Abstract:
This paper presents results to assure the almost sure stability of switching stochastic nonlinear systems. The switching rule governing the parameters of the system is dr...Show MoreMetadata
Abstract:
This paper presents results to assure the almost sure stability of switching stochastic nonlinear systems. The switching rule governing the parameters of the system is driven by independent and identically distributed random variables. In this scenario, we prove that the switching nonlinear system is almost surely stable when appropriate matrices have spectral radius less than one. The result is particularly useful for applications, as shown in the paper by the application for an automotive electronic throttle device. The stability result was used to design a real-time controller for the automotive throttle device, and the experimental data confirm the usefulness of our approach.
Published in: IEEE Transactions on Automatic Control ( Volume: 63, Issue: 9, September 2018)