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Tight Global Linear Convergence Rate Bounds for
Operator Splitting Methods

Goran Banjac and Paul J. Goulart

Abstract—In this paper we establish necessary and sufficient
conditions for global linear convergence rate bounds in operator
splitting methods for a general class of convex optimization
problems where the associated fixed-point operator is strongly
quasinonexpansive. We also provide a tight bound on the
achievable convergence rate. Most existing results establishing
global linear convergence in such methods require restrictive
assumptions regarding strong convexity and smoothness of the
constituent functions in the optimization problem. However,
there are several examples in the literature showing that linear
convergence is possible even when these properties do not hold.
We provide a unifying analysis method for establishing global
linear convergence based on linear regularity and show that many
existing results are special cases of our approach. Moreover, we
propose a novel linearly convergent splitting method for linear
programming.

I. INTRODUCTION

We consider convex optimization problems in the form

minimize f(x) + g(x) (1)

where x ∈ H is the optimization variable, H is a real Hilbert
space, and f and g are convex functions. Such problems are
often referred to as composite convex optimization problems,
and arise in such disparate areas as signal processing [2],
[3], optimal control [4], [5] and machine learning [6]. There
exists a variety of methods for solving such problems, known
collectively as operator splitting methods, which encompasses
techniques such as the proximal gradient method (PGM),
Peaceman-Rachford splitting (PRS), Douglas-Rachford split-
ting (DRS), and the alternating direction method of multipliers
(ADMM) [7], [8].

Over the last decade convergence rate analysis of opera-
tor splitting methods has attracted significant interest in the
control community. This is mainly motivated by the need
to provide a computation complexity certificate for optimal
control algorithms [9]. The authors in [4] established linear
convergence of the accelerated PGM for solving a restricted
class of input-constrained model predictive control (MPC)
problems provided that the constraint set is simple enough.
Linear convergence of the same algorithm with an adaptive
restart technique was shown in [10], [11]. The ADMM for
solving quadratic programs was shown to converge linearly
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provided that the constraint matrix has full row-rank [12]. The
authors in [13] extended this result to a more general class
of problems having a strongly convex and smooth objective
function, while the tightness of the obtained convergence rate
was shown in [14]. The authors in [15] established linear
convergence of a distributed version of the ADMM under
similar assumptions.

Many practical problems can be formulated in the form (1)
where f is a smooth function and g is nonsmooth. Examples
include constrained optimization of a smooth function f when
g is the indicator function of a closed convex set, or regularized
optimization when g is a regularization term. In proximal
methods a nonsmooth function is tackled through its proximal
operator, whose evaluation requires the solution of a small
ancillary convex optimization problem. These subproblems
often admit closed-form solutions [3], which makes proximal
methods effective in practical applications. Even when the
proximal operator of g is not easy to evaluate, the original
problem can sometimes be reformulated such that the new
problem has more favorable structure. Such a reformulation
is often done by forming and solving the dual of the original
problem [16].

First-order methods can sometimes converge very slowly,
and in particular converge sublinearly in many problems of
practical interest. Many of the results on linear convergence
of first-order methods require strong convexity and smoothness
of a function involved in the optimization problem, e.g. if the
problem can be written in the form (1) with f strongly convex
and smooth and g as a function whose proximal operator
is easy to evaluate [17]. Real-world problems rarely have
the aforementioned structure, so current analysis techniques
can not ensure linear convergence of first-order optimization
methods. This situation has motivated many researchers to
look for alternative algorithms and analytical methods that
could ensure linear convergence. The authors in [18]–[20]
address local or asymptotic linear convergence under a variety
of assumptions. Linear convergence of a particular proximal
method for linear programming (LP) is shown in [21]. The
work in [22] establishes linear convergence of feasible descent
methods by proving a global error bound for a particular
class of non-strongly convex problems, and the authors in
[23], [24] show that the same argument can be used to prove
linear convergence of some methods for solving optimization
problems of the type arising in MPC. Related, but a more
general property than the error bound [25], is a quadratic
growth property that was studied in [25]–[28], and used to
establish linear convergence of various first-order methods.

Linear convergence of some projection methods, which are a
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special class of proximal methods for solving convex feasibil-
ity and best-approximation problems, has also been established
in certain special cases. In the case of two affine subspaces, the
linear convergence rate of the alternating projection method
(APM) and the DRS method is characterized in terms of
the Friedrichs angle between the subspaces [29], [30]. The
authors in [31] show that the linear convergence rate of the
APM applied to two convex polyhedra is characterized by
the smallest nonzero Friedrichs angle between faces of the
polyhedra. The authors in [32] have identified linear regularity
as a sufficient condition for global linear convergence of the
fixed-point iteration of an averaged nonexpansive operator and
provided a linear convergence rate. In our earlier work in [1]
we showed that linear regularity is also a necessary condition
for global linear convergence and provided a better rate of
convergence compared to [32].

Contributions of this work

In this paper we establish necessary and sufficient conditions
for global linear convergence rate bounds of the fixed-point
iteration of a strongly quasinonexpansive operator in Hilbert
spaces and provide a tight convergence rate bound. Parts of this
work were presented in preliminary form in [1], which we here
extend in several ways: 1) The results herein apply to strongly
quasinonexpansive operators, a wider class of operators (than
e.g. contractive or averaged nonexpansive operators) that arise
in algorithms for convex optimization; 2) The results herein are
shown to hold for general real Hilbert spaces; 3) We derive a
linear convergence rate of the generalized Douglas-Rachford
splitting for subspaces; 4) We prove tightness of the global
linear convergence rate bound established in [1]; and 5) We
demonstrate that a variety of existing results establishing linear
convergence are special cases of our analysis.

Structure of the paper

The paper is organized as follows. In Section II we show
how the convergence of a given optimization algorithm is
related to the properties of a particular operator associated
to the algorithm, and we provide a global linear convergence
rate bound. The relationship between the error bound and
the quadratic growth property of the function and the linear
regularity of the operator related to a particular method is
discussed in Section III. In Section IV we establish linear
convergence of some projection methods using our framework
and show tightness of the convergence rate bound established
in Section II. A particular linearly convergent method for LP
is derived in Section V, while Section VI concludes the paper.

Notation

Let N denote the set of nonnegative integers, R the set
of real numbers, R+ the set of nonnegative real numbers,
R̃ := R ∪ {∞} the extended real line, Rn the n-dimensional
real space, and H a real Hilbert space equipped with inner
product 〈·, ·〉, the induced norm ‖ · ‖ and the identity op-
erator Id. The class of closed, proper and convex functions
f : H → R̃ is denoted by Γ0(H). For f ∈ Γ0(H), we

denote by ∂f(x) its subdifferential at x. If f is differentiable,
then ∇f(x) denotes its gradient at x. For x ∈ Rn and
y ∈ Rn, (x, y) := [xT yT ]T denotes their vertical concate-
nation. The set of fixed-points of an operator T : H → H
is defined as FixT := {x ∈ H | x = Tx}. The distance
of a vector x to a nonempty closed convex set C ⊆ H
is distC(x) := min {‖x− y‖ | y ∈ C}, and the distance be-
tween two nonempty sets, C1 and C2, is dist(C1, C2) :=
inf {‖x− y‖ |x ∈ C1, y ∈ C2}. Projection of a vector x onto C
is PC(x) := {y ∈ C | ‖y − x‖ = distC(x)}. The affine hull of
a set C is denoted by aff(C), and the subspace obtainable via
translation of aff(C) is denoted by aff0(C), i.e. aff0(C) :=
aff(C)− c for some c ∈ aff(C). We denote the relative interior
of C by relint C. A face Px of a polyhedron P is defined
as a nonempty minimizer of a linear function over P , i.e.
Px := argminp∈P 〈x, p〉. The set of all faces of P is denoted
by FP .

II. LINEAR CONVERGENCE VIA LINEAR REGULARITY

We will analyze the convergence properties of general
first-order iterative optimization algorithms for problems in
the form (1). Let D be a nonempty subset of H. We define
an operator T : D → D such that the iterations computed by
the algorithm from some initial point x0 ∈ D are equivalent
to the iteration

xk+1 = Txk, ∀k ∈ N, (2)

for all xk ∈ D. The iteration (2) is referred to as a Picard
or fixed-point iteration of operator T . We make the following
assumption throughout:

Assumption 1: The fixed-point set of T is nonempty.
Under mild assumptions on operator T , it can be shown that

a bounded sequence {xk} generated by (2) converges weakly
to a point in FixT [33, Thm. 5.13]. The set of optimizers X ?
of the optimization problem at hand is usually closely related
to the fixed-point set of the related operator T . It is often
the case that either X ? ≡ FixT (e.g. when T represents the
PGM [8]), or it is easy to reconstruct a point x? ∈ X ? from
a point x ∈ FixT (e.g. when T represents the DRS [8]). If
this is the case, then solving an optimization problem can be
reformulated as a problem of finding a fixed-point of a suitably
selected operator.

We are particularly interested in showing that the operator T
satisfies the condition

distFixT (Tx) ≤ β distFixT (x) (3)

for all x ∈ D, and for some β ∈ [0, 1) independent of the
choice of x. Note that this is different from local (asymptotic)
linear convergence that requires only that inequality (3) holds
when x is close enough to FixT . The constant β is called
the convergence factor and determines the linear convergence
rate.

In the sequel we will introduce some definitions and results
from operator theory that we require in order to analyze the
convergence of a fixed-point iteration; we refer the reader to
[33] for a comprehensive review.

Definition 1 ([33], [34]): Let D be a nonempty subset of H
and let T : D → H. Then T is
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(b) 1-strongly quasinonexpansive.
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(c) β-contractive.

Fig. 1. Graphical representation of some operator properties. The point/set Tx lies somewhere inside the gray-shaded area. We assume that x is on the unit
circle with the center at x̄ ∈ FixT .

(i) nonexpansive if (∀x ∈ D)(∀y ∈ D)

‖Tx− Ty‖ ≤ ‖x− y‖, (4a)

(ii) α-averaged with α ∈ (0, 1) if there exists a nonexpansive
operator R : D → H such that

T = (1− α) Id +αR,

(iii) quasinonexpansive (QNE) if (∀x ∈ D)(∀y ∈ FixT )

‖Tx− y‖ ≤ ‖x− y‖, (4b)

(iv) ρ-strongly quasinonexpansive (ρ-SQNE) with ρ > 0 if
(∀x ∈ D)(∀y ∈ FixT )

‖Tx− y‖2 ≤ ‖x− y‖2 − ρ ‖x− Tx‖2, (4c)

(v) β-contractive with β ∈ [0, 1) if (∀x ∈ D)(∀y ∈ D)

‖Tx− Ty‖ ≤ β‖x− y‖. (4d)

It can be shown that T is α-averaged if and only if it satisfies
(∀x ∈ D)(∀y ∈ D)

‖Tx−Ty‖2+
1− α
α
‖(Id−T )x−(Id−T )y‖2 ≤ ‖x−y‖2 (5)

(see [33, Prop. 4.25]); an operator satisfying (5) for α = 1
2

is called firmly nonexpansive. The same proof can be used to
show that T is ρ-SQNE if and only if there exists a QNE
operator R : D → H such that

T =

(
1− 1

1 + ρ

)
Id +

1

1 + ρ
R. (6)

Note that every nonexpansive operator is also QNE, and
every α-averaged operator is 1−α

α -SQNE. In particular, all the
operators in Definition 1 are QNE for which the following fact
applies:

Fact 1 ([34]): If T : H → H is QNE, then FixT is closed
and convex.

Operators arising from the iteration of a particular optimiza-
tion method often enjoy at least some subset of the properties
described in Definition 1. Figure 1 illustrates these properties
and highlights that the distance of the iterates of a fixed-point
iteration to any x̄ ∈ FixT is nonincreasing if any of the

properties above holds. In the case of a ρ-SQNE operator
that satisfies the so called demi-closedness principle (for more
details see [34]), the sequence {xk} converges weakly to a
fixed-point [35, Cor. 2]. Moreover, in the case of a contractive
operator convergence is linear and the fixed-point iterates
satisfy the inequality (3). Without additional assumptions the
same can not be claimed for a SQNE operator. Note that if T
is used as a fixed-point operator, it needs to map D to D as
noted just before (2).

In the sequel we will identify the essential additional prop-
erty of an SQNE operator to ensure that a sequence generated
by the related fixed-point iteration satisfies (3).

Remark 1: If (3) holds and FixT is a singleton, then {xk}
converges linearly with convergence factor β. If FixT is
not a singleton, condition (3) itself does not imply that the
sequence is linearly convergent. However, if T is QNE then
the concept of Fejér monotonicity can be used to show that (3)
implies linear convergence of {xk} [33, Thm. 5.12]. Therefore,
instead of claiming that (3) holds, we will sometimes state that
{xk} admits global linear convergence because the underlying
operator is usually QNE.

A. Linear regularity
The linear convergence results we present will largely

exploit the concept of linear regularity of an operator.
Definition 2 ([32]): Let T : D → H and suppose that

Assumption 1 holds. We say that T is linearly regular with
constant κ ≥ 0 if (∀x ∈ D)

distFixT (x) ≤ κ‖x− Tx‖. (7)

If an operator is linearly regular, it means that the dis-
tance between successive iterates (xk, xk+1) of the related
fixed-point iteration is lower-bounded by 1

κ distFixT (xk). Fig-
ure 2 illustrates that if the linear regularity constant of an
SQNE operator T is bounded, i.e. κ < ∞, then Tx will lie
inside the circle with radius β < 1. This observation leads to
our main result:

Theorem 1: Let T : D → H be a ρ-SQNE operator and
suppose that Assumption 1 holds. Then the inequality

distFixT (Tx) ≤ β distFixT (x)
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Fig. 2. Linear convergence of a SQNE and linearly regular operator holds if
the linear regularity constant κ is bounded from above. In that case Tx lies
inside the circle with a radius β < 1. We assume that x is on the unit circle
with the center at x̄ ∈ FixT .

holds for some constant β ∈ [0, 1) and (∀x ∈ D) if and only
if T is linearly regular. If the linear regularity constant of such
an operator T is κ, then

β =

√
1− ρ

κ2
∈ [0, 1). (8)

Proof: See Appendix A.
Theorem 1 states that linear regularity, or a lack thereof, is

the essential determinant of global linear convergence (in the
sense of (3)) for a sequence generated by fixed-point iteration
of an SQNE operator. We provide an example in Section IV
of an operator for which our rate bound in (8) is tight.

Previous results in [32] have established linear regularity
as a sufficient condition for (3) when T is α-averaged, albeit
with the weaker convergence rate bound

β =

√
ρ−1κ2

1 + ρ−1κ2
(9)

where ρ = 1−α
α . It is easy to show that our bound in

Theorem 1 is strictly better than (9). A related result appears
in [21], which established linear convergence of a particular
first-order method for linear programming based on the weaker
condition

distFixT (Tx) ≤ κ̃‖x− Tx‖, (10)

for some ρ-SQNE operator T and some κ̃ > 0, i.e. by lower
bounding ‖x−Tx‖ via distFixT (Tx) rather than distFixT (x).
In this case one can show that condition (3) still holds
with rate β as in (9) but with κ replaced by κ̃. By virtue
of Theorem 1 any such operator must be linearly regular,
so that (10) is also both necessary and sufficient for linear
convergence of a SQNE operator.

Proposition 1: Let T : D → H be a ρ-SQNE operator. Then
its linear regularity constant κ satisfies

κ ≥ 1 + ρ

2
.

Proof: See Appendix B.

B. Improving the convergence factor

It follows from (6) that it is possible to obtain an SQNE
operator from QNE via a suitable transformation. It turns out
that if T1 is ρ1-SQNE, we can construct a ρ2-SQNE operator
T2 via an additional similar transformation, assuming that
ρ1 > 0 and ρ2 > 0. We next show how to select ρ2 in
order to obtain the smallest convergence factor of the resulting
fixed-point iteration:

Proposition 2: Let ρ1 > 0 and ρ2 > 0. Suppose T1 : D →
H is ρ1-SQNE, with a linear regularity constant κ1 > 0, and
let T2 :=

(
1− 1+ρ1

1+ρ2

)
Id + 1+ρ1

1+ρ2
T1. Then the following hold

(i) T2 is ρ2-SQNE with linear regularity constant κ2 =
1+ρ2
1+ρ1

κ1, and this estimate is tight.
(ii) The smallest convergence factor is attained for ρ2 = 1.

Proof: See Appendix C.
In other words, for any SQNE operator T achieving linear

convergence, the worst-case convergence factor can be mini-
mized by a simple transformation to make it 1-SQNE.

We will next show that a variety of existing results estab-
lishing linear convergence for different problem classes can be
seen as special cases of the approach introduced in Theorem 1.

III. LINEAR REGULARITY COMING FROM THE ERROR
BOUND AND THE QUADRATIC GROWTH PROPERTY

We first introduce some properties of a convex function that
will be used in the sequel.

Definition 3 ([13]): Let f ∈ Γ0(H). Then f is
(i) L-smooth if it is differentiable and ∀(x, y) ∈ H

f(x) ≤ f(y) + 〈∇f(y), x− y〉+
L

2
‖x− y‖2,

(ii) µ-strongly convex if ∀(x, y) ∈ H and ∀u ∈ ∂f(y)

f(x) ≥ f(y) + 〈u, x− y〉+
µ

2
‖x− y‖2.

Consider the following convex optimization problem

minimize f(x)

subject to x ∈ C
(11)

where f(x) = h(Ex) + 〈b, x〉, h is µ-strongly convex and
L-smooth, and C is a nonempty closed polyhedral set whose
projection operator can be evaluated efficiently. Note that this
problem is a special case of problem (1) since it can be
reformulated as

minimize f(x) + IC(x)

where IC is the indicator function of C defined as

IC(x) =

{
0 x ∈ C
∞ otherwise

with IC ∈ Γ0(H) [33].
The problem (11) arises in many practical applications such

as the dual forms of the MPC problem [16] and the L1-
loss linear support vector machine (SVM) [22]. Smoothness
of h implies smoothness of f . If E has full column rank,
then f is strongly convex [13] and there consequently exists
some linearly convergent proximal method for solving (11).
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However, in most real-world problems E does not have full
column rank, which results in a function f that is convex but
not strongly so.

The authors in [18] were among the first to establish local
linear convergence of a first-order method for solving a non-
strongly convex problem related to (11). Their analysis is
based on a so-called local error bound, with a global error
bound established only recently [22]. This global error bound
was then used to establish global linear convergence of feasible
descent methods for solving (11). This important result is used
in [23], [24] to establish linear convergence of some methods
for solving optimization problems of the type arising in MPC.
The authors in [25] showed that the so-called quadratic growth
property is more general than the error bound, and can be also
used for establishing linear convergence of some first-order
methods. The relationship between error bound and quadratic
growth properties is discussed in [25]–[28].

However, the definition of linear convergence in the afore-
mentioned papers does not follow the usual one, but in-
stead refers to linear convergence of the suboptimality gap
{f(xk)−f?}, where f? is the optimal value of problem (11),
rather than linear convergence of the sequence {xk}. We will
show that both the global error bound and the quadratic growth
property imply linear regularity of fixed-point operators related
to the same class of methods, which allows us to prove
linear convergence of the sequence {xk} when the underlying
operator is SQNE.

A. Error bound

Definition 4 ([22]): An optimization problem of the
form (11) admits a global error bound with constant τ ≥ 0 if
(∀x ∈ C)

distX?(x) ≤ τ‖∇+f(x)‖, (12)

where X ? is the nonempty set of optimizers of the given
optimization problem and ∇+f(x) := x− PC(x−∇f(x)).

Definition 5 ([22]): A sequence {xk} is said to be generated
by a feasible descent method if for every k it satisfies

xk+1 = PC
(
xk − ωk∇f(xk) + ek

)
, (13a)

‖ek‖ ≤ β‖xk − xk+1‖, (13b)

f(xk)− f(xk+1) ≥ γ‖xk − xk+1‖2, (13c)

where ωk > 0, β ≥ 0, and γ > 0.
The inequality in (13c) is often referred to as a sufficient-

decrease condition [36]. Conditions (12) and (13a)–(13b)
imply the inequality

distX?(xk) ≤ τ 1 + β

ω
‖xk − xk+1‖,

where ω := min(1, infk ω
k) (see eq. (46) in [22]). Since

X ? is the fixed-point set of feasible descent methods, this
inequality means that fixed-point operators associated to these
methods enjoy the essential linear regularity property identified
in Theorem 1 as long as ω > 0.

B. Quadratic growth property

Definition 6 ([25]): An optimization problem of the
form (11) admits a quadratic growth property with constant
a > 0 if (∀x ∈ C)

a

2
dist2X?(x) ≤ f(x)− f?. (14)

Definition 7 ([27]): A sequence {xk} is said to be generated
by a subgradient descent method if for every k it satisfies (13c)
and there exists wk+1 ∈ ∇f(xk+1) +NC(x

k+1) such that

‖wk+1‖ ≤ b‖xk − xk+1‖, (15)

where NC(x) denotes the normal cone of C at x, and b > 0.
The inequality in (15) is referred to as a relative error
condition. It is easy to show that conditions (14) and (15)
imply linear regularity of the related operator. If we denote by
φ = f +IC , then the right-hand side of (14) can be written as
φ(x)−φ? where φ? = f?. The quadratic growth property and
convexity of φ, together with the relative error condition (15)
imply that for xk+1 /∈ X ? and x̄k+1 := PX?(xk+1)

a

2
dist2X?(xk+1) ≤ φ(xk+1)− φ?

≤ 〈wk+1, xk+1 − x̄k+1〉
≤ ‖wk+1‖ ‖xk+1 − x̄k+1‖
= ‖wk+1‖ distX?(xk+1)

≤ b ‖xk − xk+1‖ distX?(xk+1).

Note that since φ is closed, so is X ? and thus the projection
onto X ? is well defined. Dividing both sides of the above
inequality by a

2 distX?(xk+1) > 0, we obtain

distX?(xk+1) ≤ κ̃‖xk − xk+1‖,

where κ̃ = 2b
a . Using Lemma 4 (in Appendix A) it can

be shown that the last inequality implies that the fixed-point
operator associated to a subgradient descent method is linearly
regular with constant κ = κ̃+ 1.

C. Linear convergence

In order to establish linear convergence of the sequence
{xk} satisfying conditions from either of the previous two
subsections, it then only remains to show that the operator
related to the method is SQNE. For instance, if β in (13b)
is zero then the method reduces to the projected gradient
method. We next show that the projected gradient method with
a constant step size ω is averaged, and thus SQNE.

Lemma 1: Let T be the fixed-point operator associated with
the projected gradient method for solving an optimization
problem of the form (11),

T = PC ◦(Id−ω∇f),

where f is L-smooth, and ω ∈ (0, 2
L ) is the step size. Then

T is 1
2−ωL/2 -averaged.
Proof: By [33, Prop. 4.8], operator PC is firmly non-

expansive, and by [8], (Id−ω∇f) is ωL
2 -averaged for ω ∈

(0, 2
L ). By [37, Prop. 2.4], the composition of α1-averaged

and α2-averaged operator is averaged with parameter α =
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α1+α2−2α1α2

1−α1α2
. The statement follows directly by setting α1 =

1/2 and α2 = ωL/2 in the expression for α.
Note that it is not necessary that β = 0 for a feasible

descent method to be averaged. For instance, the proximal
minimization algorithm is a method from this class since it
can be represented in the form (13) with β = ωL, where ω
is a parameter of the proximal operator [18, Prop. 3.3].
It is also firmly nonexpansive since its iteration is defined
via the proximal operator of a closed convex function [33,
Prop. 12.27].

Remark 2: In Lemma 1 we showed that the fixed-point
operator associated with PGM with a constant step size is
averaged. It is easy to show that PGM with time-varying step
size is also averaged if ω̄ < 2/L, where ω̄ := supk ω

k.
However, the fixed-point operator associated with this method
would then be time-varying, which is a more general setup
than iteration (2).

Remark 3: The authors in [22] and [27] do not assume that
the fixed-point operators associated to the feasible descent and
subgradient descent methods are averaged, but rather make use
of a sufficient decrease condition (13c). Note that (13c) looks
very similar to (31) (which holds for every SQNE operator),
with the difference that the progress of the method towards
optimality is measured via suboptimality of the iterates, rather
than via the distance of the iterates to the set of optimizers.

IV. LINEAR REGULARITY IN METHODS FOR SOLVING
FEASIBILITY PROBLEMS

Let A and B be two nonempty closed convex subsets of H
such that A∩B 6= ∅. The convex feasibility problem is to find
a point in the set A ∩B, i.e.

find x

subject to x ∈ A
x ∈ B.

Note that this problem is a special class of problem (1) since
it can be reformulated as

minimize IA(x) + IB(x) (16)

where IA and IB are the indicator functions of sets A and B,
respectively.

Projection methods are a special class of proximal methods
for solving such problems and date to von Neumann’s alter-
nating projection method [38], given by the following iteration

ak+1 = PA(bk), (17a)

bk+1 = PB(ak+1). (17b)

It is generally assumed that projection operators for both sets,
PA and PB , can be evaluated efficiently. Douglas-Rachford
splitting is a related proximal method that has received in-
creasing attention due to its generally observed good practical
performance. In the case of the feasibility problem (16), DRS
is defined as a fixed-point iteration of the Douglas-Rachford
operator

TDR := PB(2PA− Id) + Id−PA, (18)

or more explicitly

xk+1 = PA(zk), (19a)

yk+1 = PB(2xk+1 − zk), (19b)

zk+1 = zk + yk+1 − xk+1. (19c)

In the case when A and B are closed subspaces and A+B is
closed, both methods converge linearly and the convergence
rate is characterized in terms of the Friedrichs angle between
the subspaces [29], [30]. The Friedrichs angle is a generaliza-
tion of the angle between subspaces in higher dimensions:

Definition 8 ([30]): Suppose that U and V are closed
subspaces of H. Cosine of the Friedrichs angle between U
and V is
cF (U, V ) := sup{〈u, v〉 |u ∈ U ∩ (U ∩ V )⊥, ‖u‖ ≤ 1,

v ∈ V ∩ (U ∩ V )⊥, ‖v‖ ≤ 1}.
(20)

If U + V is closed, which is true for any finite dimensional
space H, then cF (U, V ) < 1 [30, Fact 2.3(i)].

We will next show that the linear convergence in such
cases can be recovered as a special case of Theorem 1 by
establishing that the underlying fixed-point operators are both
linearly regular and SQNE.

A. Alternating projection method
The authors in [31] show that the APM for two convex

polyhedra in Rn, A and B, converges linearly and that the
convergence rate is characterized via the Friedrichs angle
between the faces of the two polyhedra. In the sequel we will
briefly present this result in the case when A ∩B 6= ∅. Note
that the original result is established without this assumption.

Theorem 2 ([31]): Let A and B be closed convex polyhedra
in Rn, A∩B 6= ∅, and b0 ∈ B. Then the sequences

{
ak
}

and{
bk
}

generated by the APM converge linearly towards some
point in A ∩B, so that

distA∩B(ak+1) ≤ β distA∩B(ak),

distA∩B(bk+1) ≤ β distA∩B(bk),

where the convergence factor is given by

β = max
Ax∈FA
By∈FB

c2F (aff0(Ax), aff0(By)) < 1. (21)

We will show that this result can be seen as a special case
of Theorem 1. We can represent iteration (17) via a double
iteration of the following fixed-point operator defined on D =
A ∪B

Tx =

{
PA(x) x ∈ B
PB(x) x ∈ A

. (22)

Since PA and PB are firmly nonexpansive operators [33,
Prop. 4.8], for every x ∈ D and y ∈ A ∩B we have

‖Tx− y‖2 ≤ ‖x− y‖2 − ‖x− Tx‖2,

which means that T is 1-SQNE with FixT = A∩B. Also, it
can be shown that this operator is linearly regular with constant

κ =

1− max
Ax∈FA
By∈FB

c2F (aff0(Ax), aff0(By))

−1/2



7

which holds for all x ∈ D (see [31, Prop. 4 and Cor. 5]).
According to Theorem 1 these two properties ensure global
linear convergence with convergence factor

√
β, where β is

given in (21). Double iteration of a fixed-point operator given
in (22), which is equivalent to iteration (17), consequently
has convergence factor β. Therefore, convergence factor given
in Theorem 2 can be seen as a special case of Theorem 1.
Observe that, although linear regularity does not hold for the
whole space Rn, by restricting b0 ∈ B, linear convergence of
the generated sequence is ensured since then the sequences
{ak} and {bk} are in D. Note that the linear convergence of
the APM for two subspaces is a special case of the above
result.

B. Douglas-Rachford splitting

The authors in [30] show that the linear convergence rate of
the DRS for two subspaces can also be characterized in terms
of the Friedrichs angle.

Proposition 3 ([30]): Suppose that A and B are closed
subspaces of H such that A + B is closed and let z ∈ H.
Then as n→∞

TnDRz → PFixTDR
(z),

PA(TnDRz)→ PA∩B(z),

PB(TnDRz)→ PA∩B(z).

The convergence is linear with rate cF (A,B) < 1.
We will show that the convergence rate in Proposition 3 is

again a special case of Theorem 1 by quantifying the linear
regularity constant for the Douglas-Rachford operator in the
case of a feasibility problem involving two subspaces.

Proposition 4: Under the assumptions of Proposition 3 the
linear regularity constant of TDR : H → H is

κDR =
(
1− c2F (A,B)

)−1/2
.

Proof: See Appendix D.
Corollary 1: Under the assumptions of Proposition 3, for

all z ∈ H

distFixTDR
(TDRz) ≤ cF (A,B) distFixTDR

(z).

Proof: The Douglas-Rachford operator in (18) is 1
2 -

averaged [13], and thus 1-SQNE. The result follows directly
from Theorem 1 by setting ρ = 1 and κ = κDR from
Proposition 4.

We will now provide an example showing that global linear
convergence (in the sense of (3)) of the DRS for two subspaces
can not be extended to the case of two convex polyhedra as is
the case for the APM because the associated operator is not
linearly regular.

Example 1: Let A = ε > 0, and B = R+, and z0 = t� ε
the initial point of the DRS algorithm. The first iteration of
the DRS is

x1 = PA(z0) = ε,

y1 = PB(2x1 − z0) = 0,

z1 = z0 + y1 − x1 = t− ε.

Sequence
{
zk
}

converges to ε ∈ FixTDR. Note that the
convergence rate in the first iteration is

distFixTDR
(z1)

distFixTDR
(z0)

=
|t− 2ε|
|t− ε|

.

By taking t to be arbitrarily large, the convergence rate
becomes arbitrarily close to 1 and, as long as the z-iterates are
far enough from ε, the sequence converges with a constant step
size. Note however that the auxiliary sequence

{
xk
}

converges
to a fixed-point in one iteration.

The absence of a global linear convergence rate arises
from the absence of linear regularity of the Douglas-Rachford
operator, which is, according to Theorem 1, essential for a
global linear convergence rate. According to (7), the linear
regularity constant is an upper bound to the following ratio

κ ≥ distFixTDR
(z0)

‖z0 − z1‖
=
|t− ε|
|ε|

,

and by taking t be arbitrarily large w.r.t. ε, it is clear that such
an upper bound is not finite.

C. Generalized Douglas-Rachford splitting

Generalized DRS is a relaxed version of DRS, and is defined
via the following fixed-point operator

TGDR := (1− 2α) Id +2αTDR, (23)

where α ∈ (0, 1). Since TDR is 1
2 -averaged, according to [1,

Prop. 1], TGDR is α-averaged and thus 1−α
α -SQNE.

We next derive a linear convergence rate of the generalized
DRS for two subspaces. We will use Theorem 1 to provide
an upper bound on the convergence factor. We first derive a
linear regularity constant of TGDR in the following lemma.

Lemma 2: Suppose that A and B are closed subspaces of H
such that A+B is closed. Then the linear regularity constant
of TGDR : H → H is

κGDR =
1

2α

(
1− c2F (A,B)

)−1/2
.

Proof: The result follows directly from [1, Prop. 1(i)],
Proposition 4 and the fact that TDR is 1

2 -averaged.
Corollary 2: Under the assumptions of Lemma 2,

sup
z/∈FixTGDR

distFixTGDR
(TGDRz)

distFixTGDR
(z)

≤ βGDR, (24)

where

βGDR :=
√
c2F (A,B) + (1− 2α)2(1− c2F (A,B)). (25)

Proof: The generalized Douglas-Rachford operator
in (23) is 1−α

α -SQNE. Choosing ρ = 1−α
α and κ = κGDR

from Lemma 2, Theorem 1 implies that for all z ∈ H

distFixTDR
(TDRz) ≤ βGDR distFixTDR

(z),

from which (24) follows directly.
We now derive a lower bound on the linear convergence

rate in the following lemma.
Lemma 3: Under the assumptions of Lemma 2,

sup
z/∈FixTGDR

distFixTGDR
(TGDRz)

distFixTGDR
(z)

≥ βGDR,
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where βGDR is given in (25).
Proof: See Appendix E.

We can now state the following theorem that substantially
improves our result from Theorem 1. Note that an upper bound
is said to be tight or the least upper bound if no smaller value
is an upper bound.

Theorem 3: The convergence rate bound in Theorem 1
for a ρ-SQNE and κ-linearly regular operator is tight for all
admissible values of ρ and κ.

Proof: Under the assumptions of Lemma 2, we have the
following equality

sup
z/∈FixTGDR

distFixTGDR
(TGDRz)

distFixTGDR
(z)

= βGDR,

which follows directly from Corollary 2 and Lemma 3. Since
the upper bound in (24) is obtained from (8), this means that
the convergence rate bound in Theorem 1 is tight.

Since A+B is closed, according to [30, Fact 2.3(i)],

0 ≤ cF (A,B) < 1,

and thus κGDR from Lemma 2 satisfies

κGDR ≥
1

2α
=

1 + ρ

2
,

where ρ = (1 − α)/α is the constant of strong quasinonex-
pansiveness of operator TGDR. Note that the range of values
of κGDR covers all admissible values of linear regularity
constant given in Proposition 1. By changing α ∈ (0, 1) and
the angle between subspaces, we can produce ρ-SQNE and
κ-linearly regular operator TGDR with arbitrary ρ > 0 and
κ ≥ (1 + ρ)/2.

Note that the results in Corollary 2 and Lemma 3 provide
linear convergence rate of the generalized DRS for subspaces,
and thus extend those in [30] where the linear convergence
rate is established for α = 1/2. Observe from (25) that the
smallest value of βGDR is obtained for α = 1/2 which is
consistent with the result in Proposition 2.

Remark 4: Tightness of the bound in Theorem 1 is proved
by providing an example with an averaged operator TGDR for
which an upper bound on the worst-case convergence factor
coincides with a lower bound. This means that the linear
convergence rate bound for the class of α-averaged operators
given in [1, Thm. 1] is also tight.

V. LINEAR PROGRAMMING

This section first appeared in the conference publication [1].
We include it here since it provides linear convergence guaran-
tees for first-order methods in LPs, which is an open problem
of direct interest to the control community.

Most existing results on linear convergence for optimiza-
tion problems arising in model predictive control assume a
strongly convex quadratic objective function and linear system
dynamics, resulting in a quadratic programming problem.
However, there exist well-known applications of predictive
control for which a linear program arises, including problems
based on `1–norm minimization [39], [40] and robust min–
max predictive control [41], [42].

Linear convergence of a particular first-order method for
linear programming was shown in [21], with an assumption
that the problem is feasible with a bounded objective value. In
this section we will show that this result is a special case of
Theorem 1. The underlying fixed-point operator can be shown
to be SQNE (see Lemma 8 in [21]) and that inequality (10)
holds (see the proof of Theorem 4 in [21]). As we note at
the end of Section II-A this implies linear regularity of the
operator. These two properties taken together imply linear
convergence of a sequence generated by this method by virtue
of Theorem 1.

In this section we propose a linearly convergent method
for linear programming that does not assume feasibility of
the problem or boundedness of the objective value. We first
introduce a reformulation of the original problem that is used
in the proposed method.

A. HSD embedding

Consider the following primal-dual pair of the convex conic
optimization problem

min. cTx

s. t. Ax+ s = b

(x, s) ∈ Rn ×K

max. − bT y
s. t. −AT y + r = c

(r, y) ∈ {0}n ×K∗
(26)

where x ∈ Rn and s ∈ Rm (with n ≤ m) are the primal
variables, r ∈ Rn and y ∈ Rm are the dual variables, K is
a nonempty closed convex cone and K∗ is its dual cone. The
problem data are A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. In the
case of a linear program K = K∗ = Rm+ .

The homogeneous self-dual (HSD) embedding has been
widely used with interior-point methods. The authors in [43]
proposed solving such an embedding with a first-order method
instead. The HSD embedding is a formulation that encodes
the primal-dual pair of optimization problems into the convex
feasibility problem

find (u, v)

subject to v = Qu

(u, v) ∈ C × C∗,
(27)

where u, v, Q, C and C∗ are defined as

u :=

xy
τ

 , v :=

rs
κ

 , Q :=

 0 AT c
−A 0 b
−cT −bT 0

 ,
C := Rn ×K∗ × R+, C∗ := {0}n ×K × R+.

The objective of the above optimization problem is to find
a point (u, v) that satisfies both the subspace and the conic
constraint in (27). Any solution of the self-dual embedding
(x, y, τ, r, s, κ) falls into one of the following three cases:
1. If τ > 0 and κ = 0, then (x/τ, y/τ, s/τ) is a primal-dual

solution of (26).
2. If τ = 0 and κ > 0, then either primal or dual problem

is infeasible. The case bT y < 0 is a certificate for primal
infeasibility, and the case cTx < 0 is a certificate for dual
infeasibility.
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3. If τ = κ = 0, then nothing can be concluded about the
solution of (26).

The problem (27) is referred to as homogeneous because the
feasible set is a convex cone, hence any nonnegative scaling
of a solution is also in the solution set. The authors in [43]
showed that, by an appropriate selection of the initial point
(u0, v0), any convergent method whose associated fixed-point
operator is nonexpansive will not converge to zero if a nonzero
solution (u?, v?) exists. The appropriate initial point is any
point satisfying (u0, v0)T (u?, v?) > 0. Since (u?, v?) lies on
the cone C ×C∗, it is sufficient for (u0, v0) to be contained in
the (relative) interior of C∗×C. In the case of a linear program
we have

(u0, v0) ∈ relint(C∗ × C)
= {0}n × Rm++ × R++ × Rn × Rm++ × R++.

B. APM for solving linear programs in the HSD embedding
form

The authors in [43] proposed solving conic optimization
problems in HSD embedding form using ADMM. In this paper
we propose solving a linear program in the HSD embedding
form using the APM. Since in the case of LP the cone C×C∗ is
polyhedral, we can apply Theorem 2 to show that the sequence
of iterates generated by the method is linearly convergent.

Corollary 3: The sequence generated by the alternating
projection method for solving linear program in the form (27)
converges linearly.

The proposed method is as follows

(uk+1
A , vk+1

A ) = PQu=v(ukB , vkB), (28a)

(uk+1
B , vk+1

B ) = PC×C∗(uk+1
A , vk+1

A ). (28b)

If the initial point (u0B , v
0
B) is selected as described in the pre-

vious subsection, then the sequence generated by the method
will converge to a nonzero fixed-point. It should be noted that
the projection (28a) requires solving a linear system involving
a matrix (I+QTQ). Step (28a) of the method can be computed
as

uk+1
A = (I +QTQ)−1

(
ukB −QvkB

)
,

vk+1
A = Quk+1

A .

Since (I + QTQ) does not change throughout the iterations,
it can be factored once and the factors are then used in
cheaper back-solve operations in the following iterations [6].
Projection onto the cone in (28b) is trivial and separable
componentwise. Therefore, all the operations except matrix
factorization in the first iteration are basic arithmetic op-
erations. Moreover, the method can be implemented very
efficiently on computation platforms that enable a high degree
of parallelism.

Remark 5: It is argued in [44, Sec. 3.7.3.1] and [45,
App. F.1] that the linear convergence of the DRS applied to the
HSD embedding of a linear program holds and that this result
was shown in [32]. However, in [32, Thm. 4.4] linear conver-
gence of the DRS was shown only for transversal sets (i.e. for
sets A and B for which relintA∩ relintB 6= ∅), which does

not hold for the HSD form of a linear program. Moreover,
even for transversal sets, only local linear convergence can be
established (see Example 1).

VI. CONCLUSION

In this paper we provide necessary and sufficient conditions
for global linear convergence of an optimization method whose
associated fixed-point operator is strongly quasinonexpansive.
We also provide a tight bound on the achievable convergence
rate. The proposed framework is based on properties of such
a fixed-point operator. We show that many published results
on linear convergence can be viewed as special cases of
the proposed framework. Also, we propose a novel linearly
convergent method for linear programming which not only
solves feasible problems, but also detects infeasibility and
unboundedness of a solution.

APPENDIX A
PROOF OF THEOREM 1

We first provide a lemma that will be useful for proving the
main theorem.

Lemma 4: Let X and Y be two nonempty closed subsets
of H. Then for any z ∈ H, the following generalized triangle
inequality holds

dist(X ,Y) ≤ distX (z) + distY(z). (29)

Proof: Suppose that there exists some z1 ∈ H for
which (29) does not hold. Then we have

dist(X ,Y) > distX (z1) + distY(z1)

= ‖x1 − z1‖+ ‖y1 − z1‖
≥ ‖x1 − y1‖

where x1 ∈ X and y1 ∈ Y are projections of z1 onto
X and Y , respectively, and the last inequality follows from
the triangle inequality. The above inequality means that the
distance between x1 and y1 is strictly smaller than dist(X ,Y),
which is a contradiction. This concludes the proof.

The proof presented here is similar to that in our earlier
work in [1] and is included here for the reader’s convenience.

To show that linear regularity is a necessary property of an
operator T for (3) to hold, we combine the generalized triangle
inequality (29) (X = FixT , Y = {x}, z = Tx)

distFixT (x) ≤ distFixT (Tx) + ‖x− Tx‖

with (3) to produce

(1−β) distFixT (x) ≤ distFixT (x)−distFixT (Tx) ≤ ‖x−Tx‖,

which implies

distFixT (x) ≤ 1

1− β
‖x− Tx‖.

This proves that T is linearly regular.
The authors in [32, Lem. 3.8] showed that linear regularity is

a sufficient condition for (3) when T is α-averaged. However,
we derive this result with a better convergence factor, and
thus we repeat some arguments from [32] for the sake of
completeness.
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Suppose that T is linearly regular with constant κ, that is

1

κ2
dist2FixT (x) ≤ ‖x− Tx‖2. (30)

Note that since T is SQNE, according to Fact 1, FixT is
closed and convex and thus the projection PFixT is well
defined. By taking y = PFixT (x), (4c) implies

dist2FixT (Tx) + ρ‖x− Tx‖2

≤ ‖Tx− PFixT (x)‖2 + ρ‖x− Tx‖2

≤ dist2FixT (x),

(31)

where the first inequality exploits properties of the distance be-
tween a point and a set, i.e. distFixT (Tx) ≤ ‖Tx−PFixT (x)‖.
Combining (30) and (31) implies the following

1

κ2
dist2FixT (x) ≤ 1

ρ

(
dist2FixT (x)− dist2FixT (Tx)

)
, (32)

hence

distFixT (Tx) ≤
√

1− ρ

κ2
distFixT (x). (33)

Note that (32) implies

1

κ2
dist2FixT (x) ≤ 1

ρ
dist2FixT (x),

which means that κ2 ≥ ρ. Since ρ > 0 and κ > 0, we have

0 ≤
√

1− ρ

κ2
< 1,

so (33) satisfies condition (3).

APPENDIX B
PROOF OF PROPOSITION 1

Since T is ρ-SQNE, then according to (6)

R = (1 + ρ)T − ρ Id

is QNE, which implies that for every x ∈ D and y = PFixT (x)

‖x− y‖ ≥ ‖Rx− y‖ = ‖(1 + ρ)Tx− ρx− y‖
= ‖(1 + ρ)(Tx− x) + (x− y)‖
≥ (1 + ρ)‖Tx− x‖ − ‖x− y‖,

where the last line follows from the triangle inequality. Rear-
ranging the terms gives

2‖x− y‖ ≥ (1 + ρ)‖Tx− x‖ ≥ 1 + ρ

κ
‖x− y‖,

which implies that κ ≥ (1 + ρ)/2.

APPENDIX C
PROOF OF PROPOSITION 2

The proof presented here is similar to that in our earlier
work in [1] and is included here for the reader’s convenience.

Proof of (i):

Since T1 is ρ1-SQNE, then according to (6)

R := (1 + ρ1)T1 − ρ1 Id

is QNE, which itself implies that

T2 := (1− 1 + ρ1
1 + ρ2

) Id +
1 + ρ1
1 + ρ2

T1

= (1− 1

1 + ρ2
) Id +

1

1 + ρ2
R

(34)

is ρ2-SQNE. Observe that T1 and T2 have the same fixed-point
sets, i.e. FixT1 ≡ FixT2. Indeed, if T1x = x then according
to (34) we have T2x = x, and vice versa. Since T1 is κ1-
linearly regular, i.e.

distFixT1
(x) ≤ κ1‖x− T1x‖,

we have

‖x− T2x‖ =
1 + ρ1
1 + ρ2

‖x− T1x‖

≥ 1 + ρ1
1 + ρ2

1

κ1
distFixT2

(x),

which proves that T2 is linearly regular with constant κ2 :=
1+ρ2
1+ρ1

κ1.
Suppose now that κ1 is a tight estimate of the linear

regularity constant, i.e. there exists some x̄ such that

distFixT1
(x̄) = κ1‖x̄− T1x̄‖.

Then we have

‖x̄− T2x̄‖ =
1

κ2
distFixT2

(x̄),

which means that κ2 is a tight estimate of the linear regularity
constant of T2.

Proof of (ii):

The convergence factor of T2 as a function of ρ2 is

β2(ρ2) =

√
1− ρ2

κ22
=

√
1− ρ2

(1 + ρ2)2

(
1 + ρ1
κ1

)2

.

This function is minimized when ρ2/(1 + ρ2)2 is maximized,
which implies that the smallest convergence factor is attained
for ρ2 = 1.

APPENDIX D
PROOF OF PROPOSITION 4

The Douglas-Rachford operator TDR is denoted by T in the
sequel. Note from [30, Prop. 3.6(i)] that z? := PFixT (zk) is in
general not equal to x? := PA∩B(zk), and that they coincide
only when zk ∈ A + B. Since T is an averaged operator,
the sequence {zk} is Fejér monotone with respect to FixT ,
and according to [30, Prop. 3.6(i)] FixT is a closed subspace.
This means that PFixT (zk) = PFixT (z0) for all k ∈ N [33,
Prop. 5.9], i.e. z? does not depend on the iteration k. Also,
from PA∩B = PA∩B PFixT [30, Prop. 3.6(v)], it follows that
x? = PA∩B(z?), meaning that x? does not depend on the
iteration k either.
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Let zkP := PA+B(zk). We first provide a lemma that will be
helpful in proving the main result.

Lemma 5: Let A and B be two closed subspaces of H such
that A+B is closed. Then the following hold for the iterates
of the Douglas-Rachford splitting

(i) zk − z? = zkP − x?.
(ii) xk+1 = PA(zkP ) and yk+1 = PB(2xk+1 − zkP ).

(iii) ‖xk+1 − PB(xk+1)‖2 ≥
(
1− c2F (A,B)

)
‖xk+1 − x?‖2.

(iv) ‖yk+1−PB(xk+1)‖2 ≥
(
1− c2F (A,B)

)
‖xk+1− zkP ‖2.

Proof of (i):
By [30, Prop. 3.6(ii)] we have

z? = x? + PA⊥∩B⊥(zk),

which combined with the relation

(A⊥ ∩B⊥)⊥ = A+B, (35)

implies

zk − PA+B(zk) = P(A+B)⊥(zk) = z? − x?.

Proof of (ii):
From the linearity of the projection onto a subspace, it

follows

xk+1 = PA(zk) = PA(

∈(A+B)⊥︷ ︸︸ ︷
zk − PA+B(zk)) + PA(PA+B(zk))

= PA(PA+B(zk)),

and similarly

yk+1 = PB(2xk+1 − zk)

= PB(2xk+1 − PA+B(zk))− PB(zk − PA+B(zk)︸ ︷︷ ︸
∈(A+B)⊥

)

= PB(2xk+1 − PA+B(zk)).

Proof of (iii):
We first show that the following hold

xk+1 − x? ∈ A ∩ (A ∩B)⊥,

PB(xk+1)− x? ∈ B ∩ (A ∩B)⊥.

From (19a) and the definition of x? it is clear that
xk+1 − x? ∈ A. Since the projection onto A ∩ B is a linear
operation, we have

PA∩B(xk+1) = PA∩B
(
PA(zk)

)
= PA∩B

(
PA(zk)− zk

)︸ ︷︷ ︸
∈A⊥

+PA∩B(zk)

= x?,

which proves that xk+1 − x? = xk+1 − PA∩B(xk+1) ∈
(A ∩B)⊥. Similarly, from the definition of x? it is clear that
PB(xk+1)− x? ∈ B. We also have

PA∩B
(
PB(xk+1)

)
= PA∩B

(
PB(xk+1)− xk+1

)︸ ︷︷ ︸
∈B⊥

+ PA∩B(xk+1)

= x?,

which proves that

PB(xk+1)−x? = PB(xk+1)−PA∩B
(
PB(xk+1)

)
∈ (A∩B)⊥.

From (20) it follows

cF (A,B) ≥

∈A∩(A∩B)⊥︷ ︸︸ ︷〈
xk+1 − x? ,

∈B∩(A∩B)⊥︷ ︸︸ ︷
PB(xk+1)− x?

〉
‖xk+1 − x?‖‖PB(xk+1)− x?‖

=
‖PB(xk+1)− x?‖2

‖xk+1 − x?‖‖PB(xk+1)− x?‖

=
‖PB(xk+1)− x?‖
‖xk+1 − x?‖

,

so that

1− c2F (A,B) ≤ ‖x
k+1 − x?‖2 − ‖

∈B︷ ︸︸ ︷
PB(xk+1)− x? ‖2

‖xk+1 − x?‖2

=
‖

∈B⊥︷ ︸︸ ︷
xk+1 − PB(xk+1) ‖2

‖xk+1 − x?‖2
.

Proof of (iv):
We first show that the following hold

xk+1 − zkP ∈ A⊥ ∩ (A⊥ ∩B⊥)⊥,

PB⊥(xk+1 − zkP ) ∈ B⊥ ∩ (A⊥ ∩B⊥)⊥.

From part (ii) of the lemma it is clear that xk+1 − zkP =
PA(zkP )− zkP ∈ A⊥. From the definition of xk+1 and zkP we
also have xk+1 − zkP ∈ A + B, which combined with (35)
proves that xk+1 − zkP ∈ (A⊥ ∩ B⊥)⊥. Similarly, it is clear
that PB⊥(xk+1 − zkP ) ∈ B⊥. Note that PB⊥(xk+1 − zkP ) can
be split as follows

PB⊥(xk+1 − zkP ) = (xk+1 − zkP )− PB(xk+1 − zkP ).

Since the first summand of the right hand side is in A+B and
the second one is in B, their difference is in A + B, which
proves that PB⊥(xk+1 − zkP ) ∈ (A⊥ ∩B⊥)⊥.

From (20) it follows

cF (A⊥, B⊥) ≥

∈A⊥∩(A+B)︷ ︸︸ ︷〈
xk+1 − zkP ,

∈B⊥∩(A+B)︷ ︸︸ ︷
PB⊥(xk+1 − zkP )

〉
‖xk+1 − zkP ‖‖PB⊥(xk+1 − zkP )‖

=
‖PB⊥(xk+1 − zkP )‖2

‖xk+1 − zkP ‖‖PB⊥(xk+1 − zkP )‖

=
‖PB⊥(xk+1 − zkP )‖
‖xk+1 − zkP ‖

,

so that

1− c2F (A⊥, B⊥) ≤ ‖x
k+1 − zkP ‖2 − ‖

∈B⊥︷ ︸︸ ︷
PB⊥(xk+1 − zkP ) ‖2

‖xk+1 − zkP ‖2

=
‖

∈B︷ ︸︸ ︷
PB(xk+1 − zkP ) ‖2

‖xk+1 − zkP ‖2
.
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By observing that the following holds

PB(xk+1 − zkP ) = PB(2xk+1 − zkP )− PB(xk+1)

= yk+1 − PB(xk+1),

and that cF (A⊥, B⊥) = cF (A,B) [30, Fact 2.3], we have

1− c2F (A,B) ≤ ‖y
k+1 − PB(xk+1)‖2

‖xk+1 − zkP ‖2
.

Now we are ready to derive the linear regularity constant.
The following holds

‖zk − z?‖2 = ‖zkP − x?‖2

= ‖ zkP − xk+1︸ ︷︷ ︸
∈A⊥

‖2 + ‖xk+1 − x?︸ ︷︷ ︸
∈A

‖2

≤ 1

1− c2F (A,B)
‖ yk+1 − PB(xk+1)︸ ︷︷ ︸

∈B

‖2

+
1

1− c2F (A,B)
‖xk+1 − PB(xk+1)︸ ︷︷ ︸

∈B⊥

‖2

=
1

1− c2F (A,B)
‖yk+1 − xk+1‖2

=
1

1− c2F (A,B)
‖zk − zk+1‖2.

The first equality follows from Lemma 5(i), first inequal-
ity from Lemma 5(iii)–(iv), and the last equality follows
from (19c). This concludes the proof.

APPENDIX E
PROOF OF LEMMA 3

We first provide the following supporting results. We denote
by FixT := FixTDR = FixTGDR.

Lemma 6: Let A and B be closed subspaces of H. Then

cF (A,B) = ‖ (PB −PA∩B) (PA−PA∩B) ‖.

Proof: From [30, Fact 2.3] we have the following identity

cF (A,B) = ‖PB PA−PA∩B ‖.

It is now sufficient to show that the right-hand terms of the
above identities are equal. We have

(PB − PA∩B)(PA−PA∩B)

= PB PA−PB PA∩B −PA∩B PA +P2
A∩B

= PB PA−PA∩B −PA∩B +PA∩B
= PB PA−PA∩B ,

where the second equality follows from [30, Eq. (7)].
Lemma 7: Let A and B be closed subspaces of H, and TDR

the operator given in (18). Then

cF (A,B) ≤ sup
u∈A\FixT

distA∩B(PB(u))

distA∩B(u)
. (36)

Proof: The characterization of cF (A,B) in Lemma 6
implies

cF (A,B) = sup
x 6=0

‖ (PB −PA∩B) (PA−PA∩B)x‖
‖x‖

. (37)

If cF (A,B) = 0, then (36) holds trivially. We thus assume
that cF (A,B) > 0, which implies that for some x 6= 0 the
numerator in (37) is nonzero. We can therefore disregard x ∈
(A ∩ B) + A⊥ from the above supremum since in that case
(PA−PA∩B)x = 0 and the numerator in (37) is zero. We
now have

cF (A,B) = sup
x/∈(A∩B)+A⊥

‖ (PB −PA∩B) (PA−PA∩B)x‖
‖x‖

≤ sup
x/∈(A∩B)+A⊥

‖(PB −PA∩B)(PA−PA∩B)x‖
‖(PA−PA∩B)x‖

≤ sup
u∈A\{0}

‖(PB −PA∩B)u‖
‖u‖

where the second line follows from the nonexpansiveness of
projection PA and the fact that 0 ∈ A ∩ B, and the third
from the fact that (PA−PA∩B)x ∈ A. Similarly, we can
disregard u ∈ FixT from the above supremum since then
(PB −PA∩B)x = 0 [30, Prop. 3.6(v)]. We now obtain

cF (A,B) ≤ sup
u∈A\FixT

distA∩B(PB(u))

distA∩B(u)
,

where we used the fact that 0 ∈ A∩B and PA∩B = PA∩B PB
[46, Thm. 5.14].

We are now in a position to prove Lemma 3. From the
definition of the generalized Douglas-Rachford operator (23)
we obtain

TGDRz
k − zk+1 = (1− 2α)(zk − zk+1),

where zk+1 = TDRz
k.

For zk ∈ A \FixT DRS produces the following iterates in
the subsequent iteration

xk+1 = zk,

yk+1 = PB(zk),

zk+1 = PB(zk).

Note also that the following inclusions hold

zk − zk+1 = zk − PB(zk) ∈ B⊥,
zk+1 − z? = PB(zk)− PA∩B(zk) ∈ B,

where z? := PFixT (zk) = PA∩B(zk) = PFixT (TGDRz
k) [30,

Prop. 3.6], [47, Lem. 3.12]. We now have

TGDRz
k − z? = (TGDRz

k − zk+1) + (zk+1 − z?)
= (1− 2α) (zk − zk+1)︸ ︷︷ ︸

∈B⊥

+ (zk+1 − z?)︸ ︷︷ ︸
∈B

,

and therefore

‖TGDRzk − z?‖2 = (1− 2α)2‖zk − zk+1‖2 + ‖zk+1 − z?‖2.
Dividing the above equality by ‖zk − z?‖2 > 0, and taking
the supremum over zk ∈ A \ FixT , we obtain

sup
zk∈A\FixT

‖TGDRzk − z?‖2

‖zk − z?‖2

= sup
zk∈A\FixT

(
(1− 2α)2

‖zk − zk+1‖2

‖zk − z?‖2
+
‖PB(zk)− z?‖2

‖zk − z?‖2

)
≥ (1− 2α)2(1− c2F (A,B)) + c2F (A,B)

= β2
GDR,



13

where we used zk+1 = PB(zk) in the second line, and the
third line follows from Proposition 4 and Lemma 7. Finally,
we have

sup
zk /∈FixT

‖TGDRzk − z?‖2

‖zk − z?‖2
≥ sup
zk∈A\FixT

‖TGDRzk − z?‖2

‖zk − z?‖2

≥ β2
GDR.
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