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Uniform value for some nonexpansive optimal control problems

with general evaluations
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Abstract

We study the long-run properties of optimal control problems in continuous time, where
the running cost of a control problem is evaluated by a probability measure over R+. [16]
introduced an asymptotic regularity condition for a sequence of probability measures to study
the limit properties of the value functions with respect to the evaluation. In the particular
case of t-horizon Cesàro mean or ρ-discounted Abel mean, this condition implies that the
horizon t tends to infinity or the discount factor ρ tends to zero. For the control system
defined on a compact domain and satisfying some nonexpansive condition, [16] proved the
existence of general limit value, i.e. the value function uniform converges as the evaluation
becomes more and more regular. Within the same context, we prove the existence of general
uniform value, i.e. for any ε > 0, there is an optimal control that guarantees the general
limit value up to ε for all control problems where the cost is evaluated by sufficiently regular
probability measures.

Keywords Optimal control, uniform value, long-run average value, general evaluation

AMS Classification 49J15, 93C15, 37A99

1 Introduction

Let U be a compact subset of a separable metric space. A control u is a measurable function
from R+ to U . Denote by U the set of all controls. We consider the following control system:

y
′(t) = f

(

y(t),u(t)
)

, y(0) = y0. (1.1)

where f : Rd×U → R
d, and y0 ∈ R

d is the initial state. Let g : Rd×U → R be the running cost
function. We make the following assumptions on f and g throughout the article:























the function g : Rd × U → R is Borel measurable and bounded;

the function f : Rd × U → R
d is Borel measurable, and satisfies:

(∗). ∃L ≥ 0,∀(y, y) ∈ R
2d,∀u ∈ U, ||f(y, u) − f(y, u)|| ≤ L||y − y||,

(∗∗). ∃a > 0,∀(y, u) ∈ R
d × U, ||f(y, u)|| ≤ a(1 + ||y||).

(1.2)

∗Economics and Management School, Wuhan University, Luojia Hill, Wuchang, 430072 Wuhan, China. Email:
xxleewhu@gmail.com.
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Then for a given initial point y0 ∈ R
d, any control u ∈ U defines a unique absolutely continuous

solution to Equation (1.1) on R+, which we denote by y(t,u,y0).

Denote by J = 〈U, g, f〉 the optimal control problem described above. ∆(R+) is the set of
probability measures on R+ and any θ ∈ ∆(R+) is called an evaluation. The θ-value of the
control problem J is defined as:

Vθ(y0) = inf
u∈U

γθ(y0,u), with γθ(y0,u) =

∫ +∞

0
g
(

y(t,u, y0),u(t)
)

dθ(t). (1.3)

Specific evaluations and the corresponding value functions include

Cesàro mean: ∀t > 0, θt has a density s 7→ fθt(s) =
1
t
1[0,t](s), and the t-horizon value is

Vθt(y0) = inf
u∈U

1

t

∫ t

0
g
(

y(s,u, y0),u(s)
)

ds

Abel mean: ∀ρ ∈ (0, 1], θρ has a density s 7→ fθρ(s) = ρe−ρs, and the ρ-discounted value is

Vθρ(y0) = inf
u∈U

∫ +∞

0
ρe−ρsg

(

y(s,u, y0),u(s)
)

ds

In this article, we are interested in the long-run properties of the control problem J . In
particular cases, we look at the convergence of Vθ̄t as t tends to infinity, the convergence of Vθρ as
ρ tends to zero, and their equality (the asymptotic approach). In case of convergence, the uniform
approach further asks for each ε > 0 the existence of ε-optimal control for all control problems
with sufficiently large t and/or with sufficiently small ρ. The uniform approach emphasizes the
robustness of the optimal control with respect to a long but unknown duration of the control
problem.

In the literature, the asymptotic approach has been extensively exploited. Most of the results
are obtained by assuming certain ergodic condition or controllability condition (cf. [1, 2, 3, 5, 11]).
A different approach making no ergodic/controllability assumption is initialized by [18]. Notably,
the obtained limit value function (whenever exists) is in general dependent of the initial state. To
be more precise, they pose a compact nonexpansive assumption on the control problems, i.e. the
control system is defined on a compact domain and satisfies certain mild nonexpansive condition.
It is proven that for any compact nonexpansive control problem, Vθ̄t converges uniformly (in the
initial state) as t tends to infinity, and moreover for any ε > 0, ε-optimal control exists for all
t-horizon problems with sufficiently large t.

This nonexpansive approach for the asymptotic study of the average value in optimal control
has recently been advanced in the literature toward different directions: [7] for optimal control
and differential games linked to PDE techniques, [6] and [13] for stochastic control system, [19]
for singularly perturbed control system.

On the other hand, several Tauberian-type results are established in various contexts of op-
timal control ([17] for deterministic optimal control, [6] for stochastic optimal control, [15] for
differential games), which state that the uniform convergence of t-horizon value as t tends to
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infinity is equivalent to that of ρ-discounted value as ρ tends to zero, and both limits are equal
in case of convergence.

Motivated by those Tauberian-type results, the asymptotic study of the optimal control prob-
lems with general evaluations aims at defining a unique limit value function that is independent
of the particular chosen evaluation sequence (for example, to be Cesàro mean or Abel mean).
For this aim, [16] introduced the notion of s-total variation to define an asymptotic regularity
condition for evaluation sequences. This condition is used to study the asymptotic behavior of Vθ
as θ becomes more and more regular, and in particular, it submerges the asymptotic conditions
"t → +∞" and "ρ → 0" as particular cases. In the context of compact nonexpansive control
problems, [16] proved the existence of general limit value (cf. Definition 2.2), i.e. there is uniform
convergence of Vθ as θ becomes more and more regular.

[13] also exploited the asymptotic appoach for control problems with a larger family of eval-
uations. In his paper, only a family of probability measures that are absolutely continuous with
respect to the Lebesgue measure is considered, and a different asymptotic regularity condition
from that in [16] is introduced for the study.

Compared to the large body of literature on the asymptotic approach for control problems,
results via uniform approach are relatively rare apart from [18]. Our article follows the research
lines of [18] and [16] to conduct a uniform analysis for compact nonexpansive control problems
with general evaluations. Using the asymptotic regularity condition in [16], we prove the existence
of general uniform value (cf. Definition 2.8), i.e. for any ε > 0, there is ε-optimal control to
guarantee the general limit value for all θ-evaluated problems with θ sufficiently regular. This
generalizes the result of uniform approach in [18] from t-horizon average to general evaluations.

The proof for the existence of the robust optimal control is constructive. In [18], to obtain an
ε-optimal control for all long but unknown duration, the construction is by blocks such that on
each of them, the average payoff is above the limit value, and the value at the starting state is
nondecreasing. New difficulty arises in our context since now the optimal control aims at doing
well at the same time against a much greater family of evluations, and one can not expect the
construction in [18] to work as well. To achieve this and especially to obtain a convexity condition
needed for the proof of a minmax theorem

(

cf. Equation (4.11)
)

, we introduce randomization
on the control.

Meanwhile, there are some optimality criteria in the infinite-horizon control literature that
are related to the uniform approach, such as the undiscounted criterion

(

cf. Definition 3.3
)

,

where a total cost is defined as the limiting average cost lim supt→∞
1
t

∫ t

0 g
(

y(s,u, y0),u(s)
)

ds,
or the weighted average criterion (cf. Definition 3.5), where a total cost is defined as a weighted
average of the limiting average cost and the ρ-discounted cost. We shall demonstrate that
compared with these optimal criteria for long-run control problems, our uniform approach with
general evaluations is rather strong (cf. Proposition 3.4 and Proposition 3.6).

The organization of the paper is as follows. In Section 2, we present the basic model and
introduce the main poblems under study. The main result is presented in Section 3. We first
illustrate it by an example and then discuss its implications for other long-run optimality criteria.
The proof of the main result is given in Section 4, which consists of two parts: some preliminary
results concerning random controls and the main part of the proof.
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2 Preliminaries

Let J = 〈U, g, f〉 be optimal control problem defined by Equation (1.1) for which Condition
(1.2) is assumed. Let θ ∈ ∆(R+) be an evaluation for the control problem J , and let Vθ(y0) be
the θ-value of J defined by Equation (1.3). The following notion is introduced in [16] for the
aim of defining a regularity for θ.

Definition 2.1 For any s ≥ 0, the s-total variation of an evaluation θ is:

TVs(θ) = max
Q∈B(R+)

|θ(Q)− θ(Q+ s)|,

where B(R+) is the family of Borel subsets in R+.

Indeed, we use sup0≤s≤S TVs(θ) for some S > 0 to measure the regularity of any evaluation θ,
and we shall conduct the asymptotic analysis and the uniform analysis for the control problem
J as sup0≤s≤S TVs(θ) becomes sufficiently small. The reader is refered to Section 3.3 in [16]
for an extensive discussion on this regularity condition. In particular, the vanishing condition
"sup0≤s≤S TVs(θ) → 0 for some S > 0" corresponds to either "t → +∞" for the Cesàro mean
or "ρ→ 0" for the Abel mean.

The following formal definition is concerned with the asymptotic analysis of control problems
with general evaluations.

Definition 2.2 The optimal control problem J = 〈U, g, f〉 has a general limit value given by
some function V defined on R

d if: for each ε > 0 there is some η > 0 and S > 0 such that:

∀θ ∈ ∆(R+),
(

sup
0≤s≤S

TVs(θ) ≤ η =⇒
(

∀y0 ∈ R
d, |Vθ(y0)− V (y0)| ≤ ε

)

)

.

We restrict ourselves to the study of the following class of control problems.

Definition 2.3 The optimal control problem J = 〈U, f, g〉 is compact nonexpansive if:
(A.1) the control dynamic (1.1) has a compact invariant set Y ⊆ R

d, i.e. y(t,u, y0) ∈ Y , ∀t ≥ 0
for all u ∈ U and y0 ∈ Y ;
(A.2) the running cost g does not depend on u and is continuous in y ∈ Y ;
(A.3) the control dynamic (1.1) is nonexpansive, i.e.,

∀y1, y2 ∈ R
d, sup

a∈U
inf
b∈U

〈

y1 − y2, f(y1, a)− f(y2, b)
〉

≤ 0. (2.1)

Remark 2.4 The nonexpansive condition (A.3) implies the following property (cf. Proposition
3.7 in [18]): ∀y1, y2 ∈ R

d, ∀u ∈ U , ∃v ∈ U s.t.

||y(t,u, y1)− y(t,v, y2)|| ≤ ||y1 − y2||, ∀t ≥ 0.
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Consider a control problem J = 〈U, g, f〉 compact nonexpansive with the invariant set Y .
[16] (cf. Corollary 4.5) proved that J has a general limit value characterized by the following
function:

V ∗(y0) = sup
θ∈∆(R+)

inf
s∈R+

inf
u∈U

∫ ∞

0
g
(

y(t+ s,u, y0)
)

dθ(t), ∀y0 ∈ Y. (2.2)

Proposition 2.5 [16] Let J = 〈U, f, g〉 be compact nonexpansive with invariant set Y . Then
the general limit value of J exists and is equal to V ∗.

Remark 2.6 As opposed to most papers in the control literature, say for example [1, 2, 3, 5, 11],
no ergodic condition or controllability condition is assumed for compact nonexpansive control
problems. This can be underlined by the fact that in general the limit function V ∗ defined in
(2.2) depends on the initial state y0.

We study in this paper a value notion that is stronger than the general limit value, namely the
general uniform value (the "uniform approach"), which requests the existence of robust controls
that is approximately optimal for all θ-evaluated conctrol problems with θ sufficiently regular
(i.e., sup0≤s≤S TVs(θ) sufficiently small for some fixed S > 0).

For the aim of a formal analysis of the uniform approach, we first introduce the notion of
random control.

Definition 2.7 A random control is a pair
(

(Ω,B(Ω), λ),u
)

, where (Ω,B(Ω), λ) is some stan-
dard Borel probability space and u : Y × Ω × [0,+∞) → U is a Borel measurable mapping (we
have extended the definition of a random control to dependent on the initial state for later use).

Denote by Ũ the set of all random controls, which is convex in the following sense. For any
u1,u2 ∈ Ũ and α ∈ [0, 1], define u = αu1 + (1− α)u2 to take the value of u1 with probability α
and of u2 with probability (1−α). It is easy to construct a product probability space such that
u is in Ũ .

We might shortly write Ω for the triple (Ω,B(Ω), λ). Let (Ω,u) be a random control, then
for any initial point y0 ∈ Y and any ω ∈ Ω, uω(y0, ·) := u(y0, ω, ·) defined from [0,+∞) to U
is a (pure) control in U , which we denote by uω(y0). The Borel probability space Ω serves as a
random device for the controller to choose a pure control in U .

The expected θ-evaluated payoff induced by any random control (Ω,u) and initial point y0 is
denoted by

γθ(y0,u) =

∫

Ω
γθ
(

y0,uω(y0)
)

dλ(ω) =

∫

Ω

∫

[0,+∞)
g
(

y(t,uω(y0), y0)
)

dθ(t)dλ(ω),

and the expected θ-value in random controls is Ṽθ(y0) = inf
u∈Ũ γθ(y0,u). The payoff function

γθ(y0, ·) is affine 1 in u, thus the value function in random controls is the same as that in pure
controls, that is, Ṽθ(y0) = Vθ(y0) for all y0 ∈ Y and θ ∈ ∆(R+).

1To see this point, consider for example the Borel probability space to be
(

[0, 1],B([0, 1]), λ
)

where λ is the
Lebesgue measure. We take any u

1,u2 : Y × [0, 1] × [0,+∞) → U two random controls, any α ∈ [0, 1], and let
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Definition 2.8 The optimal control problem J = 〈U, f, g〉 has a general uniform value if the
general limit value exists, say equal to V ∗, and moreover for each ε > 0 there is some η > 0,
S > 0 and a random control u ∈ Ũ such that:

∀θ ∈ ∆(R+),
(

sup
0≤s≤S

TVs(θ) ≤ η =⇒
(

∀y0 ∈ Y, γθ(y0,u) ≤ V ∗(y0) + ε
)

)

.

The control u appearing in the above definition is called an ε-optimal control for the control
problem J .

3 Main result

Our main result of this article is the following

Theorem 3.1 Assume that the optimal control problem J = 〈U, f, g〉 is compact nonexpansive.
Then it has a general uniform value V ∗.

Remark 3.2 [18] proved the existence of pure ε-optimal control for the compact nonexpansive
control problems when the running cost is evaluated by Cesàro means. Our result generalizes it
to general evaluations. Nevertheless, new difficulty arises and our proof techniques differ from
[18] and is partially inspired by [20], where some analogous results in a discrete-time framework
are established.

It is unknown whether pure ε-optimal control exists for compact nonexpansive control problems
with general evaluations.

The rest of this section is devoted to comments of our main result. We first present in
Subsection 3.1 a toy example of control problem that is compact nonexpansive thus general
uniform value exists. Next in Subsection 3.2, we link the general uniform value to other long-run
optimal criteria in the control literature.

3.1 Illustration of Theorem 3.1 by a toy example

This subsection contains a simple example of economic development. We show that its associated
control problem is compact nonexpansive, thus according to Theorem 3.1 the general uniform
value exists.

A society is concerned with its long-run economic development – which is denoted by a state
variable x1, and also with the accompanied pollution impact – which is denoted by a state variable
x2. Let π(x1) be the instantaneous benefit (assumed to be continuous) of the development and
let c(x2) be the instantaneous cost (assumed to be continuous) of the pollution. u ∈ [0, 1] = U is

u
3 : Y × [0, 1] × [0,+∞) → U be the random control as a convex combination of u1 and u

2 with coefficient α:
for any y0 ∈ Y , u3(y0, ω, t) = u

1(y0,
ω
α
, t) for ω ∈ [0, α] and u

3(y0, ω, t) = u
2(y0,

ω−α
1−α

, t) for ω ∈ (α, 1]. Using the

change of variables, we obtain γθ(y0,u
3) = α · γθ(y0,u

1) + (1− α) · γθ(y0,u
2).

6



the control variable, which can be interpreted as the policy of develeopment, such as the number
of vehicles allowed to enter into the metropolis per day, or the volume of carbon released into
the atmosphere per year, etc. We denote X = (x1, x2), and the dynamic of X(t) is governed by
(A,B > 0 constant)

X ′(t) = f
(

X(t), u(t)
)

=

(

u(t)
(

A− x1(t)
)

u(t)
(

B − x2(t)
)

)

, ∀t ≥ 0.

Starting from X(0) = (0, 0), we have x′1(t) ≥ 0, x′2(t) ≥ 0 and x1(t) ≤ A, x2(t) ≤ B for all t ≥ 0.
u(t) is the control level at time t, which promotes a positive growth of both the develepment
x1(t) and the pollution x2(t).

Let us define g(X) = c(x2) − π(x1) to be the runnning cost function, then the associated
optimal control problem J = 〈U, f, g〉 satisfies the assumptions in (1.2). Moreover, we verify
that J is compact nonexpansive thus it has a general uniform value:

• [0, A] × [0, B] is its compact invariant set;

• g(X,u) = g(X) does not depend on u and is continuous in X;

• the control dynamic X ′(t) = f
(

X(t), u(t)
)

is nonexpansive: let X = (x1, x2) and Z =
(z1, z2), for any u ∈ [0, 1], take v = u. Then we obtain:

〈

X − Z, f(X,u) − f(Z, u)
〉

=

〈

(

x1 − z1
x2 − z2

)

, u

( (

− x1 + z1
)

(

− x2 + z2
)

)

〉

≤ 0.

3.2 Implications of the general uniform value to other optimality criteria

In this subsection, we link the general uniform value to other solution criteria such as the undis-
counted criterion (limiting avarage payoff, cf. [9]) and the weighted average criterion (cf. [10, 14]).
As the asymptotic/uniform approach, both the undiscounted value and the limit value of the
weighted average value (when the discount factor tends to zero) are also optimality criteria for
long-run control problems. We show that the general uniform value is actually a stronger value
notion.

Below we assume that the control problem J = 〈U, f, g〉 under consideration is compact
nonexpansive, and let Y ⊆ R

d be its invariant set. Following Theorem 3.1, J has a general
uniform value V ∗.

Definition 3.3 The undiscounted value V̂ of the control problem J with limiting average
payoff is defined as: ∀y0 ∈ Y, V̂ (y0) = infu∈U lim supt→∞ γt(y0,u).

Proposition 3.4 Let J = 〈U, f, g〉 be a compact nonexpansive control problems. Then V̂ is
identical with the general uniform value V ∗.

7



Proof : V ∗ is the general uniform value of J , so limt→∞ Vt(y0) = V ∗(y0),∀y0 ∈ Y . On one
hand, Vt(y0) = infu∈U γt(y0,u) implies that V ∗(y0) ≤ V̂ (y0). On the other hand, the existence of
the general uniform value V ∗ implies that: ∀ε > 0,∃T0 > 0,∃u, s.t. γt(y0,u) ≤ V ∗(y0)+ε,∀y0 ∈
Y,∀t ≥ T0. Thus for all ε > 0, V̂ (y0) ≤ lim supt→∞ γt(y0,u) ≤ V ∗(y0) + ε. This completes the
proof of the proposition. Q.E.D.

Definition 3.5 Let β ∈ (0, 1) and ρ ∈ (0, 1], the (β, ρ)-weighted average value of the control
problem J = 〈U, f, g〉 is defined as: ∀y0 ∈ R

d,

V̄ρ,β(y0) = inf
u∈U

γ̄ρ,β(y0,u),where γ̄ρ,β(y0,u) =

{

βγρ(y0,u) + (1− β) lim sup
t→∞

γt(y0,u)

}

.

Proposition 3.6 Let J = 〈U, f, g〉 be a compact nonexpansive control problem. Then for any
β ∈ (0, 1), limρ→0 V̄ρ,β = V ∗.

Proof : We fix β ∈ (0, 1) and y0 ∈ Y . For each ρ ∈ (0, 1], we use the definition of V̄ρ,β(y0)
and Proposition 3.4 to obtain that:

V̄ρ,β(y0) = inf
u∈U

{

βγρ(y0,u) + (1− β) lim sup
t→∞

γt(y0,u)

}

≥ βVρ(y0) + (1− β)V ∗(y0).

Thus by the fact that limρ→0 Vρ(y0) = V ∗(y0), we have:

lim inf
ρ→0

V̄ρ,β(y0) ≥ β lim inf
ρ→0

Vρ(y0) + (1− β)V ∗(y0) = V ∗(y0).

Now we prove the other direction lim infρ→0 V̄ρ,β(y0) ≤ V ∗(y0). For each pair ρ ∈ (0, 1] and
t > 0, we consider the β-weighted evaluation θ(ρ, t) whose density function is:

fθ(ρ,t)(s) = βfθρ(s) + (1− β)fθ̄t(s) = βρe−ρs + (1− β)
1

t
1[0,t](s),∀s ≥ 0.

V ∗ is the general uniform value of J , thus for any ε > 0, there is some η > 0, S > 0 and
control u∗ such that: γθ(y0,u

∗) ≤ V ∗(y0) + ε, ∀θ ∈ ∆(R+) with TV S(θ) ≤ η. Consider now
the evaluation θ to be separately (θρ) and (θ̄t). An easy computation gives us (cf. Section 3.3 in
[16] for details):

∀ρ ∈ (0, 1], t ≥ 0, TV S(θρ) ≤ 1− e−Sρ and TV S(θ̄t) ≤ min{S/t, 1}.

This means that there is ρ0 > 0 and T0 > 0 such that: ∀ρ ≤ ρ0, t ≥ T0,

TV S(θρ) ≤ η and TV S(θ̄t) ≤ η, thus TV S

(

θ(ρ, t)
)

≤ η.

Taking the convex combination, we obtain that: ∀(ρ, t) ∈ (0, ρ0]× [T0,+∞),

βγρ(y0,u
∗) + (1− β)γt(y0,u

∗) = γθ(ρ,t)(y0,u
∗) ≤ V ∗(y0) + ε. (3.1)

We take lim sup as t tends to infinity and use the definition of V̄ρ,β to obtain:

V̄ρ,β(y0) ≤ βγρ(y0,u
∗) + (1− β) lim sup

t→∞
γt(y0,u

∗) ≤ V ∗(y0) + ε.

Finally, taking lim inf as ρ tends to zero on both sides of the above inequality yields:

lim inf
ρ→0

V̄ρ,β(y0) ≤ V ∗(y0) + ε.

Since ε > 0 can be arbitrarily, the proof is then complete. Q.E.D.
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Remark 3.7 Equation (3.1) implies that the ε-optimal control for the general uniform value V ∗

is also ε-optimal for all (ρ, β)-weighted average problems provided that ρ is small enough. In
particular, the choice of the weight parameter β is irrelevant.

Note that our proof of the above two results replies only on the existence of the general
uniform value V ∗ but not on the particular properties of the compact nonexpansive conditions.

4 Proof of Theorem 3.1

4.1 Some preliminary results

We introduce several further notations concerning random controls. Our use of random con-
trol/strategy in continuous-time control/game problem follows [8] (see [4] for the introduction of
randomized strategies for infinite games). We are going to work on a set S of probability spaces,
which is stable by countable product. To fix the ideas, choose

S = {([0, 1]n,B([0, 1]n), λn) , for some n ∈ N
∗ ∪ {∞}},

where B([0, 1]n) is the class of Borel sets of [0, 1]n, λn is the Lebesgue measure on R
n for n <∞

and B([0, 1]∞) is the product Borel-field, λ∞ is the product measure for n = ∞.

We might write simply u ∈ Ũ without explicitly mentioning the underlying probability space.

For any (y0,u) ∈ Y × Ũ and t ≥ 0, we denote ỹ(t,u, y0) =
∫

Ω δy(t,uω(y0),y0)dλ(ω) for the
distribution of the state at time t. Any z ∈ ∆(Y ) is a probability distribution over Y . Let z be
the distribution of the initial state, then t 7→ ỹ(t,u, z) =

∫

Y

∫

Ω δy(t,uω(y0),y0)dλ(ω)dz(y0) is the
expected trajectory in ∆(Y ) with respect to z. The above notations are consistent when a point
y0 ∈ Y is identified with the Dirac measure δy0 ∈ ∆(Y ).

For any ỹ ∈ ∆(Y ), let g(ỹ) =
∫

p∈Y g(p)dỹ(p) be the affine extension of g. Using Fubini’s

theorem, we have: for any y0 ∈ Y and u ∈ Ũ ,

γθ(y0,u) =

∫

[0,+∞)

∫

Ω
g
(

y(t,uω(y0), y0)
)

dλ(ω)dθ(t) =

∫

[0,+∞)
g
(

ỹ(t,u, y0)
)

dθ(t).

Before proceeding to the proof of Theorem 3.1, we establish in the rest of this subsection
several preliminary results concerning the nonexpansive property of the dynamic in ∆(Y ).

Let dKR be the Kantorovich-Rubinstein distance on ∆(Y ):

∀z, z′ ∈ ∆(Y ), dKR(z, z
′) = sup

h∈Lip(1)

∣

∣

∣

∣

∫

Y

hdz −

∫

Y

hdz′
∣

∣

∣

∣

,

where Lip(1) denotes the set of bounded 1-Lipschitz functions defined on Y .
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Lemma 4.1 For any z1, z2 in ∆(Y ) and u : Y × Ω × [0,+∞) → U a random control, there
exists some random control v : Y × Ω̂× Ω× [0,+∞) → U such that

dKR

(

ỹ(t,u, z1), ỹ(t,v, z2)
)

≤ dKR(z1, z2), ∀t ≥ 0.

Proof : We fix u : Y × Ω × [0,+∞) → U a random control defined on the probability space
(

Ω,B(Ω), λ
)

. We first show the result for z1 and z2 being Dirac measures. Let p, q in Y . uω(p) :
[0,+∞) → U is a pure control for any ω ∈ Ω. By the nonexpansive assumption, Proposition 3.6
in [18] implies that: for given ω ∈ Ω, there is some pure control up(q, ω, ·) : [0,+∞) → U , which
we denote by u

p
ω(q) := u

p(q, ω, ·), such that

∥

∥

∥
y

(

t,uω(p), p
)

− y

(

t,upω(q), q
)

∥

∥

∥
≤
∥

∥p− q
∥

∥, ∀t ≥ 0. (4.1)

Moreover, one can take the mapping (q, t) 7→ u
p
ω(q, t) := u

p(q, ω, t) jointly measurable2. Letting
u
p(q, t) =

(

u
p
ω(q, t)

)

ω∈Ω
for all t ≥ 0, this defines a random control:

u
p : Y × Ω× [0,+∞) 7→ U

(q, ω, t) 7→ u
p
ω(q, t).

From Equation (4.1), we deduce that: for any t ≥ 0,

dKR

(

ỹ(t,u, p), ỹ(t,up, q)
)

= dKR

(

∫

Ω
δy(t,uω(p),p)dλ(ω),

∫

Ω
δ
y(t,upω(q),q)dλ(ω)

)

≤

∫

Ω

∥

∥

∥
y
(

t,uω(p), p
)

− y
(

t,upω(q), q
)

∥

∥

∥
dλ(ω)

≤ ||p − q||.

(4.2)

Consider now z1, z2 in ∆(Y ). By the Kantorovich-Rubinstein duality formula (cf. Theorem 5.10
in [22]), there is a coupling ξ(·, ·) ∈ ∆(Y × Y ) with first marginal z1 and second marginal z2,
satisfying:

dKR(z1, z2) =

∫

Y×Y

∥

∥p− q
∥

∥dξ(p, q). (4.3)

Let q 7→ ξ(·|q) ∈ ∆(Y ) be the conditional distribution of ξ on its first marginal. Consider now
the Borel isomorphic mapping (between two standard Borel spaces)

hq : Ω̂ =
(

[0, 1],B
(

[0, 1]
)

, λ
)

7→
(

Y,B(Y ), ξ(·|q)
)

where
∀B ∈ B(Y ), ξ(B|q) = λ

(

h−1
q (B)

)

.

Define now
v : Y × Ω̂× Ω× [0,+∞) 7→ U

(q, ω̂, ω, t) 7→ v(ω̂,ω)(q, t) = u
hq(ω̂)
ω (q, t),

2Indeed, consider for (2.1): we fix any y2 ∈ Y and a· : x 7→ ax ∈ U measurable. Then we can apply the
measurable selection theorem (cf. Theorem 9.1 in [23]) for the optimization problem infb∈U

〈

y1 − y2, f(y1, a
y1)−

f(y2, b)
〉

to obtain the existence of a measurable mapping b· : x 7→ bx ∈ U satisfying
〈

y1 − y2, f(y1, a
y1) −

f(y2, b
y1)

〉

≤ 0, ∀y1 ∈ Y . The same augument as in the proof of Proposition 3.6 in [18] implies the result.
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which is jointly measurable as the composition function of u·
ω(q, t) and hq(ω̂). (Ωv,v) is then

a random control defined on the product Borel probability space
(

Ω̂ ⊗ Ω,B(Ω̂ ⊗ Ω), λ2
)

. The
interpretation of the random control v is that: at each initial point q ∈ Y , v(q, ·) randomly takes
the value u

p(q, ·) according to the probability law dξ(p|q).

Next, we check that v satisfies the nonexpansive condition. For any t ≥ 0 and q ∈ supp(z2),
we use Fubini’s theorem (first on Ω̂×Ω and then on Y ×Y ) and the change of variable "p = hq(ω̂)"
to obtain:

ỹ(t,v, z2) =

∫

Y

ỹ
(

t,v, q
)

dz2(q) =

∫

Y

∫

Ω̂×Ω
δ
y

(

t,u
hq(ω̂)
ω (q),q

)dλ2(ω̂, ω)dz2(q)

=

∫

Y

∫

Ω̂

[

∫

Ω
δ
y

(

t,u
hq(ω̂)
ω (q),q

)dλ(ω̂)

]

dλ(ω)dz2(q)

=

∫

Y

∫

Y

[

∫

Ω
δ
y(t,upω(q),q)dλ(ω)

]

)dξ(p|q)dz2(q)

=

∫

Y×Y
ỹ
(

t,up, q
)

dξ(p, q).

We then deduce that:

dKR

(

ỹ(t,u, z1), ỹ(t,v, z2)
)

= dKR

(

∫

Y

ỹ
(

t,u, p
)

dz1(p),

∫

Y×Y
ỹ
(

t,up, q
)

dξ(p, q)
)

= dKR
(

∫

Y×Y
ỹ(t,u, p)dξ(p, q),

∫

Y×Y
ỹ
(

t,up, q
)

dξ(p, q)
)

≤

∫

Y×Y
dKR

(

ỹ
(

t,u, p
)

, ỹ
(

t,up, q
)

)

dξ(p, q)

(

by (4.2)
)

≤

∫

Y×Y
||p − q||dξ(p, q)

(

by (4.3)
)

= dKR(z1, z2).

This completes our proof for the lemma. Q.E.D.

The proof of Theorem 3.1 involves some compact property of the set of random controls for
compact non-expansive control problem, as we will show in Lemma 4.7: the "limit trajectory"
in ∆(Y ) (cf. Lemma 4.6) of a sequence of random controls can be arbitrarily approximated by
the trajectory induced by one random control. Here the random control that we are going to
construct is defined as concatenations of certain sequence of random controls, namely behavior
control. Formal definitions are as follows.

Definition 4.2 For any two random controls (Ωu,u) and (Ωv,v) and a time T > 0. The
concatenation of u and v at time T is defined as the random control (Ωu × Ωv,u⊕T v) with:
∀
(

y0, (ω1, ω2), t
)

∈ Y × (Ωu × Ωv)× [0,+∞),

[u⊕T v](ω1,ω2)(y0, t) = 1{t<T}uω1(y0, t) + 1{t≥T}vω2

(

y

(

y0,uω1(y0), T
)

, t− T
)

.
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Definition 4.3 Fix 0 = t0 < t1 · ·· < tm < · · · a partition of [0,+∞), and (Ωm,u
m)m≥1 a

sequence of random controls. Let
(

⊗m
m′=1Ωm′ ,u[m]

)

m≥1
be a sequence of random controls defined

inductively as: u
[1] = u

1 and u
[m+1] = u

[m] ⊕tm u
m+1 for any m ≥ 1. The behavior control

(

Ω[∞],u
[∞]
)

:=
(

⊗m≥1 Ωm,u
1 ⊕t1 · · ·u

t ⊕tm · · ·
)

is defined as the concatenations of (um) sequentially at points (tm):
for any

(

y0, (ωm)m≥1, t
)

in Y × Ω[∞] × [0,+∞),

u
[∞]
(ωm)m≥1

(y0, t) =
∑

m≥1

1{tm−1≤t<tm}u
[m]
ωm(y0, t), where ωm := (ω1, ..., ωm).

Remark 4.4 The behavior control (Ω[∞],u
[∞]) is also a random control with the product Borel

space Ω[∞] = ⊗m≥1Ωm, which, as a countable union, is still in S.

Remark 4.5 On the other hand, from Kuhn’s theorem (cf. [4], Section 5): for any random
control, one can construct a behavior control such that the trajectories in ∆(Y ) induced by them
are the same. More precisely, we fix (tm)m≥0 a partition of [0,+∞),

(

Ωu,u
)

a random control and
y0 ∈ Y an initial state. Then, there exists some behavior control

(

⊗m≥1Ωm,u
)

as concatenations
of some sequence of random controls

(

Ωm,u
m
)

m≥1
at points (tm) such that starting from y0, the

trajectories in ∆(Y ) generated by both u and u are the same, i.e. ỹ(t,u, y0) = ỹ(t,u, y0),
∀t ≥ 0, a.e.

Fix any y0 in Y .
(

ỹ(·,uk, y0)
)

k≥1
is the sequence of trajectories in ∆(Y ) generated by a

sequence of random controls (uk)k≥1 with the same initial point y0.

Definition 4.6 A measurable mapping t 7→ y(t) from R+ to
(

∆(Y ), dKR
)

is a limit trajectory

of the sequence
(

ỹ(·,uk, y0)
)

k≥1
if there is some ψ(k) such that for any m ≥ 1, ỹ(·,uψ(k), y0)

converges (for dKR) to y(·) uniformly on [0,m] as k tends to infinity.

We first show that the limit trajectory exists for any sequence.

Lemma 4.7
(

ỹ(·,uk, y0)
)

k≥1
has a limit trajectory in ∆(Y ).

Proof : Fix an m ≥ 0, we look at the restriction of each ỹ(·,uk, y0) on the compact interval
[m,m + 1]. Then the family {ỹ(·,uk, y0) : k ≥ 1} are continuous mappings from [m,m + 1] to
the compact domain

(

∆(Y ), dKR
)

. One can use Ascoli’s theorem to deduce the existence of a

uniform convergent subsequence
(

ỹ(·,uψ(k), y0)
)

k≥1
on [m,m+1]. To obtain this, it is sufficient

for us to prove that the family
{

ỹ(·,uk, y0) : k ≥ 1
} (

restricted on [m,m+1]
)

is equicontinuous.

We fix any k ≥ 1 and s, t ∈ [m,m+ 1]. Then by the definition of dKR, we deduce that

dKR

(

ỹ(t,uk, y0), ỹ(s,u
k, y0)

)

≤

∫

Ω

∥

∥

∥
y
(

t,ukω(y0), y0
)

− y
(

s,ukω(y0), y0
)

∥

∥

∥
dλ(ω)

≤ a
(

1 + sup
y∈Y

‖y‖
)

|t− s|,
(4.4)
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where we have used in the last inequality the fact that t 7→ y

(

t,ukω(y0), y0
)

is absolutely contin-
uous

(

cf. assumptions in (1.2)
)

. As Y ⊆ R
d is compact, Equation (4.4) proves that the family

{

ỹ(·,uk, y0) : k ≥ 1
} (

restricted on [m,m + 1]
)

is equicontinuous. By extracting subsequences
for each m, we obtain the existence of a limit trajectory of

(

ỹ(·,uk, y0)
)

k≥1
. Q.E.D.

Lemma 4.8 Let y(·) : t 7→ y(t) be a limit trajectory of
(

ỹ(·,uk, y0)
)

k
. Then for any ε > 0,

there is some behavior control u∗ whose trajectory in ∆(Y ) is ε-close to y(·) along time, i.e.,

∀ε > 0, ∃u∗ ∈ Ũ , s.t. dKR

(

ỹ(t,u∗, y0),y(t)
)

≤ ε, ∀t ≥ 0.

Proof : The idea is to construct a behavior control u∗ by consecutive intervals, such that on
each of them, u∗ follows one random control in the family {uk} whose trajectory is close to the
limit y. The proof relies on the nonexpansive property established in Lemma 4.1, which ensures
that by iteration, the trajectory generated by u

∗ is close to y on the whole R+.

Let ε > 0 be fixed. The behavior control u
∗ will be constructed as concatenations of a

sequence of random controls (ûKm) (to be specified later on) at points {1, 2, 3, ...}.

By definition, t 7→ y(t) is a limit trajectory of
(

ỹ(·,uk, y0)
)

k
in ∆(Y ) for dKR, so for each

m ≥ 0, there exists some Km+1 > 0 such that:

dKR

(

ỹ(t,uKm+1 , y0),y(t)
)

≤ εm+1, ∀t ∈ [m,m+ 1]. (4.5)

Following Remark 4.5, we could have assumed that each u
Km+1 is a behavior control, and let

u
Km+1 : Y × Ω× [0,+∞) → U be the component of uKm+1 on interval [m,m+ 1].

In order to define the behavior control u∗ , it is sufficient to construct by induction a sequence
of random controls (ûKm)m≥1 such that for all m ≥ 1,

dKR

(

ỹ(t,u[m], y0),y(t)
)

≤ 2
m
∑

ℓ=1

εℓ, ∀t ∈ [0,m],

where
u
[1] = û

K1 and u
[m] = û

K1 ⊕1 · · · ⊕m−1 û
Km, m ≥ 2.

For m = 1, let û
K1 = u

K1 , then from Equation (4.5), dKR

(

ỹ(t1,u
[1], y0),y(t)

)

≤ ε, ∀t ∈

[0, 1]. This initializes our induction.

Assume that û
K1 , ..., ûKm are defined and let u

[m] = û
K1 ⊕1 · · · ⊕m−1 û

Km (u[1] = û
K1 for

m = 1) satisfy:

dKR

(

ỹ(t,u[m], y0),y(t)
)

≤ 2
m
∑

l=1

εl, ∀t ∈ [0,m]. (4.6)

Next we construct the control ûKm+1 thus complete the definition of u[m+1] on [m,m + 1). To
do this, we consider the two distributions ỹ(m,u[m], y0) and ỹ(m,uKm+1 , y0). Take t = m in
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Equation (4.5) and in Equation (4.6), we use the triangle inequality obtain a bound on the
distance between them:

dKR

(

ỹ(m,u[m], y0), ỹ(m,u
Km+1 , y0)

)

≤ 2

m
∑

l=1

εl + εm+1. (4.7)

Consider then the random control uKm+1 on the initial distribution ỹ(m,uKm+1 , y0), and apply
Lemma 4.1 to deduce the existence of some random control ûKm+1 on the starting distribution
ỹ(m,u[m], y0) such that:

dKR

(

ỹ

(

∆, ûKm+1 , ỹ(m,u[m], y0)
)

, ỹ(∆, ūKm+1 , ỹ(m,uKm+1 , y0)
)

≤ dKR

(

ỹ(m,u[m], y0), ỹ(m,u
Km+1 , y0)

)

≤ 2
m
∑

l=1

εl + εm+1, ∀∆ ∈ [0, 1].

(4.8)

By definition of uKm+1 , we have that for all ∆ ∈ [0, 1],

ỹ
(

∆,uKm+1 , ỹ(m,uKm+1 , y0)
)

= ỹ
(

∆+m,uKm+1 , y0
)

. (4.9)

Define now û
[m+1] = û

[m] ⊕m û
Km+1. This gives us:

ỹ
(

∆, ûKm+1 , ỹ(m,u[m], y0)
)

= ỹ
(

∆+m,u[m+1], y0
)

. (4.10)

We substitute Equation (4.9) and Equation (4.10) back into Equation (4.8) and use the change
the variable to obtain that:

∀t ∈ [m,m+ 1], dKR

(

ỹ(t,u[m+1], y0), ỹ(t,u
Km+1 , y0)

)

≤ 2
m
∑

l=1

εl + εm+1.

Finally, with the help of definition of Km+1 in Equation (4.5), we obtain that: for any t ∈
[m,m+ 1],

dKR

(

ỹ(t,u[m+1], y0), ȳ(t)
)

≤ 2

m
∑

l=1

εl + εm+1 + εm+1 = 2

m+1
∑

l=1

εl.

This finishes the inductive definition of the sequence
(

û
Km
)

m≥1
.

To conclude, we set the behavior control

u
∗ = û

K1 ⊕1 · · ·û
Km ⊕m · · ·,

as concatenations of
(

û
Km
)

m≥1
at points {m ≥ 1}, and by our inductive construction:

∀t ≥ 0, dKR

(

ỹ(t,u∗, y0), ȳ(t)
)

≤ 2

∞
∑

ℓ=1

εℓ =
2ε

1− ε
≤ 3ε,

as long as ε ∈ (0, 13 ]. This completes our proof for the lemma by considering ε′ = ε/3. Q.E.D.

14



4.2 Main part of the proof

This section is devoted for the proof of Theorem 3.1, which is divided into three parts.

Part A aims at establishing certain optimality properties for a sequence of controls (Lemma
4.9); In Part B, we use the compact nonexpansive property (Lemma 4.8) to obtain a "limit"
control of the above sequence ensuring that the average cost on each (consecutive) block of fixed
length is no more than V ∗

(

Equation (4.18)
)

; Part C concludes the proof through a comparison
of the (normalized) θ-evaluated payoff to the average cost by blocks.

Part A. For any t ≥ 0 , S > 0, y0 ∈ Y and u ∈ Ũ , denote

γt,S(y0,u) =
1

S

∫

[t,t+S]
g
(

ỹ(s,u, y0)
)

ds, ∀y0 ∈ Y.

For T ≥ 0, we put

ϕT,S(y0) = inf
u∈Ũ

sup
µ∈∆([0,T ])

∫

[0,T ]
γt,S(y0,u)dµ(t).

Fix any T, S, y0. We first prove a minmax result for ϕT,S(y0). We denote for each s ≥ 0:

βs(µ, S) =
1

S

∫ min{T,s}

max{0, s−S}
dµ(t) =

1

S
µ
(

[0, T ] ∩ [s− S, s]
)

.

Then from the definition of γt,S(y0,u), we obtain that

∫

[0,T ]
γt,S(y0,u)dµ(t) =

∫

[0,T ]

(

1

S

∫

[t,t+S]
g
(

ỹ(s,u, y0)
)

ds

)

dµ(t)

(′′Fubini’s theorem′′) =

∫

[0,T+S]
βs(µ, S)g (ỹ(s,u, y0)) ds.

Note that for each fixed S > 0 and µ ∈ ∆([0, T ]), the mapping t 7→ βt(µ, S) defines a density
function of some evaluation over R+, which we denote by ς(µ, S). This enables us to write

ϕT,S(y0) = inf
u∈Ũ

sup
µ∈∆([0,T ])

γς(µ,S)(y0,u).

Next, we use Sion’s minmax theorem (cf. Appendix A.3 in [21]) to show that the operators
"inf" and "sup" of the above equation commute. Indeed, Ũ is convex; ∆([0, T ]) is convex and
weak-* compact and the payoff function (µ,u) 7→ γς(µ,S)(y0,u) is affine in both µ and u; moreover
the function γt,S(y0,u) is continuous in t for given u (g is continuous in y and each trajectory is
absolutely continuous), and so is u 7→ γς(µ,S)(y0,u). Then we obtain:

ϕT,S(y0) = sup
µ∈∆([0,T ])

inf
u∈Ũ

γς(µ,S)(y0,u) = sup
µ∈∆([0,T ])

Vς(µ,S)(y0). (4.11)
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Lemma 4.9 For any ε > 0, there is some S0 > 0 such that

∀T ≥ 0,∃uT ∈ Ũ : ∀y0 ∈ Y, γt,S0(y0,u
T ) ≤ V ∗(y0) + ε,∀t ≤ T.

Proof : Let θ ∈ ∆(R+) be an evaluation that is absolutely continuous with respect to the
Lebesgue measure, thus it admits a density function t 7→ fθ(t). For any s ≥ 0, we denote
Is(θ) =

∫

[0,+∞)

∣

∣fθ(t+ s)− fθ(t)
∣

∣dt. Then one obtains that (cf. Lemma 3.3 in [16]):

Is(θ)/2 ≤ TVs(θ) ≤ Is(θ).

For any S > 0, T ≥ 0 and µ ∈
(

[0, T ]
)

, we apply the above expression for ς(µ, S) so as to obtain
the following bound: ∀s ∈ [0, S],

Is
(

ς(µ, S)
)

=
1

S

∫

[0,T+S]

[

µ
(

[t− S, t− S + s] ∩ [0, T ]
)

+ µ
(

[t, t+ s] ∩ [0, T ]
)

]

dt

=

∫

[0,T+S]

∫

[t−S,t−S+s]∩[0,T ]
dµ(s′)dt+

∫

[0,T+S]

∫

[t,t+s]∩[0,T ]
dµ(s′)dt

=
s

S
·
(

µ
(

[−S, T + s] ∩ [0, T ]
)

+ µ
(

[0, s+ T + S] ∩ [0, T ]
)

)

≤
2s

S
,

(4.12)

where we have used Fubini’s theorem to obtain the third equality.

According to Proposition 2.5, the general limit value exists and is equal to V ∗, i.e. for any
ε > 0, we take η > 0 and S′ > 0 such that:

∀θ ∈ ∆(R+),

(

sup
0≤s≤S′

TV (θ) ≤ η′ =⇒ (∀y0 ∈ Y, |Vθ(y0)− V ∗(y0)| ≤ ε/2)

)

. (4.13)

Take S0 = max{2S′

η′
, S′}. From Equation (4.12), we obtain that:

∀s ∈ [0, S′], S ≥ S0, T > 0, µ ∈ ∆
(

[0, T ]
)

, TVs (ς(µ, S)) ≤
2s

S
≤

2S′

S0
≤ η′,

thus by Equation (4.13): ∀y0 ∈ Y, |Vς(µ,S)(y0)− V ∗(y0)| ≤ ε/2.

Next, from Equation (4.11), ϕT,S(y0) = supµ∈∆([0,T ]) Vς(µ,S)(y0), we deduce that

∀ε > 0,∃S0 > 0 : ∀S ≥ S0,∀T ≥ 0,∀y0 ∈ Y, |ϕT,S(y0)− V ∗(y0)| ≤ ε/2. (4.14)

Finally, according to the definition ϕT,S(y0) = infu supµ γς(µ,S)(y0,u), we have

∀T > 0,∃uT ∈ Ũ : ∀y0 ∈ Y, γt,S0(y0,u
T ) ≤ ϕT,S0(y0) + ε/2,∀t ∈ [0, T ].

Together with Equation 4.14, one obtains

∀ε > 0,∃S0 > 0 : ∀T ≥ 0,∃uT ∈ Ũ : ∀y0 ∈ Y, γt,S0(y0,u
T ) ≤ V ∗(y0) + ε,∀t ≤ T. (4.15)
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The proof of the lemma is then complete. Q.E.D.

Part B. Fix now any ε > 0, and consider S0 > 0 and the random control uT ∈ Ũ for any T > 0
given as in Lemma 4.9. We take an increasing sequence (Tk)k≥1 in R+ and fix any y0 ∈ Y . For
each k ≥ 1, t 7→ ỹ(t,uTk , y0) is the trajectory of uTk in ∆(Y ). Thus from Equation (4.15), we
obtain:

γt,S0(y0,u
Tk) =

1

S0

∫

[t,t+S0]
g
(

ỹ(t,uTk , y0)
)

ds ≤ V ∗(y0) + ε for all t ≤ Tk. (4.16)

Let ȳ(·) : t 7→ ȳ(t) be a limit trajectory of the sequence
(

ỹ(·,uTk , y0)
)

k≥1
i.e. there is a

subsequence ψ(k) such that ỹ(·,uTψ(k) , y0) converges uniformly to ȳ(·) on each [m,m+ 1]. Since
g is continuous on the compact invariant set Y , and ∆(Y ) is weak-* compact for the topology
induced by the distance dKR

(

cf. Theorem 6.9 in [22]
)

, we let k tend to infinity
(

along the
subsequence ψ(k)

)

in Equation (4.16) to get

1

S0

∫

[t,t+S0]
g
(

ȳ(s)
)

ds ≤ V ∗(y0) + ε, ∀t ≥ 0. (4.17)

Now we apply Lemma 4.8 for the sequence
(

ỹ(·,uTk , y0)
)

k≥1
and its limit trajectory ȳ(·) to

obtain the existence of some behavior control u∗ such that:

dKR
(

ỹ(t,u∗, y0), ȳ(t)
)

≤ ε, ∀t ≥ 0.

Together with Equation (4.17), we obtain:

γt,S0(y0,u
∗) =

1

S0

∫

[t,t+S0]
g
(

ỹ(s,u∗, y0)
)

ds ≤ V ∗(y0) + 2ε, ∀t ≥ 0. (4.18)

Part C. Let θ ∈ ∆(R+) be any evaluation. We integrate Equation (4.18) over t ≥ 0 with
respect to θ, to obtain:

V ∗(y0) + 2ε ≥

∫

[0,+∞)
γt,S0(y0,u

∗)dθ(t)

=

∫

[0,+∞)

(

1

S0

∫

[t,t+S0]
g (ỹ(s,u∗, y0)) ds

)

dθ(t)

(′′Fubini’s theorem′′) =

∫

[0,+∞)
βs(θ, S0)g (ỹ(s,u

∗, y0)) ds

=γς(θ,S0)(y0,u
∗),

(4.19)

where βs(θ, S0) =
1
S0

∫ s

max{0,s−S0}
dθ(t), ∀s ≥ 0, and ς(θ, S0) is the evaluation with s 7→ βs(θ, S0)

its density function.

Next, we show that

|γθ(y0,u
∗)− γς(θ,S0)(y0,u

∗)| ≤ sup
Q∈B(R+)

|θ(Q)− ς(θ, S0)(Q)| ≤ 2TVS0(θ). (4.20)
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Indeed, the first inequality follows from Hahn’s decomposition theorem applied to the sign
measure "θ − ς(θ, S0)"

(

cf. Lemma 3.7 in [16]
)

. Let Q be any Borel set on R+. We write
βs(θ, S0) =

1
S0

∫ s

s−S0
dθ(t) for all s ≥ 0 by considering θ as a probability measure over [−S0, 0)∪R+

null on [−S0, 0). We have

ς(θ, S0)(Q) =

∫

s∈Q
βs(θ, S0)ds =

1

S0

∫

s∈Q

(

∫

t∈[s−S0,s]
dθ(t)

)

ds

(′′Fubini’s theorem′′) =

∫

t∈Q−S0

(

1

S0

∫

s∈[t,t+S0]
ds

)

dθ(t)

= θ(Q− S0).

Thus we have |θ(Q)− ς(θ, S0)(Q)| = |θ(Q)− θ(Q−S0)| ≤ θ([0, S0))+TVS0(θ) ≤ 2TVS0(θ). This
proves Equation (4.20) by taking the supremum over Q ∈ B(R+).

Finally, we substitute Equation (4.19) into Equation (4.20), to obtain:

γθ(y0,u
∗) ≤ V ∗(y0) + 2TVS0(θ) ≤ V ∗(y0) + 3ε,

for all θ ∈ ∆(R+) with sup0≤s≤S0
TVs(θ) ≤ ε.

To conclude, we have obtained that: ∀ε,∃S0 > 0,∃u∗ ∈ Ũ ,

∀θ ∈ ∆(R+),
(

sup
0≤s≤S0

TVs(θ) ≤ ε =⇒ γθ(y0,u
∗) ≤ V ∗(y0) + 3ε, ∀y0 ∈ Y

)

.

As ε > 0 is arbitrary, this proves Theorem 3.1 by taking "η = ε" and "S = S0".
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