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Approximate Projection Methods for Decentralized
Optimization with Functional Constraints

Soomin Lee and Michael M. Zavlanos

Abstract—We consider distributed convex optimization prob-
lems that involve a separable objective function and nontrivial
functional constraints, such as Linear Matrix Inequalities (LMIs).
We propose a decentralized and computationally inexpensive
algorithm which is based on the concept of approximate pro-
jections. Our algorithm is one of the consensus based methods
in that, at every iteration, each agent performs a consensus
update of its decision variables followed by an optimization
step of its local objective function and local constraints. Unlike
other methods, the last step of our method is not an Euclidean
projection onto the feasible set, but instead a subgradient step
in the direction that minimizes the local constraint violation.
We propose two different averaging schemes to mitigate the
disagreements among the agents’ local estimates. We show that
the algorithms converge almost surely, i.e., every agent agrees
on the same optimal solution, under the assumption that the
objective functions and constraint functions are nondifferentiable
and their subgradients are bounded. We provide simulation
results on a decentralized optimal gossip averaging problem,
which involves SDP constraints, to complement our theoretical
results.

I. INTRODUCTION

ECENTRALIZED optimization has been extensively

studied in recent years due to a variety of applications
in machine learning, signal processing, and control for robotic
networks, sensor networks, power networks, and wireless com-
munication networks [1]-[5]. A number of problems arising
in these areas can be cast as distributed convex optimization
problems over multiagent networks, where individual agents
cooperatively try to minimize a common cost function over
a common constraint set in the absence of full knowledge
about the global problem structure. The main feature of
carrying these optimizations over networks is that the agents
can only communicate with their neighboring agents. This
communication structure can be cast as a graph, often directed
and/or time-varying.

The literature on distributed optimization methods is vast
and involves first-order methods in the primal domain, the dual
domain, augmented Lagrangian methods, or Newton methods,
to name a few. Here we discuss methods that are most closely
related to the method under consideration. Among those,
one of the most well-studied techniques are the so called
consensus-based optimization algorithms [6]-[23]] (see also
the literature for the consensus problem itself [4], [S], [24]),
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where the goal is to repeatedly average the estimates of all
agents in a decentralized fashion in order to obtain a network-
wide consensus. Between the averaging steps, each agent
usually performs a single local optimization step. Overall, the
agents use their local information to cooperatively steer the
consensus point toward the optimal set of the global problem.

Decentralized algorithms that fall in this class of methods
can be distinguished based on which averaging scheme or
optimization method is used, and in which space (primal or
dual) the iterates are maintained. All these algorithms often
require expensive optimization steps or exact projections on a
complicated constraint set at every iteration. Such intensive
computations, however, require time and may shorten the
lifespan of certain systems, such as wireless sensor networks
or robotic networks.

In this work, we propose a new approximate projection
based decentralized algorithm and prove its convergence. Our
work in this paper is an extension of the author’s previous work
[25]]. Specifically, we use the same local information exchange
model and gradient descent algorithm as in [25]], but a different
projection method motivated by the work in [26]. In contrast
to [25]], our contribution can be summarized as follows: (1)
Instead of using the Euclidean projection, we approximate it
by measuring the constraint violation and taking a subgradient
step minimizing this violation; (2) We show convergence under
milder assumptions. Specifically, we remove the smoothness
assumption in the objective functions; (3) We propose two
different averaging schemes to mitigate the disagreements
among the agents’ local estimates, one of which can lift the
doubly stochasticity assumption on the weight matrices.

Considering that projections have a closed form solution
only in a few special cases of constraints, our new algorithm
is more general and can be applied to a wider class of
problems including Semidefinite Programming (SDP), where
the constraints are represented by Linear Matrix Inequalities
(LMlIs). It is well known that even finding a feasible point that
satisfies a handful of LMIs is a difficult problem on its own.
The work in this paper is also related to the centralized random
projection algorithms for convex constrained optimization [27]
and convex feasibility problems [28]]. Other related works are
[29-[31f], where optimization problems with uncertain con-
straints have been considered by finding probabilistic feasible
solutions through random sampling of constraints.

The paper is organized as follows. In Section we
formulate the optimization problem under consideration and
discuss specific problems of interest. In Section I, we provide
our decentralized algorithm based on random approximate
projections, discuss the communication scheme employed by
the agents, state assumptions and the main results of this paper.



In Section we first review some necessary results and
lemmas from existing literature, provide proofs of required
lemmas, and then present the proofs of the main results
discussed in Section In Section [V| we present simulation
results for a decentralized SDP problem, which is optimal
decentralized gossip averaging. We conclude the paper with
some comments in Section [VIl

Notation: All vectors are viewed as column vectors. We
write = to denote the transpose of a vector x. The scalar
product of two vectors 2 and y is (z, y). For vectors associated
with agent ¢ at time k, we use subscripts i,k such as, for
example, p; i, T; k, etc. Unless otherwise stated, ||-|| represents
the standard Euclidean norm. For a set S, we use |S| to denote
its cardinality. For a matrix A € R™*", we use [A];; to denote
the entry of the i-th row and j-th column and || A||r to denote

1/2

the Frobenius norm ||A|p = (szzl([A]ijV) / . We use
TrA to denote the trace of A, ie., TrA = Y I [Al;. We
denote by S,, and S, the space of m x m real symmetric
and real symmetric positive semidefinite matrices, respectively.
The matrix inequality A < 0 means —A is positive semidefi-
nite. We use 1 and O to denote vectors of all ones and zeros.
The identity matrix is denoted by I. We use Pr{Z} and E[Z] to
denote the probability and the expectation of a random variable
Z. We write dist(z, X) for the distance of a vector x from a
closed convex set X, i.e., dist(z, X') = min,ex ||v — z||. We
use [y [z] for the Euclidean projection of a vector = on the set
X, ie., Nx[z] = argmin,y |[v — z||2. We often abbreviate
almost surely and independent identically distributed as a.s.
and i.i.d., respectively.

II. PROBLEM DEFINITION

Consider a multiagent network system whose communica-
tion at time k is governed by a digraph G, = (V, &), where
V={1,...,N} and & C V x V. If there exists a directed
link from agent j to 4, which we denote by (j,4), agent j
may send its information to agent 7. Thus, each agent ; € V
can directly receive information only from the agents in its
in-neighborhood

mo={ieV|(i) e &}ulil, (1)

and send information only to the agents in its out-
neighborhood

Th=1{jeV|(j) €&} udi}, 2)

where in both A% and NP%, we assume there exists a self-
loop (i,7) for all i € V. Also, we use deg; ; to denote the
in-degree of node ¢ at time k, i.e.,

degi,lf = |/\[zl,nk

. 3)

A. Problem Statement

Our goal is to let the network of agents cooperatively solve
the following convex minimization problem:

min f(z) £ ) fi(2) €
icy
st.zeX, X&2xMN (ﬂiGVXi) ;

where only agent ¢ knows the function f; : R® — R and the
constraint set X; C R™. The set Ay C R™ is common to all
agents and assumed to have some simple structure in the sense
that the projection onto X can be made easily (e.g., a box,
ball, probability simplex, or even R™). Note that the common
constraint set, i.e., Xy = X; for all ¢ € V, is a special case
of this problem definition. We assume that the set of optimal
solutions X* = argmin_ ., f(x) is nonempty.

We assume each agent ¢’s local constraint set X; consists
of one or more algebraic inequalities, which we denote by

X, ={z eR" | g(z,w) <0, Yw € O},

where €); is a finite collection of indices. From this definition,
the feasible set A’ can be precisely represented as

X={zxeX|glz,w) <0, YweQ,;,i eV}

Note that some of the inequalities may overlap across different
agents, i.e., {2;N§2; for ¢ # j can be either empty or nonempty.

We also consider an equivalent epigraph form of problem
(@ by introducing a new set of variables t = [t; ... ty]T €
R¥. Consider that the local constraint set X; for i € V now
includes the additional inequality constraint f;(y) < ¢;. Then,
problem (@) is equivalent to:

min a' ®)
stye X, X e Xo ﬂ (mievxi) ,
where * = [y" t"]T and @ = [07 17]". Note that this

reformulation has also been introduced in [32] for solving
distributed robust convex optimization. In the case of a single
agent, the algorithm can be also seen as scenario approach for
solving robust convex optimization (see e.g., [33]-[35] and
references therein).

B. Problems of Interest

Problems of particular interest are those involving lots of
nontrivial constraints on which exact projections are impossi-
ble or computationally intractable. Here we provide two such
examples:

1) Robust Linear Inequalities:
X = {x € R" | A(w)z < b(w), Vw such that
| A@) = Aollop < 71 and [[b(w) = bollop < 72},

where Ay € R™*", by € R™ are nominal data, ry,79 >
0 are the levels of uncertainty, and || - ||op, denotes an
operator norm. Here we can not handle each row of
A(w)z < b(w) separately as in [25] due to the matrix
operator norm || - lop -

2) Linear Matrix Inequalities:

X, = {g; € R™ |Ag(w) + ;xjAj(w) <0, Yw € Q}

(6)

where A;(w) € S,, for j = 0,1,...,n, w € €
are given matrices. The inequalities in (6) are referred
to as linear matrix inequalities (LMIs). A semidefinite



Algorithm 1 Decentralized Approximate Projection (DAP)
Let x;9 € &p for i € V and the nonnegative parameter
{a }r>0 be given.

Set k:=0
while Maximum iteration number is reached do
Each agent ¢ updates z; ; according to

Dik = Z[Wk]ijxj,k—l (7a)
jev
Uik = My [Pik — 0kSi k] (7b)
+
g (Ui ky Wi k)
ik = MNx |:'Ui,k — = d; (7¢)
’ i k|2
Setk:=k+1

end while

programming (SDP) problem has one or more LMI
constraints. Finding a feasible point of the set () is
often a difficult problem on its own.

Note that the inequalities in (6) can represent a wide variety
of convex constraints (see [36] for more details). For example,
quadratic inequalities, inequalities involving matrix norms, and
various inequality constraints arising in robust control such as
Lyapunov and quadratic matrix inequalities can be all cast as
LMIs in (6). When all matrices A;(w) in (6) are diagonal, the
LMIs reduce to regular linear inequalities.

III. ALGORITHM, ASSUMPTIONS, AND MAIN RESULTS

Our goal is to design a decentralized protocol by which each
agent ¢ € ¥ maintains a sequence of the local copy {z;  } x>0
converging to the same point in X' as k goes to infinity. Since
we assume that the local constraint sets X;’s are nontrivial,
we do not find an exact projection onto X at each step of
the algorithm. Instead, at iteration k, each agent ¢ randomly
generates an index w;, € 2; and makes an approximate
projection on the selected inequality g(-,w; ) < 0.

A. Decentralized Algorithm with Approximate Projections

We formally present our decentralized algorithm, named the
Decentralized Approximate Projection (DAP), in Algorithm
Each agent ¢ maintains a sequence {z;x}r>0. The element
x; ) of the sequence can be seen as the agent 7’s estimate of
the decision variable = at time k. Let g*(x,w) denote the
function that measures the violation of the constraint g(-,w)
at z, i.e., g7 (z,w) = max{g(x,w),0}.

At k = 0, the estimates x; o are locally initialized such
that ;0 € Ap. At time step k, all agents j € ) broadcast
their previous estimates x; ;1 to all of the nodes in their out-
neighborhood, i.e., to all agents ¢ such that (i, j) € &. Then,
each agent ¢ € V updates x; j, using (7a)-(7c), where W, is a
nonnegative N x N weight matrix, {4} is a positive sequence
of nonincreasing stepsizes; s; j, is a subgradient of the function
fi at p; k; w; i is a random variable taking values in the index
set Q;; and d;j, is a subgradient of g™ (-,w; x) evaluated at
v; - The vector d; i is chosen such that d; ;. € dg™ (v; k,wi k)

if 9" (vig,wix) > 0, and d;, = d; for some d; # 0, if
gt (Vi wik) = 0.

More specifically, in (7a), each agent ¢ calculates a weighted
average of the received messages (including its own message
x; x—1) to obtain p; . Specifically, [Wy];; > 0 is the weight
that agent ¢ allocates to the message x;;—1. This commu-
nication step is decentralized since the weight matrix Wj
respects the topology of the graph Gy, i.e., [Wy];; > 0 only if
(4,1) € & and [Wy];; = 0, otherwise. In (7b), each agent
1 adjusts the average p;j in the direction of the negative
subgradient (—s; ) of its local objective f; to obtain v; k.
The adjusted average is projected back to the simple set Aj. In
, agent ¢ observes a random realization of w; ; € €); and
measures the feasibility violation of the selected component
constraint g(-, w; x) at v; k. If g+ (v g, wi k) > 0, it calculates
a subgradient d; , € 9g* (v k,w; ) and takes an additional
subgradient step with the stepsize % to minimize
this violation. If ¢* (v; k,w; %) = 0, then the current point
v, already satisfies the selected inequality g(-,w; ) < 0. In
this case, there is no need to move the point further into the
selected set. Therefore, the approximate projection step
is just omitted.

Note that the description of the DAP algorithm is only
conceptual at this moment since we have not specified the
parameters {oy} and {Wj} yet. The stepsizes {cy} should
be nonnegative, nonincreasing and such that

oo oo
Zak:ooand Zaﬁ<oo. (8)
k=1 k=1

For the sequence of weight matrices {WW;}, we assume the

following.
Assumption 1: For all k > 1,
(@) [Wilij > 0 for all i,5 € V and [Wg);; = 0 only
j NP

(b) There exists a scalar v € (0,1) such that [Wy);; > v

only if j € NJ.

(c) Zjev[Wk]ij =1foralicV, and ) ; ,[Wi|ij =1

forall j € V.

Condition (a) ensures that the weight matrices Wy, respect the
underlying topology Gy, for every k so that the communication
is indeed decentralized. The lower boundedness of the weights
in (b) is required to show consensus among all agents (see [37]]
for more details) but the agents need not know the v value in
running the algorithm. Condition (a) and (c) imply doubly
stochasticity of the matrices W.

Note that assuming doubly stochasticity of Wj, for all
k > 1 often requires a global view of the network (unless
the underlying graph is regular or fully connected) and not
all directed graphs admit a doubly stochastic matrix [38],
[39]. The linear objective function in the epigraph formulation
(@) allows us to lift this assumption and to use a weight-
imbalanced mixing matrix. For example, we can assume a
time-invariant network, i.e., Gy = G for k > 1, and employ a
row stochastic matrix W whose entries are defined as follows:

L ifjen
H/ i = degi v
[ } J { 0

~

if

(€))

otherwise.



Note that this choice of weights also respects the underlying
topology G. Moreover, the matrix W is not necessarily column
stochastic.

Recall that our problems of interest involve a large number
of constraints. Therefore, the random selection of a constraint
in serves as a computationally efficient alternative to
finding the most violated constraint, which typically has
significantly higher per-iteration complexity. Another situation
that necessitates the random selection approach is when the
constraints are not fully given in advance, but are rather
revealed in a sequential fashion (as in online optimization).

Note that the step guarantees that x;, € Ay for
all K > 0 and 7 € V, but it does not necessarily guaran-
tee x; ), € AX. Nevertheless, in Section we show that
xi5 for all ¢ € V asymptotically achieve feasibility, i.e.,
limy o0 |2k — Nx[pik]|| =0 for all i € V.

To further explain the step , let us consider the two
particular cases mentioned in Section [[I-B

1) Let ¢™ denote a projection of a vector ¢ € R™ onto the

nonnegative orthant. We introduce a scalar function in
order to handle all the rows of the inequality A(w)z < b
concurrently,

9" (z,w) = [[(Aw)z = b)"|

which is convex in z for any given w € ; and ¢ € V
[40, Chapter 3.2]. Then, it is straightforward to see that
its subgradient can be calculated as

A(w) T(A(w)x — b)*
I(Aw)z = b)*|

if gt (z,w) > 0, and we can use dgt(z,w) = 0,
otherwise.

2) Let us define the projection AT of a real symmetric
matrix A onto the cone of positive semidefinite matrices.
For any A € S™, we can find an eigenvalue decomposi-
tion A = BABT, where B is an orthogonal matrix and
A =diag(\1, ..., \n). Then, its projection is given by

At = BATBT,
where AT = diag(\], ..., \f) with A = max{0, \;}
[41]]. Let us define

Az, w) 2 Ag(w) + Z 2 A (w).

g™ (z,w) =

Then, the amount of violation of the corresponding
LMI constraint A(xz,w) =< 0 can be measured by the
following convex scalar function:

9" (z,w) = |AT(z,w)|F. (10)
By direct calculations, it is not difficult to see that its
subgradient is given by

TrA AT (2, w)

1
- =— : 1
ag (LE,OJ) g+(x,w) . ) ( )
TrA, At (z,w)
if gt (z,w) > 0, and we can use dg* (z,w) = 0,

otherwise [26, Lemma 1].

Remark Note that the computational complexity of step
depends on the type of the function g(-,w; ). If g(-,w; k)
is a general convex function, it takes O(1) computations
for the evaluation of g*(-,w; ) and O(n) computations for
the evaluation of the gradient d; ;. If g(-,w; ;) is an LMI
constraint, it takes O(m?) computations in the worst-case for
the eigenvalue decomposition and O(m?) for the computation
of the Frobenius norm (cf. Eq. (TI0)). We would also need
O(m?n) computations for computing the traces (cf. Eq. (TT)).
This eigenvalue decomposition is necessary for projection (or
approximate projection) onto the cone of positive semidefinite
matrices. l

It is also worth mentioning that the algorithm (7a)-(7c)
includes the method that has been proposed in [25]] as a special
case. In order to see this, let Xy = R™ and g(z,w; ) =
dist(x, X;*), where X" = {z € R" | g(z,w; 1) < 0}.
Then, it is not difficult to see that

Ui,k — an%,k [Ui,k]

dig =
T ik = Mg [oi gl

and since dist(v; , @i ) = [|vi g — ek [V ][], the steps
(70)-(7c) reduce to '

Tk = N ypein [Pik — arSik]s
k3

which is exactly the algorithm in [25].

B. Assumptions

For the optimization problem (), we make the following
assumptions on the set Xp, the objective functions f;(x) for
i € V, and the constraint functions g(z,w) for w € Q; and
1eV.

Assumption 2:

(@) The set Xy is nonempty, closed and convex.

(b) The function f;(x), for eachi € V, is defined and convex
(not necessarily differentiable) over some open set that
contains X).

(c) The subgradients s € Of;(x) are uniformly bounded
over the set Xy. That is, for all i € V), there is a scalar
Cy, such that for all s € 0f;(x) and x € X,

sl < Cf,-

(d) The function g(z,w), for each w € Q; and i € V, is
defined and convex in x (not necessarily differentiable)
over some open set that contains Xj.

(e) The subgradients d € Og™ (x,w) are uniformly bounded
over the set Xy. That is, there is a scalar Cy such that
forall d € Og™ (z,w), x € Xy, w € Qy, and i €V,

ld]l < Cy.

By Assumption [2| the subdifferentials df;(x) and dg™ (z,w)
are nonempty over Xj. It also implies that for any ¢ € V and
x,Yy S XO’

|fi(z) = fily)| < Cpllz =y (12)
and for any w € Q;, i € V, and z,y € Ay,
lg* (z,w) — g™ (y,w)| < Cyllz —y]. (13)



One sufficient condition for Assumption c) and e) is that
the set Xj is compact.

We also require the following two assumptions.

Assumption 3: We assume that w; ; € §; are i.i.d. samples
from some probability distribution on ); and independent
across agents. Furthermore, each §); is a finite set and each
element of $); is generated with nonzero probability, i.e., for
any w € Q; and i €'V

Pr{iw|we Q;} >0
Let Fj, denote the algorithm’s history up to time k. i.e.,
Fr =A{xio0, (wig, 1 <t <k), i€V},

and F_{z;o, i € V}.
Assumption 4: For all i €V, there exists a constant ¢ > (0
such that for all x € Xy

dist*(z, X) < cE [(g7 (z,w))? | Frc],

where the expectation is taken with respect to the set §;.
The upper bound in Assumption {4 is known as global error
bound and is crucial for the convergence analysis of our
method (7a)-(7c). Sufficient conditions for this bound have
been shown in [42] and [43]], which require the existence of a
Slater point, i.e., let Xy = {z | go(z) < 0}, then there exists a
point Z such that go(Z) < 0 and g(%,w) < 0 for all w. When
each function g(-,w) and go(-) is either a linear equality or
inequality, Assumption [4|is called linear regularity and can be
shown to hold by using the results in [44]] and [45] (see also
[46]-[43]).

The inter-agent communication relies on the time-varying
graph sequence G, = (V, &), for k > 1. A key assumptions
on these communication graphs is the following:

Assumption 5: There exists a scalar () such that the graphs

VU001 €k+l) are strongly connected for all k > 1.

Assumption [ ensures that there exists a path from one
agent to every other agent within any bounded interval of
length @. We say that such a sequence of graphs is Q-strongly
connected.

C. Main Results

We now provide two convergence results for DAP, Proposi-
tion [T] for problem () and Proposition [2] for problem (3)), re-
spectively, for which we use different assumptions on the net-
work. The first proposition states a convergence result which
holds under a @-strongly connected time-varying sequence of
graphs {Gy} and the corresponding doubly stochastic matrices
{W}} which respect the graph topologies.

Proposition 1:  Let Assumptions [I] - B] hold and the op-
timal set X* of @) be nonemprty. Let the nonnegative and
nonincreasing stepsize {ay} satisfy conditions in (8). Then,
the iterates {x; .} generated by each agent i € V via DAP in
Algorithm |l| converge almost surely to the same point in the
optimal set X* of (@), i.e., for a random point * € X*

lim z;, =a* foralli€eV a.s.
k—o00

The second proposition states a convergence result which
holds under a connected time-invariant graph G and the cor-
responding row stochastic matrix W which respects the graph
topology. Note that for this case we can set f;(z) = ﬁa—'—x
foralli€ Vand s;; =a foralli €V and k£ > 0.

Proposition 2: Let Assumptions 2| - B hold and the optimal
set X* of @) be nonempty. Let the nonnegative and nonin-
creasing stepsize {«y} satisfy conditions in [8). Let Wi, = W
for all k > 1 and Assumption |5| hold with QQ = 1. Then, the
iterates {x; 1} generated by each agent i € V via DAP in
Algorithm [I) with the choice of weight in Q) converge almost
surely to the same point in the optimal set X* of (), i.e., for
a random point x* € X*

lim z;, =2* forallieV a.s.
k—o00

In the next paragraph, we provide some intuition on why
DAP still converges even with a choice of a row stochastic
matrix W. Note that the use of row stochastic matrix results
in “biased” consensus, which is related to the left-eigenvector,
see e.g., [49]]. The following lemma states this well-known
result.

Lemma 1: Let Assumption [5] hold with @ = 1 and W =
Wi for any k > 1. Then, there exists a normalized left-
eigenvector 7 € R such that

T W=nm'.

Moreover, []; > 0 for all i € V.

This will lead the algorithm to converge to an optimal
solution of a biased objective function, ) . ,[7]; fi(x), instead
of the true objective ) _;,, fi(x). However, since the f;(x)’s in
the reformulated epigraph form in (3 is now linear, the biased
objective function is just the same as the original function, i.e.,

Sievllifi(@) =Y, cplrlia’z =a'a.

IV. CONVERGENCE ANALYSIS

In this section, we are concerned with demonstrating the
convergence results stated in Proposition [1] and [2| First we
review some lemmas from existing literature that are necessary
in our analysis.

A. Preliminary Results

First we state a non-expansiveness property of the projection
operator (see [50] for its proof).

Lemma 2: Let X C R"™ be a nonempty closed convex set.
The function My : R™ — X is nonexpansive, i.e.,

Max[z] = Nxlyll| < llz =yl for all z,y € R™.

In our analysis of the algorithm, we also make use of the
following convergence result due to Robbins and Siegmund
(see [51, Lemma 10-11, p. 49-50]).

Theorem 1: Let {vy}, {uk}, {ar} and {by} be sequences
of non-negative random variables such that

Elvks1|Fr] < (14 ag)vop —up + by forall k>0 a.s.

where Fi denotes the collection wvy,...,vg, ug,...,u,
ag, ... ar and by, ..., by Also, let > > ja, < oo and



Z;‘;o by < oo a.s. Then, we have limy_,oo v, = v for a
random variable v > 0 a.s., and ZZO:() U < 00 a.s.

In the following lemma, we show a relation of p; j and
x; k—1 associated with any convex function h which will be
often used in the analysis. For example, h(x) = ||z — al|? for
some a € R" or h(z) = dist*(z, X).

Lemma 3: Let Assumption [I) hold. Then, for any convex
Sfunction h : R™ — R, we have

D hpik) <D hwik-1)
=% i€V
Proof: The doubly stochasticity of the weights plays a
crucial role in this lemma. From the definition of p; j in ,

Zh(plk) < Z Z[Wk]ijh(fﬂj,kq)

eV i€V jeV
= > (Z[Wk]ij> h(@;je-1)
jev \iev
S Zh(acj,k,l).
jev

|
Lastly, for the convergence proof of our algorithm, we use
a result from [52]] which shows the averaged iterates can still
arrive at consensus if the errors behave nicely.
Lemma 4: Let Assumptions [I] and [3] hold. Consider the
iterates generated by

Gi?k:Z[Wk}ijGM,l + ek, fOI" 1€ V. (14)
jEV
Let 6, denote the average of 0, for i € V), ie, 0, =

1 . . .
~ 2icy Pi k. Suppose there exists a nonnegative nonincreas-
ing scalar sequence {ay} such that

oo
Zak||ei7k|| < oo, forall i € V.
k=1

Then, for all i,5 €V

Z (63 ||0i,k — 0
k=1
Furthermore, for all i €V and k > 1,

16;.% — Or |l < Ny mex 1050l

k—1 N 1 N
+9> B lejenll + N D llegrll + llel
=0 j=1 j=1

where v and 3 are defined as

(- = (- )"

B. Lemmas

j,k|| < 0Q.

We need a series of lemmas for proving Proposition [T] and
[2] We first state an auxiliary lemma that will be later used to
relate two consecutive iterates x; ) and x; ;1. This lemma
can be shown by combining two existing results in [53] and
[27], but we include it here for completeness.

Lemma 5: Let Assumptions [2 and [3] hold. Let the iterates

{pi}, {vix} and {x; 1} be generated by the algorithm (7a)-
(7d). Then, we have almost surely for any &,z € Xy, i € V
and k > 1,

lin = 21> < lpig — 2> = 20 (fi(2) —
T—1

B 2
TC'g

fi(%))
(g+(pi,k7wi,k))2

1
+ g lPik = 27 + Drgai,

where D, = (T +4n+ 1)02 and n, T > 0 are arbitrary.
Proof: In the light of [53 Theorem 1], we obtain from
algorithm and Assumption [[e)

2
(97 Wik, wik))

., as)
¢

i e = 2% < flvig — 2| -

€ Xy. We can rewrite g"(v;g,wix) =
— 9" (i, wirk)) + 97 (Pik,wi k). Therefore,

for any &
(9+(Ui,k,wi,k)
(97" (Vi ks wik))?
> 29" (i, wike) (97 (Vg wik)
2
+ (9+(Pi,k,wz’,k)) .

The first term on the right-hand side of (I€) can be further
estimated as

- g+(pi,k7wi,k))
(16)

— 9t (pig,wik))
9+ (Pz‘,k, Wik) |

29+(pz’ ks Wi.k) (9+(Uz‘7k, Wi k)
et 29 (p7 kWi, k) |9+(U7 kyWs, k)
> =20 ||vik — pikllg™ (Pik, wik),

a7

where the last inequality is from relation (I3). From the
definition in (7b) and Assumption [2(c), we further have that

2C ||vi e — pikllg™ (i wik)

< 2a,.CyCr g™ (pig, wirk)
< 7‘042030?1,

1
+ - (g+(pi,kawi,k>)2, (18)

where the last inequality is obtained by usmg 2 < T(l
ibQ and 7 > 0 is arbitrary. Using relations | | m

we obtain,

(9+(U¢,k, Wz',k))2

1 2
> —TakCQCf (1 - 7-> (9" (Pikswin))”-

Hence, for all € X,

T—1

. . 2
@ik — 2] <llvig — 2)* — O (97 ik, wik))

+7C3 aj. (19)

As the update rule in (7b) coincides with the algorithm in [27],
we can reuse another existing lemma [27, Lemma 3]. That is,
for any z,z € Xy, we have

lvige = Z[1* < llpig — &)1 = 20x(fi(2) = fi(#))

1
+ @sz-,k — 2P+ i (1+4n)CF, (20



where 1 > 0 is arbitrary. Substituting this inequality in relation
(T9) concludes the proof. [

Since we use an approximate projection, we cannot guar-
antee the feasibility of the iterates {z; ;} and {p;}. In the
next lemma, we prove that {p;;} and {x;} for all i € V
asymptotically achieve feasibility. To this end, we define the
following quantity: For all ¢ € V and k > 1, z; 1 is defined as
the projection of p; ; on the feasible set X, i.e.,

zik = N pigl (21

Lemma 6: Let Assumptions [I] - ] hold. Let the sequence
{ag} be such that Y77, ai < oc. Then, the iterates {p; j }
and {z; 1} generated by each agent i € V via method —

satisfy:
oo

(a) Zdistz(pi,k,X) <00 a.s.
k=1
o0

(b) Z lzik — zigl? <o a.s.
k=1

where z; 1, is defined in (21).
Proof: We use Lemma [5| with & = z = z; ;.. Therefore,
for any w; ,, € 2,7 € V, and k > 1, we obtain

||9Uzk - sz||2

T—1 2
< lpik — zixl® — (i i
< pik = zikl 2 (9% (i, wirk))
1
gy llpik = Zi k> + Dr i, (22)

where D, , = (T +4n+ l)C’?i and 7, 7 > 0 are arbitrary. By
the definition of the projection, we have

dist(pik, X) = ||pix —
dist(@ik, X) = |lzik — Nxl@iw]l| < lzik — 2ikll-

zik||, and

Upon substituting these estimates in relation (22, we obtain

-1
7;02 (ng(pi,k;Wi,k'))Q
g

dist?(z; 1, X) < dist?(pig, X) —

1.
+ @dlstQ(pi’k, X)+ D, ,03. (23)
Taking the expectation conditioned on Fj,_; and noting that
Di i 1s fully determined by Fj_1, we have almost surely for
any s € Vand k> 1

E[dist* (2, X) | Fro1]
T—1
Tcg

< dist*(pig, X) — E {(ng(pi,kaWi,k))Q | Fk—l]

1
+ %distz(pi,k, X)+ D, ,ad. (24)

Furthermore, choosing 7 = 4, n = cC’g and using Assumption
[ yield

E [dist? (i 5, X) | Fro1] < dist*(p i, X) (25)

.
= 52 dist?(p; ., X) + (5 + 4CC§)Cj2ciai.

g

Finally, by summmg over all ¢ and using Lemma [3] with
h(z) = dist?(z, X), we arrive at the following relation:

ZE [distQ(xi,k, )| Fr— 1 Zdlst Tig—1,X)
i€V i€V
1 .
= 507 Z dlStQ(piyk, X) + DNai, (26)
9 ievy
where D = (5+ 4002)02 and C'y = max;cy Cy,. Therefore,

for all £ > 1, all the condltlons of the convergence theorem
(Theorem [I)) are satisfied and we conclude that

Z dist?(p; ., X
k=1

Lastly, from relation (]2_7[) and the chosen values for 7 and 7,
we obtain for any ¢ € V and k > 1 almost surely

[ 12 < -
T — 2
bk vkl = 4cCy

Therefore, in view of the result in 27) and >~ , ai < oo,
the relation above implies

J<oo forallieV a.s. 27

> diSt2(pi7k, X) + Dai.

o0
Z lzip — zipl? <oo forallicV a.s.,
k=1
which is our desired result. |
To complete the proof, we show in part (a) of the next
lemma that the error e; j, due to the perturbations made after

the consensus step (7a), i.e.,

ik = Tik — Dik, (28)

eventually converges to zero for all ¢ € V. This will allow us
to invoke Lemma E| and show the iterate consensus. In part (b)
of the next lemma, we show that the sequences {z; } arrive
at consensus by converging to their mean Zg, i.e., for k > 1

(29)

In part (c) of the next lemma, we show the network error term
is summable.

Lemma 7: Let Assumptions [I\3] hold. Let the sequence
{ai} be nonnegative nonincreasing and - | o < co. Then,
we have forall eV

(a) Z”e”“” <00 a.s.
=1
(b) hmk_>OO llzik — 2l =0 a.s.

(©) Zakﬂzi,k —Zk|| < o0 a.s.

k=1

Proof: Part (a): From the relation (7a)-(7¢), e; 1 in 28)
can be viewed as the perturbation that we make on p; j, after
the network consensus step (7a)). Consider |e; x|, for which
we can write

leikll < ik — zikll + [l2ik — Pikll-

Applying (a + b)? < 2a® + 2b? in the above inequality, we
have

leirll® < 2lleis — 2ol + 2dist? (py p, X).



Summing this over k£ and using Lemma [6] we obtain the
desired result.

Part (b): By applying the inequality 2ab < a? + b? to each
term in oy |e; x| and using Lemma a), we further obtain for
alli eV

kz_jlakllei,kll <3 ;az + 5; lei|® <00 as. (30)

Using the relation above, (7a) and x; ; = p; x + €ix, We can
invoke Lemma 4| with 0; ,, = x; . Therefore, it follows that

o0
Zakai,k —zkl| <ocoforalli,j €V a.s.

(31
k=1
Furthermore, for all i € V and k£ > 1,
|z, — Zi|| < Ny max 0]l (32)

k—1 N 1 N
3B gl + o lesal + s
=0 j=1 j=1

From the fact that 0 < $ < 1 and part(a), we know the first

term and the last two terms on the right-hand side converge

to zero. To show the second term also converges to zero, we

will use the following result from [54, Lemma 3.1(a)].
Lemma 8: Let (j, be a scalar sequence. If limy_, o, (x = ¢

and 0 < 8 < 1, then limy 00 >p—o B¢ = 155

From this lemma and the result in part(a), we know that the

second term on the right-hand side of (32) also converges to
zero. Therefore, we have for all 1 € V

Hm ||z — 2| = 0. 33)
k—o0

We next consider the term ||2; x — Zx||, for which by using
Zr = % > rcy 26k We have

1
N Z(zi,k — Zek)

Ley

1 1
SN Z 1236 — 2,k ]| < N Z pik — ekl

ey ey

lzik — 2kl =

where the first inequality is obtained by the convexity of the
norm and the last inequality follows by the non-expansive
projection property in Lemmal[2] Furthermore, by using ||p; 1 —
ekl < ik — Prll + ||pe — Drl|, we obtain for every i € V

_ _ 1 _
Izi = 26l < ok — Pell + < Y llpes — el (34)

N
ey

We next consider ||p; —pPr||. By using the doubly stochasticity
of Wy, convexity of the norm and the fact that 0 < [IW],; <1,
we obtain

Ipie = Brll <D [Walij 2501 — Br

JEV
1
Tik-1= 37 E Lo k—1

<2
ey

JEV

9

where in the last equality we use pg =

1 _ i
N 2vev 2 jevWilejjk—1 = § D4y e k—1. Therefore,
by using the convexity of the norm again, we see

_ 1
lpie = Pill < &7 DD lwjn-1 — el (35)
JEVLEY
1 _ _
<5 SN Uwjn-r = Teoall + lwes—1 — Teal) -

JEV LeY

Combining this relation with (34) and using the result in (33)),
we obtain the desired result.
Part (c): By using relation (3I) in (33), we obtain

oo
Z ok ||pik — Pl
k=1

o0
Qg
<2 N 2 2wk —wenal < oo (36)
k=1~ jeViey
Upon summing the relation (34) over i € V, we find
S ek —al <25 Ipr -l G

i€y i€V
Therefore, from (36) and (37), we obtain

oo o0
Zzaknzi,k —Zl| < 2ZZO¢k||Pi,k = Prll < oo,

i€V k=1 i€V k=1
which is the desired result. ]

In the next lemma, we use standard convexity analysis to
lower-bound the term ).\, (fi(2i,x) — fi(Z)) with a network
error term and a global term.

Lemma 9: Let Assumption 2| hold. Then, for all & € X, we
have

> ilzin) = F:(2)2=Cp Y llzik — 2l + f(2) — f(2),
i€V i€V
where Cy = max;ey CY,.

Proof: Recall that f(z) = ", fi(xz). Recall that

2y = % Zz@; 2,k Using 2, and f, we can rewrite the term
fi(zix) — fi(Z) as follows:

> (filzik) — fi(&))

=%

= Z(fi(zi,k) = filz)) + (f(z) — f(2)).

US%

(38)

Furthermore, using the convexity of each function f;, we
obtain

> (Filzin) = £ilZr) =D (sikr 20k — )
icy icy
> = lsikll 2k — 2,
i€y
where s; ; is a subgradient of f; at Zj. Since Zj is a convex
combination of points z;, € X C Ap, it follows that z, €

Xy. This observation and Assumption [2Jc), stating that the
subgradients of f;(x) are uniformly bounded for = € A}, yield

Z(fi(zi,k) — fi(Z)) = —Cy Z ll2ik — Z&ll;

2% i€V

(39)



where Cy = max;ey Cy,. Therefore, from (38) and (39), we
have that

Z(fi(zi,k) — fi(2))
=

> —Cr > llzin — 2zl + f(z) = f(2).

S%

C. Proof of Proposition[I]

We invoke Lemma |3 I with z = 2, = Nylpig), 7 =4
and n = cC’g2 We also let £ = z* for an arbitrary =* € A'*.
Therefore, for any * € X*, i € V and k£ > 1, we almost
surely have

i e —2* < Ipig — " |1 — 20k (fil2in) — fil2™)) (40)
3 2
Tacz (97 (Pik wik))
I
+ 4003 dlStz(pi,k; X) + (5 + 40092)0%(1%

By taking the expectation conditioned on Fj_; in the above
relation and summing this over ¢ € }, we obtain

> Ellwir —2"? | Fid]

=
< S o — 22 — 208 3 (i) — £i(e")
zEV =y
2

aTe: QZE[ T (pig wik) |]:k—1]

9 ey
02 Zdlst pik,X)+ DNaj,
9 ey
where D = (5 + 4cC7)C7 with Cy = max;ey Cf,. Now we

use Lemma [3 I with h( ) = ||z — z*||?, Assumption I 4| and
Lemma O] with & = z* to further estimate the terms on the
right-hand side. From these, obtain almost surely for any & > 1
and z* € X*,

> Ellein — 2" * | Fiea]
SN2

< Z i p—1 — 2*[|* — 2 Z(f(zk) — f(z"))

zEV i€V

02 Zdlbt Di ks X)
9 icy
+ 20,0y Z ||Zi,k — Zp|| + DNO(%.
i€V
Since z € X, we have f(zx) — f(z*) > 0. Thus, under the
assumption > -, ai < oo and Lemma c), the above rela-
tion satisfies all the conditions of the convergence Theorem [T}
Using this theorem, we have the following results.
Result 1: The sequence {) .y, ||z;» — 2*||} is convergent
a.s. for every z* € X'*.
Result 2: For every z* € X',

S an(f(z) — f(
k=1

") < oo a.s.

From Result 1 and Lemma |§Kb), we know that the sequence
{> iy llzi g —a* ||} is convergent a.s. for every z* € X'™*. This
and Lemma [7(b) imply that ||z, — z*|| is also convergent a.s.
for every z* € X*. From Result 2, Y -, oy, = oo, and the
continuity of f, it follows that the sequence {Z;} must have
one accumulation point in the set X'* a.s. This and the fact
that {||Z, — x*||} is convergent a.s. for every x* € X* imply
that for a random point z* € X",

lim z, = 2% a.s. 41)
k—oc0
We now prove the following claim: For all 1 € V
lim z;, =2* a.s. (42)
k—oo

Consider
@i — 2| < @i — 2iell + 1200 — Zull + (|12 — 27

From Lemma [6[b), Lemma [7(b) and {T)), all the terms on the
right-hand side converge to zero a.s. Therefore, it is obvious
that claim (@2) holds, which is our desired result.

D. Proof of Proposition 2]

The line of proof is similar to that in Proposition [I]
Therefore, we only lay down the differences.
Using the definition of 7 in Lemma [T} we have

[7]; = Z[w]l[W]”, for all j € V.
eV

(43)

Also, in the proof we consider the following weighted averages
rather than the true averages Ty, pi and Zj.

Be 2 i, D2 [wlipis (44)
i€V eV
and %, 2 Z[ﬂ']izi,k‘-

iey
First, notice that Lemma [3] still holds in this case as it does
not require Assumption [T}

Changes in Lemma [ Combining with the results in [3],
[1ef, [55] [58] Lemma|§| still holds in this case by replacing
0, with 6, 2 > icy[mlifi and re-defining the constants -y
and [ as

1

If in addition the underlying graph G is regular, then we have

¥=2,

. 1
7:\/57 ﬁmln{lma I?gi(U?(W)}a
where o9(W) is the second largest singular value of W.

Changes in Lemma [} By multiplying [r]; to (23) and
summing over 7 € )V, we obtain

> Eflx

i€V

Jadist? (zi 5, X) | Fro1] < Z[W]idistQ(pi,k,X)

%



> [n]idist? (pix, X) + DNoj. (45)

2
QCC 9 iev

From the definition of p; j in and the convexity of the
distance function, we have

Z[ﬂ'}idistz(pi,k, X) < Z Z

i€y i€V jev

Z[W]jdisﬁ(xj,k,l, X),

JEV

”dlbt (xj k-1, X)

IA

where the last inequality follows from (43). Combining this
result with (@3), we obtain

> Ellr

i€V

dlbt (g, X) | ]-'k_l] < Z[ﬂ']idistQ(xi,k_hX)

%

2002 ZV Jidist?(p; &, X) + DNa3,
1€

in which all the conditions of Theorem [I] holds. Hence, all
the remaining results follow immediately.

Changes in Lemma [7} All the results still hold by replacing
Zk, Ppr and jrk with Zx, pr and &y, respectively. Especially,
from relation (@3)) we have

pro=) [ Y Wljaje—r = Y [wljajp—1 = &1,
i€V jEV JEV
and all the results follow immediately.

Changes in Proposition ' By multiplying [n]; to (@0),
T

summing this over ¢ € V and considering fi(z) = ta'wz,
we have

> [willwir — 2> < [x]

ilpix —=*|

i€y ZGV
2
—%a—r(zk—x 10 22 pzkszk))Q
9 iey
40022 Jidist? (s, X) + DNa3,
9 iev

where we used the fact that ),y [7]izik = 2.
Now we use #3)) and Assumption [ to obtain almost surely
for any £ > 1 and 2* € X,

> Ellr

||-/Ezk_x ||2|]:]C 1]

i€V
" 2a R .
< Z[W]z”%kﬂ o~ —kaT(zk —z%)
%
1 . ,
_ 72003 ;}[ﬂidmt (pik, X) + DNag.

Since 23, € X, we have a' (2, —z*) > 0. Thus, under the as-
sumption ZEOZO a% < oo and Lemma @a}, the above relation
satisfies all the conditions of the convergence Theorem [I]
Using this theorem, we have the following results.
Result 1: The sequence {) .\, [7]il|xir — 2*[|} is conver-
gent a.s. for every z* € X',

Result 2: For every z* € X',
oo
Z ara’ (3, —2%) <00 a.s.
k=1
From Result 1 and Lemma @b), we know that the sequence
{2 iev(mlillziw — ™|} is convergent a.s. for every x* € A™.
This and Lemma [7{b) imply that ||2; — 2*|| is also convergent
a.s. for every z* € X*. From Result 2, Y ;- | a = o0, it
follows that the sequence {Z;} must have one accumulation
point in the set X'* a.s. This and the fact that {||Z, — z*||} is
convergent a.s. for every z* € X imply that for a random
point z* € X*,

lim 2, =2 a.s.
k—o0

The remaining results follow immediately.

V. SIMULATION RESULTS

In this section, we provide a numerical example showing
the effectiveness of the proposed decentralized approximate
projection algorithm. We consider optimal gossip averaging
which is an example of decentralized optimization.

In many decentralized algorithms, gossip based commu-
nication protocols are often used. In these communication
protocols, only one agent randomly wakes up at a time (say
agent ¢) and selects one of its neighbors (say agent j) with
probability p;;. Then, the two agents exchange their current
information through the link (7, j) and take the average. Let
A(i,j) denote the averaging matrix associated with the link
(i, 7). For example, the averaging matrix A(1,2) of a 4-agent
network system looks like

1/2 1/2 0 0
1/2 1/2 0 0
A(L,2) = (/) 610
0 0 0 1

Note that the expectation of the averaging matrix A can be
represented as E[A] = & 2, oy, pij A(i, J).

Let P denote the probability matrix whose component of
the i-th row and j-th column is p;;. Our goal here is to
find an optimal probability matrix P* associated with the
current communication graph, which is time-invariant and
connected, in a decentralized fashion. The convergence speed
of the gossip protocol is known to be inversely proportional
to A2(E(A)), which is the second largest eigenvalue of the
expected averaging matrix E[A] (see [59]). Thus, the optimiza-
tion problem of finding the fastest averaging distribution P*
can be formulated as the following SDP:

Iggl s (46a)
> piAli,gj) — 117 < sI (46b)
i,jEV
pij 20, pi;=0if (i,j) €€ (46c)
> pij=1, forieV. (46d)

JjEV
An optimal P* of the problem [@#6a)-(@6d) computed in a
centralized fashion is not useful as gossip protocol is usually



TABLE 1
NUMBER OF ITERATIONS FOR ALL NETWORK AGENTS TO CONVERGE
WITHIN 0.01% OF THE GLOBAL AVERAGE

clique | cycle star
N =41 2,170 | 2,819 7,190
N =15 2,179 | 8,280 | 18,541

required in a decentralized setting. A decentralized method
has been proposed in [59]], but the method only finds a
suboptimal solution. Using our proposed algorithm, we can
find the optimal solution of {#6a)-([@6d) in a decentralized way.

With a slight abuse of notation, let 2 = [s; P]. In this
problem, all agents share the same local objective function,
i.e., fi(x) = s for all i € V, whereas each agent ¢ has a local
constraint set X; = X' () X2 where

X ={z| Z pijA(i, j) — 117 < sI},
ijev

X2 =A{x | piy=1, pij 20, p =0if j ¢ N;}.
jev

At each iteration of our algorithm, we randomly select a
component constraint from &; and make a projection. More
specifically, we approximate the projection onto the SDP
constraint X! using the equation (11). Note that the constraints
(46c)-(@6d), which are distributed among agents, will guar-
antee the structure of the underlying communication graph.
Therefore, agents do not require knowledge on the whole
graph structure.

We note that due to the compactness of the set Xf, the
problem ([@6a)-[{@6d) satisfies Assumption [2] and the optimal
solution set X'* is nonempty. Assumptions [I] 3] and [5] can be
satisfied by construction. Assumption []is also satisfied as all
inequalities are affine in this case.

We let all agents terminate if their solution is within 0.01%
of the global average and the total feasibility violation is less
than 0.001. We say the algorithm has converged only when all
network agents terminate. Note that this global average based
criterion is just used for the sake of simulations. Also, due to
the randomness of our algorithm, we repeat all the simulations
for 10 times and report their averages.

Table [l summarizes the simulation results. It shows the
number of iterations until convergence for different numbers
of agents (V) and underlying communication topologies (G).
In the experiment, we use a; ) = 7 for all i € V, and
4,15 agents with three different network topologies, namely
clique, cycle and star. Note that for this problem the underlying
network must be time-invariant, i.e., G, = G for k > 1, as the
gossip algorithm in [59] is built on a fixed undirected graph.
As expected, the star graph takes the most iterations for both
N = 4,15. Also, when there are more agents in the network,
the algorithm takes more iterations.

VI. CONCLUSION

We have studied a distributed optimization problem defined
on a multiagent network which involves nontrivial constraints
like LMIs. We have proposed a decentralized algorithm based
on random feasibility updates, where we approximate the

projection with an additional subgradient step. The proposed
algorithm is efficiently applicable for solving any distributed
optimization problems which involve lots of computationally
prohibitive constraints, for example, decentralized SDPs. We
have established the almost sure convergence of our method
under two different assumptions on the weight matrices,
namely doubly stochastic {W},} over a Q-strongly connected
sequence of digraphs and row stochastic W' over a strongly
connected digraph. We have performed experiments on an
optimal gossip averaging problem to verify the performance
and convergence of the proposed algorithm.
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