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Event-based boundary control of a linear 2×2 hyperbolic system

via backstepping approach

Nicolás Espitia, Antoine Girard, Nicolas Marchand and Christophe Prieur

Abstract—In this paper, we introduce an event-based boundary control

for a 2× 2 coupled linear hyperbolic system. We use a well established

backstepping controller which stabilizes the system along with a dynamic
triggering condition which determines when the controller must be

updated. The main contributions rely on the definition of an event-

based controller under which global exponential stability of the system

is achieved and furthermore, the existence of a minimal dwell-time
between two triggering times is guaranteed. The well-posedness of the

system under the event-based controller is stated. A simulation example

is presented to illustrate the results.

Index Terms—Linear hyperbolic systems, Backstepping control design,
dynamic triggering condition, event-based control.

I. INTRODUCTION

Event-based control is a computer control strategy which has

become an active research area. One reason is because this new

paradigm on sampled control aims to use communications, com-

putational and actuating resources efficiently by updating control

inputs aperiodically (only when needed). Another reason is due to

its rigorous way to implement digitally continuous time controllers.

Several contributions in this field have been developed for networked

control systems, ranging from seminal works in [2], [1] until more

recent ones in [15], [21], [23] and the references therein. In general,

event-based control includes two main components to be designed:

a feedback control law which stabilizes the system and a triggering

strategy which determines the time instants when the control needs to

be updated while evaluating continuously the behavior of the system.

Among triggering strategies, a static rule obtained by an Input-to-

State Stability (ISS)-based property is introduced in [27], a dynamic

rule is introduced in [13] whereas strategies relying on the time

derivative of the Lyapunov function are developed for instance in

[22], [25].

On the other hand, for control of infinite dimensional systems,

namely those governed by partial differential equations (PDEs),

digital control synthesis commonly relies on reducing the model by

discretizing the space in order to get ordinary differential equations,

thus finite dimensional approaches can be applied. Although the

design of event-based control, by tackling directly the PDE, has not

been widely studied, few approaches on sampled data and event-

triggered control of parabolic PDEs, are considered in [12] and [24],

[31]. For hyperbolic PDEs, close frameworks to event-based control

are the work on switched hyperbolic systems as in [14], [20] and

the work on sampled-data systems as in [18]. However, a recent

work has introduced two event-based boundary controllers for linear

hyperbolic systems of conservation laws. Indeed, inspired by two

of the main strategies developed for finite dimensional systems, an

extension by means of Lyapunov techniques for stability of linear
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hyperbolic systems has been done in [10]. An extension of it, using

a dynamic triggering condition has been discussed in [11]. It is

worth recalling that stability analysis and continuous stabilization

of hyperbolic PDEs have been considered for a long time in the

literature. Lyapunov techniques ([6], [5]) and backstepping boundary

control design ([8], [7], [28]) are the most commonly used. It is worth

also mentioning that backstepping method was initially developed for

parabolic equations [26] and it was firstly introduced to first-order

hyperbolic PDEs in [19]. In practical scenarios, hydraulic networks

using balance laws are studied e.g. in [3, Chapter 8]. However,

actuation on those systems may be expensive due to actuators inertia

when regulating the water level and the water flow rate by using

gates opening as the control actions. Then, event-based control would

suggest to modulate efficiently the gates opening, only when needed.

As periodic sampling schemes may produce unnecessary updates

of the sampled controllers, which will cause high utilization of

computational and communication resources, as well as actuator

sollicitation, event-based control may show benefits with respect to

periodic schemes.

In both [10] and [11], event-based controllers using output feed-

back are studied by following Lyapunov techniques and taking into

account the dissipativity condition on the boundary for stability.

In this paper, we use rather a full state-feedback control which is

designed following the backstepping approach for stabilizing a system

of balance laws.

The main contribution of this work relies on the study of a event-

based controller using a dynamic triggering condition. We introduce

such a triggering policy using the Lyapunov function candidate for the

so-called target system along with the deviation between continuous

time controller and the event-based one when sampling. We prove

then that a minimal dwell-time between triggering times exists.

Consequently, we prove the well-posedness of the system and finally

the global exponential stability of the closed-loop system.

This paper is organized as follows. In Section II, we introduce the

class of linear hyperbolic system, the backstepping transformation

and some preliminaries on stability and backstepping boundary

control. Section III provides the event-based stabilization results.

Section IV provides a numerical example to illustrate the main results.

Finally, conclusions and perspectives are given in Section V.

Notation : R
+ will denote the set of nonnegative real numbers.

The usual Euclidean norm in R
n is denoted by | · | and the associated

matrix norm is denoted ‖ · ‖. The set of all functions g : [0,1]→ R
n

such that
∫ 1

0 |g(x)|2dx < ∞ is denoted by L2([0,1],Rn) and for g and

g̃ ∈ L2([0,1],Rn), the inner product is < g, g̃ >L2=
∫ 1

0 gT g̃dx and is

equipped with the norm ‖ · ‖L2([0,1],Rn). Given a topological set S,

and an interval I ⊆ R, the set C 0(I;S) (resp. Cpw(I;S)) is the set of

continuous functions (resp. piecewise contiuous functions) g : I → S.

II. PRELIMINARIES ON BACKSTEPPING BOUNDARY CONTROL OF

2×2 LINEAR HYPERBOLIC PDES

Let us consider the linear hyperbolic system

ut (t,x)+λ1ux(t,x) = c1v(t,x) (1)

vt(t,x)−λ2vx(t,x) = c2u(t,x) (2)



along with the following boundary conditions:

u(t,0) = qv(t,0) (3)

v(t,1) =U(t) (4)

where u,v : R+ × [0,1] → R are the system states with x ∈ [0,1],
t ≥ 0, U(t) is the control input and λ1 > 0, λ2 > 0. In addition, for

technical issues related to the existence of solutions, we assume that

c1,c2 6= 0, q 6= 0, cos(w)−q λ1

c1
wsin(w) 6= 0 if c1c2 > 0 and cosh(w)+

q λ1
c1

wsinh(w) 6= 0 if c1c2 < 0, where w =
√

|c1c2|
λ1λ2

.

In order to stabilize this system, the backstepping method has

been considered for instance in [30] and [7]. Roughly, the idea of

the backstepping method is to use an invertible Volterra integral

transformation to convert the unstable linear hyperbolic PDE (1)-(4)

into a stable linear hyperbolic of conservation laws, which is usually

called target system and is given as follows:

αt(t,x)+λ1αx(t,x) = 0 (5)

βt(t,x)−λ2βx(t,x) = 0 (6)

with the following boundary conditions:

α(t,0) = qβ (t,0) (7)

β (t,1) = 0 (8)

where α,β : R+× [0,1]→ R. Hence, U(t) can be chosen to realize

the transformation.

A. Backstepping transformation and kernel equations

The following backstepping Volterra transformation has been used

to map the system (1)-(4) into the system (5)-(8):

α(t,x) = u(t,x)−
∫ x

0
Kuu(x,ξ )u(t,ξ )dξ

−
∫ x

0
Kuv(x,ξ )v(t,ξ )dξ (9)

β (t,x) = v(t,x)−
∫ x

0
Kvu(x,ξ )u(t,ξ )dξ

−
∫ x

0
Kvv(x,ξ )v(t,ξ )dξ (10)

It has been shown that by introducing (9)-(10) into (5)-(6), in-

tegrating by parts and using the boundary conditions, the orig-

inal system is transformed to the target system with the kernel

K =
(

Kuu(x,ξ ) Kuv(x,ξ )
Kvu(x,ξ ) Kvv(x,ξ )

)

, of the Volterra transformation, satisfying the

following linear hyperbolic equations:

λ1Kuu
x (x,ξ )+λ1Kuu

ξ (x,ξ ) = −c2Kuv(x,ξ ) (11)

λ1Kuv
x (x,ξ )−λ2Kuv

ξ (x,ξ ) = −c1Kuu(x,ξ ) (12)

λ2Kvu
x (x,ξ )−λ1Kvu

ξ (x,ξ ) = c2Kvv(x,ξ ) (13)

λ2Kvv
x (x,ξ )+λ2Kvv

ξ (x,ξ ) = c1Kvu(x,ξ ) (14)

with boundary conditions

Kuu(x,0) = λ2

qλ1
Kuv(x,0) (15)

Kuv(x,x) = c1

λ1+λ2
(16)

Kvu(x,x) = − c2

λ1+λ2
(17)

Kvv(x,0) = qλ1

λ2
Kvu(x,0) (18)

The kernel equations evolve in a triangular domain given by T =
{(x,ξ ) : 0≤ ξ ≤ x≤ 1}. It is known that there exists a unique solution

to (11)-(18), that the transformation is invertible, and that the inverse

transformation, which maps the target system into the original system

(1)-(4), is given by [7]:

u(t,x) = α(t,x)+
∫ x

0
Lαα(x,ξ )α(t,ξ )dξ

+
∫ x

0
Lαβ (x,ξ )β (t,ξ )dξ (19)

v(t,x) = β (t,x)+
∫ x

0
Lβα(x,ξ )α(t,ξ )dξ

+
∫ x

0
Lββ (x,ξ )β (t,ξ )dξ (20)

Moreover, the kernel L =
(

Lαα (x,ξ ) Lαβ (x,ξ )

Lβ α (x,ξ ) Lβ β (x,ξ )

)

of this transformation

satisfies the following linear hyperbolic equations whose solution

exists and is unique:

λ1Lαα
x (x,ξ )+λ1Lαα

ξ (x,ξ ) = c1Lβα(x,ξ ) (21)

λ1L
αβ
x (x,ξ )−λ2L

αβ
ξ

(x,ξ ) = c1Lββ (x,ξ ) (22)

λ2L
βα
x (x,ξ )−λ1L

βα
ξ

(x,ξ ) = −c2Lαα(x,ξ ) (23)

λ2L
ββ
x (x,ξ )+λ2L

ββ
ξ

(x,ξ ) = −c2Lαβ (x,ξ ) (24)

with boundary conditions

Lαα(x,0) = λ2

qλ1
Lαβ (x,0) (25)

Lαβ (x,x) = c1

λ1+λ2
(26)

Lβα (x,x) = − c2

λ1+λ2
(27)

Lββ (x,0) = qλ1

λ2
Lβα (x,0) (28)

Definition 1: [L2-norm stability] The linear hyperbolic system (1)-

(4) with controller U is globally exponentially stable (GES) if there

exist υ̃ > 0 and C > 0 such that, for every (u0,v0)T ∈ L2([0,1];R2),
the solution satisfies, for all t in R

+,

‖(u(t, ·),v(t, ·))T ‖L2([0,1];R2) ≤Ce−υ̃t‖(u0,v0)T ‖L2([0,1];R2) (29)

As it can be seen in [7], U(t) is a continuous full-state feedback

control which is designed to ensure that the closed-loop system is

GES in L2 norm. The aforementioned backstepping transformation

is used to get U(t) under the form

U(t) =
∫ 1

0
Kvu(1,ξ )u(t,ξ )dξ +

∫ 1

0
Kvv(1,ξ )v(t,ξ )dξ (30)

Equivalently, (30) can be expressed as follows:

U(t) =
∫ 1

0
Lβα (1,ξ )α(t,ξ )dξ +

∫ 1

0
Lββ (1,ξ )β (t,ξ )dξ (31)

Note that the gains of the controller are the kernels satisfying (21)-

(28).

Furthermore, in [7], the following Lyapunov function candidate is

considered to show that the system (5)-(8) is GES:

V (α,β ) =
∫ 1

0
(Aα2(x)

e−µx

λ1
+Bβ 2(x)

eµx

λ2
)dx (32)

with A = eµ , B = q2eµ + 1 and µ > 0. Since the system (5)-(8) is

GES, so is the system (1)-(4). Indeed, since the transformation (9)-

(10) is invertible, when applying either the continuous control (30)

or (31), the original system has the same stability properties as the

target system.



III. EVENT-BASED STABILIZATION

In this section, we introduce an event-based control scheme for

stabilization of the hyperbolic system (1)-(2). It relies on both the

backstepping continuous-time control (31) that will be sampled on

events and a triggering condition which determines when the event

should occur. For that, we slightly modify the boundary conditions

in both systems (1)-(4) and (5)-(7) by considering a perturbation on

one of the boundaries. More precisely, let us consider the following

linear hyperbolic system,

ut(t,x)+λ1ux(t,x) = c1v(t,x) (33)

vt(t,x)−λ2vx(t,x) = c2u(t,x) (34)

u(t,0) = qv(t,0) (35)

v(t,1) = Ud(t) (36)

where Ud(t) =U(t)+d(t) with U(t) given by (31) and d(t) can be

seen as a disturbance that will be rigorously characterized later on. It

is worth remarking that here, d will not be an external disturbance (as

considered for instance in [28] where the equations considered there

are similar to (33)-(40) but the problem statement is quite different

to the one in this paper) and is not intended to be rejected. Here, d

can be viewed as a deviation between a continuous controller and an

event-based one.

Then, applying the backstepping transformation (9)-(10), one has

the equivalent system (Target perturbed system):

αt(t,x)+λ1αx(t,x) = 0 (37)

βt(t,x)−λ2βx(t,x) = 0 (38)

α(t,0) = qβ (t,0) (39)

β (t,1) = d(t) (40)

In addition, the function (32) will be used in the sequel in order

to introduce the triggering condition. In fact, the event triggering

law can be achieved using a strict Lyapunov condition along with

an ISS property with respect to a deviation between the continuous

controller and the event-based one, as introduced in [10]. Actually,

developing ideas from that work, we can end up with a triggering

condition which depends only on the current state and the deviation

between controllers. For that reason, it can be called static triggering

condition. However, in the present framework, it turned out that it

is very difficult to find a minimal dwell-time between two event

times when considering a static triggering condition. To overcome

this problem, we will propose a dynamic triggering condition for

which we are able to prove the existence of a minimal dwell-time

and in turn, the well-posedness of the system under investigation.

It is worth mentioning that guaranteeing the existence of a min-

imal dwell-time avoids the so-called Zeno phenomenon that means

infinite triggering times in a finite-time interval 1. In practice, Zeno

phenomenon would represent infeasible implementation into digital

platforms since one would require to sample infinitely fast.

Therefore, inspired by [13] and [11], let us define the event-based

controller considered in this paper. In the sequel we will call it ϕ
and it encloses both the triggering condition and the backstepping

feedback controller. Lyapunov analysis will be carried out for the

target perturbed system.

Definition 2: [Definition of ϕ] Let σ ∈ (0,1), θ ≥ 0 η > 0, µ > 0,

υ = µ min{λ1,λ2}, κ1,κ2 > 0, m0 ∈ R
−, B = q2eµ + 1. Let L the

kernel of the inverse backstepping transformation (19)-(20) which is

solution to the system (21)-(28). Let t 7→ V (α(t, ·),β (t, ·)) be given

by (32).

1We refer the reader to [17], [21] for further details and examples.

We define ϕ the functional from C 0(R+;L2([0,1];R2)) to

Cpw(R
+,R) that maps (α,β )T to Ud as follows:

• Let the increasing sequence of time instants (tk) be defined

iteratively by t0 = 0 , and for all k ≥ 1,

tk+1 = inf{t ∈ R
+|t > tk∧

θBeµ
(

∫ 1
0 Lβα(1,ξ )(α(tk,ξ )−α(t,ξ ))dξ

+
∫ 1

0 Lββ (1,ξ )(β (tk,ξ )−β (t,ξ ))dξ
)2

≥ θσυV (t)−m(t)}
(41)

where m satisfies the ordinary differential equation,

ṁ(t) = −ηm(t)

+

(

Beµ
(

∫ 1

0
Lβα(1,ξ )(α(tk,ξ )−α(t,ξ ))dξ

+
∫ 1

0
Lββ (1,ξ )(β (tk,ξ )−β (t,ξ ))dξ

)2

−συV (t)−κ1α2(t,1)−κ2β 2(t,0)

)

(42)

for a given η ≥ υ(1−σ) and m(0) = m0.

• Let the control function be defined by:

Ud(t) =

∫ 1

0
Lβα (1,ξ )α(tk,ξ )dξ +

∫ 1

0
Lββ (1,ξ )β (tk,ξ )dξ

(43)

for all t ∈ [tk, tk+1).

Remark 1: Let us remark that d in (40), given by

d(t) =
∫ 1

0 Lβα (1,ξ )α(tk,ξ )dξ +
∫ 1

0 Lββ (1,ξ )β (tk,ξ )dξ

−∫ 1
0 Lβα (1,ξ )α(t,ξ )dξ − ∫ 1

0 Lββ (1,ξ )β (t,ξ )dξ

(44)

for all t ∈ [tk, tk+1), can be seen as a deviation between the continuous

controller (31) and the event-based controller (43). As in [10],

we follow the perturbed approach inspired by [27], [21] and [15]

from finite-dimensional systems. In this setting, the event triggering

condition ensures that, for all t ≥ 0, θBeµ d2(t) ≤ θσκV (t)−m(t)
which in turn guarantees m(t)≤ 0 as stated in the following lemma.

In addition, m(t) can be seen as a weighted averaged value of

Beµ d2 −συV −κ1α2(·,1)−κ2β 2(·,0).
Lemma 1: Under the definition of ϕ , it holds that θBeµ d2(t)−

θσυV (t)+m(t) ≤ 0 and m(t)≤ 0.

Proof: By construction, from Definition 2, with (44), events are

triggered to guarantee, for all t ≥ 0,

θBeµ d2(t)−θσυV (t)≤−m(t) (45)

If θ = 0, we obtain m(t)≤ 0. In the case θ > 0, it follows from (45)

that

Beµ d2(t)−συV (t)≤− 1

θ
m(t) (46)

Then, using (42), we have that for all t ≥ 0,

ṁ ≤−ηm− 1

θ
m−κ1α2(·,1)−κ2β 2(·,0)

Hence, by the Comparison principle, we conclude that m(t)≤ 0, for

all t ≥ 0.

Proposition 1: There exists a unique solution (u,v)T ∈
C 0([tk, tk+1];L2([0,1];R2)) to the system (33)-(36) between two time

instants tk and tk+1.

Proof: For a constant input Ud(t) = U(tk) for all t ∈ [tk, tk+1),
the system admits a unique equilibrium point {u∗,v∗} satisfying:

u∗x =
c1

λ1
v∗



v∗x =
−c2

λ2
u∗

u∗(0) = qv∗(0) (47)

v∗(1) =Ud =U(tk) (48)

Let us consider u∗xx(x) =−w2u∗(x), with w =
√

|c1c2|
λ1λ2

, whose solution

is given, in the case when c1c2 > 0, by u∗(x) = acos(wx)+bsin(wx).

Similarly, we can obtain that v∗(x) = λ1

c1
(−awsin(wx)+bwcos(wx)).

Using (47) and (48) one can uniquely obtain a and b, that is,

a = q
U(tk)

cosw−q
λ1
c1

wsinw
and b = c1

λ1w

U(tk)

cosw−q
λ1
c1

wsinw
. In the case when

c1c2 < 0, we would obtain u∗(x) = acosh(wx) + bsinh(wx) and

v∗(x) = λ1

c1
(awsinh(wx)+ bwcosh(wx)) with a = q

U(tk)

coshw+q
λ1
c1

wsinhw

and b = c1

λ1w

U(tk)

coshw+q
λ1
c1

wsinhw
.

By performing the change of variable ũ = u− u∗ and ṽ = v− v∗,

we obtain the following hyperbolic system of balance laws, for all

t ∈ [tk, tk+1):

ũt(t,x)+λ1ũx(t,x) = c1ṽ(t,x) (49)

ṽt(t,x)−λ2ṽx(t,x) = c2ũ(t,x) (50)

ũ(t,0) = qṽ(t,0) (51)

ṽ(t,1) = 0 (52)

This system is a particular case of the system considered in

[9]. Therefore, the classical definition of solution in L2 can be

applied, thus (ũ, ṽ)T ∈ C 0([tk, tk+1];L2([0,1];R2)) (see [9, Defini-

tion 1]). Hence, for the original variables, it holds that (u,v)T ∈
C 0([tk, tk+1];L2([0,1];R2)). It concludes the proof.

Using (9)-(10), it follows straightforwardly that there exists a unique

solution (α,β )T ∈ C 0([tk, tk+1];L2([0,1];R2)) to the system (37)-

(40) between two time instants tk and tk+1. This allows to state the

following result which will be useful for the sequel.

Proposition 2: The function d given by (44) and the function V

given by (32), are continuous on [tk, tk+1].

Proof: On one hand, by the definition of the inner product, it

can be noticed that d in (44) is as follows:

d(t) =
〈

(

Lβα(1, ·)
Lββ (1, ·)

)

,

(

α(tk, ·)
β (tk, ·)

)

〉

L2([0,1];R2)

−
〈

(

Lβα (1, ·)
Lββ (1, ·)

)

,

(

α(t, ·)
β (t, ·)

)

〉

L2([0,1];R2)

for all t ∈ [tk, tk+1). Since α(t, ·) and β (t, ·) are continuous with

respect to time due to Proposition 1, and the inner product preserves

the continuity, it follows that d is in C 0([tk, tk+1],R). On the other

hand, V given by (32), can be viewed as

V (α(t, ·),β (t, ·)) =

∥

∥

∥

∥

∥

∥





√

Ae−µ·
λ1

α(t, ·)
√

Beµ·
λ2

β (t, ·)





∥

∥

∥

∥

∥

∥

2

L2([0,1];R2)

Again, due to continuity arguments for α(t, ·) and β (t, ·), and the L2-

norm preserving the continuity, we conclude that V (α(t, ·),β (t, ·)) is

a continuous function with respect to t.

Lemma 2: For d given by (44) and V given by (32), it holds that

(ḋ(t))2 ≤ ε1α2(t,1)+ ε2d2(t)+ ε3V (t) (53)

for ε1,ε2 and ε3 > 0 and for all t ∈ (tk, tk+1).

Proof: From (44), let us take its time derivative as follows:

ḋ(t) =−
∫ 1

0
Lβα(1,ξ )αt (t,ξ )dξ −

∫ 1

0
Lββ (1,ξ )βt (t,ξ )dξ

Using the dynamics (37) and (38), it clearly follows that

ḋ(t) = λ1

∫ 1

0
Lβα(1,ξ )αx(t,ξ )dξ −λ2

∫ 1

0
Lββ (1,ξ )βx(t,ξ )dξ

Integrating by parts, one gets

ḋ(t) = λ1α(t,1)Lβα (1,1)−λ1α(t,0)Lβα (1,0)

−λ1

∫ 1

0
L

βα
x (1,ξ )α(t,ξ )dξ −λ2β (t,1)Lββ (1,1)

+λ2β (t,0)Lββ (1,0)+λ2

∫ 1

0
L

ββ
x (1,ξ )β (t,ξ )dξ

(54)

Due to (39), we have

ḋ(t) = λ1α(t,1)Lβα (1,1)−λ2β (t,1)Lββ (1,1)

+β (t,0)(−λ1qLβα (1,0)+λ2Lββ (1,0))

−λ1

∫ 1

0
L

βα
x (1,ξ )α(t,ξ )dξ

+λ2

∫ 1

0
L

ββ
x (1,ξ )β (t,ξ )dξ (55)

Recalling from (27)-(28) that Lβα(1,1) = − c2

λ1+λ2
and Lββ (1,0) =

q λ1

λ2
Lβα (1,0), we replace them into (55), thus

ḋ(t) = λ1α(t,1)
−c2

λ1 +λ2
−λ2β (t,1)Lββ (1,1)

−λ1

∫ 1

0
L

βα
x (1,ξ )α(t,ξ )dξ

+λ2

∫ 1

0
L

ββ
x (1,ξ )β (t,ξ )dξ (56)

Now, taking the square of ḋ and using the Young’s inequality, we can

bound it as follows:

(ḋ(t))2 ≤ 2

(

λ1c2

λ1 +λ2
α(t,1)+λ2Lββ (1,1)β (t,1)

)2

+2
(

−λ1

∫ 1

0
L

βα
x (1,ξ )α(t,ξ )dξ

+λ2

∫ 1

0
L

ββ
x (1,ξ )β (t,ξ )

)2

≤ 4( λ1c2

λ1+λ2
α(t,1))2 +4(λ2Lββ (1,1)β (t,1))2

+4λ 2
1

(

∫ 1

0
L

βα
x (1,ξ )α(t,ξ )dξ

)2

+4λ 2
2

(

∫ 1

0
L

ββ
x (1,ξ )β (t,ξ )dξ

)2

By the Cauchy Schwarz inequality, one gets

(ḋ(t))2 ≤ 4( λ1c2

λ1+λ2
)2α2(t,1)+4λ 2

2 (L
ββ (1,1))2β 2(t,1)

+4λ 2
1

∫ 1

0

(

L
βα
x (1,ξ )

)2
dξ
∫ 1

0
α2(t,ξ )dξ

+4λ 2
2

∫ 1

0

(

L
ββ
x (1,ξ )

)2
dξ

∫ 1

0
β 2(t,ξ )dξ

Let us remark that,
∫ 1

0 (L
βα
x (1,ξ ))2dξ and

∫ 1
0 (L

ββ
x (1,ξ ))2dξ exist

and let us call them
˜

L
βα
x and

˜
L

ββ
x respectively. In fact, this is due

to the regularity of the Kernels on the domain T as proved in [30,

Theorem 5]. Therefore,

(ḋ(t))2 ≤ ( 2λ1c2

λ1+λ2
)2α2(t,1)+(2λ2Lββ (1,1))2β 2(t,1)

+4max{λ 2
1

˜
L

βα
x ,λ 2

2

˜
L

ββ
x }

×
(

∫ 1

0
α2(t,ξ )+β 2(t,ξ )dξ

)



In addition, let us remark that for (32), there exists r1 > 0 (depending

on µ) such that 1
r1

∫ 1
0 (α

2(t,x) + β 2(t,x))dx ≤ V (α(t, ·),β (t, ·)) ≤
r1

∫ 1
0 (α

2(t,x)+β 2(t,x))dx (see e.g. [29] for a more general quadratic

Lyapunov function candidate). Hence (ḋ)2 is finally bounded as

follows:

(ḋ(t))2 ≤ ( 2λ1c2

λ1+λ2
)2α2(t,1)+(2λ2Lββ (1,1))2d2(t)

+4max{λ 2
1

˜
L

βα
x ,λ 2

2

˜
L

ββ
x }r1V (57)

with d2 = β 2(t,1) due to (40). Setting ε1 = ( 2λ1c2

λ1+λ2
)2, ε2 =

(2λ2Lββ (1,1))2 and ε3 = 4max{λ 2
1

˜
L

βα
x ,λ 2

2

˜
L

ββ
x }r1, we finish the

proof.

Theorem 1: Under the event-based controller ϕ in Defintion 2,

with positive scalars θ , σ , µ , υ , B, κ1, κ2 and ε1 (from Lemma 2)

satisfying the following conditions,

κ1 ≥ max{2θBeµ ε1,2θσυ} (58)

κ2 ≥ 2θσυ (59)

There exists a minimal dwell-time τ > 0 between two triggering times,

i.e. tk+1 − tk ≥ τ , for all k ≥ 0.

Proof: From the definition of ϕ , events are triggered to guaran-

tee, for all t ≥ 0,

θBeµ d2(t)≤ θσυV (t)−m(t) (60)

Let us consider the following function involving the functions in (60).

ψ =
θBeµ d2 + 1

2 m

θσυV − 1
2 m

A lower bound for the inter-execution times according to (41) is

given by the time it takes for the function ψ to go from ψ(tk) to

ψ(tk+1) = 1, where ψ(tk)≤ 0 (virtue of m(tk) ≤ 0 due to Lemma 1

and d(tk) = 0). Note that ψ is a continuous function on [tk, tk+1]
thanks to Proposition 2 and the fact that m ∈ C 0(R+,R−). Then, by

the intermediate value theorem, there exists t
′
k > tk such that for all

t ∈ [t
′
k, tk+1], ψ(t) ∈ [0,1]. We have then that for all t ∈ [t

′
k, tk+1], the

time derivative of ψ is given as follows:

ψ̇ =
2θBeµ dḋ + 1

2 ṁ

θσυV − 1
2 m

− (θσυV̇ − 1
2 ṁ)

θσυV − 1
2 m

ψ

Using the Young’s inequality as 2dḋ ≤ d2 +(ḋ)2, and from (42) we

have that

ψ̇ ≤ θBeµ d2

θσυV − 1
2 m

+
θBeµ (ḋ)2

θσυV − 1
2 m

+
1
2

(

−ηm+Beµ d2 −συV −κ1α2(·,1)−κ2β 2(·,0)
)

θσυV − 1
2 m

− θσυV̇

θσυV − 1
2 m

ψ +
1
2

(

−ηm+Beµ d2 −συV
)

θσυV − 1
2 m

ψ

+
1
2

(

−κ1α2(·,1)−κ2β 2(·,0)
)

θσυV − 1
2 m

ψ (61)

where V̇ in (61) is the time derivative of (32) along the solutions

(37)-(38). Indeed, by integrating by parts and using the boundary

conditions (39)-(40), V̇ is given as follows:

V̇ = −α2(t,1)Ae−µ +β 2(t,0)(q2A−B)

+Beµ d2(t)−µ
∫ 1

0
(α2(x)Ae−µx +β 2(x)Beµx)dx

with A = eµ and B = q2eµ +1. Replacing V̇ in (61) and using (53)

we obtain

ψ̇ ≤ θBeµ d2

θσυV − 1
2 m

+
θBeµ ε1α2(·,1)

θσυV − 1
2 m

+
θBeµ ε2d2

θσυV − 1
2 m

+
θBeµ ε3V

θσυV − 1
2 m

+
1
2

(

−ηm+Beµ d2 −συV −κ1α2(·,1)−κ2β 2(·,0)
)

θσυV − 1
2 m

−
θσυ

(

− (α2(·,1)+β 2(·,0))
)

θσυV − 1
2 m

ψ

−
θσυ

(

Beµ d2 −µ
∫ 1

0 (α
2Ae−µx +β 2Beµx)dx

)

θσυV − 1
2 m

ψ

+
1
2

(

−ηm+Beµ d2 −συV
)

θσυV − 1
2 m

ψ

+
1
2

(

−κ1α2(·,1)−κ2β 2(·,0)
)

θσυV − 1
2 m

ψ (62)

Re-organizing terms and knowing that µ
∫ 1

0 (α
2Ae−µx +β 2Beµx) ≤

µ max{λ1,λ2}V , (62) is rewritten as follows

ψ̇ ≤ θBeµ(1+ ε2 +
1

2θ )d
2

θσυV − 1
2 m

+
(θBeµ ε1 − 1

2 κ1)α
2(·,1)

θσυV − 1
2 m

+
(θBeµ ε3 − 1

2 συ)V

θσυV − 1
2 m

−
1
2 ηm

θσυV − 1
2 m

−
1
2 κ2β 2(·,0)

θσυV − 1
2 m

+

(

θσυα2(·,1)− 1
2 κ1α2(·,1)

)

θσυV − 1
2 m

ψ

+

(

θσυβ 2(·,0)− 1
2 κ2β 2(·,0)

)

θσυV − 1
2 m

ψ

+
(−θσυ + 1

2 )Beµ d2

θσυV − 1
2 m

ψ

+
(θσυµ max{λ1,λ2}− 1

2 συ)V

θσυV − 1
2 m

ψ −
1
2 ηm

θσυV − 1
2 m

ψ

Setting κ1 ≥ max{2θBeµ ε1,2θσυ} and κ2 ≥ 2θσυ in light of (58)-

(59), we have

ψ̇ ≤ θBeµ(1+ ε2 +
1

2θ )d
2

θσυV − 1
2 m

+
(θBeµ ε3 − 1

2 συ)V

θσυV − 1
2 m

−
1
2 ηm

θσυV − 1
2 m

+
(−θσυ + 1

2 )Beµ d2

θσυV − 1
2 m

ψ

+
(θσυµ max{λ1,λ2}− 1

2 συ)V

θσυV − 1
2 m

ψ

−
1
2 ηm

θσυV − 1
2 m

ψ (63)

By remarking that

(

−
1
2 ηm

θσυV− 1
2 m

)

≤ η ,

(

(θBeµ ε3− 1
2 συ)V

θσυV− 1
2 m

)

≤

θBeµ ε3− 1
2 συ

θσυ and
(θσυµ max{λ1,λ2}− 1

2 συ)V

θσυV− 1
2 m

≤ (θσυµ max{λ1,λ2}− 1
2 συ)

θσυ ,



(63) yields

ψ̇ ≤ θBeµ(1+ ε2 +
1

2θ )d
2

θσυV − 1
2 m

+
θBeµ ε3 − 1

2 συ

θσυ

+η +
(−θσυ + 1

2 )Beµ d2

θσυV − 1
2 m

ψ

+
(θσυµ max{λ1,λ2}− 1

2 συ)

θσυ
ψ +ηψ

which is rewritten as follows,

ψ̇ ≤ (1+ ε2 +
1

2θ )(θBeµ d2 + 1
2 m− 1

2 m)

θσυV − 1
2 m

+

(

θBeµ ε3 − 1
2 συ

θσυ
+η

)

+
(−θσυ + 1

2 )(θBeµ d2 + 1
2 m− 1

2 m)

θ (θσυV − 1
2 m)

ψ

+

(

θσυµ max{λ1,λ2}− 1
2 συ

θσυ
+η

)

ψ

By remarking that
− 1

2
m(1+ε2+

1
2θ )

θσυV− 1
2

m
≤ (1 + ε2 + 1

2θ ),

− 1
2

m

θσυV− 1
2

m

(−θσυ+ 1
2
)

θ ≤ (−θσυ+ 1
2
)

θ and that ψ is given by
θBeµ d2+

1
2 m

θσυV− 1
2 m

,

it can be finally deduced that

ψ̇ ≤
(

θBeµ ε3 − 1
2 συ

θσυ
+η +(1+ ε2 +

1
2θ )

)

+

(

(−θσυ + 1
2 )

θ
+

θσυµ max{λ1,λ2}− 1
2 συ

θσυ

+η +(1+ ε2 +
1

2θ )

)

ψ +
(−θσυ + 1

2 )

θ
ψ2

This differential inequality has the form

ψ̇ ≤ a0 +a1ψ +a2ψ2

where, after some simplifications,

a0 = Beµ ε3

συ +η + ε2 +1

a1 = −συ +µ max{λ1,λ2}+η + ε2 +1+ 1
2θ

a2 = −συ + 1
2θ

where a0, a1 are a2 turn out to be positive scalars (as soon as θ <
1

2σν ).

Then, by the Comparison principle, it follows that the time needed

by ψ to go from ψ(t
′
k) = 0 to ψ(tk+1) = 1 is at least

τ =
∫ 1

0

1

a0 +a1s+a2s2
ds

Thus, tk+1−t
′
k ≥ τ . Consequently, as tk+1−tk ≥ tk+1−t

′
k, we achieve

that tk+1 − tk ≥ τ , being then τ a lower bound of the inter-execution

times or minimal dwell-time. It concludes the proof.

Now that we have proved that there is a minimal dwell-time, no Zeno

solution can appear. Therefore we are able to state the following result

on the existence of solutions of the system (33)-(36) for all t ∈R
+.

Corollary 1: There exists a unique solution (u,v)T ∈
C 0(R+;L2([0,1];R2)) to the system (33)-(36).

Proof: This is an immediate consequence of Proposition 1

and Theorem 1. The solution is iteratively built between successive

triggering times.

Remark 2: Due to the backstepping transformation (9)-(10), the

well-posedness of the target perturbed system (37)-(40) immediately

follows as well.

Let us state the main result of the paper.

Theorem 2: Let σ ∈ (0,1), µ > 0, υ = µ min{λ1,λ2}, A = eµ ,

B = eµ q2 + 1, ε1 (from Lemma 2). Let η ≥ υ(1−σ) and 0 < θ ≤
min{ 1

2συ ,
1

2Beµ ε1
}, κ1 and κ2 such that

max{2θBeµ ε1,2θσυ} ≤ κ1 ≤ 1 (64)

2θσυ ≤ κ2 ≤ 1 (65)

holds. Let V be given by (32) and d given by (44). Then the system

(33)-(36) with event-based controller Ud = ϕ has a unique solution

and is globally exponentially stable.

Proof: The existence and uniqueness of a solution to the system

(33)-(36) with controller ϕ is given by Corollary 1. Let us show that

the system is globally exponential stable.

Consider the following Lyapunov function candidate for the aug-

mented system (37)-(40) with (42), defined for all (α(t, ·),β (t, ·)) ∈
L2([0,1];R2) and m ∈ R

− by

W (α,β ,m) =V (α,β )−m (66)

Taking the time derivative of (66) along the solutions, it yields,

Ẇ = −α2(·,1)Ae−µ +β 2(·,0)(q2A−B)+Beµ d2

−µ

∫ 1

0
(α2(x)Ae−µx +β 2(x)Beµx)dx− ṁ (67)

Setting υ = µ min{λ1,λ2}, note that −µ
∫ 1

0 (α
2(x)Ae−µx +

β 2(x)Beµx)dx < −υ
∫ 1

0 (α
2(x)A e−µx

λ1
+ β 2(x)B eµx

λ2
)dx. Moreover,

setting A = eµ , B = q2eµ +1, and using (42), from (67) one gets,

Ẇ ≤ −υV −α2(·,1)−β 2(·,0)+Beµ d2

+ηm−Beµ d2 +συV

+κ1α2(·,1)+κ2β 2(·,0) (68)

which can be rewritten as follows:

Ẇ ≤ −υ(1−σ)W +(−υ(1−σ)+η)m

+(κ1 −1)α2(·,1)+(κ2 −1)β 2(·,0)

Setting κ1 and κ2 in light of (64)-(65) we have that κ1 ≤ 1

and κ2 ≤ 1 and that meet the constraints (58)-(59) i.e. κ1 ≥
max{2θBeµ ε1,2θσυ} and κ2 ≥ 2θσυ (conditions to be satisfied

to guarantee the existence of a minimal dwell-time).

Therefore, it follows that

Ẇ ≤−υ(1−σ)W +(−υ(1−σ)+η)m

From the definition of ϕ , events are triggered to guarantee, for all t >
0, θBeµ d2(t)≤ θσυV (t)−m(t). Then, by Lemma 1, we guarantee

also that m ≤ 0. Recalling that η ≥ υ(1−σ), we obtain

Ẇ ≤−υ(1−σ)W

By the Comparison principle, and remarking that V (α,β ) ≤
W (α,β ,m) we have, for all t ≥ 0,

V (α(t, ·),β (t, ·))≤ e−υ(1−σ)tW (α0,β 0,m0)

With m0 = 0, we just obtain

V (α(t, ·),β (t, ·))≤ e−υ(1−σ)tV (α0,β 0) (69)

which in fact proves that the system (37)-(40) is GES in L2 norm.

Therefore, as it has been well established in backstepping approach

for hyperbolic PDEs, using the inverse transformation of (9)-(10)

(i.e. (19)-(20)), the system (33)-(36) is also GES in L2 norm. More



precisely, an estimate of the the L2 norm of system (33)-(36) in terms

of the L2 norm of system (37)-(40) can be done as follows (see e.g.

[8] for further details):

‖(u(t, ·),v(t, ·))T ‖2
L2([0,1];R2) ≤

(1+2‖L‖∞)
2(1+2‖K‖∞)

2

×r2
1e−υ(1−σ)t‖(u0(·),v0(·))T‖2

L2([0,1];R2)

where ‖K‖∞ = max(x,ξ )∈T |K(x,ξ )|, ‖L‖∞ = max(x,ξ )∈T |L(x,ξ )|.
Hence, this concludes the proof.

Comments on the choice of parameters.

Note that while υ and B are given by stability issues, and σ is related

to the decay rate, θ is a free parameter to be properly chosen as given

in hypothesis of Theorem 2, then one can set κ1 and κ2 meeting (64)-

(65). Let us remark however that in this work, an optimal choice of

parameters regarding conservatism or sampling speed, is not tackled.

We leave the study of the influence of parameters to the performance

of the system for future investigations. In this paper we were namely

focus on the stability result and well-posedness.

Remark 3: Let us remark that if a periodic sampling scheme is

intended to be applied to the system (33)-(36) instead of an event-

based scheme as presented throughout the paper, one suitable period

could be the minimal dwell-time τ obtained from Theorem 1.

Remark 4: Results in this paper may be extended to systems with

space-varying coefficients (based on e.g. [30] for the computation of

Kernels L to be used in Definition 2) or even to m+ n hyperbolic

equations (inspired by e.g. [16]). However, the result on the existence

of a minimal dwell-time provided in Theorem 1 must be carefully ad-

dressed due to complexity of technical details and some assumptions

that may be given in terms of matrix inequalities.

IV. NUMERICAL SIMULATIONS

Consider the system (33)-(36) with λ1 = 1, λ2 =
√

2, c1 = 1.5,

c2 = 2 and q = 1/4. The initial conditions are u0(x) = qv0(x) with

v0(x) = 10(1−x) for all x ∈ [0,1].

A. Event-based stabilization

The boundary conditions are u(t,0) = qv(t,0) and v(t,1) =Ud(t)
where Ud(t) =U(t)+d(t). In addition, υ = 0.1, µ = 0.0707 and B =
0.533, ε1 = 2.745. Concerning the triggering algorithm, we choose

the following parameters: σ = 0.9, θ = 8× 10−3, η = 0.1, κ1 =
2.75× 10−2 and κ2 = 7.8723× 10−4. They satisfy the constraints

(64)-(65).

The number of events under this approach is 9 on a frame of 4s

meaning that the control value needed to be updated only 9 times.

Figure 1 shows the second component of solution v(t,x) when

stabilizing with continuous time controller U (left) and the event-

based controller Ud (right). Note that attractivity to the origin is

achieved and the overall behavior for both solutions is similar.

Nevertheless, for the continuous case, it is well known that the

system converges to the origin in finite time. In the event-based

case, no conclusion in this issue can be provided yet. Note also

the discontinuities introduced on the right boundary according to

Ud and the propagation from the right to the left across the spacial

domain. Figure 2 shows the time evolution of the functions appearing

in the triggering condition (41). Once the trajectory θBeµ d2 reaches

the trajectory θσnuV −m, an event is generated, the control value

is updated and d is reset to zero. Figure 3 shows the continuous-

time backstepping controller U and the discontinuous backstepping

controller (event-based one) Ud .
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0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time[s]

 

 

θσνV − m

θBe
µ
d
2

Execution times

Fig. 2. Trajectories involved in triggering condition (41) for controller Ud =
ϕ(α ,β).
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Fig. 3. Time-evolution of the continuous-time control U (black dashed line)
and the event-based control Ud (blue line with red circle marker)

V. CONCLUSION

While in literature it is not sufficiently clear how fast boundary

continuous time controllers of hyperbolic PDEs must be sampled in

a periodic fashion so as to implement them into a digital platform,

event-based control might propose a rigorous way of sampling

aperiodically, by updating control inputs (when needed) while guar-

anteeing stability. In this paper, an event-based boundary controller

to stabilize a 2× 2 coupled linear hyperbolic system is introduced.

It is proved that no Zeno phenomenon is present and then the

well-posedness and global exponential stability of the hyperbolic

system are obtained. The event-based controller is based on Lyapunov

analysis and backstepping design method. To the authors knowledge,

this is the first event based control for coupled hyperbolic system

under the backstepping design, proposed in literature.

This work leaves some open questions. Since in more realistic sce-

narios, backstepping controllers are designed using observed states,

for event-based control under backstepping, triggering laws should

also include an estimate of the state. Based on [30], the output

feedback control can be used as a continuous control to be sampled on

events. It is important however to guarantee that under the triggering

condition depending only on the observed states, there is no Zeno

phenomenon.

It could be fruitful to study the impact of parameters to the

performance as well as robustness with respect to exogenous distur-

bances while studying carefully the triggering condition along with

the minimal inter-execution time. Indeed, exogenous disturbances



Fig. 1. Numerical solution of the second component v of the closed-loop system with continuous time controller U (left) and with event-based controller Ud

(right).

may introduce Zeno phenomenon. Event-separation properties of the

event-based scheme might be useful to tackle that issue by following

for instance [4].
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