases. Thus in such cases, the asynchronous consensus

cannot be achieved.

(2) In the case of multiplicative type of measurement errors, even if the consensus is reached, the final consensus state is

usually not zero and thus eik may never converge to zero as k → ∞. Therefore, the multiplicative type of measurement

errors can destroy the consensus of the considered system (16).

1) Asynchronous consensus of single-integrators: In the case of multiple single-integrators with N = 1, A = 0, and B = 1,

κ(t) is time-invariant and so is κ̂(t). Therefore, choose K = 1 and by (17),

δ̇(t) = −DDT δ̂(t).

Consider the following Lyapunov candidate

V (t) =
1

2
δ(t)T δ(t). (18)

With the same arguments as in proving (13), we have

dV (t)

dt
≤− λ2δ(t)

T δ(t) + δ(t)TDDT (δ(t)− δ̂(t))

≤− (λ2 −
σ

2γ
)δ̂(t)T δ̂(t)

+ (
γσ

2
+ λn − λ2)(δ̂(t)− δ(t))T (δ̂(t)− δ(t)),

where σ = max{2λ2, λn − 2λ2} is the largest singular value of matrix DDT − 2λ2In, and γ > 0 with λ2 − σ/(2γ) > 0.

By Theorem 1, we have the following result:

Theorem 3: In system (5), suppose that each agent takes the single-integrator dynamics without measurement errors, and

suppose that the sampling instants and time delays satisfy Assumption 1 (1-3), i = 1, 2, . . . , n. If the interaction topology G is

connected and

(h+ τ)2 <
3

7λn
2 sup

γ>0

λ2 − σ
2γ

γσ
2 + λn − λ2

, (19)

then protocol (15) with K = 1 solves the average consensus problem.

Remark 6: In [46], it has been shown that the necessary and sufficient condition for the synchronous sampled-data consensus

of single-integrators with sampling period h is 0 < h ≤ 2/λn. Compared with this condition, the condition (19) may be a bit

conservative, which is understandable since this condition is valid in the general asynchronous sampling case and obtained based

on the general model of linear subsystems.



10

2) Asynchronous consensus of marginally stable systems: Suppose that matrix A is marginally stable. Then maxs ‖eAs‖2 is

bounded and by Lemma 1, we have2

‖κ̂(t)− 1n ⊗ κ(t)‖2 <(1/
√
n)‖

n
∑

i=1

xi(0)‖2 maxs ‖eAs‖2

× σA(e
λAsh − 1)

λAs

.

Denote the right side of the above equation by ∆κ(h). Clearly, limh→0 ∆κ(h) = 0.

For any i, denote ei(t) = eik and δ̃i(t) = δi(t
i
k), t ∈ [tik + τ ik, t

i
k+1 + τ ik+1), k = 0, 1, . . . . Denote e(t) = [e1(t)

T e2(t)
T . . .

en(t)
T ]T and δ̃(t) = [δ̃1(t)

T δ̃2(t)
T . . . δ̃n(t)

T ]T . Then δ̂(t) = δ̃(t)− e(t) and

δ̇(t) =(In ⊗A)δ(t)− (DDT ⊗BK)δ̃(t)

+ (DDT ⊗BK)(e(t)− κ̂(t)).
(20)

If ‖e(t)‖2 ≤ ∆e, then

‖(DDT ⊗BK)(e(t)− κ̂(t))‖2
≤ ‖DDT ⊗BK‖2(∆κ(h) + ∆e) , ∆(h).

Choose the feedback matrix K = BTP with a positive definite matrix P and a positive number µ by (10) and consider the

following Lyapunov function candidate

V (t) =
1

2
δ(t)T (In ⊗ P )δ(t).

Then we have

dV (t)

dt
≤δ(t)T (In ⊗ PA)δ(t)−δ(t)T (DDT ⊗ PBBTP )δ̃(t)

+
λP

2η
δ(t)T δ(t) +

λP η

2
∆(h)2

≤− (µ− λP

2η
− σ

2γ
)δ̃(t)T δ̃(t)

+(
γσ

2
−µ+

λP

2η
+λnσPB

2)(δ(t)−δ̃(t))T(δ(t)−δ̃(t))

+
λP η

2
∆(h)2, (21)

where λP is the largest eigenvalue of P , σPB is the largest singular value of PB, σ is the largest singular value of (DDT ⊗
PBBTP )− 2(µ− λP /(2η))InN , and γ and η are any positive numbers with µ− λP /(2η)− σ/(2γ) > 0.

It can be seen that equations (17) and (21) do not exactly match the model (2), (3). However, when the largest sampling

period h and measurement errors are small, the system represented by (20) and (21) can be seen as the model (2), (3) with

uncertainties. Let σBBTP denote the largest singular value of BBTP ,

∆̄(h, τ, α, γ, η) =(
γσ

2
− µ+

λP

2η
+ λnσPB

2)(1 +
1

α
)

×maxs ‖eAs‖∞
2
n(h+ τ)2∆(h)

2

+
1

2
λP η∆(h)

2
,

2In case of a 0-valued λAs serving as a denominator, the value of the expression is set to the limit when λAs → 0.
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and

Γ(h, τ, α, β, γ, η) =µ− λP

2η
− σ

2γ

− (
γσ

2
− µ+

λP

2η
+ λnσPB

2)(1 + α)

×
(

(1 +
1

β
)σA

2 + (1 + β)
7

3
λn

2σBBTP
2
)

× (h+ τ)2e2λAs (h+τ),

where ‖ · ‖∞ denotes the maximum row sum matrix norm. By the same arguments as in the proof of Theorem 1, we can obtain

the following result:

Theorem 4: In system (5), assume that (A,B) is stabilizable, A is marginally stable, Assumption 1 (1-3) holds, ‖e(t)‖2 ≤ ∆e,

tik+1 − tik is lower bounded by a positive number independent of k, i = 1, 2, . . . , n, and the interaction topology is connected.

Under the proposed protocol (15) with K given by (10), if S 6= ∅, then for any time t′ and any θ > 1, there exists some t,

t ≥ t′, such that

δ̃(t)T δ̃(t) ≤ inf
[α,β,γ,η]∈S

θ∆̄(h, τ, α, γ, η)

Γ(h, τ, α, β, γ, η)
, (22)

where

S =
{

[α, β, γ, η] :α, β, γ, η > 0,

µ− λP /(2η)− σ/(2γ) > 0,

γσ

2
− µ+

λP

2η
+ λnσPB

2 ≥ 0,

Γ(h, τ, α, β, γ, η) > 0
}

.

Proof: The proof is omitted here.

IV. EXTENSIONS

This section only considers the model (2), (3). So the obtained results are also valid for the consensus models in Section III.

A. Quantized sampling

This subsection gives a simple example to show the effectiveness of Theorem 1 in the scenario of quantization. Further

discussions will continue in the next subsection.

In system (2), if apply the following Logarithmic quantizer to each entry of zi(t
i
k) [51]:

Qlog ε(ξ) =

{

0, if ξ = 0,

sign(ξ)ǫ⌊logǫ |ξ|⌋, otherwise,
(23)

then

(zi(t
i
k)−Qlog ǫ(zi(t

i
k)))

T (zi(t
i
k)−Qlog ǫ(zi(t

i
k)))

≤ (ǫ− 1)2Qlog ε(zi(t
i
k))

TQlog ǫ(zi(t
i
k)),

(24)

where ǫ > 1 is the quantizing level, ξ is the scalar quantizer input, ⌊·⌋ denotes the largest integer not greater than the considered

variable, and Qlog ǫ(zi(t
i
k))) is the vector obtained by applying the quantizer (23) to zi(t

i
k) entrywise. So Qlog ǫ(zi(t

i
k)) can be

viewed as the sampled value zi(t
i
k) with measurement error eik = zi(t

i
k)−Qlog ǫ(zi(t

i
k)).
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Redefine ẑi(t) = Qlog ǫ(zi(t
i
k))), t ∈ [tik + τ ik, t

i
k+1 + τ ik+1), k = 0, 1, . . . , i = 1, 2, . . . ,m, and define the same ẑ(t) as in

Section II. By Theorem 1, we have the following corollary:

Corollary 1: In system (2) with the utilization of Logarithmic quantizer (23) in sampling, if Assumption 1 (1-3), i =

1, 2, . . . ,m, and inequality (3) hold, and there exist some positive numbers α and β, such that

µ− ε(ǫ− 1)2(1 +
1

α
)(1 +

1

β
)e2λAs (h+τ)

− ε
(

(1 + α)(1 +
1

β
)σA

2

+ (1 + β)
7

3
σG

2σK
2
)

(h+ τ)2e2λAs (h+τ) > 0,

then

lim
t→∞

z(t) = 0.

Note that the same property as (24) of the above Logarithmic quantizer can be preserved by the output of an event-based

sampler with event-triggering condition that ei(t)
T ei(t) > (ǫ− 1)2ẑi(t)

T ẑi(t), where ẑi(t) is the latest measurement of zi(·) up

to t and ei(t) is the measurement error. So similar discussions in the following subsection can be given to quantized systems.

B. Event-triggered sampling

This subsection shows an interesting application of asynchronous aperiodic sampling in removing the Zeno behavior in event-

based control.

Consider the multi-agent system with m subsystem in the absence of time delays and introduce the same notations zi(t) and

z(t) as in Section II to represent the state of agents. Let ẑi(t) be the measurement of zi(t) and it is updated in an event-triggered

way. In detail, for agent i, let ẑi(t) first updated at ti0 and set ẑi(t
i
0) = zi(t

i
0). For k = 0, 1, . . . , as time increases from tik + h,

agent i examine the condition that

(zi(t)− zi(t
i
k))

T (zi(t)− zi(t
i
k)) ≥ ωzi(t

i
k)

T zi(t
i
k), (25)

where h is a predetermined positive dwell time and called rest time in [24]. For the first time t when the above inequality become

correct, set tik+1 = t and ẑi(t
i
k+1) = zi(t

i
k+1). Note that the sequence ti0, ti1, . . . may terminate at some finite k. Obviously,

ẑi(t) is piece-wise constant; that is, in the case with tik given through the above procedure, ẑi(t) = zi(t
i
k) for t ∈ [tik, t

i
k+1) if

tik+1 exists; and ẑi(t) = zi(t
i
k) for t ∈ [tik,∞) if tik+1 doesn’t exist.

Denote ẑ(t) = [ẑi(t)
T ẑ2(t)

T . . . ẑm(t)T ]T . The overall system, represented by (2), has the following stability result:

Corollary 2: In system (2), assume that ẑ(t) is updated according to the event-triggering condition (25) with dwell time h

and without time delays, and there exists a lower bounded function V (t) with property described by (3). If there exist some

positive numbers α and β, such that

µ− εω(1 +
1

α
)(1 +

1

β
)e2λAsh

− ε
(

(1 + α)(1 +
1

β
)σA

2

+ (1 + β)
7

3
σG

2σK
2
)

h2e2λAsh > 0,

then

lim
t→∞

z(t) = 0.
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Proof: Note that the definition of tik is different from that in Section II and Assumption 1 (1) doesn’t hold. However, by

event-triggering condition (25), for any t, t 6∈ ∪k(t
i
k, t

i
k + h),

(zi(t)− ẑi(t))
T (zi(t)− ẑi(t)) < ωẑi(t)

T ẑi(t). (26)

So we can view ẑi(t) as the sampled state of zi(t) at time t with measurement error zi(t)− ẑi(t), which is exactly Assumption

1 (4).

(Case 1) If time sequence ti0, ti1, . . . , is of finite length, let k̄ = argmaxk t
i
k. For any k, k < k̄, there exists a positive integer

ni
k such that tik + ni

kh < tik+1 ≤ tik + (ni
k + 1)h. Let sik, k = 0, 1, 2, . . . , denote all the time instants tik + ph, k = 0, 2, . . . ,

k̄ − 1, p = 0, 1, . . . , ni
k, and ti

k̄
+ ph, p = 0, 1, . . . , in the increasing order. (Case 2) If time sequence ti0, ti1, . . . , is of infinite

length, for any k, there exists a positive integer ni
k such that tik + ni

kh < tik+1 ≤ tik +(ni
k +1)h. Let sik, k = 0, 1, 2, . . . , denote

all the time instants tik + ph, k = 0, 2, . . . , p = 0, 1, . . . , ni
k, in the increasing order.

Then we have that sik+1− sik ≤ h and inequality (26) holds at any t = sik. By Theorem 1, we have the stability of the system.

Remark 7: (1) The idea of removing the Zeno behavior in event-based control by adding a dwell time was previously

presented for networks of single-integrators in [24].

(2) Event-triggering condition (25) can be replaced by

‖zi(t)− zi(t
i
k)‖2 ≥

√
ω

1 +
√
ω
‖zi(t)‖2,

which is classified as a quadratic event-triggering condition in [23].

C. Saturated control with input delay

This subsection discusses the extension of Theorem 1 in the case with input saturations and input delays [56]–[61].

In system (1),
∑m

j=1 gijKẑj(t) can be viewed as the input. Instead of applying a saturation function to the input or to each

sampled state ẑj(t), we use a scaler function ρ(·), defined below, to scale down the sampled states to meet the restriction of

input saturation:

ρ(ξ) =







1, if ξ = 0,

1

⌈ ‖ξ‖∞
ρs

⌉
, otherwise,

where ξ ∈ R
N , ⌈·⌉ denotes the ceiling function (which returns the smallest integer greater than or equal the considered variable)

and ρs is some positive number decided by the maximum allowable magnitude of input. Clearly, for any ξ, 0 < ρ(ξ) ≤ 1 and

‖ρ(ξ)ξ‖∞ ≤ ρs. Function ρ(ξ) can be also defined in terms of other norms. Then the subsystem i takes the following dynamics:

żi(t) = Azi(t)−
m
∑

j=1

gijρ(ẑj(t− τin))Kẑj(t− τin), (27)

where τin is the input delay.

Theorem 5: Assume that Assumption 1 holds for all i and there exists a lower bounded function V (t) such that

dV (t)

dt
≤− µẑ(t− τin)

T ẑ(t− τin)

+ ε(z(t)− ẑ(t− τin))
T(z(t)− ẑ(t− τin)),

(28)
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where µ > 0 and ε > 0. If there exist some positive numbers α and β, such that

µ− εω(1 +
1

α
)(1 +

1

β
)e2λAs (h+τ+τin)

− ε
(

(1 + α)(1 +
1

β
)σA

2

+ (1 + β)
7

3
σG

2σK
2
)

(h+ τ + τin)
2e2λAs (h+τ+τin) > 0,

(29)

then

lim
t→∞

z(t) = 0.

Proof: The proof follows the same procedure as in the proof of Theorem 1. Here, τ ik + τin is viewed as the time delay in

sampling zi(t). We also use the property that the largest singular value of G is not less than that of matrix [gijρ(ẑj(t− τin))].

Note that neither ρ(·) nor ρs appears in Theorem 5. However, the saturated input with function ρ(·) as well as initial states

has a significant impact on the existence of a valid feedback gain K and a function V (t) satisfying inequality (28). For example,

when we know that the states of all subsystem (27) are bounded by Lyapunov methods, then ρ(ẑj(t − τin)) has a finite set

of all possible values. The considered system is a switched system with state-dependent switching between a finite number of

subsystems. V (t) can be chosen to be a common Lyapunov function [62]. Initial states are closely related to the upper bound

of system states and thus affect the number of subsystems in the resulting switched system.

Example 1: Consider the network of single-integrators described by equation (5), where N = 1, A = 0, and B = K = 1.

Revise protocol (6) by multiplying each sampled state by the function ρ(·). Denote Λ(t) = diag([ρ(ẑ1(t − τin)) ρ(ẑ2(t −
τin)) . . . ρ(ẑm(t− τin))]), and suppose that ρm = min{ρ(ẑi(t− τin)) : i = 1, 2, . . . ,m} is larger than 0. We obtain that

ẋ(t) = −DΛ(t)ẑ(t− τin).

Consider the Lyapunov candidate given by (18). We have

dV (t)

dt
=− z(t)Λ(t)ẑ(t− τin)

=− ẑ(t− τin)
TΛ(t)ẑ(t− τin)

− ẑ(t− τin)
TΛ(t)(z(t)− ẑ(t− τin))

≤− (ρm − 1

2γ
)ẑ(t− τin)

TΛ(t)ẑ(t− τin)

+
γ

2
(z(t)− ẑ(t− τin))

T (z(t)− ẑ(t− τin)),

where parameter γ > 1/(2ρm).

V. NUMERICAL EXAMPLES

Fig. 1. Interaction Topology
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This section presents three numerical examples to demonstrate the effectiveness of the theoretical results.

Example 2 (Quantized sampling): We first consider the network of harmonic oscillators under the topology depicted in Fig. 1.

These oscillators take the dynamics given by (5). The system matrix A and input B are given by

A =

[

0 1

−1 0

]

, B =

[

0

1

]

.

Let λ = λ2 and µ = 1. Solving equation (10), we obtain K = [0.5626 1.0633]. Apply the Logorithmic quantizer (23) with

ǫ = 1.1 to the relative states in protocol (6). By Theorem 2, we obtain that if h+ τ < 0.017, then the system solves the average

consensus problem. Let the sampling periods randomly generated in [0.005, 0.012] and the delays are random and not larger

than 0.005. The states of oscillators and quantized relative states with time delays are given in Fig. 2 and Fig. 3
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Fig. 2. State trajectories of oscillators. The two figures show the first and second components of states, respectively.
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Fig. 3. Quantized relative states with time delays. The two figures show the first and second components of quantized relative states, respectively.

Example 3: Consider the network of single integrators under the topology depicted in Fig. 1. If protocol (15) is used, then

by Theorem 3, h+ τ < 0.0691 is sufficient for state consensus in the absence of measurement errors. By the result in [46] (see

Remark 6), h ≤ 0.5528 is a necessary and sufficient condition for state consensus in the synchronous periodic sampling case

without time delays and measurement errors. This result is not applicable to our system because of different model setups and

assumptions. Moreover, no necessary and sufficient results have been derived for the asynchronous time-delayed system studied

in this paper in the literature.

Example 4 (Event-triggered broadcasting): Consider the system in Example 3 with h = 0.025 and τ = 0.02. Denote x̂i((t
i
k+

τ ik)
−) = limt↑ti

k
+τ i

k
x̂i(t), which denotes the most recent broadcasted data of xi(t) before time tik. If the following event-triggering

condition holds:

|xi(t
i
k)− x̂i((t

i
k + τ ik)

−)| > min{0.3|x̂i((t
i
k + τ ik)

−)|, 0.08},
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then xi(t
i
k) is broadcasted to the neighbors of agent i. Then we have that ∆(h) = 0.2894. By Theorem 4, the system solves

the average consensus problem with the error 0.4535 given by (22), where α = 0.5, γ = 3.188, and η = 1.6. Let the sampling

periods randomly generated in [0.02, 0.025] and the delays are random and not larger than 0.02. The state trajectories and event

numbers are given in Fig. 4 and Fig. 5, respectively.
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Fig. 4. The two figures show the state trajectories and the trajectory of δ(t)T δ(t), respectively.
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Fig. 5. Event number every 1/10 unit of time.

VI. CONCLUSIONS

This paper studied the asynchronous stability of a sampled-data multi-agent system and showed its application in solving

asynchronous consensus problems and its potential extensions to quantized and event-triggered systems. Although the presented

results have addressed several control problems in one framework, the studied system indeed has a quite special structure. So

we are also expecting further detailed work on more general asynchronous systems, such as with directed information links and

heterogeneous individual dynamics.

APPENDIX

Preliminary lemmas:

Lemma 1: For positive number t and any real square matrix A with AT +A 6= 0, the largest singular values of eAt, eAt − I ,

and
∫ t

0 e
A(t−s)ds are bounded above by eλAs t, σA(e

λAs t− 1)/λAs
, (eλAs t− 1)/λAs

, respectively, where I is the identity matrix
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with compatible dimensions, and λAs
and σA are the largest eigenvalue of (1/2)(A+AT ) and the largest singular value of A,

respectively.

Proof: (1) To show that eλAs t is an upper bound of the singular values of eAt, it is sufficient to show that xT (eAt)T eAtx ≤
e2λAs txTx holds for any vector x. Let y(t) = eAtx and let V (t) = y(t)T y(t). Then dV (t)/dt = 2y(t)TAeAtx = y(t)T (A +

AT )y(t) ≤ 2λAs
y(t)T y(t) = 2λAs

V (t). By the Comparison Principle of differential equations, V (t) ≤ e2λAs tV (0); that is,

xT (eAt)
T
eAtx ≤ e2λAs txTx.

(2) Let y(t) = (eAt − I)x and let V (t) = y(t)T y(t). We have that dy(t)/dt = AeAtx = Ay(t) +Ax and

dV (t)

dt
= 2y(t)T (Ay(t) +Ax)

≤ 2λAs
y(t)T y(t) + 2xT (eAt − I)TAx,

where, by the Comparison Principle of differential equations, xT (eAt − I)TAx ≤ (σA
2/λAs

)(eλAs t − 1)xTx (In detail,

d/dt(xT (eAt− I)TAx) = xTAT (eAt)TAx ≤ eλAs txTATAx ≤ σA
2eλAs txTx = d/dt((σA

2/λAs
)(eλAs t−1)xTx).) Employing

the Comparison Principle of differential equations again,

V (t) ≤ 2σA
2

λAs

∫ t

0

e2λAs (t−s)(eλAss − 1)dsxTx

=
σA

2

λAs

2 (e
λAs t − 1)2xTx.

Thus the singular values of eAt − I are bounded above by σA(e
λAs t − 1)/λAs

.

(3) Let y(t) =
∫ t

0 e
A(t−s)dsx and let V (t) = y(t)T y(t). Then dy(t)/dt = Ay(t) + x and

dV (t)

dt
= 2y(t)TAy(t) + 2xT

∫ t

0

eA(t−s)dsx.

With the same arguments as before, we have that xT
∫ t

0 e
A(t−s)dsx ≤ ((eλAs t − 1)/λAs

)xTx, and thus the singular values of
∫ t

0 e
A(t−s)ds are bounded above by (eλAs t − 1)/λAs

.

Lemma 2: The following inequalities hold for any nonnegative number t:

(1) e2t − 4et + 3+ 2t ≤ (2t3/3)e2t;

(2) t ≤ et − 1 ≤ tet.

Proof of Theorem 1:

Only the asymptotical stability of system (2) is studied, so the system dynamics in the first few seconds is ignored and assume

that t ≥ maxi(t
i
0 + τ i0). Denote all the time instants tik, t

i
k + τ ik, i = 1, 2, . . . ,m, k = 0, 1, . . . , at or after time maxi(t

i
0 + τ i0),

by a single sequence t0, t1, t2, . . . , in the increasing order tk < tk+1, k = 0, 1, . . . . Clearly, ẑ(t) is a constant in each time

interval [tk, tk+1), k = 0, 1, . . . .

(1) Evaluation of
∫ t

s=t0
(z(s)− ẑ(s))T (z(s)− ẑ(s))ds.

Consider the time interval t ∈ [tik + τ ik, t
i
k+1 + τ ik+1]. By (2),

zi(t)− ẑi(t) =(eA(t−tik) − IN )ẑi(t
i
k + τ ik) + eA(t−tik)eik

−
∫ t

ti
k

eA(t−s)(Gi ⊗K)ẑ(s)ds
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and thus

(zi(t)−ẑi(t))
T (zi(t)− ẑi(t))

≤(1 + α)(1 +
1

β
)ẑi(t

i
k + τ ik)

T (eA(t−tik) − IN )T

× (eA(t−tik) − IN )ẑi(t
i
k + τ ik)

+ (1 +
1

α
)(1 +

1

β
)eik

T
(eA(t−tik))T eA(t−tik)eik

+ (1 + β)

(
∫ t

ti
k

eA(t−s)(Gi ⊗K)ẑ(s)ds

)T

×
∫ t

ti
k

eA(t−s)(Gi ⊗K)ẑ(s)ds, (30)

where Gi is the i-th row of matrix G.

Consider the first term on the right side of inequality (30). By Lemma 1 and Lemma 2 in the appendix,

ẑi(t
i
k+τ ik)

T (eA(t−tik) − IN )T (eA(t−tik) − IN )ẑi(t
i
k + τ ik)

≤ σA
2

λAs

2 (e
λAs (t−tik) − 1)2ẑi(t

i
k + τ ik)

T ẑi(t
i
k + τ ik)

≤σA
2(h+τ)2e2λAs (h+τ)ẑi(t

i
k+τ ik)

T ẑi(t
i
k+τ ik). (31)

Consider the third term on the right side of inequality (30). Suppose that tp1
= tik, tp2

= tik + τ ik, and tp3
< t ≤ tp3+1 ≤

tik+1 + τ ik+1, and denote hi
k = tik+1 − tik.

∫ t

ti
k

eA(t−s)(Gi ⊗K)ẑ(s)ds

=

p3−1
∑

l=p1

tl+1 − tl
hi
k + τ ik+1

hi
k + τ ik+1

tl+1 − tl

×
∫ tl+1

tl

eA(tl+1−s)ds eA(t−tl+1)(Gi ⊗K)ẑ(tl)

+
tp3+1 − tp3

hi
k + τ ik+1

hi
k + τ ik+1

tp3+1 − tp3

×
∫ t

tp3

eA(t−s)ds(Gi ⊗K)ẑ(tp3
).

By the convexity of the square function and Lemma 1,
(
∫ t

ti
k

eA(t−s)(Gi ⊗K)ẑ(s)ds

)T∫ t

ti
k

eA(t−s)(Gi ⊗K)ẑ(s)ds

≤
p3−1
∑

l=p1

hi
k + τ ik+1

tl+1−tl

(
∫ tl+1

tl

eA(tl+1−s)ds

× eA(t−tl+1)(Gi ⊗K)ẑ(tl)

)T

×
∫ tl+1

tl

eA(tl+1−s)ds eA(t−tl+1)(Gi ⊗K)ẑ(tl)

+
hi
k + τ ik+1

tp3+1 − tp3

(
∫ t

tp3

eA(t−s)ds(Gi ⊗K)ẑ(tp3
)

)T
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×
∫ t

tp3

eA(t−s)ds(Gi ⊗K)ẑ(tp3
)

≤
p3−1
∑

l=p1

hi
k + τ ik+1

λAs

2(tl+1 − tl)
(eλAs (tl+1−tl) − 1)2e2λAs (t−tl+1)

× ẑ(tl)
T (Gi

TGi ⊗KTK)ẑ(tl)

+
hi
k + τ ik+1

λAs

2(tp3+1 − tp3
)
(eλAs (t−tp3 ) − 1)2

× ẑ(tp3
)T (Gi

TGi ⊗KTK)ẑ(tp3
). (32)

Notice that inequality (32) holds for any t and the corresponding properly defined indexes tp1
, tp2

, and tp3
. Combining

inequalities (30), (31) and (32) gives that
∫ t

ti
k
+τ i

k

(zi(s)− ẑi(s))
T (zi(s)− ẑi(s))ds

≤
(

(1 + α)σA
2(h+ τ)2 + (1 +

1

α
)ω
)

(1 +
1

β
)

× e2λAs (h+τ)(t− tp2
)ẑi(t

i
k + τ ik)

T ẑi(t
i
k + τ ik)

+ (1 + β)

p2−1
∑

l=p1

hi
k + τ ik+1

λAs

2(tl+1 − tl)
(eλAs (tl+1−tl) − 1)2

× e2λAs (t−tl+1) − e2λAs (tp2−tl+1)

2λAs

× ẑ(tl)
T (Gi

TGi ⊗KTK)ẑ(tl)

+ (1 + β)

p3−1
∑

l=p2

(

hi
k + τ ik+1

2λAs

3(tl+1 − tl)

(

e2λAs (tl+1−tl)

− 4eλAs(tl+1−tl) + 3 + 2λAs
(tl+1 − tl)

)

+
hi
k + τ ik+1

λAs

2(tl+1 − tl)
(eλAs (tl+1−tl) − 1)2

× e2λAs (t−tl+1) − 1

2λAs

)

ẑ(tl)
T (Gi

TGi ⊗KTK)ẑ(tl)

+ (1 + β)
hi
k + τ ik+1

2λAs

3(tp3+1 − tp3
)

(

e2λAs (t−tp3)

− 4eλAs(t−tp3) + 3 + 2λAs
(t− tp3

)
)

× ẑ(tp3
)T (Gi

TGi ⊗KTK)ẑ(tp3
)

≤
(

(1 + α)σA
2(h+ τ)2 + (1 +

1

α
)ω
)

(1 +
1

β
)

× e2λAs (h+τ)(t− tp2
)ẑi(t

i
k + τ ik)

T ẑi(t
i
k + τ ik)

+ (1 + β)(hi
k + τ ik+1)

p2−1
∑

l=p1

(tl+1 − tl)(t− tp2
)

× e2λAs (t−tl)ẑ(tl)
T (Gi

TGi ⊗KTK)ẑ(tl)

+ (1 + β)(hi
k + τ ik+1)

p3−1
∑

l=p2

(

1

3
(tl+1 − tl)

2
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× e2λAs (tl+1−tl) + (tl+1 − tl)(t− tl+1)e
2λAs (t−tl)

)

× ẑ(tl)
T (Gi

TGi ⊗KTK)ẑ(tl)

+
1

3
(1 + β)(hi

k + τ ik+1)
(t− tp3

)3

tp3+1 − tp3

× e2λAs (t−tp3)ẑ(tp3
)T (Gi

TGi ⊗KTK)ẑ(tp3
)

≤
(

(1+α)σA
2(h+τ)2+(1+

1

α
)ω
)

(1 +
1

β
)e2λAs (h+τ)

×
(

p3
∑

l=p2

(tl+1−tl)+(t−tp3
)
)

ẑi(t
i
k+τ ik)

T ẑi(t
i
k+τ ik)

+ (1 + β)(h+ τ)2e2λAs (h+τ)

×
p2−1
∑

l=p1

(tl+1 − tl)ẑ(tl)
T (Gi

TGi ⊗KTK)ẑ(tl)

+
4

3
(1 + β)(h+ τ)2e2λAs (h+τ)

×
p3−1
∑

l=p2

(tl+1 − tl)ẑ(tl)
T (Gi

TGi ⊗KTK)ẑ(tl)

+
1

3
(1 + β)(h+ τ)2e2λAs (h+τ)

× (t− tp3
)ẑ(tp3

)T (Gi
TGi ⊗KTK)ẑ(tp3

). (33)

(2) Evaluation of V (t).

Let p− be any index such that tip−
≥ maxj(t

j
0 + τ j0 ) for any i. Let tp0

= maxi(t
i
p−

+ τ ip−
), tpi

1
= tip−

, and tpi
2
= tip−

+ τ ip−
.

Note that inequality (33) is correct for any t with the associated tp1
, tp2

, and tp3
. By inequalities (3) and (33), we have the

estimation of V (t) in the following form:

V (t) ≤V0 +

p−1
∑

l=p0

(tl+1 − tl)

(

− µ+ ε
(

(1 +
1

α
)ω

+(1+α)σA
2(h+τ)2

)

(1+
1

β
)e2λAs(h+τ)

)

ẑ(tl)
Tẑ(tl)

+ (1 + β)ε
7

3
(h+ τ)2e2λAs (h+τ)

×
p−1
∑

l=p0

(tl+1 − tl)ẑ(tl)(G
TG⊗KTK)ẑ(tl)

T ,

where

V0 =V (t0)− µ

∫ tp0

t=t0

ẑ(t)T ẑ(t)

+ ε

m
∑

i=1

∫ t
pi
2

t0

(z(t)− ẑ(t))T (z(t)− ẑ(t))dt

+ ε

m
∑

i=1

(

(

(1 + α)σA
2(h+ τ)2 + (1 +

1

α
)ω
)
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× (1 +
1

β
)e2λAs (h+τ)

p0−1
∑

l=pi
2

(tl+1 − tl)zi(t
i
k)

T zi(t
i
k)

+ (1 + β)(h+ τ)2e2λAs (h+τ)

×
p0−1
∑

l=pi
1

(tl+1 − tl)ẑ(tl)
T (Gi

TGi ⊗KTK)ẑ(tl)

+ (1 + β)
4

3
(h+ τ)2e2λAs (h+τ)

×
p0−1
∑

l=pi
2

(tl+1 − tl)ẑ(tl)
T (Gi

TGi ⊗KTK)ẑ(tl)

)

.

Let

Γ =µ− ε(1 +
1

β
)((1 +

1

α
)ω

+ (1 + α)σA
2(h+ τ)2)e2λAs (h+τ)

− ε(1 + β)
7

3
σG

2σK
2(h+ τ)2e2λAs (h+τ).

Then by (4), Γ > 0 and

V (tp) ≤V0 − Γ

p−1
∑

l=p0

(tl+1 − tl)ẑ(tl)
T ẑ(tl).

By the lower boundedness of V (t), limp→∞

∑p−1
l=p0

(tl+1 − tl)ẑ(tl)
T ẑ(tl) exists and

lim
p→∞

∞
∑

l=p

(tl+1 − tl)ẑ(tl)
T ẑ(tl) = 0. (34)

Denote ei(t) = eik and z̃i(t) = zi(t
i
k), t ∈ [tik+τ ik, t

i
k+1+τ ik+1), i = 1, 2, . . . ,m, k = 0, 1, . . . . Denote e(t) = [e1(t)

T e2(t)
T . . . em(t)T ]T

and z̃(t) = [z̃1(t)
T z̃2(t)

T . . . z̃m(t)T ]T . By (34) and Assumption 1 (4),

lim
p→∞

∞
∑

l=p

(tl+1 − tl)e(tl)
T e(tl) = 0,

and

lim
p→∞

∞
∑

l=p

(tl+1 − tl)z̃(tl)
T z̃(tl) = 0. (35)

(3) Asymptotically Stability.

For any given k, the same indexes p1, p2, and p3 as in the previous part are defined. With the same arguments as in proving

inequalities (31) and (32) and by Lemma 1, for t ∈ [tik + τ ik, t
i
k+1 + τ ik+1],

zi(t)− zi(t
i
k + τ ik) =(eA(t−tik−τ i

k) − I)zi(t
i
k + τ ik)

−
∫ t

ti
k
+τ i

k

eA(t−s)(Gi ⊗K)ẑ(s)ds,
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and

(zi(t)−zi(t
i
k + τ ik))

T (zi(t)− zi(t
i
k + τ ik))

≤(tik+1 + τ ik+1 − tik − τ ik)2σA
2e2λAs (h+τ)

× (t− tik − τ ik)zi(t
i
k + τ ik)

T
zi(t

i
k + τ ik)

+ (tik+1 + τ ik+1 − tik − τ ik)2λGiKe2λAs (h+τ)

×
p3−1
∑

l=p2

(tl+1 − tl)ẑ(tl)
T ẑ(tl)

≤(tik+1 + τ ik+1 − tik − τ ik)4σA
2e2λAs (h+τ)

× (t− tik − τ ik)z̃i(t
i
k + τ ik)

T
z̃i(t

i
k + τ ik)

+ (tik+1 + τ ik+1 − tik − τ ik)

× 4σA
2e2λAs (h+τ)(t− tik − τ ik)

× (zi(t
i
k+τ ik)−zi(t

i
k))

T (zi(t
i
k+τ ik)−zi(t

i
k))

+ (tik+1 + τ ik+1 − tik − τ ik)2λGiKe2λAs (h+τ)

×
p3−1
∑

l=p2

(tl+1 − tl)ẑ(tl)
T ẑ(tl), (36)

where λGiK is the largest eigenvalue of Gi
TGi ⊗KTK . Furthermore, since

zi(t
i
k + τ ik)− zi(t

i
k) =(eAτ i

k − I)zi(t
i
k)

−
∫ tik+τ i

k

ti
k

eA(t−s)(Gi ⊗K)ẑ(s)ds,

we have that

(t−tik − τ ik)(zi(t
i
k + τ ik)− zi(t

i
k))

T (zi(t
i
k + τ ik)− zi(t

i
k))

≤2σAs

2τ2e2λAs τ (t− tik − τ ik)z̃i(t
i
k + τ ik)

T
z̃i(t

i
k + τ ik)

+ 2λGiKτe2λAs τ (t−tik−τ ik)

p2−1
∑

l=p1

(tl+1−tl)ẑ(tl)
T ẑ(tl).

(37)

By (34) and (35), in (36) and (37), all the quantities (t − tik − τ ik)z̃i(t
i
k + τ ik)

T
z̃i(t

i
k + τ ik),

∑p3−1
l=p2

(tl+1 − tl)ẑ(tl)
T ẑ(tl),

and
∑p2−1

l=p1
(tl+1 − tl)ẑ(tl)

T ẑ(tl) converge to 0 as k goes to infinity. Therefore, we have the following inequality with positive

f(i, t, k) converging to 0 as k goes to infinity:

(zi(t)−zi(t
i
k + τ ik))

T (zi(t)− zi(t
i
k + τ ik))

≤ (tik+1 + τ ik+1 − tik − τ ik)f(i, t, k),

which implies that the change of zi(t) over any time intervals with a fixed length will be infinitesimally small when t is sufficiently

large. By (35),

lim
t→∞

zi(t) = 0.
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