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Event-triggered second-moment stabilization of
linear systems under packet drops
Pavankumar Tallapragada Massimo Franceschetti Jorge Cortés

Abstract—This paper deals with the stabilization of linear
systems with process noise under packet drops between the sensor
and the controller. Our aim is to ensure exponential convergence
of the second moment of the plant state to a given bound in finite
time. Motivated by considerations about the efficient use of the
available resources, we adopt an event-triggering approach to
design the transmission policy. In our design, the sensor’s decision
to transmit or not the state to the controller is based on an online
evaluation of the future satisfaction of the control objective. The
resulting event-triggering policy is hence specifically tailored to
the control objective. We formally establish that the proposed
event-triggering policy meets the desired objective and quantify
its efficiency by providing an upper bound on the fraction of
expected number of transmissions in an infinite time interval.
Simulations for scalar and vector systems illustrate the results.

I. INTRODUCTION

One of the fundamental abstractions of cyber-physical sys-
tems is the idea of networked control systems, the main
characteristic feature of which is that feedback signals are
communicated over a communication channel or network. As
a result, control must be performed under communication con-
straints such as quantization, unreliability, and latency. These
limitations make it necessary to design control systems that
tune the use of the available resources to the desired level of
task performance. With this goal in mind, this paper explores
the design of event-triggered transmission policies for second-
moment stabilization of linear plants under packet drops.

Literature review: The increasing deployment of cyberphys-
ical systems has brought to the forefront the need for sys-
tematic design methodologies that integrate control, commu-
nication, and computation instead of independently designing
these components and integrating them in an adhoc manner,
see e.g. [2], [3]. Among this growing body of literature, the
contents of this paper are particularly related to works that
deal with feedback control under communication constraints,
see [4]–[6] and references therein, and specifically packet
drops or erasure channels, see e.g., [7]–[9]. In the past
decade, opportunistic state-triggered control methods [10]–
[12], have gained popularity for designing transmission poli-
cies for networked control systems that seek to efficiently
use the communication resources. The main idea behind this
approach is to design state-dependent triggering criteria that
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opportunistically specify when certain actions (updating the
actuation signal, sampling data, or communicating informa-
tion) must be executed. More generally, the triggering criteria
may also depend on the desired control objective, and the
available information about the state, communication channel,
and other constraints. In the context of the communication
service, the emphasis has largely been on minimizing the
number of transmissions rather than the quantized data, often
ignoring the limits imposed by channel characteristics, with
some notable exceptions, see [13]–[17] and references therein.
In our previous work [18], [19], we have also sought to address
these limitations for deterministic models of the behavior of
the communication channel. Although today there exists a
large body of work on opportunistic state-triggered control,
the application of these ideas in the stochastic setting is still
relatively limited. This is despite the fact that one of the
first works on event-triggered control [20] was in this setting.
Event-triggering methods in the stochastic setting have almost
exclusively been utilized in finite or infinite horizon optimal
control problems with fixed threshold-based triggering. The
works [21]–[23] also incorporate transmission costs in the
cost function and analyze the optimal transmission costs. On
the other hand, [24], [25] analyze the transmission rates. In
addition, [23]–[26] also consider packet drops. The work [27]
shows optimality of certainty equivalence in event-triggered
control for certain finite horizon problems. In contrast to start-
ing with an event-triggered control policy, the work [28] for-
mulates an optimal control problem over a finite horizon with
the constraint that at most a smaller number of transmissions
may occur, and the optimal control policy turns out to be event-
triggered. Finally, we should remark that stochastic stability, in
the sense of moment stability, with event-triggered control has
received much less attention. The work [29] follows [10] to
study self-triggered sampling for second-moment stability of
state-feedback controlled stochastic differential equations. The
work [30] proposes a fixed threshold-based event-triggered
anytime control policy under packet drops. It assumes that the
controller has knowledge of the transmission times, including
when a packet is dropped, and the policy guarantees second-
moment stability with exponential convergence to a finite
bound asymptotically. Both [29], [30] are applicable to multi-
dimensional nonlinear systems.

Statement of contributions: We formulate the problem of
second-moment stabilization of scalar linear systems subject
to process noise and independent identically distributed packet
drops in the communication channel. Our goal is to design
a policy to prescribe transmissions from the sensor to the
controller that ensures exponential convergence in finite time
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of the second moment of the plant state to an ultimate bound.
Our first contribution is the design of an event-triggered
transmission policy in which the decision to transmit or not
is determined by a state-based criterion that uses the available
information. The synthesis of our policy is based on a two-
step design procedure. First, we consider a nominal quasi-
time-triggered policy where no transmission occurs for a given
number of timesteps, and then transmissions occur on every
time step thereafter. Second, we define the event-trigger policy
by evaluating the expectation of the system performance at
the next reception time given the current information under
the nominal policy, and prescribe a transmission if this ex-
pectation fails to meet the objective. This approach results in
a transmission policy more complex than a threshold-based
triggering, but since it is driven by the control objective
results in fewer transmissions. Our second contribution is the
rigorous characterization of the system evolution, first under
the proposed family of nominal transmission policies and
second, building on this analysis, under the proposed event-
triggered transmission policy. This helps us identify sufficient
conditions on the ultimate bound, the system parameters, and
the communication channel that guarantee that the event-
triggered policy indeed meets the control objective. Our third
contribution compares the efficiency of the proposed design
with respect to time-triggered policies and provides an upper
bound on the fraction of the expected number of transmissions
over an infinite time horizon. Our fourth and last contribution
is the extension of our exponential convergence guarantees to
the vector case and a discussion of the design and analysis
challenges in extending the characterization of efficiency.
Various simulations illustrate our results. We omit the proofs
that appeared in the conference version [1] of this work and
instead refer the interested reader there.

Notation: We let R, R≥0, Z, N, N0 denote the set of real,
non-negative real numbers, integers, positive integers and non-
negative integers respectively. We use the notation [a, b]Z and
(a, b)Z to denote [a, b]∩Z and (a, b)∩Z, respectively. We
use similar notation for half-open/half-closed intervals. For a
matrix A, we let tr(A) denote the trace of the matrix. Given a
set A, we denote its indicator function by 1A, i.e., 1A(x) = 0
if x /∈ A and 1A(x) = 1 if x ∈ A. We use ‘w.p.’ as a
shorthand for ‘with probability’. We denote the expectation
given a transmission policy P as EP [.]. Let (Ω,F , P ) be a
probability space and G1 ⊂ G2 ⊂ F be two sub-sigma fields
of F . Then, the tower property of conditional expectation is

E [E [X | G2] | G1] = E [X | G1] = E [E [X | G1] | G2] .

II. PROBLEM STATEMENT

This section describes the model for the plant dynamics and
the assumptions on the sensor, actuator, and the communica-
tion channel between them. Given this setup, we then specify
the objective for the control design.

Plant, sensor, and actuator: Consider a scalar discrete-time
linear time-invariant system evolving according to

xk+1 = axk + uk + vk, (1)

for k ∈ N0. Here x ∈ R denotes the state of the plant,
a ∈ R defines the system internal dynamics, u ∈ R is the

control input, and v is a zero-mean independent and identically
distributed process noise with covariance M > 0, uncorrelated
with the system state.

A sensor measures the plant state xk at time k. The sensor,
being not co-located with the controller, communicates with
it over an unreliable communication channel. The sensor
maintains an estimate of the plant state given the ‘history’
(defined precisely below) up to time k − 1. During the time
between two successful communications, the controller itself
estimates the plant state. We let x̂+

k be the controller’s estimate
of the plant state xk given the past history of transmissions and
receptions including those at time k, if any. This results in a
control action given by uk = Lx̂+

k . We assume that the sensor
can independently compute x̂+

k at the next time step k + 1
for each k ∈ N0 (this is possible with acknowledgments from
the controller to the sensor on successful reception times). We
denote the sensor estimation error and controller estimation
error as ek , xk − x̂k and e+

k , xk − x̂+
k , which are known

to the sensor at all times, but not to the controller.
Communication channel: The sensor can transmit the plant

state to the controller with infinite precision and instanta-
neously at time steps of its choosing, but packets might be
lost. We define the transmission process {tk}k∈N0

as

tk ,

{
1, if a packet is transmitted at k,
0, if no packet is transmitted at k.

(2)

The way in which this process occurs is determined by
a transmission policy T , to be specified by the designer.
Similarly, we define a reception process {rk}k∈N0

, with rk
being 1 or 0 depending on whether a packet is received
or not at k. The transmission and reception processes may
differ due to Bernoulli-distributed packet drops. Formally, if
p ∈ (0, 1] denotes the probability of successful transmission,
the reception process is

rk ,

{
1, w.p. p if tk = 1,

0, if tk = 0 or w.p. (1− p) if tk = 1.
(3)

We denote the latest reception time before k and latest
reception time up to k by Rk and R+

k , resp. Formally,

Rk , max{i < k : ri = 1}, (4a)

R+
k , max{i ≤ k : ri = 1}. (4b)

Both times coincide if rk = 0. The need for separate notions
would become clearer later: the notion of Rk plays a role in
the design of the triggering rule, while the notion of R+

k is
useful in the analysis of the system evolution. We denote the
sequence of all (successful) reception times as {Sj}j∈N0 , i.e.,

S0 = 0, Sj+1 , min{k > Sj : rk = 1}, (5)

where we have assumed, without loss of generality, that S0 =
0 and hence also r0 = 1. Thus, Sj is the jth reception time.

System evolution: Given the sensor-controller communica-
tion model specified above, we describe the system evolution
and the controller’s estimate, respectively, as

xk+1 = axk + Lx̂+
k + vk = āxk − Le+

k + vk, (6a)

x̂k+1 = āx̂+
k , (6b)
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where ā = a+ L and

x̂+
k ,

{
x̂k if rk = 0,

xk, if rk = 1.
(6c)

The use of x̂+ and e+ is motivated by our goal of designing
a state-triggered transmission policy: the decision to transmit
at time k is made by the sensor based on xk and x̂k (or
equivalently ek), while the plant state at k + 1 depends on
whether a packet is received or not at k, which is captured
by x̂+ and e+

k . We denote by Ik , (k, xk, ek, Rk, xRk
)

the information available to the sensor at time k, based on
which it decides whether to transmit or not. We also let
I+
k , (k, xk, e

+
k , R

+
k , xR+

k
) be the information available at

the controller at time k, which can also be independently
computed by the sensor at the end of time step k upon
receiving or not receiving an acknowledgment. Note that I+

k

differs from Ik only if k is a reception time, i.e., rk = 1
(equivalently, only if k = Sj for some j). The closed-loop
system is not fully defined until a transmission policy T ,
determining the transmission process (2), is specified. This
specification is guided by the control objective detailed next.

Control objective: Our objective is to ensure the stability
of the plant dynamics with a guaranteed level of performance.
We rely on stochastic stability because the presence of random
disturbances and the unreliable communication channel make
the plant evolution stochastic. Formally, we seek to synthesize
a transmission policy T ensuring

ET
[
x2
k | I+

0

]
≤ max{c2kx2

0, B}, ∀k ∈ N, (7)

which corresponds to the second moment of the plant state,
conditioned on the initial information, converging at an expo-
nential rate c ∈ (0, 1) to its ultimate bound B ≥ 0.

A possible, purely time-triggered transmission policy to
guarantee (7) would be to transmit at every time instant. Such
policy would presumably lead to an inefficient use of the
communication channel, since it is oblivious to the plant state
in making decisions about transmissions. Instead, we seek to
design an event-triggered transmission policy T , i.e., an online
policy in which the decision to transmit or not is determined
by a state-based criterion that uses the available information.

Standing assumptions: We assume the drift constant a is
such that |a| > 1, so that control is necessary. We also assume
ā2 < c2 < 1, so that the performance function is always non-
positive under zero noise and no packet drops. Finally, we
assume a2(1 − p) < 1. This latter condition is necessary for
second-moment stabilizability under Bernoulli packet drops,
see e.g. [31], [32]. In our discussion, the condition is necessary
for the convergence of certain infinite series (we come back
to this point in Remark IV.2). For the reader’s reference, we
present in the appendix a list of the symbols most frequently
used along the paper.

III. EVENT-TRIGGERED TRANSMISSION POLICY

This section provides an alternative control objective and
shows that its satisfaction implies the original one defined
in Section II is also satisfied. This reformulated objective
serves then as the basis for our design of the event-triggered
transmission policy.

A. Online control objective

The control objective stated in (7) prescribes, given the
initial condition, a property on the whole system trajectory in
a priori fashion. This ‘open-loop’ nature makes it challenging
to address the design of the transmission policy. To tackle
this, we describe here an alternative control objective which
prescribes a property on the system trajectory in an online
fashion, making it more handleable for design, and whose
satisfaction implies the original objective is also met. To this
end, consider the performance function,

hk = x2
k −max{c2(k−Rk)x2

Rk
, B}, (8)

which has the interpretation of capturing the desired per-
formance at time k with respect to the state at the latest
reception time before k. Given this interpretation, consider
the alternative control objective that consists of ensuring that

ET
[
hk | I+

Rk

]
≤ 0, ∀k ∈ N. (9)

The next result shows that the satisfaction of (9) ensures that
the original control objective (7) is also met. The proof relies
on the use of induction and can be found in [1].

Lemma III.1. (The online control objective is stronger than
the original control objective [1]). If a transmission policy T
ensures the online objective (9), then it also guarantees the
control objective (7).

Given this result, our strategy for control design is to satisfy
the stronger but easier to handle online control objective (9)
rather than working directly with the original objective (7).

B. Two-step design strategy: nominal and event-triggered
transmission policies

In this section, we introduce our event-triggered design
strategy to meet the control objective. Before giving a full de-
scription, we first detail the design principle we have adopted
to approach the problem. Later, we discuss how our two-step
design strategy corresponds to this design principle.

[Design principle:] The fundamental principle of event-
triggered control is to assess if it is necessary to transmit
at the current time given the control objective and the
available information about the system and its state (for
example, for deterministic discrete-time systems with a
perfect channel, a transmission may be triggered at time k
only if hk+1 would be greater than 0 in the absence of
a transmission). If the channel is not perfect, then its
properties must also be taken into consideration when
deciding whether to transmit or not (for example, if the
channel induces time delays bounded by γ, then hk+γ

must be checked in the absence of a transmission at
time k). In order to implement this same basic princi-
ple for the problem at hand, one needs to address the
challenges presented by the Bernoulli packet drops and
the goal of stochastic stability with a strict convergence
rate requirement (as specified in (9)). A key observation
in this regard is the fact that it is not possible to assess the
necessity of transmission at a given time k independently
of future actions, as the occurrence of the next (random)
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reception time is determined by not only the current action
but also the future actions. This motivates our two-step
design strategy. We assess the necessity of transmission
using a nominal transmission policy in which there is no
transmission at the current time k. Our actual transmis-
sion policy at that time is then based on the expected
performance under this nominal transmission policy: if
the nominal transmission policy deems it ‘not necessary’
to transmit on time k, meaning that the performance
objective is expected to be met under it, then indeed we
do not transmit on time k.
We next describe our design of the event-triggered transmis-

sion policy. The key idea is the belief that, in the absence of re-
ception of packets, the likelihood of violating the performance
criterion must increase with time. We refer to this as the mono-
tonicity property. Therefore, we design a transmission policy
that overtly seeks to satisfy the performance criterion (9) only
at the next (random) reception time in order to guarantee that
the performance objective is not violated at any time step.
Later, our analysis will show that the monotonicity property
above does indeed hold.

We seek to design an event-triggered policy T ensuring

ET
[
hSj+1 | I+

Sj

]
≤ 0, for each j ∈ N0.

In general, computing the conditional expectation for an
arbitrary event-triggered transmission policy T is challenging.
This is because the evolution of the system state between
consecutive reception times depends on the transmission in-
stants, which are in turn determined online by the triggering
function of the state and the specific realizations of the noise
and the packet drops. Therefore, we take the two-step strategy
described above: first, we consider a family of nominal quasi-
time-triggered transmission policies T Dk , for which we can
compute ET D

k

[
hRk+1

| Ik
]
; then, we use this expectation

under the nominal policy to design the event-triggered policy.
We start by defining a family of nominal transmission

policies indexed by k ∈ N0 as

T Dk : ti =

{
0, i ∈ {k, . . . , k +D − 1},
1, i ≥ k +D,

(10)

where D ≥ 1. Under this nominal policy, no transmissions
occur for the first D time steps from k to k + D − 1,
and transmissions occur on every time step thereafter (D is
therefore the length of the interval from time k during which
no transmissions occur). With the nominal policy, we associate
the following look-ahead criterion,

GDk , ET D
k

[
hRk+1

| Ik
]

(11)

=

∞∑
s=D

E
[
hRk+1

| Ik, Rk+1 = k + s
]

(1− p)s−Dp,

which is the conditional expectation of the performance func-
tion at the next reception time, given the information at k under
the transmission policy T Dk . This interpretation gives rise to
the central idea behind our event-triggered transmission policy:
if the criterion is positive (i.e., the performance objective
is expected to be violated at the next reception time if no

transmission occurs for D timesteps, and forever after), then
we need to start transmitting earlier to try to revert the situation
before it is too late. Formally, the event-triggered policy TE ,
given the last successful reception time Rk = Sj , is

TE : tk =

{
0, if k ∈ {Rk + 1, . . . , Fk − 1}
1, if k ∈ {Fk, . . . , Sj+1},

(12a)

where

Fk , min{` > Rk : GD` ≥ 0}. (12b)

Thus, under the proposed policy, the sensor transmits on each
time step starting at Fk (the first time after Rk = Sj when the
look-ahead criterion is positive) until a successful reception
occurs at Sj+1, for each j ∈ N0. The complete transmission
policy is then obtained recursively. In the course of the paper,
we analyze the system under the transmission policy (12), with
respect to an arbitrary reception time Sj . Thus, it is convenient
to also introduce the notation

Tj , min{` > Sj : GD` ≥ 0}, (13)

which is the first time after Sj when a transmission occurs.

Remark III.2. (Interpretation of the parameter D). The
interpretation of the role of the parameter D depends on
the context. In the nominal policy T Dk , D has the role of
idle duration from k during which no transmissions occur. In
the actual event-triggered transmission policy (12), D has the
role of look-ahead horizon. Specifically, given the information
available to the sensor at time k, the sign of the look-ahead
function GDk answers the question of whether the sensor could
afford not to transmit for the next D time steps and still meet
the control objective. If at a time k, GDk < 0, then the sensor
can afford not to transmit on time steps {k, . . . , k +D − 1},
as there exists a transmission sequence in future, given by
the nominal policy, that would satisfy the control objective.
Thus, at a particular time k when GDk < 0, D may be
interpreted as a lower bound on the time-to-go for a required
transmission. Hence, intuitively we can see that, in the actual
transmission policy (12), a larger value of D makes the policy
more conservative, because it requires a longer guaranteed no-
transmission horizon. •

Remark III.3. (Special case of deterministic channel). It is
interesting to look at the transmission policy (12) in the special
case of a deterministic channel, i.e., no packet drops (p = 1).
Observe from (11) that in this case, GDk = E [hk+D | Ik].
If additionally there were no process noise, then this further
simplifies to GDk = hk+D. Then, the policy (12) reduces to

tk =

{
1, if GDk ≥ 0

0, if GDk < 0,

which is a commonly used event-triggering policy for control
over deterministic channels, see e.g., [18]. Thus, the proposed
policy (12) is a natural generalization of the basic principle
of event-triggering to control over channels with probabilistic
packet drops. •
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IV. ANALYSIS OF THE SYSTEM EVOLUTION UNDER THE
NOMINAL POLICY

Here, we characterize the evolution of the system when op-
erating under the nominal transmission policy. This character-
ization is key later to help us provide performance guarantees
of the event-triggered transmission policy.

A. Performance evaluation functions and their properties

The following result provides a useful closed-form expres-
sion of the look-ahead criterion GDk as a function of Ik. Its
proof appears in [1].

Lemma IV.1. (Closed-form expression for the look-ahead
function [1]). The look-ahead function is well defined and
takes the form

GDk = p
[
gD(ā2)x2

k + 2
(
gD(aā)− gD(ā2)

)
xkek

+
(
gD(a2)− 2gD(aā) + gD(ā2)

)
e2
k

+M

(
gD(a2)− 1

p

)
− gD(c2)zk

−
(B
p
− c2q

D
k gD(c2)zk

)
(1− p)q

D
k

]
,

where

gD(b) ,
bD

1− b(1− p)
, M ,

M

a2 − 1
, zk , c

2(k−Rk)x2
Rk
,

qDk , max

0,


log

(
x2
Rk

B

)
log(1/c2)

− (k −Rk)−D

 . (14)

The function GDk helps determine whether or not to transmit
at time k. However, to analyze the evolution of the perfor-
mance function hk between successive reception times Sj and
Sj+1, we introduce the performance-evaluation function,

JDk , ET D
k

[
hR+

k+1
| I+

k

]
(15)

=

∞∑
s=D

E
[
hR+

k+1
| I+

k , Rk+1 = k + s
]

(1− p)s−Dp.

Note the similarity with the definition of GDk (with the
exception that JDk is conditioned upon the information I+

k ).
Observe that JDk 6= GDk only if k = Sj for some j. Hence we
focus on JDSj

for j ∈ N0,

JDSj
=

∞∑
s=D

H(s, x2
Sj

)(1− p)s−Dp, (16)

where

H(s, x2
Sj

) , E
[
hSj+s | I+

Sj
, Sj + s ≤ Sj+1

]
, (17)

which we call the open-loop performance evolution function.
This function describes the evolution of the expected value
of the performance function in open loop, during the inter-
reception times, conditioned upon I+

Sj
, the information avail-

able at the last reception time upon reception.

Remark IV.2. (Necessary condition for second-moment sta-
bility). The condition a2(1 − p) < 1, which we assumed
in the standing assumption in Section II, is necessary for
the convergence of the series (11) and (16), which define
the look-ahead criterion and performance-evaluation function,
respectively. This can be seen from the proofs of Lemma IV.1
and Lemma IV.3, in [1]. The necessity of the condition
a2(1 − p) < 1 for second-moment stability can also be
derived from the information-theoretic or data-rate arguments
employed in [31], [32]. •

The next result gives closed-form expressions for the
performance-evaluation function JDSj

and the open-loop per-
formance evaluation function H . The proof appears in [1].

Lemma IV.3. (Closed-form expressions for the performance-
evaluation and the open-loop performance evaluation func-
tions [1]). The performance-evaluation function is well defined
and takes the form

JDSj
= p
[
gD(ā2)x2

Sj
+M

(
gD(a2)− 1

p

)
− gD(c2)x2

Sj

−
(B
p
− c2w

D
k gD(c2)x2

Sj

)
(1− p)w

D
Sj

]
,

where gD is defined in (14) and

wDSj
, max

0,


log

(
x2
Sj

B

)
log(1/c2)

−D
 . (18)

The open-loop performance evaluation function takes the form

H(s, y) = ā2sy +M(a2s − 1)−max{c2sy,B}. (19)

The next result specifies some useful properties of the look-
ahead GDk and the performance-evaluation JDk functions. The
proof appears in [1].

Proposition IV.4. (Properties of the look-ahead and
performance-evaluation functions [1]). For D ∈ N, under the
same hypotheses as in Proposition IV.6, the following hold:
(a) Let T be any transmission policy. Then, for any k ∈ N0,

ET
[
GDk+1 | Ik, rk = 0

]
= GD+1

k ,

ET
[
GDk+1 | Ik, rk = 1

]
= JD+1

k .

(b) For D ∈ N, define

G(D) ,
(
gD(ā2)− gD(c2)

) B

c2D
+M

(
gD(a2)− 1

p

)
.

(20)
If G(D) < 0, then JDSj

< 0, for any j ∈ N0.
(c) Suppose the hypothesis of (b) is true. Then, for d ∈
{1, . . . ,D} and for any j ∈ N0, JdSj

≤ Jd+1
Sj

.

The value of the function G (defined in (20)) at D has
the interpretation of being a uniform (over the plant state
space) upper bound on JDSj

, the expectation of the open-loop
performance function at the next (random) reception time. The
condition G(D) < 0 can be interpreted as establishing a lower
bound on the value of B, the ultimate bound, as a function of
the system and communication channel parameters. The next
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result establishes a useful property of G which would be useful
in our forthcoming analysis.

Lemma IV.5. (The function G is strictly increasing). Under
the hypotheses of Proposition IV.6, the function G (cf. (20)) is
strictly increasing on [0,∞).

Proof. The derivative of G with respect to D is

dG
dD

= M log(a2)
a2D

1− a2(1− p)
−B log

(
c2

ā2

)
ā2D

1− ā2(1− p)

< B log

(
c2

ā2

)[
a2D

1− a2(1− p)
− (ā/c)2D

1− ā2(1− p)

]
,

where the inequality follows from the assumption that B > B∗

and (21). Then, observe that for D ≥ 0

a2D(1− ā2(1− p))− (ā/c)2D(1− a2(1− p))
> (a2D − (ā/c)2D)(1− a2(1− p)) > 0,

where the inequalities follow form the fact ā2 < c2 < a2.
Thus, dG

dD > 0 for D ≥ 0.

B. Monotonicity of the open-loop performance function

This section establishes the monotonicity of the open-loop
performance function H , which forms the basis for our main
results. Recall from our discussion in Section III-B that this
property refers to the intuition that, in the absence of reception
of packets, the likelihood of violating the performance crite-
rion must increase with time. This property is captured by the
following result.

Proposition IV.6. (Monotonicity of the open-loop perfor-
mance function). There exists

B∗ > Bc ,M
log(a2)

log
(
c2

ā2

) > 0 (21)

such that if B > B∗ then for each y ∈ R≥0, the function
H(., y) has the property:

H(s1, y) > 0 =⇒ H(s2, y) > 0, ∀s2 ≥ s1. (22)

Proposition IV.6 states that, given the plant state is y at any
reception time Sj , then there is a time s0 such that, in the
absence of receptions, the plant state is expected to satisfy the
performance criterion (9) until Sj + s0 and violate it on every
time step thereafter.

The proof of Proposition IV.6 requires a number of inter-
mediate results that we detail next. We start by introducing
the functions f1, f2 : R2

≥0 → R,

f1(s, y) , ā2sy +M(a2s − 1)− c2sy, (23a)

f2(s, y) , ā2sy +M(a2s − 1)−B. (23b)

Notice, from (19), that H(s, y) = min{f1(s, y), f2(s, y)}. Our
proof strategy to establish Proposition IV.6 is the following:

Roadmap: We first show that f2(., y) is strongly
convex and f1(., y) is quasiconvex. Notice that for
y ≤ B, H(s, y) = f2(s, y) for all s ≥ 0. Thus for
y > B, we analyze the conditions under which one
or the other of the functions f1(., y) and f2(., y)

is the minimum of the two. In this process, we
find it useful to analyze the relationship between s∗
and s∗∗, the unique point where f1(., y) attains its
minimum and the unique point where f1(., y) equals
f2(., y), respectively. In addition, the function values
at these points

F∗(y) , f2(s∗(y), y) (24a)

F∗∗(y) , f1(s∗∗(y), y) = f2(s∗∗(y), y), (24b)

also play an important role. Based on the relationship
between (s∗, F∗) and (s∗∗, F∗∗), the behavior of the
open-loop performance function, for y > B, can
be qualitatively classified into four different cases,
which are illustrated in Figure 1. Notice from the
plots that H has the property (22) in all but Case-
IV. Thus, the key to the proof is in showing that
Case-IV does not occur under the hypothesis of
Proposition IV.6.

In the sequel, we discuss the various claims alluded to in
the above roadmap.

Lemma IV.7. (Convexity properties of f2). For any fixed y ∈
R≥0, the function f2(., y) is strongly convex.

Proof. Strong convexity of f2 with respect to s for a fixed y
follows directly by taking the second derivative.

∂2f2

∂s2
= ā2s log2(ā2)y +Ma2s log2(a2) > M log2(a2) > 0.

On the other hand, f1(., y) for any fixed y ∈ R≥0 is only
quasiconvex in general, as the following result states.

Lemma IV.8. (Convexity properties of f1). For any fixed y ∈
R≥0, the function f1(., y) is quasiconvex.

Proof. For any fixed y ∈ R≥0, let g1(s) , f1(s, y). Then,

g′1(s) = ā2sy log(ā2) +Ma2s log(a2)− c2sy log(c2).

Notice that g′1(s) has the same sign as

g2(s) ,
g′1(s)

ā2s

= y log(ā2) +M
(a
ā

)2s

log(a2)−
( c
ā

)2s

y log(c2),

which, by the standing assumptions, is a strictly increasing
function of s. Since g′1(s) has the same sign as g2(s), we
conclude that g1 = f1(., y) is quasiconvex.

The strong convexity of f2(., y) and quasiconvexity of
f1(., y) are very useful in proving Proposition IV.6. In order
to proceed with the proof, we need to determine the subsets
of the domain where the minimum in the definition of H is
achieved by each of the functions f1 and f2. Thus, we define
the function

s∗∗(y) ,
log(y)− log(B)

log(1/c2)
, (25)

that corresponds to the point where f1 and f2 cross each other,
i.e., H(s∗∗(y), y) = f1(s∗∗(y), y) = f2(s∗∗(y), y).
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(a) Case-I (b) Case-II (c) Case-III (d) Case-IV

Fig. 1. For y > B, there are four possible cases of how f1(., y) and f2(., y) and hence H(., y) evolve. In the figures,  and � show the points (s∗, F∗)
and (s∗∗, F∗∗), respectively. In Case-I s∗(y) < s∗∗(y) and in Cases II-IV s∗(y) ≥ s∗∗(y). In addition, in Case-II F∗∗(y) ≤ 0, in Case-III F∗∗(y) > 0
and F∗(y) > 0 and in Case-IV F∗∗(y) > 0 and F∗(y) ≤ 0.

Lemma IV.9. (Convexity properties of H). Given any y ∈
R≥0, H(., y) is quasiconvex on [0, s∗∗(y)] and strongly convex
on [s∗∗(y),∞).

Proof. The result follows directly from the definition (25) of
s∗∗(y), the facts that

H(s, y) = f1(s, y) < f2(s, y), ∀s ∈ [0, s∗∗(y)),

H(s, y) = f2(s, y) < f1(s, y), ∀s ∈ (s∗∗(y),∞),

together with the quasiconvexity of f1(., y), cf. Lemma IV.8,
and the strong convexity of f2(., y), cf. Lemma IV.7.

Note that, by itself, this result is not sufficient to ascertain
the convexity properties of H(., y) over the whole domain
R≥0. However, if f2(., y) is increasing for s > s∗∗(y), then
Lemma IV.9 would imply that H(., y) is quasiconvex on R≥0,
and this together with the fact that H(0, y) = 0, in turn imply
that the property (22) holds. Thus, our next objective is to find
the values of y for which f2(., y) is increasing for s > s∗∗(y).
To this aim, we find the minimizer of this function as

s∗(y) , log

(
y log

(
1
ā2

)
M log(a2)

)
1

log
(
a2

ā2

) . (26)

Clearly, if s∗(y) ≤ s∗∗(y), then f2(., y) would be increasing
for s > s∗∗(y), as desired. Therefore, we are interested in the
function

W (y) , s∗(y)− s∗∗(y), (27)

and, more specifically, on the sign of W as a function of y.

Lemma IV.10. (Monotonic behavior of W ). The function W
is monotonically decreasing on [B,∞) and W (U) = 0, where
U is given by

log(U) ,
log

(
B log( 1

ā2 )
M log(a2)

)
log
(

1
c2

)
log
(
a2c2

ā2

) + log(B). (28)

Proof. From (25) and (26), we see that

W ′(y) =

(
1

log
(
a2

ā2

) − 1

log
(

1
c2

)) 1

y
=

− log
(
a2c2

ā2

)
log
(
a2

ā2

)
log
(

1
c2

)
y
< 0,

where the last inequality follows from the fact that a2 > 1
and c2 > ā2 and the fact that y ∈ [B,∞). Thus, W is
monotonically decreasing for y ∈ [B,∞). The value of U
can be obtained directly by solving W (U) = 0.

It is clear that if F∗(y), the minimum value of f2(., y),
(see (24a)) is greater than zero then again property (22) is
satisfied. Thus, we now note how F∗(y) evolves with y.

Lemma IV.11. (Motonic behavior of F∗). The function F∗ is
monotonically increasing on R>0.

Proof. It can be easily verified that

F ′∗(y) =

(
ā2s∗(y) +

Ma2s∗(y)

y

)
log(a2)

log
(
a2

ā2

) > 0,

which proves the result.

Now, also note that, if H(s∗∗(y), y) ≤ 0, then strong
convexity of H(., y) in the interval [s∗∗(y),∞) guarantees
the property (22). Thus, we now analyze the evolution of the
function F∗∗(y) (see (24b)) with y.

Lemma IV.12. (Convexity properties of F∗∗). The function
F∗∗ is quasiconvex on R≥0.

Proof. We can easily verify that

F ′∗∗(y) =

(
ā2s∗∗(y) log

(
ā2

c2

)
+
Ma2s∗∗(y) log(a2)

y

)
1

log
(

1
c2

) ,
which has the same sign as the function g(y) ,
F ′∗∗(y)/ā2s∗∗(y). We can then verify, for all y > 0,

g′(y) =
M
(
a2

ā2

)s∗∗(y)

log(a2) log
(
a2c2

ā2

)
log2

(
1
c2

)
y2

> 0.

Thus, g is strictly increasing, and since g(y) and F ′∗∗(y) have
the same sign, F∗∗ is quasiconvex.

Lemma IV.13. (Choice of B). There exists B∗ > 0 such that
F∗∗(U(B∗)) = 0 and, if B > B∗, then F∗∗(U(B)) < 0.

Proof. We first make explicit the dependence of U on B by
rewriting (28) as

log(U(B)) =
P1

P2
log(B) +

P3P4

P2
, (29)

where

P1 , log

(
a2

ā2

)
, P2 , log

(
a2c2

ā2

)
,

P3 , log

(
1

c2

)
, P4 , log

(
log
(

1
ā2

)
M log(a2)

)
.
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Note that

U(B) = e
P3P4
P2 ·B

P1
P2 ,

dU

dB
=
P1U

P2B
.

Using the definitions of P1, P2, and P3 in (25), we obtain

s∗∗(U(B)) =
log(B)

P2
+
P4

P2
.

Next, we use this expression to evaluate (24b) and establish
F∗∗(U(B)) = Y (B)−M −B, where

Y (B) , ā2s∗∗(U(B))U(B) +Ma2s∗∗(U(B)).

One can then verify, using the definition of P1 and P2 to
simplify the expressions, that

dF∗∗(U(B))

dB
=
Y (B) log(a2)

P2B
− 1,

d2F∗∗(U(B))

dB2
= −

Y (B) log(a2) log
(
c2

ā2

)
P 2

2B
2

< 0, ∀B > 0.

Thus, the function F∗∗(U(.)) is a strictly concave function
- it has at most two zeros and it is positive only between
those zeros, if they exist. Now, note that for B0 = e−P4 ,
s∗∗(U(B0)) = 0 and hence F∗∗(U(B0)) = 0. Therefore, there
exists a B∗ ≥ B0 such that F∗∗(U(B∗)) = 0 and by the strict
concavity of F∗∗(U(.)), F∗∗(U(B)) is strictly decreasing for
all B ≥ B∗. This proves the result.

The final arguments of the proof also suggest a method to
numerically find B∗. First, note that B0 < Bc. As a result, if
F∗∗(U(.)) is non-increasing at B0 then B∗ = Bc. Otherwise,
the other zero, Bz of F∗∗(U(.)) can be found by simply
marching forward in B from B0. Then, B∗ = max{Bc, Bz}.
Now, all the pieces necessary for the proof of Proposition IV.6
are finally in place.

Proof of Proposition IV.6. First, notice from the defini-
tion (25) of s∗∗ that if y ≤ B, then H(s, y) = f2(s, y) for all
s ≥ 0. Then, the strong convexity of f2(., y), cf. Lemma IV.7,
and the fact that f2(0, y) ≤ 0 for all y ≤ B are sufficient to
prove Proposition IV.6. Therefore, in what follows, we assume
that y > B.

There are four possible cases that may arise, specified as

Case-I: s∗(y) < s∗∗(y),

Case-II: s∗(y) ≥ s∗∗(y) ∧ F∗∗(y) ≤ 0,

Case-III: s∗(y) ≥ s∗∗(y) ∧ F∗∗(y) > 0 ∧ F∗(y) > 0,

Case-IV: s∗(y) ≥ s∗∗(y) ∧ F∗∗(y) > 0 ∧ F∗(y) ≤ 0.

Figure 1 illustrates each of these cases. First, note that for
y > B, H(0, y) = 0. Also, recall from Lemma IV.9 that
H(., y) is quasiconvex for s ∈ [0, s∗∗(y)] and thus in this
interval, H satisfies the property (22). It is only the behavior
of H(s, y) for s ∈ [s∗∗(y),∞) that is of concern to us.

Thus in Case-I, since s∗(y) < s∗∗(y) and the strong
convexity of f2(., y), cf. Lemma IV.7, mean that H(., y)
is strictly increasing in [s∗∗(y),∞), which is sufficient to
prove property (22). In Case-II, F∗∗(y) ≤ 0 and again the
strong convexity of H(., y) in [s∗∗(y),∞) guarantees the

result. In Case-III, the fact that F∗(y) > 0 directly guarantees
property (22).

It is only in Case IV when the property (22) would be
violated. So, now we take into account the assumption that
B > B∗. Notice from (27) and Lemma IV.10 that in Case
IV, y ∈ [B,U ]. Also notice that F∗∗(B) = 0 and by
Lemma IV.13 that F∗∗(U) < 0. Then, the quasiconvexity
of F∗∗, cf. Lemma IV.12, implies that F∗∗(y) ≤ 0 for all
y ∈ [B,U ], which ensures that Case IV does not occur. This
completes the proof of Proposition IV.6.

Observe that, in ruling out the occurrence of Case-IV
we have also ruled out the occurrence of Case-III. From
Lemma IV.13, we see that the condition B > B∗ is only
sufficient and it may seem that the ‘good’ Case-III has been
ruled out inadvertently. However, note that, by the definitions
of F∗ and F∗∗, F∗∗(y) ≥ F∗(y) for any y > 0. Thus, Case-IV
is ruled out only if both F∗∗(y) and F∗(y) are of the same sign
for all y ∈ [B,U ]. Therefore, ruling out Case-IV automatically
also rules out Case-III.

V. CONVERGENCE AND PERFORMANCE ANALYSIS UNDER
THE EVENT-TRIGGERED POLICY

In this section, we characterize the convergence and perfor-
mance properties of the system evolution operating under the
event-triggered transmission policy TE defined in (12).

A. Convergence guarantees: the control objective is achieved

The following statement is the main result of the paper and
shows that the control objective is achieved by the proposed
event-triggered transmission policy.

Theorem V.1. (The event-triggered policy meets the control
objective). If the ultimate bound satisfies B > B∗ and D ∈ N
is such that G(D) < 0, cf. (20), then the event-triggered policy
TE guarantees that ETE

[
hk | I+

Rk

]
≤ 0 for all k ∈ N.

Proof. We structure the proof around the following two
claims.

Claim (a): For any j ∈ N, ETE
[
hSj+1 | I+

Sj

]
≤ 0 implies

ETE
[
hk | I+

Sj

]
≤ 0 for all k ∈ [Sj , Sj+1]Z.

Claim (b): For any j ∈ N, ETE
[
hSj+1

| I+
Sj

]
< 0.

Note that if both the claims hold, the result automatically
follows. Therefore, it now suffices to establish claims (a) and
(b). Towards this aim, first observe that

ETE
[
hk | I+

Sj

]
= E

[
hk | I+

Sj

]
, ∀k ∈ [Sj , Sj+1]Z.

This can be reasoned by noting that a transmission policy
only affects the sequence of reception times, {Sj}j∈N, and
has otherwise no effect on the evolution of the performance
function hk during the inter-reception times. Hence, from the
definition (17) of H , it follows that

ETE
[
hk | I+

Sj

]
= H(k − Sj , x2

Sj
), ∀k ∈ [Sj , Sj+1]Z.

Consequently, Proposition IV.6 implies claim (a).
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Next, we prove claim (b). From Proposition IV.4(a), we see
that for all k ∈ (Sj , Sj+1)Z,

ETE
[
GDk+1 | I+

Sj

]
= ETE

[
ETE

[
GDk+1 | Ik, rk = 0

]
| I+

Sj

]
= ETE

[
GD+1
k | I+

Sj

]
, (30)

and

ETE
[
GDSj+1 | I+

Sj

]
= ETE

[
GDSj+1 | ISj

, rSj
= 1
]

= JD+1
Sj

.

(31)

Then, under the policy TE , and using (13),

ETE
[
hSj+1 | I+

Sj

]
= ETE

[
ETE

[
hSj+1 | ITj

]
| I+

Sj

]
= ETE

[
ET 0

Tj

[
hSj+1

| ITj

]
| I+

Sj

]
= ETE

[
G0
Tj
| I+

Sj

]
,

where we have first used the ‘Tower property’ of conditional
expectation, then the definition of the event-triggered pol-
icy (12a) and finally the definition of G0

Tj
. Using (30) and (31)

recursively, this expression reduces to

ETE
[
hSj+1

| I+
Sj

]
=

{
J
Tj−Sj

Sj
, if Tj ≤ Sj +D

ETE
[
GDTj−D | I

+
Sj

]
, if Tj > Sj +D.

In the case when Tj ≤ Sj + D, claims (b) and (c) of
Proposition IV.4 imply that JTj−Sj

Sj
< 0. Also note that, under

the policy TE , GDk < 0 for all k ∈ (Sj , Tj)Z. Thus, in the
case when Tj > Sj +D, we have GDTj−D < 0. Thus, we have
shown that claim (b) is true, which completes the proof.

A consequence of Theorem V.1 along with Lemma III.1 is
that the event-triggered policy TE guarantees

ETE
[
x2
k | I+

0

]
≤ max{c2kx2

0, B}, ∀k ∈ N0,

the original control objective. In other words, the proposed
event-triggered transmission policy guarantees that the ex-
pected value of x2

k converges at an exponential rate to its
ultimate bound of B.

Remark V.2. (Sufficient conditions impose lower bounds on
the ultimate bound). The two conditions identified in The-
orem V.1 to ensure the satisfaction of the control objective
may be interpreted as lower bounds on the choice of the
ultimate bound B. The first condition, B > B∗, comes from
Proposition IV.6 and ensures the monotonicity property of
the open-loop performance function H . Thus, as expected,
we see from (21) that B∗ does not depend on the channel
properties, namely the packet-drop probability (1 − p), or
the look-ahead horizon D. On the other hand, the second
condition, G(D) < 0, imposes a lower bound on B which
does have a dependence on both parameters p and D. This
condition can be rewritten as(

gD(c2)− gD(ā2)
) B

c2D
> M

(
gD(a2)− gD(1)

)
. (32)

Comparing this inequality with (21), we see that there is
a strong resemblance between the two. In fact, if in (32)

the function gD were replaced with log and the factor c2D

removed, we would get (21). This is not unexpected because
G(D) is a uniform (over the plant state space) upper bound
on JDSj

, which is nothing but the expectation of the open-loop
performance function at the next (random) reception time. •

The next result shows that if the event-triggered transmis-
sion policy meets the control objective for a certain look-ahead
horizon, then it also meets it for any other shorter look-ahead
horizon.

Corollary V.3. (If TE meets the control objective with param-
eter D then it also does with a smaller D). Let B > B∗ and
D ∈ N such that G(D) < 0. Then, for any D′ < D, the event-
triggered transmission policy TE with parameter D′ meets the
control objective.

Proof. For D′ < D, Corollary IV.5 guarantees that G(D′) <
G(D). Therefore, G(D) < 0 implies that G(D′) < 0. Thus,
according to Theorem V.1, the event-triggered transmission
policy (12) with parameter D′ ensures the control objective is
met.

Note that this result is aligned with Remark III.2 where we
made the observation that, intuitively, a larger D in the event-
triggered transmission policy (12) is more conservative. It is
also interesting to observe that, as a result of Corollary V.3, if
G(D) < 0 is satisfied for D > 1, then the control objective is
met with D = 1, which corresponds to a time-triggered policy
that transmits at every time step (i.e., has period T = 1).

B. Performance guarantees: benefits over time-triggering

Here we analyze the efficiency of the proposed event-
triggered transmission policy in terms of the fraction of the
number of time steps at which transmissions occur. For any
stopping time K, we introduce the expected transmission
fraction

FK0 ,
ETE

[
K∑
k=1

1{tk=1} | I+
0

]
ETE

[
K | I+

0

] . (33)

This corresponds to the expected fraction of time steps from
1 to K at which transmissions occur. Note that K might be
a random variable itself, which justifies the expectation oper-
ation taken in the denominator. The following result provides
an upper bound on this expected transmission fraction.

Proposition V.4. (Upper bound on the expected transmission
fraction). Suppose that G(D + B) < 0 (see (20)), where D is
the parameter in the event-triggered transmission policy (12)
and B ∈ N0. Then

F∞0 ≤
1

1 + Bp
.

Proof. Given Corollary V.3, the remainder of the proof relies
on finding an upper bound on the expected transmission
fraction in a cycle from one reception time to the next, i.e.,
FSj+1

Sj
and then extending it to obtain the running transmission

fraction FSN
0 for an arbitrary N ∈ N. Note that, in any such
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cycle, the channel is idle, i.e., tk = 0, for k from Sj + 1 to
Tj − 1 and transmissions occur from Tj to Sj+1.

Now, observe that the assumption that (20) is satisfied with
D+B in place of D implies, according to Proposition IV.4(b),
that JD+B

Sj
< 0 for all j ∈ N0. We also know from (30)

and (31) that

ETE
[
GDSj+B | I+

Sj

]
= ETE

[
JD+B
Sj

| I+
Sj

]
< 0,

which means that Tj − 1 ≥ Sj + B. Thus,

ETE

 Sj+1∑
k=Sj+1

1{tk=0} | I+
Sj

 = ETE
[
Tj − 1− Sj | I+

Sj

]
≥ B.

On the other hand, since the probability of Sj+1−Tj+1 being
1 is p, being 2 is (1− p)p, and so on, we note that

ETE

 Sj+1∑
k=Sj+1

1{tk=1} | I+
Sj

 = ETE
[
Sj+1 − Tj + 1 | I+

Sj

]
= p

∞∑
s=0

(s+ 1)(1− p)s =
1

p
.

We can extend this reasoning further to N cycles, from S0 = 0
to SN , to obtain

ETE

[
SN∑
k=1

1{tk=0} | I+
Sj

]
≥ NB,

ETE

[
SN∑
k=1

1{tk=1} | I+
Sj

]
=
N

p
.

Finally, note that

ETE
[
SN | I+

0

]
= ETE

[
SN∑
k=1

1{tk=0} | I+
0

]
+ ETE

[
SN∑
k=1

1{tk=1} | I+
0

]
.

Then using (33), this yields an upper bound on the expected
transmission fraction during [0, SN ]Z

FSN
0 ≤ 1

1 + Bp
,

which we see is independent of N . The result then follows by
taking the limit as N →∞.

An expected transmission fraction of 1 corresponds to a
transmission occurring at every time step almost surely, i.e.,
essentially a time-triggered policy. Therefore, Proposition V.4
states that the number of transmissions under the event-
triggered policy TE is guaranteed to be less than that of a
time-triggered policy.

Remark V.5. (Interpretation of the parameter D-cont’d).
Proposition V.4 is consistent with our intuition, cf. Re-
mark III.2, that a larger D in the event-triggered transmission
policy (12) is more conservative. In fact, if D1 < D2 and
D1 +B1 = D2 +B2, then B1 > B2 and thus the upper bound
on the expected transmission fraction is larger for larger D.
Note that since Proposition V.4 is only a statement about the
upper bound on the expected transmission fraction, we do not

formally claim that larger D is more conservative. In fact,
different control parameters lead to different state trajectories
and thus, formally, we can only say that larger D is more
conservative at each point in state space (corresponding to the
initial condition for each trajectory). However, Remark III.2,
Corollary V.3, Proposition V.4 and the simulation results in
the sequel together suggest that, starting from the same initial
conditions, a larger D has a larger expected transmission
fraction. •

Remark V.6. (Optimal sufficient periodic transmission pol-
icy). Under the assumptions of Proposition V.4, we know
that the time-triggered policy with period T = 1 satisfies
the control objective. It is conceivable that a time-triggered
transmission policy with period T > 1 (i.e., with transmission
fraction 1/T < 1) also achieves it. To see this, consider
the open-loop performance evolution function (19) at integer
multiples of T , i.e., H(sT, y) and (20). Then, a time-triggered
transmission policy with period T achieves the control objec-
tive if(
g1(ā2T )− g1(c2T )

) B

c2T
+M

(
g1(a2T )− 1

p

)
< 0. (34)

The periodic transmission policy with the least transmission
fraction can be found by maximizing T that satisfies (34).
In any case, a time-triggered implementation determines the
transmission times a priori, while the event-triggered imple-
mentation determines them online, in a feedback fashion. The
latter therefore renders the system more robust to uncertainties
in the knowledge of the system parameters, noise and packet
drop distributions. •

VI. EXTENSION TO THE VECTOR CASE

In this section, we outline how to extend the design and
analysis of the event-triggered transmission policy to the
vector case, and discuss the associated challenges. Consider
a multi-dimensional system evolving as

xk+1 = Axk +Quk + vk, (35a)

where x ∈ Rn, u ∈ Rm, v ∈ Rn, A ∈ Rn×n, and Q ∈ Rn×m.
The process noise v is zero-mean independent and identically
distributed with positive semi-definite covariance matrix Σ.
Let the control be given by uk = Lx̂+

k , where x̂+
k is given

by (6c) and

x̂k+1 = Āx̂+
k , (A+QL)x̂+

k . (35b)

We can define the performance function as

hk = xTk xk −max{c2(k−Rk)xTRk
xRk

, B}.

The key to our developments of Sections III and V is the
explicit closed-form expressions of the look-ahead criterion
and the performance evaluation functions, GDk and JDk re-
spectively, which have allowed us to evaluate the trigger (12)
and unveil the necessary properties to ensure the satisfaction
of the original control objective. However, in the vector
case, it is challenging to obtain closed-form expressions for
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these functions because this involves obtaining closed-form
expressions for the series

∞∑
s=D

νT1 (Ms
1 )TMs

2ν2,

with ν1 and ν2 being vectors such as xk, ek or vk+s, and M1

and M2 being either of the matrices A or Ā. It is however
possible to obtain closed-form upper bounds ḠDk and J̄Dk for
the functions GDk and JDk respectively, essentially by upper
bounding E [hk+s]. The following result makes this explicit.

Proposition VI.1. (Upper bound on the expected value of the
performance function). For k ∈ N0, let s ∈ N0 be such that
k + s ∈ (Rk, Rk+1]Z and define

h̄k+s , ‖Ā‖2s‖xk‖2 + 2‖Ā‖s(‖A‖s + ‖Ā‖s)‖xk‖‖ek‖
+ (‖A‖2s + 2‖A‖s‖Ā‖s + ‖Ā‖2s)‖ek‖2 +M(‖A‖2s − 1)

−max{c2(k+s−Rk)xTRk
xRk

, B},

where M , tr(Σ)
‖A‖2−1 . Further, for k = Sj with j ∈ N0, define

h̄+
k+s , ‖Ā‖

2s‖xk‖2 +M(‖A‖2s − 1)−max{c2sxTk xk, B}.

Then,

E [hk+s | Ik, k + s = Rk+1] ≤ E
[
h̄k+s

]
= h̄k+s,

E
[
hSj+s | I+

Sj
, Sj + s = Sj+1

]
≤ E

[
h̄+
Sj+s

]
= h̄+

Sj+s.

Proof. Notice from (35) that

xk+s = Asxk +

s−1∑
i=0

As−1−i(Ā−A)Āix̂+
k +

s−1∑
i=0

As−1−ivk+i.

Further, observe that
s−1∑
i=0

As−1−i(Ā−A)Āi =

s∑
i=1

As−iĀi −
s−1∑
i=0

As−iĀi

= Ās −As,

which yields

xk+s = Asxk + (As − Ās)e+
k +

s−1∑
i=0

As−1−ivk+i,

where we have also used the fact that e+
k = xk − x̂+

k . Then,

E
[
xTk+sxk+s | I+

k , Rk+1 = k + s
]

= xTk (Ās)T Āsxk + 2xTk (Ās)T (As − Ās)e+
k

+ e+
k (As − Ās)T (As − Ās)e+

k

+ E

[
s−1∑
i=0

vTk+i(A
s−1−i)TAs−1−ivk+i

]
≤ ‖Ā‖2s‖xk‖2 + 2‖Ā‖s(‖A‖s + ‖Ā‖s)‖xk‖‖e+

k ‖
+ (‖A‖2s + 2‖A‖s‖Ā‖s + ‖Ā‖2s)‖e+

k ‖
2 +M(‖A‖2s − 1).

The result now follows from the fact that e+
k = ek if k 6= Sj

for any j ∈ N0 and the definitions of hk, h̄k+s and h̄+
k+s.

Based on Proposition VI.1, we define ḠDk and J̄Dk analo-
gously to (11) and (15), respectively, except with h̄ and h̄+

instead of h. We do not include the resulting closed-form
expressions of ḠDk and J̄Dk for the sake of brevity.

With these elements in place, we define the event-triggered
policy T̄E given the last successful reception time Rk = Sj as

T̄E : tk =

{
0, if k ∈ {Sj + 1, . . . , Fk − 1}
1, if k ∈ {Fk, . . . , Sj+1},

(36a)

where
Fk , min{` > Rk : ḠD` ≥ 0}. (36b)

The next result establishes that this new event-triggered policy
guarantees the desired stability result in the vector case.

Theorem VI.2. (The event-triggered policy meets the control
objective). Suppose D ∈ N and that (20) is satisfied with
a = ‖A‖ and ā = ‖Ā‖. Then, under the same hypotheses as
in Proposition IV.6, the event-triggered policy T̄E guarantees
that ET̄E

[
hk | I+

Rk

]
≤ 0 for all k ∈ N.

Proof. The main step is in proving an upper bound analogue
of Proposition IV.4(a). Note that

ET
[
GDk+1 | Ik, rk = 0

]
= ET

[
ET D

k

[
hRk+1

| Ik
]
| Ik, rk = 0

]
≤ ET

[
h̄Rk+1

| Ik, rk = 0
]

= ḠD+1
k , (37a)

where we have used Proposition VI.1 in the inequality. A
similar reasoning yields

ET
[
GDk+1 | Ik, rk = 1

]
≤ J̄D+1

k . (37b)

Notice from the definition of h̄+
Sj+s in Proposition VI.1 that the

expression for J̄DSj
is the same as that of JDSj

in Lemma IV.3
with a = ‖A‖ and ā = ‖Ā‖. As a result, in the vector case,
claims (b) and (c) of Proposition IV.4 hold for J̄DSj

. The rest of
the proof follows along the lines of the proof of Theorem V.1.

Thus, the upper bounds (37) relating GDk+1 to ḠD+1
k and

J̄D+1
k are sufficient to guarantee that the event-triggered

policy (36) meets the control objective. However, the lack
of a relationship between ḠD+1

k and ḠDk or J̄Dk prevents us
from obtaining an upper bound on the expected transmission
fraction. Nonetheless, as we described in Remark V.6, given
the fact that a time-triggering sampling period can only be
designed keeping the worst case in mind, it is reasonable
to expect that the event-triggered transmission policy would
be more efficient in the usage of the communication channel
(this is shown in the simulations of the next section). Finally,
we believe that, in order to analytically quantify transmission
fraction and assess the efficiency of the event-triggered design,
one needs to make more substantial modifications to the
definitions of the functions ḠDk and J̄Dk .

VII. SIMULATIONS

Here we present simulation results for the system evolution
under the event-triggered transmission policy TE , first for a
scalar system, and then a vector system.
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Scalar system: We consider the dynamics (6) with the
following parameters,

a = 1.05, p = 0.6, M = 1, c = 0.98, ā = 0.95c,

B = 15.5, x(0) = 10B.

The process noise is drawn from a Gaussian distribution, with
covariance M . To find the critical value B∗ = 12.92 in
Proposition IV.6, we use the method described in the proof
of Lemma IV.13 and the discussion subsequent to it. We
performed simulations for 1000 realizations of process noise
and packet drops, all starting from the same initial condition.
Then, for each time step k, we computed the empirical mean
of the various quantities. This is illustrated in Figures 2 and 3.
We performed simulations with D = 1 and D = 3, and in each
case D+B = 3. Figure 2 shows that the control objective (7)
is satisfied, as guaranteed by Theorem V.1. For D = 3, one
can see that the control objective is met more conservatively,
which is consistent with the intuitive interpretation of the
transmission policies given in Section III-B. Figure 3 shows
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Fig. 2. Plot of the evolution of the empirical mean ETE
[
x2
k

]
for the scalar

example under the event-triggered transmission policy (12) with D = 1 and
D = 3 and the performance bound, max{c2kx2

0, B}.

the empirical running transmission fractions for D = 1 and
D = 3, as well as the upper bound on the transmission fraction
F∞0 in the case of D = 1 obtained in Proposition V.4. In
the case of D = 3, this quantity is 1. As expected, the con-
servativeness of the implementation with D = 3 is reflected
in a higher transmission fraction and in the conservativeness
with which the control objective is satisfied. We found the
optimal sufficient period for a periodic transmission policy,
cf. Remark V.6, to be 1. Thus, the transmission fraction for
the optimal sufficient periodic transmission policy is 1, which
is higher than both the theoretical and the actual transmission
fractions for our implementation with D = 1. Figure 3 also
shows the running transmission fraction in the case of D = 1
and p = 1 (perfect channel) and for a periodic policy with
period T = 4. We see that the proposed policy automatically
adjusts its transmission fraction with changes in the dropout
probability. Figure 4 shows the evolution of the performance
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Fig. 3. Plot of the evolution of the empirical running transmission fraction Fk
0

for the scalar example under the event-triggered transmission policy (12) for
D = 1 and D = 3, and the theoretical bound on the asymptotic transmission
fraction F∞0 in the case of D = 1 obtained in Proposition V.4. For D = 3,
the latter is 1. For comparison, the plot also shows the empirical running
transmission fractions in the case of D = 1 and p = 1 (perfect channel) and
for a periodic policy with period T = 4.

function under the periodic policy with period T = 4 in the
case of a deterministic channel (p = 1) and with a dropout
probability of (1 − p) = 0.4. This is an example of a policy
that works for a perfect channel (p = 1) but does not work
for an imperfect one (p = 0.6). Although the transmission
fraction for this policy is higher than that of our policy (cf.
Figure 3), it still fails to meet the control objective in the
case of p = 0.6, demonstrating the usefulness of the proposed
event-triggered policy over a periodic policy. Finally, Figure 5
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Fig. 4. Plot of the evolution of the empirical mean ET4
[
x2
k

]
for the scalar

example under the periodic transmission policy with period T = 4 with
p = 1 (deterministic channel) and p = 0.6 and the performance bound,
max{c2kx2

0, B}. Also shown is the empirical mean ETE
[
x2
k

]
under the

event-triggered transmission policy (12) with D = 1 and p = 1.

shows sample transmission and reception sequences for the
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event-triggered policy with D = 1 and p = 0.6 and p = 1.
We also show corresponding sequences for a periodic policy
with period T = 4 and p = 0.6. The plots show an arbitrarily
chosen interval of 50 time steps for each transmission and
reception to be clearly distinguished.

300 310 320 330 340 350

0

0.5

1

(a) Event-triggered, D = 1, p = 0.6

300 310 320 330 340 350

0

0.5

1

(b) Event-triggered, D = 1, p = 1

300 310 320 330 340 350

0

0.5

1

(c) Periodic, T = 1, p = 0.6

Fig. 5. Sample transmission and reception sequences for the event-triggered
transmission policy (12) with (a) D = 1 under p = 0.6 and (b) D = 1 under
p = 1 and for (c) a periodic policy with period T = 4 and under p = 0.6. In
each plot, an empty square corresponds to a “transmission, but no reception”
and a filled square corresponds to a “transmission and successful reception”.

Vector system: We consider the dynamics (35) with the
following system matrices

A =

[
0.8 0.5
−0.5 1

]
, Q =

[
1 0
0 1

]
,

L =

[
0.1310 −0.5000
0.5000 −1.8820

]
, Σ =

[
0.1000 0.0500
0.0500 0.1000

]
,

and the parameters p = 0.8 and c = 0.98. For this system,
we get B∗ = 2.44 and chose B = 2.93. The initial condition
is x(0) = B.[10 − 5]T . We performed the same number of
simulations as in the scalar example to compute the empir-
ical mean of the various relevant quantities. The results of
simulations under the event-triggered transmission policy (36)
are illustrated in Figures 6 and 7. Figure 6 shows that the
control objective is met, as stated in Theorem VI.2. The
conservativeness that results from the use of the upper bounds
from Proposition VI.1 in the definition of the event-trigger
criterium is quite apparent from the gap between the control
objective and the actual trajectories of ET̄E [hk] compared to
Figure 2. Figure 7 also shows that, as in the scalar case, smaller
D results in a less conservative and more efficient design.

VIII. CONCLUSIONS

We have designed an event-triggered transmission policy
for scalar linear systems under packet drops. The control
objective consists of achieving second-moment stability of
the plant state with a given exponential rate of convergence
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2], D = 1

ETE [||xk||
2], D = 2

max{c2k ||x0||
2,B}

Fig. 6. Plot of the evolution of the empirical mean ETE
[
‖xk‖2

]
for the vector

example under the event-triggered transmission policy (36) with D = 1 and
D = 2 and the performance bound, max{c2k‖x0‖2, B}.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k

 

 

F
k
0 , D = 1

F
k
0 , D = 2

Fig. 7. Plot of the evolution of the empirical running transmission fraction
Fk

0 for the vector example under the event-triggered transmission policy (36)
for D = 1 and D = 2.

to an ultimate bound in finite time. The synthesis of our
policy is based on a two-step design procedure. First, we
consider a nominal quasi-time-triggered policy where no trans-
mission occurs for a given number of timesteps, and then
transmissions occur on every time step thereafter. Second, we
define the event-trigger policy by evaluating the expectation of
the system performance at the next reception time given the
current information under the nominal policy, and prescribe a
transmission if this expectation does not meet the objective.
We have also characterized the efficiency of our design by
providing an upper bound on the fraction of the expected
number of transmissions over the infinite time horizon. Finally,
we have discussed the extension to the vector case, and
highlighted the challenges in characterizing the efficiency of
the event-triggered design. Future work will seek to address
these challenges in the vector case, incorporate measurement
noise, output measurements, lossy acknowledgments and will
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investigate the possibilities for optimizing the two-step design
of event-triggered transmission policies, formally characterize
the robustness advantages of event-triggered versus time-
triggered control, and investigate the role of quantization
and information-theoretic tools to address questions about
necessary and sufficient data rates.
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[20] K. J. Åström and B. M. Bernhardsson., “Comparison of Riemann and
Lebesgue sampling for first-order stochastic systems,” in IEEE Conf. on
Decision and Control, Las Vegas, NV, Dec. 2002, pp. 2011–2016.

[21] T. Henningsson, E. Johannesson, and A. Cervin, “Sporadic event-based
control of first-order linear stochastic systems,” Automatica, vol. 44,
no. 11, pp. 2890–2895, 2008.

[22] X. Meng and T. Chen, “Optimal sampling and performance comparison
of periodic and event based impulse control,” IEEE Transactions on
Automatic Control, vol. 57, no. 12, pp. 3252–3259, 2012.

[23] B. Demirel, V. Gupta, D. E. Quevedo, and M. Johansson, “On the
trade-off between control performance and communication cost in event-
triggered control,” arXiv preprint arXiv:1501.00892, 2015.

[24] M. Rabi and K. H. Johansson, “Scheduling packets for event-triggered
control,” in European Control Conference, Budapest, Hungary, Aug.
2009.
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APPENDIX: GLOSSARY OF SYMBOLS

For the reader’s reference, we present here a list of the
symbols most frequently used along the paper.

– State variables and functions
• xk: plant state at time k
• vk: process noise at time k
• x̂k: sensor’s estimate of plant state at time k given the

‘history’ up to time k − 1
• x̂+

k : controller’s estimate of plant state at time k given
‘history’ up to time k, including any reception at time k

• ek , xk − x̂k: sensor estimation error
• e+

k , xk − x̂
+
k : controller estimation error

• uk , Lx̂+
k : control action at time k

• Ik: information available to the sensor at time k before
the decision to transmit or not

• I+
k : information available to the controller at time k,

which can also be computed by the sensor
• hk: value of performance function at time k

– System and performance parameters
• a: open-loop ‘gain’
• M , M

a2−1 : here M is the covariance of vk
• ā , a + L: closed-loop ‘gain’ in the case of perfect

transmissions on all time steps
• (1− p): probability of dropping a packet
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• B: ultimate bound for second moment of plant state
• c2 ∈ (0, 1): prescribed convergence rate for second

moment of plant state

– Transmission and reception process variables
• tk ∈ {0, 1}: no transmission/transmission at time k
• rk ∈ {0, 1}: no reception/reception at time k
• Rk: latest reception time before k
• R+

k : latest reception time up to (including) k
• Sj : jth reception time

– Symbols related to transmission policy
• T Dk : nominal transmission policy at time k with pa-

rameter D
• GDk : look-ahead criterion at time k with parameter D
• TE : proposed event-triggered transmission policy
• D: ‘idle duration’ in the nominal policy and ‘look-

ahead horizon’ in event-triggered policy
• Tj : first time a transmission occurs after Sj under TE
• JDk : performance-evaluation function at time k with

parameter D
• H: open-loop performance evolution function
• gD(b) , bD

1−b(1−p)
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