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Abstract

This paper studies performance preserving event design in nonlinear event-
based control systems based on a local L2-type performance criterion. Consid-
ering a finite gain local L2-stable disturbance driven continuous-time system,
we propose a triggering mechanism so that the resulting sampled-data system
preserves similar disturbance attenuation local L2-gain property. The results
are applicable to nonlinear systems with exogenous disturbances bounded by
some Lipschitz-continuous function of state. It is shown that an exponentially
decaying function of time, combined with the proposed triggering condition,
extends the inter-event periods. Compared to the existing works, this paper
analytically estimates the increase in intersampling periods at least for an arbi-
trary period of time. We also propose a so-called discrete triggering condition to
quantitatively find the improvement in inter-event times at least for an arbitrary
number of triggering iterations. Illustrative examples support the analytically
derived results.

1 Introduction

Event-based control systems have been an active area of research over the last decade.
The primary characteristic of event-based controllers is that they can provide per-
formance very similar to classical control approaches while reducing the transmission
of information between plant and controller. This feature is important in a growing
number of applications in which limiting transmission rates is a concern. Examples
include battery-operated systems with wireless transmission between plant and con-
troller, which often have limited energy and/or memory supplies, or network control
systems with shared wired or wireless communication channels, [13]. In a (classical)
time-triggering fashion, data transmission between system elements (such as actua-
tor, sensor and plant) occurs periodically, regardless of whether or not changes in the
measured output and/or commands require computation of a new control output. In
an event-based scenario, the system decides when to update the control output based
on a so called real time triggering condition on the measured signals.

Event-based systems have been used without theoretical supports for many years.
The resurgence of interest in the subject began with the work reported in refer-
ence [2] that considers a first order stochastic system and shows that event-based
sampling offers better performance than classical time-triggered control in terms of
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closed loop variance and sampling rate. Following publication of this work, event-
triggered systems became a very active area of research and many important contri-
butions have been reported addressing stability ( [1,11,19,20,22,33]), and performance
( [5, 7, 8, 23,26–28]), to mention a few (see also the references therein).

Reference [1], one of the first references on stabilization of event-based systems,
proposes an event-based mechanism for PID control. Reference [22], presents a clever
and rather general solution to the stability problem of event-triggered systems. In
this reference the author assumes the existence of a pre-designed continuous-time
control law that results in input-to-state stability of a nonlinear plant, and shows
that restricting the measurement error (i.e., the difference between the system state
and the last sampled value) to stay within a function of the state threshold, guarantees
closed loop global asymptotic stability.

Reference [22] has inspired much work and several event-based strategies have
been proposed that extend this work (see [12] and the references therein). Reference
[22] is restricted to state-feedback and therefore relies on full state measurement.
This restriction is relaxed in [11, 33]. Reference [11], considers periodic event-based
control of linear systems, in which the triggering condition is monitored at regular
intervals instead of continuously, and can be viewed as a sampled data version of
event-triggered systems. Reference [33] considers output feedback stabilization using
the framework of passivity theory. References [19, 20] offer a unifying framework for
the stability problem of nonlinear event-based in the context of hybrid systems.

All of the above mentioned works focus on stabilization. The effects of an event-
based mechanism on control performance was first addressed in [5], which shows
a trade-off between system performance and the complexity of the control law. A
decentralized event-triggered mechanism is proposed in [9] for distributed linear sys-
tems. This reference considers an impulsive system approach to system stability
and proposes an event-based mechanism that satisfies an L∞ bound. References
[6, 15, 16, 26–28, 31, 32] focus on the L2-gain. The L2-gain stability analysis of event-
based systems was first investigated in [16] where a full-information H∞ controller
is proposed for LTI systems. [15, 27] continued the work of [16] in more details. [15]
proposes an L2-gain performance-preserving triggering condition for a class of non-
linear affine systems. [27] considers LTI systems and derives an explicit lower bound
on the sampling periods. In this reference, the disturbance is assumed to be norm
bounded by a linear function of the state norm. This condition is then relaxed in [28].
Reference [6] considers the L2-gain of distributed multi agent systems under event-
triggered agreement protocols. Reference [26] proposes an event-triggered mechanism
for distributed network linear systems and guarantees finite gain L2-stability in the
presence of packet data dropouts. Reference [32] considers passive systems and pro-
poses a triggering condition that guarantees finite gain L2-stability when the external
disturbance is bounded and shows that their approach preserves stability under con-
stant network induced delays or delays with bounded jitters. Reference [31] extends
the results of [32] to systems with constant network induced delays or time-varying
delays with bounded jitters. [7] proposes a dynamic triggering condition for the cen-
tralized state feedback event-based control of nonlinear network control systems with
guaranteed Lp-stability. Reference [8] extends the work of [7] to the output feedback
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and decentralized case.
This note tackles the finite gain L2-stability problem of event-triggered systems.

Our primary interest is to propose a novel triggering scheme that, compared to the
above mentioned works, solves the L2-gain preserving event design problem for a
wider class of systems. Indeed, we consider a rather general class of nonlinear system
model with the sole assumption of satisfying a rather mild local Lipschitz continu-
ity condition. Taking exogenous disturbances together with measurement errors as
inputs, our proposed triggering condition is obtained based on the assumption that
the system is input-to-state stable (ISS). We assume that the disturbance term is
originated from structural uncertainties in the system model and is norm bounded
by some locally Lipschitz-continuous function of state. This assumption is rather
mild and more general than previous references. For example, in the framework of
self-triggered control, [27] considers a similar L2 problem to the one studies here,
but assumes that the norm of disturbance is bounded by a linear function of the
state norm. Unfortunately, dealing with uncertainties in the event-triggered context
is non-trivial. Indeed the triggering mechanism is designed to update the actuators
whenever measurement errors are above a pre-established threshold. In the absence
of disturbances, the error originates during the intersample as the difference between
the present value of the state and its last sampled value. In the presence of exoge-
nous disturbance, however, the error is also driven by the disturbance term making
it difficult to design an effective triggering condition.

The ISS assumption implies working with bounded inputs and therefore suggests
the need to consider small signals in some sense. To formalize this concept, we present
our results using an extension of the classical input-output theory of systems with
modified input spaces, referred to as local (or small signal) input-output stability
introduced in [17].

Therefore we can state our contributions as follows: First, given a nonlinear plant
and a previously designed full-information controller that satisfies a (local) L2 perfor-
mance bound, we present conditions under which the same norm is guaranteed when
the controller is implemented in an event-triggered fashion. The importance of this
problem lies on the fact that many control systems can be designed to satisfy a tight
L2-gain condition for small-size input signals, although the same gain may not hold
when signal amplitude becomes large. We also show that the resulting sequence of
sampling times is a uniformly isolated sequence, and hence inter-event periods are
strictly nonzero. Finally, we show that, in the absence of disturbances, the system is
globally asymptotically stable.

Our second contribution consists of a modified triggering condition to limit the
average frequency of triggerings without violating the L2 property of the resulting
system. Indeed, reducing the number of triggering instants over a time interval (av-
erage sampling frequency) may be important. For example, high data load on a
communication channel over a finite time interval may result in undesirable chal-
lenges such as data packet drop out and/or transmission delay. Compared to the
existing event-triggered and time-regularized strategies, our method is shown to be
efficient in terms of transmission rate, even when the system trajectories are close
to the origin, see, e.g., Examples 5.2, 5.3. In addition, our strategy improves exist-
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ing results, see, e.g., [7, 8, 10, 18, 20, 29], in that the increase in inter sampling-times
can be designed a-priori, at least for a desired period of time (or a desired number
of triggering iterations). By contrast, in the approaches in [7, 8, 10, 18, 20, 29] the
intersampling increase is not estimated quantitatively. We also show that there is
a trade-off between intersampling improvement and stability of zero-input system,
in the sense that enlarging intersampling periods results in practical sense stability
rather than the classical notion of stability.

Our work can be distinguished from those of [6–8, 15, 16, 27, 28, 31, 32] as follows:
First, we provide a general treatment of input-output performance preservation for
event-based feedback systems. Restricting inputs to the space of small size signals,
in the sense defined later, we investigate finite gain local L2-stability of a system
with a controller implemented using an event-based mechanism when the original
continuous-time system is also finite gain locally L2-stable. As we will show later,
the need of the small signal approach in our study arises from the ISS assumption
on the event-based system. A similar but non-local input-output stability problem is
considered in the aforementioned references but for a more restrictive class of systems.
References [16,27,28] address the L2-stability problem of linear systems. [15] extends
these results to a class of nonlinear affine systems. [6, 27, 28, 31, 32] consider L2-gain
performance without restriction on the input space (i.e. the non-local problem). We
frame our work in the context of the dissipativity introduced in [30], but restricting
the class of input functions in a way that fits our needs for a local stability theory.

Other references employing dissipative include reference [33] that studies (non-
local) stability of passive systems. References [32], [31] extend and generalize the
results of [33] to systems with disturbances to guarantee finite gain L2-stability of
the passive system. In these works, the authors assume that the (dynamic) controller
communicates continuously to the actuators. In [9], it is shown how this assumption
can be relaxed by introducing a second triggering mechanism after the controller
output. Here we avoid continuous data transfer between controller and plant by
choosing a static controller. Also compared to [32], [31], we address the problem in a
more general nonlinear setup. Indeed, except the more general assumption of output
feedback, these references focus on passive systems which will be covered in our work
as a special case. Furthermore, the desired output in these references is assumed to
be the same as the measured output that is also relaxed in our formulation.

References [7,8] propose a time-regularized triggering method for the Lp-stability
of nonlinear systems suggesting that the triggering condition is checked only after
some specific time has passed since the most recent triggering instant. In this pa-
per we consider a fully event-triggered mechanism which enjoys several advantages
compared to the time-regularized approach, e.g., when the trajetories of event-based
control system converge to the origin, the time-regularized triggering often reduces to
traditional periodic sampling (see e.g., [4, 7, 8] and the examples therein). However,
this undesirable behavior is not present under our proposed triggering strategy.

The remainder of the paper is organized as follows. We begin with introducing our
notations and preliminary definitions needed throughout the paper. In section 2 we
formulate the main problem to be solved. In sections 3 we provide the main results
on the local L2-gain stability of nonlinear systems with state-dependent disturbances.
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In section 4 we introduce a new triggering condition based on the structure of our
problem statement to improve the inter-execution times. We also find the amount
of increase in the inter-event times’ lower bound compared to the old scenario. Il-
lustrative examples are given in section 5 to support the results of sections 3. The
proofs are mostly given in the Appendix except the short ones that are provided in
the body text.

2 Preliminaries and Problem Statement

2.1 Notation and Definitions

Throughout the paper R and Z represent the field of real numbers and the set of
integers, respectively. R≥0, Z≥0, R>0 and Z>0 are the sets of nonnegative and positive
elements of R and Z. Rn is the set of n-dimensional vectors with elements in R and
|x| is the Euclidean norm of column vector x ∈ Rn. |x|∞ represents the infinity norm
of vector x = (x1, x2, . . . , xn)T ∈ Rn, |x|∞ = max16i6n{|xi|} and R2

≥0 the causal

triangular sector of R2 defined as R2
≥0 = {(x2, x1) ∈ R2|x2 > x1}. By [xT yT ]T we

denote the stack column vector in Rn+m, where x ∈ Rn and y ∈ Rm. ||w||2 and
||w||∞ denote the 2-norm and supremum-norm of function w, respectively, defined

as ||w||2 = (
∫∞

0
|w(t)|2dt) 1

2 and ||w||∞ = ess supt∈R≥0
|w(t)|. L2(R≥0) is the space

of measurable functions w with bounded 2-norm. Also L∞(R≥0) is the space of
measurable functions w with bounded supremum norm. We say that a function is of
class C0 (respectively C1) if it is continuous (respectively continuously differentiable).
A function f : Rn 7→ Rp is said to be locally Lipschitz-continuous in an open set B, if
for each z ∈ B there exist Lf ∈ R>0 and r ∈ R>0 such that |f(x)− f(x̃)|6 Lf |x− x̃|
for all x, x̃ ∈ {y ∈ B| |y − z|< r}. We also say that f is Lipschitz-continuous in a
set D if there exists Lf ∈ R>0 (called the Lipschitz constant of f on D) such that
|f(x) − f(x̃)|6 Lf |x − x̃| for all x, x̃ ∈ D. A function α : [0, a) 7→ R≥0 belongs to
class K if it is strictly increasing and α(0) = 0. A class K function α belongs to class
K∞ if a =∞ and α(r)→∞ as r →∞.

Throughout the paper we consider a nonlinear system G defined as follows:

G :

{
ẋ = f(x, u, w)

z = h(x,w)
(1)

where x ∈ Rn represents the state, u ∈ U ⊆ Rm the control input, w ∈ W ⊆ Rq the
exogenous disturbance, and z ∈ Rp the measured output. We assume that f and h
are class C0 and f(0, 0, 0) = 0, h(0, 0) = 0 so that x = 0 is an equilibrium point of
zero-input system. Moreover, we will assume the state x evolves on an open subset
of Rn containing the origin. We also assume that G is driven from initial conditions
x0 = x(t0) and the inputs u and w are applied at time t = t+0 . The state transition
function for the system G is the function Φ : R2

≥0 × Rn × U × W 7→ Rn satisfying

x0 = Φ(t0, t0, x0, u, w) and x(t) = Φ(t0, t, x0, u, w) for all (t, t0) ∈ R2
≥0, x0 ∈ Rn and

w ∈ W .
Input-output stability is a key tool in the rest of this note. The classical definitions of
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the input-output stability can be found in many references, see, e.g., [25]. However,
the results are not applicable to the systems with norm bounded input space. Instead,
we build our theory using the local version of input-output stability introduced in [17]
and summarized as follows:
In the next definitions we exploit the concept of relations as a traditional tool to state
the local stability criteria. Equivalently, one can define the input-output stability as
a property of the operators. We recall that given two nonempty sets A1 and A2, a
relation R on A1 ×A2 is any subset of the Cartesian product A1 ×A2.

Definition 2.1. Let A1 × A2 be the Cartesian product of two sets A1 and A2. We
denote by Pi : A1×A2 → Ai, i = 1, 2 the evaluation map at i defined as Pi(x1, x2) =
xi, i = 1, 2.

Definition 2.2. We define the set WQ ⊂ L2(R≥0) as follows:

WQ = {w ∈ L2(R≥0)|‖w‖∞ < Q}, (2)

where Q ∈ R>0. We note that WQ, which is a subset of L2(R≥0) ∩ L∞(R≥0), is not
a linear space in general since there exists elements x, y ∈ WQ such that x+ y /∈ WQ.

We remark that the triplet (L2(R≥0), ‖·‖2, ‖·‖∞) consisting of linear space L2(R≥0)
and the norms ‖·‖2 and ‖·‖∞ is a binormed linear space, where ‖·‖2 and ‖·‖∞ are
the primary and secondary norms of the space L2(R≥0). WQ is then the subset of
L2(R≥0) consisting of functions with secondary norm less than Q ∈ R>0.

Definition 2.3. A relation R on L2(R≥0) × L2(R≥0) is said to be WQ-stable if the
evaluation map at 2 is a bounded subset of L2(R≥0) whenever the evaluation map at
1 belongs to the set WQ.

Definition 2.4. The system G defined in (1) is said to be locally L2-stable if for any
w ∈ WQ, the relation R

.
= {(w, z) ∈ L2(R≥0)× L2(R≥0)} is WQ-stable.

In the next definition, we provide a local version of finite gain L2-stability 1, a
deviation from the classical definition by restricting the spaces of admissible inputs
and initial conditions to the sets WQ (defined in Definition 2.2) and

X0
.
= {r ∈ Rn| |r|6 ε ∈ R>0}, (3)

respectively.

Definition 2.5. The system G described in (1) is said to be finite gain locally L2-
stable and has the local L2-gain less than or equal to Γ, if it is locally L2-stable and
there exist finite constants η ∈ R≥0, Γ ∈ R>0 and positive semi-definite C0 function
µ such that for any (T, t0) ∈ R2

≥0, any w ∈ WQ and any x0 ∈X0 ⊂ Rn∫ T

t0

|z(s)|2ds 6 Γ2

∫ T

t0

|w(s)|2ds+ µ(x0) + η, (4)

where z(s) = h(x(s), w(s)), x(s) = Φ(t0, s, x0, u, w). We shall denote the local L2-
gain of system G by ‖G ‖L2

. We also say that G is finite gain locally L2-stable with
zero bias if η = 0 in (4).

1See [25] for the classical finite gain L2-stability definition.
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The following theorem provides a sufficient condition to estimate an upper bound
on the local disturbance attenuation L2-gain of system G in the context of dissipative
systems theory introduced by [30].

Theorem 2.1. The nonlinear system G is finite gain locally L2-stable with zero bias
and has ‖G ‖L2

6 Γ, provided there exist a positive definite C1 function V and a
control input u ∈ U such that for all w ∈ WQ

HΓ(V, u)
.
= ∇V (x) · f(x, u, w)− Γ2|w|2+|h(x,w)|26 0. (5)

Proof. The result is readily obtained by integration of (5), positive definiteness of
V (x) and Definition 2.5.

Remark 2.1. If system G is reachable from x0, condition (5) is necessary and suf-
ficient for finite gain local L2-stability of G with zero bias and ‖G ‖L2

6 Γ.

Proof. The result follows directly from ( [14], Theorem 2.1).

Next we investigate the input-to-state stability of system G . We shall assume
that the measurement of state is affected by an error e. As a result, designing the
state feedback controller u = k(x), where k is of class C0 and satisfy k(0) = 0, the
implemented control law will be k(x+e). The corresponding closed loop system with
perturbed measurement is therefore

Ge :

{
ẋ = f(x, k(x+ e), w),

z = h(x,w).
(6)

The measurement error e is considered as an input of the system Ge in the next
definition.

Definition 2.6. The C1 function V : Rn 7→ R≥0 is an ISS Lyapunov function for
system Ge defined in (6) if there exist class K∞ functions σ, σi, γi (i = 1, 2) such
that

σ1(|ξ|) 6 V (ξ) 6 σ2(|ξ|) (7)

holds for all ξ ∈ Rn, and

∇V (ξ) · f(ξ, k(ξ + µ), w) 6 −σ(|ξ|) (8)

for any ξ ∈ Rn, any µ ∈ Rn and any w ∈ WQ such that |ξ|> γ1(|µ|) + γ2(|w|).

The next theorem suggests an equivalent condition to the above given inequality
(8). We will use this theorem later to develop our main theorem in Section 3.

Theorem 2.2. The C1 function V is an ISS Lyapunov function for system Ge if and
only if (7) holds and there exist class K∞ functions σ̄ and βi (i = 1, 2) so that

∇V (ξ) · f(ξ, k(ξ + µ), w) 6 −σ̄(|ξ|) + β1(|µ|) + β2(|w|) (9)

for any ξ ∈ Rn, any µ ∈ Rn and any w ∈ WQ.
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Definition 2.6 provides a characterization of the notion of input-to-state stability,
rather than the ISS definition, using Lyapunov-like conditions. Next theorem shows
that these conditions are necessary and sufficient for input-to-state stability.

Theorem 2.3. The closed loop system Ge defined in (6) is ISS with respect to mea-
surement error e and disturbance w iff there exists an ISS Lyapunov function V
satisfying (7), (8).

Proof. The proof follows from Theorem 2.2 and ( [21], Theorem 1).

Remark 2.2. Later in Section 3 our study will focus on the systems with disturbances
norm bounded by some function of state , i.e., |w(t)|6 γ3(|x(t)|). This assump-
tion seems to be implied in Definition 2.6 as condition (8) is valid for γ2(|w(t)|) 6
|x(t)|−γ1(|e(t)|). Thus to prevent any possible redundancy of these conditions, we
will unify them later in section 3.

2.2 Problem Setup

To state our problem we shall need to define a continuous-time version of system Ge
defined in (6) by assuming measurement error to be zero all the time. This system
will be referred as Gc throughout the rest of this note. Now assume the existence
of a positive definite C1 function V and a C0 function k : Rn 7→ Rm such that
HΓ(V, k(x)) 6 0, i.e., the state feedback control law u = k(x) renders the continuous-
time system Gc finite gain locally L2-stable with zero bias and ‖Gc‖L2

6 Γ. We also
assume the implementation of the control law to be performed in an event-based
scheme in which an event detector decides when to update the control signal. As a
consequence, the actuator receives an updated control signal at triggering instants
{ti|i ∈ Z≥0}, at which an event condition is satisfied. The first sampling instant can
always be assumed to coincide with initial time t0. A zero order hold device serves
to maintain the controller signal constant between two successive sampling instants.
Thus, between time instants ti and ti+1, the controller signal is k(x(ti)) and remains
unchanged. This enables us to define the measurement error e(t) as the difference
between the current value of state at the event detector, x(t), and the last triggered
value of state, x(ti), i.e.,

e(t) = x(ti)− x(t), t ∈ [ti, ti+1). (10)

It follows that the measurement error is zero at each sampling instants and its value is
continuously monitored to check a triggering condition which, as we will see later, sets
an upper bound on the norm of admissible measurement error. Once the triggering
condition holds, the system sends an updated signal to the actuator and resets the
measurement error to zero.

In [22] it is shown that in presence of an execution rule that restricts the mea-
surement error to satisfy

β1(|e|) 6 cσ̄(|x|), (11)

where c ∈ (0, 1), and if there exists an ISS Lyapunov function V so that

∇V (x) · f(x, k(x+ e), 0) 6 −σ̄(|x|) + β1(|e|), (12)
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the system Ge with zero-input is globally asymptotically stable.
In general, the aforementioned triggering mechanism (11) guarantees closed loop

stability. However, it is by no means clear how it affects the input/output performance
of the system. More specifically, in this paper, we are concerned with finite gain L2-
stability performance. The purpose of this paper is then to present an input-output
stability analysis of event-based systems. Departing from the event condition offered
in [22], we propose a condition which guarantees the finite gain local L2-stability of
the system.

3 L2-gain Performance of Event Triggered Nonlin-
ear Systems

In this section we present a novel event-triggering rule that ensures finite gain local
L2-stability of the event-based system Ge. The design of such a sampling rule is based
on the following assumptions.

Assumption 3.1. There exist a positive definite C1 function W and some Q ∈ R>0

such that
HΓ(W,k(x)) 6 0, (13)

for all w ∈ WQ, where WQ is defined in (2).

Assumption 3.2. There exis a radially unbounded positive definite C1 function V
and class K∞ functions σ̄, β1 satisfying

∇V (ξ) · f(ξ, k(ξ + µ), w) 6 −σ̄(|ξ|) + β1(|µ|) (14)

for any ξ ∈ Rn, any µ ∈ Rn and any w ∈ WQ.

Recalling Theorem 2.1, condition (13) ensures that the continuous-time system
Gc is finite gain locally L2-stable with zero bias and has ‖Gc‖L2

6 Γ. The following
lemma describes the connection between Assumption 3.2 and the previously defined
ISS concept. Indeed, we show that this assumption can be used to deal with unmod-
eled parameter uncertainties.

Lemma 3.1. (a) Assumption 3.2 holds if and only if there exists a radially unbounded
positive definite C1 function V satisfying ∇V (ξ) · f(ξ, k(ξ+ µ), w) 6 −σ(|ξ|) for any
ξ ∈ Rn, any µ ∈ Rn and any w ∈ WQ such that |ξ|> γ(|µ|) for some σ, γ ∈ K∞. (b)
The later condition is satisfied when for any w ∈ WQ the followings hold: (I) V is an
ISS Lyapunov function for the system Ge, (II) there exist solutions γ3, γ4 ∈ K∞ to
the inequality

γ4 ◦ (γid − γ2 ◦ γ3)(r) > r, (15)

for all r ∈ R≥0, where γid is the identity function and γ2 ∈ K∞ is defined in Definition
2.6, (III) disturbance is bounded through

|w(t)|6 γ3(|x(t)|) (16)

for all t ∈ R≥0 where x denotes the state of system Ge defined in (6).
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Note that condition (15) is similar to δ-admissible perturbation provided in ( [3],
Definition 2).

We will need the following technical lemma to prove our main result. This lemma
sets the stage for the design of the triggering condition required to achieve disturbance
attenuation bound Γ for the event-based system.

Lemma 3.2. Assumption 3.2 holds if and only if there exist a radially unbounded
positive definite C1 function V and class K∞ functions σ̂, σ0, β0, ψ, β̄1 and some
c ∈ (0, 1) satisfying

∇V (ξ) · f(ξ, k(ξ + µ), w) 6 −σ̂(|ξ|)− σ0(|ξ|)β0(|µ|) (17)

for any ξ ∈ Rn, any µ ∈ Rn and any w ∈ WQ such that cψ(|ξ|) > β̄1(|µ|).

Triggering Condition: Let ti, i ∈ Z≥0, be the most recent sampling instant, the
control signal is updated again at ti+1 defined by the following rule:

t−i+1 = inf
{
t ∈ R≥0| t > ti

∧
β̄1(|e(t)|) > cψ(|x(t)|)

}
, (18)

where c ∈ (0, 1) and ψ, β̄1 are defined as

ψ(r)
.
=

σ̄(r)

1 + σ0(r)
, β̄1(r)

.
= max{β1(r), β0(r)}. (19)

for σ0(r) = LfLkσ3(r) and β0(r) = r with Lf , Lk defined in Remark 3.4. Note
that we assume that the update of the control task is done at ti+1, shortly after
the given inequality in (18) is satisfied at t−i+1 The following theorem states that if
the continuous-time system has some local L2-gain property, it is always possible
to guarantee the same disturbance attenuation level for the event-based system by
applying the above triggering mechanism.

Theorem 3.1. Let us consider Assumptions 3.1, 3.2 and the following conditions:
(i) |∇W (x)|6 σ3(|x|) for some class K∞ function σ3, locally Lipschitz-continuous

in R≥0,
(ii) σ̄−1, β1, γ3 are locally Lipschitz-continuous in R≥0

2,
(iii) k and f are locally Lipschitz-continuous in Rn and Rn ×Rm ×Rq, respectively

2.
Then the system Ge driven from initial conditions x0 ∈ X0, defined in (3), is finite
gain locally L2-stable with zero bias and has ‖Ge‖L2

6 Γ if the control signal is
executed under rule (18).

It is worth remarking that Theorem 3.1 is stated in local form. Note that condition
(16) which restricts w to be norm bounded by some Lipschitz-continuous function
of state, plays an essential role in satisfying Assumption 3.2. This assumption is
not consistent with classical input-output stability notion that requires w to be any
perturbation in L2(R≥0). Thus it remains to define Q such that for any given initial

2 This condition can be relaxed in the proof of Theorem 3.1, however, is needed in the proof of
Theorem 3.2.
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conditions in X0, w is guaranteed to be in the set WQ. Condition (16) is a key tool to
define such an admissible inputs set. Indeed, later in view of Lemma 3.3, condition
(16) and Lipschitz-continuity of γ3 with Lipschitz constant Lγ3 defined in Remark
3.4, one can choose Q = Lγ3 ε̄.

Remark 3.1. The assumed dependence of γ3 on the state of the system in (16)
is a generalization of the assumption of state-dependent disturbance made in ( [27],
Assumption 6.1). Indeed, the Assumption 6.1 in [27] can be extracted from (16) by
choosing γ3 to be a linear function of state, i.e., γ3(|x|) = c0|x|, for all x ∈ Rn and
some c0 ∈ R>0. This generalization has to be considered more carefully as it gives
more flexibility in choosing function γ2 in (15), e.g., for γ2(r) =

√
r, (15) does not

provide any solution for possible linear functions γ3. However, it is not difficult to
verify that the solution to this inequality exists assuming γ3 to be locally Lipschitz-
continuous in R≥0.

Remark 3.2. Using the same discussion as in ( [27], Remark 6.2), it is more precise
to state condition (16) as |w(t, x(t))|6 γ3(|x(t)|) for all t ∈ R≥0 to emphasize the state
dependence of exogenous disturbance. To simplify our notation, we write w(t) instead
of w(t, x(t)) throughout the rest of the paper.

Remark 3.3. The triggering condition (11) proposed in [22] can be extracted from
the one we proposed in (18). Indeed, between consecutive sampling instants, (18)
suggests

cσ̄(|x|) > max{β1(|e|), β0(|e|)}(1 + σ0(|x|))
> β1(|e|) + β0(|e|)σ0(|x|) (20)

and hence we conclude that β1(|e|) 6 cσ̄(|x|). This consequence simply suggests that
under the conditions assumed in this paper, in order to preserve system performance
(in L2 sense) along with asymptotic stability provided in [22], a more conservative
execution rule than the one proposed in [22] is needed.

Our next Lemma shows that the state of the event-based system Ge is constrained
to some compact set. The result is fundamental in the rest of this section.

Lemma 3.3. Under the assumptions of Theorem 3.1, X
.
= {r ∈ Rn| |r|6 ε̄} for

ε̄ = σ−1
1 (σ2(ε)) is a positive invariant set for the trajectories of system Ge driven

from any x0 ∈X0.

Remark 3.4. We now show how this analysis can be applied to find upperbounds
on the norm of ẋ, something needed later to exclude Zeno-behaviour for the system
Ge. Lemma 3.3 suggests that x(t) remains in the compact set X for all t ∈ R≥0.
Moreover, in view of definition of e given in (10) we have |e(t)|6 2ε̄ for all t ∈ R≥0.
Thus we may conclude that e(t) ∈Xe

.
= {r ∈ Rn|r/2 ∈X } for all t ∈ R≥0. Also the

control signal u = k(x+ e) does not leave the compact set Xu
.
= {r ∈ Rn|r/k ∈ X }

since |u(t)|6 k|x(ti)|= kε̄ for all t ∈ R≥0. Now consider compact sets Bx ⊂ X
and Be ⊂ Xe. In the view of Lipschitz-continuity of function k, one can define the
compact set Bu ⊂ Xu of all points u ∈ Rm satisfying |u|6 |k(x+ e)| for all x ∈ Bx
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and e ∈ Be. Similarly, we can define the compact set Bw ⊂ WQ containing all points
w ∈ Rq satisfying |w|6 γ3(|x|) for all x ∈ Bx. Now using the Lipschitz-continuity of
function f with respect to (xT uT wT )T in compact set Bx×Bu×Bw with Lf is the
Lipschitz constant of the function f on X ×Xu×WQ and applying triangle inequality
|f(x, u, w) − f(x̃, ũ, w̃)|6 |f(x, u, w) − f(x, ũ, w)|+|f(x, ũ, w) − f(x̃, ũ, w̃)|, it is not
difficult to confirm the Lipschitz-continuity of function f̄(x, e, w)

.
= f(x, k(x+ e), w)

in any compact set Bx × Be × Bw with Lipschitz constant Lf (Lk + 1). It is also
straight forward to check

|ẋ|6 Lf (Lk + 1)|x|+LfLk|e|+Lf |w|, (21)

|f(x, k(x+ e), w)− f(x, k(x), w)|6 LfLk|e|, (22)

that will be used further. Also inequality (21) in view of condition (16) in Theorem
3.1 and Lipschitz-continuity of γ3 in the compact set {r ∈ R≥0|r 6 maxx∈Bx

|x|} with
Lipschitz constant Lγ3 (defined on [0, ε̄]), reads as

|ẋ|6 Lf (Lk + Lγ3 + 1)|x|+LfLk|e|. (23)

In the next theorem we show that the sequence of triggering instants is a uniformly
isolated set and hence there always exists a non-zero lower bound τ on the intersam-
pling times. This feature guarantees the non-existence of accumulation points and is
thus critical to the successful implementation of the proposed triggering mechanism.

Theorem 3.2. If the hypotheses of Theorem 3.1 hold, the inter sampling periods are
lower bounded by some τ ∈ R>0, i.e., ti > ti−1 + τ for all i ∈ Z>0.

Proof of Theorem 3.2 relies on Properties 3.1-3.2 outlined below and is given in
the Appendix.

Property 3.1. Function ψ−1 defined in (19) is Lipschitz-continuous in any compact
set Dx ⊂ R≥0.

Property 3.2. The function β̄1(r) defined in (19) is of class K∞ and locally Lipschitz-
continuous in R≥0. Also if the Lipschitz constant of function β1 is Lβ1

on some
compact set De ⊂ R≥0, then Lβ̄1

= max{Lβ1 , 1} is the Lipschitz constant of β̄1 on
this set.

Proof of Theorem 3.2 implies that τ is a function of Lf , Lk, Lγ3 . Applying Lemma
3.3 and Remark 3.4, we conclude that these constants are defined on invariant sets
and hence are valid for all initial conditions.

The proof of Property 3.1 suggests that function ψ−1 is Lipschitz-continuous
in Dx with Lipschitz constant Lψ−1 = (1 + σ0(εm))2{L−1

σ̄−1 − Lσ0 σ̄(εm)}−1
, where

εm = maxr∈Dx
{r} and Lσ0

= LfLkLσ3
. To make sure Lψ−1 is positive, σ3 which

is the upper bound on the norm of Lyapunov function W , has to be chosen so that
LfLkLσ3

Lσ̄−1 σ̄(εm) < 1. This condition depends on the set Dx. In design procedure,
however, one can choose σ3 such that

LfLkLσ3
Lσ̄−1 σ̄(ε̄) < 1, (24)
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where ε̄ is defined in Lemma 3.3. To see this, let us assume that system starts from
initial condition x(0) = x0. Then in view of Lemma 3.3, we have |x(t)|6 ε̄ and hence
for any compact set Dx ⊆ [0, ε̄] we have εm 6 ε̄. Thus since σ̄ is a class K∞ function,
we will have σ̄(εm) 6 σ̄(ε̄) and hence (24) ensures that LfLkLσ3

Lσ̄−1 σ̄(εm) < 1.
We finish our discussions in this section by showing the global asymptotic stability

property for the event-based system Ge in the absence of disturbances.

Corollary 3.1. Under the assumptions of Theorem 3.1, the zero-input event-based
system Ge has a global asymptotically stable point at 0 ∈ Rn.

Although the L2-stability results are provided locally, the above result is global.
Recall that the local character of the results arises from the restrictions placed on the
input space. Thus, in the absence of disturbances, the result becomes global.

4 Improving Average Sampling Frequency

In this section, we are concerned with the problem of decreasing the average sampling
rate for the proposed triggering mechanism of Section 3. Note that limiting the num-
ber of triggerings over a time interval (when necessary) may be of higher importance
than decreasing their number over the entire time span. For example, high data load
on a communication channel over a finite time interval may result in undesirable
effects such as data packet drop out and/or transmission delay. Therefore, instead
of improving all inter-event times, we focus our study on controlling the number of
samples over a time interval in which the triggering frequency may become critical.

Our solution consists of modifying the triggering condition (18) of section 3 by
adding an exponentially time decaying term to the right hand side. We show that
following this idea, the event-based system enjoys the same Lp-gain performance as
in section 3, however, the zero-input system is stable in practical sense as opposed to
asymptotically stable.

The results of this section can then be applied to limit high triggering during tran-
sient response. In a regulation problem, after an initial transition, the state remains
near the equilibrium, possibly continuously excited by a disturbance or noise. Focus-
ing on practical stability of such problems, where the state is required to enter an
stability bound, it is reasonable to assume that the triggering frequency reduces when
the transient response vanishes. Note that when the state is near the equilibrium,
the control action is only required to keep the state within the desired bound. As a
result, the system can be controlled with much less attention and hence the number
of triggering instants drops significantly. Similar behaviour is expected when tackling
regulation problems with non-persistent disturbances. In such case, while in tran-
sient both disturbance and the change in the state’s norm affect sampling frequency,
during steady state a lower triggering rate is expected due to the non-existence of
disturbance.

We now state the main problem to be solved in this section. Note that we im-
plicitly assume that the system experiences finite transition interval over which the
sampling frequency exceeds a critical level. Without loss of generality, we assume
that only one such interval exists. Generalization to several transition intervals is
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discussed later.
Problem 1: Modify the proposed triggering rule (18) so that while the resulting event-
based system is finite gain locally L2-stable with the same disturbance rejection bound
Γ, the average sampling frequency does not exceed fcr at least for
(A) a desired period of time, i.e., t ∈ [0, T̄ ].
(B) a desired number of triggerings, i.e., 1 6 i 6 N .

4.1 Continuous Triggering Condition Scenario

We begin our study of Problem 1-(A) by modifying rule (18) as

t−i+1 = inf
{
t ∈ R≥0| t > ti

∧
β̄1(|e(t)|) > cψ̃(|x(t)|)

}
, (25)

where ψ̃
.
= σ̃(t, r)/(1 + σ0(r)) and σ̃ is an exponentially time-decaying perturbation

of function σ̄ defined in Assumption 3.2, i.e.,

σ̃(t, r)
.
= σ̄(r) +

κ

c
e−ζt. (26)

Also κ and ζ are positive parameters to be designed.

4.1.1 Stability Analysis

The following theorem shows that the time-decaying perturbation of function σ̄ in-
troduces a non-zero bias term (see Definition 2.5) but does not affect the L2 bound
with respect to the input.

Theorem 4.1. Under the hypotheses of Theorem 3.1, the system Ge is finite gain lo-
cally L2-stable and has ‖Ge‖L2

6 Γ if the control signal is updated under the execution
rule (25).

Remark 4.1. It can be readily inferred from the proof of Theorem 4.1 that the expo-
nential time decaying term in (25) does not affect the finite gain local L2-stability of
the event-based system Ge as its integral from 0 to any T ∈ R>0 is finite, independent
of T and hence can be considered as the bias term η in Definition 2.5.

Corollary 4.1. Under the assumptions of Theorem 4.1, trajectories of the system
Ge converge to 0 ∈ Rn.

Remark 4.2. Note that Corollary 4.1 proves that trajectories converge to the origin,
but does not imply that the origin is asymptotically stable for the disturbance-free
system. Asymptotic stability does not follow from this corollary since the result falls
short of proving stability of the origin of the zero-input event-based system Ge. This
situation may occur, for example, when the trajectories of the zero-input system that
start from certain neighbourhood of the origin, diverge from origin temporarily, but
finally converge to it. In such situations, the system may still be finite gain locally
L2-stable, however, the zero-input system is not necessarily stable since there exist
neighbourhoods of the origin such that any trajectory starting there, can not stay there
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forever. This happens for system Ge under triggering condition (25) as the proof of
Corollary 4.1 suggests that in the absence of disturbances we have V̇ (x) > 0 for
|x(t)|6 σ̄−1(κe−ζt/(1 − c)), i.e., trajectories starting within this bound diverge from
origin at first but finally converge as the area of positive V̇ shrinks to zero.

The analysis, however, can be extended a bit further than the classical notion of
stability. Indeed, we now show that in the absence of disturbances, the event-based
system Ge is practically stable in the sense of following definition cited from [24]:

Definition 4.1. Given ς > ρ ∈ R≥0, the origin of the system ẋ = f(x, t) is (ς → ρ)-
stable if

(a) for any ε > ρ there exists δ(ε) ∈ R>0 such that if |x0|6 δ(ε), then |x(t)|< ε for
all t ∈ R≥0,

(b) for a given r ∈ (0, ς) there exists a finite υ(r) ∈ R>0 such that if |x0|6 r, then
|x(t)|< υ(r) for all t ∈ R≥0,

(c) for a given r ∈ (0, ς) and ε > ρ there exists a finite T (r, ε) ∈ R>0 such that if
|x0|6 r, then |x(t)|< ε for all t > T (r, ε).

If we set ς = ∞ and ρ = 0 in the above definition, we obtain the familiar uni-
form global asymptotic stability, ( [24], Remark 2.1). it is worth mentioning that the
stability in the above-mentioned ρ-practical sense guarantees convergence of trajec-
tories of the system ẋ = f(x, t) to the set {x ∈ Rn| |x|6 ρ} through condition 4.1 in
Definition 4.1. The converse, however, is not generally true.

Theorem 4.2. Under the assumptions of Theorem 4.1, the zero-input event-based
system Ge is (∞→ σ̄−1(κ/(1− c)))-stable.

4.1.2 Inter-Event Lower Bound Comparison

We recall from Theorem 3.2 that the lower bound on intersampling periods of event-
based system Ge under execution rule (18) is τ and given in (57). Also by τ1 we
denote the lower bound on intersampling periods of this system under execution rule
(25). We show that one can design parameters κ and ζ in (25) such that for a given
T̄ > 0 and τ∗ > f−1

cr , we have τ1 > τ + τ∗ at least for t ∈ [0, T̄ ]. This guarantees that
the average sampling frequency is less than fcr for t ∈ [0, T̄ ]. To this end, defining
κ̄ = κ/(1 + σ0(ε̄)), we assume the updation of the control task is decided based on
the following event condition

β̄1(|e|) > cψ(|x|) + κ̄e−ζt (27)

which is more conservative than the one proposed in (25) and hence gives a lower
bound on τ1. Let Lψ−1 and Lβ̄1

be the Lipschitz constants of functions ψ−1 and

β̄1, respectively. A more conservative triggering condition than (27) can be obtained
from Lβ̄1

|e|> cL−1
ψ−1 |x|+κ̄e−ζt. In fact, if this condition is not satisfied, we have

β̄1(|e|) 6 Lβ̄1
|e|< cL−1

ψ−1 |x|+κ̄e−ζt 6 cψ(|x|) + κ̄e−ζt (28)
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and hence (27) will not be satisfied too. This triggering condition restricts measure-
ment error e to satisfy

cL−1
ψ−1 |x|(L̂

|e|
|x|
− 1) 6 κ̄e−ζt, (29)

where L̂ = c−1Lψ−1Lβ̄1
. We remark that L̂ > L̄, where L̄ is the Lipschitz constant

of function ψ−1(β̄1/c). From the proof of Theorem 3.2 it follows that |e|/|x| > 1/L̄
shortly before the execution instant ti and hence we have L̂|e(t−i )|/|x(t−i )| > 1. We
can even express the triggering condition more conservatively, by virtue of Lemma
3.3, so that the control signal is updated at sampling instant ti when the following
condition is satisfied

cε̄L−1
ψ−1(L̂

|e(t−i )|
|x(t−i )|

− 1) > κ̄e−ζt
−
i . (30)

We now define L∗ so that y(τ + τ∗) = 1/L∗ where y is the solution to (56). Thus
our aim is to design κ and ζ such that the solution |e(t−i )|/|x(t−i )| to inequality (30)
satisfy L∗|e(t−i )|> |x(ti)| for all execution instants ti 6 T̄ , i ∈ R≥0, i.e., until t = T̄
the intersampling intervals are lower bounded by the solution τ1 of y(τ1) = 1/L∗.
This means that the lower bound on inter-event times increases to τ1 > τ + τ∗ at
least until instant t = T̄ . Finally it suffices to choose κ and ζ so that

κ = cε̄L−1
ψ−1(

L̂

L∗
− 1)(1 + σ0(ε̄))eζT̄ . (31)

Then the lower bounds on intersampling periods are the solutions τ1 and τ to{
y(τ1) = 1

L∗ , for 0 6 t 6 T̄

y(τ) = 1
L̄
, for t > T̄

(32)

Remark 4.3. Our result in section 4.1.2 is far more general than that of ( [22],
Theorem III.1, when the delay between state measurement and actuator updating is
nonzero). In [22], it is shown that the lower bound on intersampling times, τ , can
be extended (due to the time required to read state measurement, compute the control
signal and update actuators) to the solution τ ′ of y(τ ′) = 1/L̄′, where L̄′ is the
Lipschitz constant of function ψ−1(β̄1/c

′) on compact set De defined in the proof
of Theorem 3.2, where c′ ∈ (c, 1). Following this approach, the lower bound on
intersampling intervals is restricted (through the upper bound limit on c′) to τ ′ < τmax,
where τmax is the solution to y(τmax) = 1/L̄min with L̄min as the Lipschitz constant
of function ψ−1(β̄1). This limitation, however, is relaxed in our proposed method
by introducing the exponentially decaying term κe−ζt which allows taking L∗ smaller
than L̄min.

4.2 Discrete Triggering Condition Scenario

In this section we address Problem 1-(B). In section 4.1 we showed that an exponen-
tially time decaying term added to execution rule (18) enables us to affect average
sampling frequency arbitrarily at least for the period [0, T̄ ]. Here, we address the
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problem of improving the average sampling frequency for the first N iterative trig-
gerings of the control task using a discrete version of the triggering condition (25).
Let i ∈ Z>0 denote the number of triggerings completed up until time t assuming the
first triggering occurs at t0 = 0. As a consequence, ti and ti−1 denote the upcoming
and the most recent execution instants, respectively. We denote by t′i > ti−1, i ∈ Z>0,
just a moment after the following so called discrete event condition holds

t′i
−

= inf
{
t ∈ R≥0| t > ti−1

∧
β̄1(|e(t)|) > cψ̌(|x(t)|)

}
, (33)

where ψ̌
.
= σ̌(t, r)/(1 + σ0(r)) and σ̌ is a discrete decaying perturbation of σ̄ defined

in Assumption 3.2 defined as

σ̌(t, r)
.
= σ̄(r) +

κ̂eθ
i

ci!
, (34)

where κ̂ and θ are positive parameters to be designed. We refer to (33) as the discrete
triggering condition as it depends on index i which changes non-continuously between
successive triggerings.

Now suppose that the i-th execution of the control task happens at

ti = min{ti−1 + ∆, t′i}, (35)

where ∆ ∈ R>0 is an upper bound on intersampling intervals. The following theorem
then states that discrete decaying perturbation of function σ̄ given in (34) satisfies
the same local L2-gain bound for the event-based system.

Theorem 4.3. Under the hypotheses of Theorem 3.1, the system Ge is finite gain
L2-stable and has ‖Ge‖L2

6 Γ if the control signal is updated at triggering instants
{ti|i ∈ Z>0} defined in (35).

Remark 4.4. The ∆ term in (35) imposes an upper bound on inter-event times.
This restriction on intersampling intervals is necessary as it confirms the finiteness
of the bias term in (61).

Corollary 4.2. Under the assumptions of Theorem 4.3, trajectories of the event-
based system Ge converge to 0 ∈ Rn.

Theorem 4.4. Under the assumptions of Theorem 4.3 and in absence of distur-
bances, the event-based system Ge is (∞ → σ̄−1(κ̂θ/(1 − c)))-stable, where κ̂θ

.
=

κ̂θbθc/bθc!.

In the rest of this section, we provide a discrete counterpart to the analysis given
in section 4.1.2. Indeed, we design κ̂ and θ in (33) so that given some N ∈ Z>0 and
τ∗ ∈ R>0, we have τ2 > τ + τ∗ at least for t ∈ [0, T̄ ], where τ2 denotes the lower
bound on intersampling periods of system Ge under execution rule (33).

Choosing ∆ > τ + τ∗ in (35), it remains to consider the case where ti = t′i
and hence ti satisfy the triggering condition (33). Even a more conservative event
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condition can be obtained if the i-th execution of control task is fulfilled when the
following holds

β̄1(|e|) > cψ(|x|) + κ̃
θi

i!
, (36)

where κ̃ = κ̂/(1 + σ0(ε̄)). Now using the same procedures as (28) and (29) were
derived, we obtain a discrete version of event condition (30):

cε̄L−1
ψ−1(L̂

|e(t−i )|
|x(t−i )|

− 1) > κ̃
θi

i!
. (37)

Our goal is to design κ̂ and θ such that the solution |e(t−i )|/|x(t−i )| to the above
inequality satisfies L∗|e(ti)|> |x(ti)| for the first N triggerings, where L∗ is defined
such that y(τ + τ∗) = 1/L∗ and y is the solution to (56). We now consider two cases.
Case 1: If 1 6 N 6 Nθ

.
= max{i|θi/i! > θ} we have min16i6N{θi/i!} = θ, i.e., the

discrete function θi/i! takes its minimum value at i = 1, and hence we can choose κ̂
and θ so that

κ̂ =
cε̄

θ
L−1
ψ−1(

L̂

L∗
− 1)(1 + σ0(ε̄)). (38)

That is, for any 1 6 N 6 Nθ, the first Nθ inter-event intervals are lower bounded by
the solution τ2 of y(τ2) = 1/L∗.
Case 2: For N > Nθ we have min16i6N{θi/i!} = θN/N ! and we can pick κ̂ and θ
such that

κ̂ = cε̄L−1
ψ−1(

L̂

L∗
− 1)(1 + σ0(ε̄))

N !

θN
, (39)

i.e., for the first N samplings, the inter-event times are lower bounded by the solution
τ2 of y(τ2) = 1/L∗. Therefore, the lower bounds on intersampling periods are the
solutions τ2 and τ to

y(τ2) = 1
L∗ , for 0 6 i 6 Nθ

y(τ) = 1
L̄
, for i > Nθ

}
for 1 6 N 6 Nθ

y(τ2) = 1
L∗ , for 0 6 i 6 N

y(τ) = 1
L̄
, for i > N

}
for N > Nθ.

(40)

Note that while the continuous and discrete scenarios proposed in this section
have similarities, they have different structures that lead to different properties. The
primary difference between these methods is that while in continuous time the de-
caying term is a function of time and will vanish as t grows, this is not the case in
discrete scenario. The decaying term in discrete approach is a function of the sam-
pling instant and not time. Thus, if only a few triggering instants occur, the effect
of perturbation term may be considerable, regardless of the time that has passed.
This important feature of discrete scenario can be seen from the examples provided
in next section and shows that in contrast to continuous counterpart, the decaying
term may still be kept effective for a much longer time.
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5 Illustrative Examples

In this section we illustrate the L2-stabilizing triggering design through several ex-
amples. Our examples are simple enough so that the L2-gain analysis can be done
analytically, thus enabling us to provide further insight. We show in Example 5.2
that if some of the conditions of Theorem 3.1 are not satisfied, it may still be possi-
ble to relax these conditions by redefining triggering condition. In Example 5.3, we
replace the Euclidean vector norm with the infinity norm to obtain the L2-gain. This
is important since this change facilitates the computation of the Lyapunov function.
We continue with the following remarks, containing important points regarding the
simulations.

Remark 5.1. The examples are constructed according to our design principle, i.e.
performance is defined in L2-sense and the design is such that preserves the L2 gain
of the continuous-time design. In this approach, we have purposely ignored transient
behaviour and pushed the design to the extreme to save communications during tran-
sient, something that should, of course, be corrected in a more realistic design. The
simulations indeed show a deterioration of the transient response. This should be in-
terpreted as indicative that, in general, L2 performance does not, in any way, imply
good transient behaviour.

Remark 5.2. Note that the plots for verification of L2-gain and system’s trajectories
are provided for one single initial condition. However, the discussion on number of
samples and minimum inter-event times are provided based on averaging 100 initial
conditions. Thus, one should be careful that since the L2-gain plots depend on initial
condition, no general conclusion (such as comparing the L2-gain of continuous-time
and event-based systems) other than verification of the proposed L2-gain for different
scenarios can be made from them.

Example 5.1. Consider the following first order system

ẋ = −x3 + xw + u, z = x, (41)

where x ∈ R, u = −k(x + e) for some k ∈ R>0 is the control input, e is the mea-
surement error and w is the exogenous disturbance belongs to the set WQ defined
in (2). Choosing the Lyapunov function V (x) = x2/2 it is straightforward to show
that the system is ISS with respect to e and w. Assuming e to be zero all the time,
the continuous-time system is finite gain locally L2-stable. To show this, we take
W (x) = λV (x) for some λ ∈ R>0. Now since V̇ (x) = −kx2 − x4 + x2w 6 −kx2 +
(γ1 − 1)x4 + w2/(4γ1), where γ1 ∈ R>0, we will have Ẇ (x) 6 −λkx2 + λw2/(4γ1)
for γ1 6 1. As a consequence, the minimum upper bound on the L2-gain of sys-
tem (41) is 1/(2

√
γ1k) (when γ1 = 1). Finally by choosing U = V + W we have

U̇(x) 6 λw2/4 − λkz2 − kx2 + w2/4 + (1 + λ)k|x||e|, which by restricting e and w
to satisfy |e|6 c|x|/(1 + λ) and |w(t)|6 γ3(|x(t)|) = 2

√
c̄k|x(t)|, reads as U̇(x) 6

λw2/4 − λkz2 − (1 − c − c̄)kx2. Thus we can design c and c̄ so that c + c̄ < 1
and hence ensure that the event-based system is finite gain L2-stable. Also it is
not difficult to verify that U̇(x) < 0 and hence |x| monotonically converges to zero.
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This enables us to find Q assuming x0 ∈ X0, i.e., |x0|6 ε. Indeed, we can write
|w(t)|6 2

√
c̄k|x(t)|6 2

√
c̄k|x0|. Hence taking Q = 2

√
c̄kε guarantees w(t) ∈ WQ.

We continue the discussion carried out above, numerically. Taking k = 1, ε = 1,
c = 0.5, c̄ = 0.45, Q = 1.34, λ = 0.5, κ = 15, ζ = 1.6, κ̂ = 1.5, θ = 1 and
∆ = 1.1, we arrive at the execution rule |e|= |x|/3. Consequently we have U̇(x) 6
|w|2/8 − |z|2/2, where U(x) = 3x2/4. It then follows that the event-based system is
finite gain L2-stable with zero bias and has L2-gain less than or equal to 1/2. To
confirm the value of L2-gain numerically, we integrate U̇(x) − |w|2/8 + |z|2/2 6 0

to get U(x) − U(x0) − 1
8

∫ t
0
|w(τ)|2dτ + 1

2

∫ t
0
|z(τ)|2dτ 6 0 which by defining Γ = 1

2 ,
µ = 2U and using positive definiteness of U reduces to∫ t

0
|z(τ)|2dτ∫ t

0
|w(τ)|2dτ

6 Γ2 +
µ(x0)∫ t

0
|w(τ)|2dτ

(42)

and is verified in Fig. 1 for x0 = 1.
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Figure 1: Verification of L2-gain.

Also the corresponding state trajectory of the system is shown in Fig. 2.
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Figure 2: System’s trajectory (Left). Actuator signal (Right).

It is worth noticing that the L2-gain preserving nature of our proposed method can
be inferred from Fig. 1 as the curves for the event-based scenarios lie under the one for
continuous-time system. Also a comparison of the number of triggering instants and
the minimum intersampling period is given in the following table, where we average
the results obtained from 100 initial conditions, uniformly distributed in [−1, 1]. The
results of Table 1 clearly suggests that the effectiveness of the methods proposed in
Section 4 on the sampling rate and intersampling interval diminishes with the passing
of time.

Table 1: Comparison of different scenarios.

Simulation Section 3 Section 4
time (sec) 4.1 4.2

Number of samples
10 40 11 10
30 120 48 38
100 400 286 318

Min inter-event time
10 0.24 0.66 1.1
30 0.24 0.46 0.27
100 0.24 0.25 0.25

The proof of Theorem 3.2 suggests that nonzero inter-event times can be guar-
anteed if instead of condition (ii) in Theorem 3.1, the function ψ−1(β̄1/c) is Locally
Lipschitz-continuous in Rn. Neither of the these conditions hold in the next exam-
ples, however, we can still prove this important property for the event-based system
through defining a new triggering condition.
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Example 5.2. In the next example, we consider the following second order system
ẋ1 = x2,

ẋ2 = −h(x1) + u+ w,

z = x2.

(43)

where u is the control input, w is the exogenous disturbance and is restricted to
satisfy |w|≤ 1 and z is the measured output. We design u = −k(x2 +e) where e is the
measurement error in x2. The nonlinear function h : R 7→ R is assumed to be in the
sector [c1, c2], i.e., c1r

2 6 rh(r) 6 c2r2 for any r ∈ R. We first show that, in view of
(9), the system is ISS with respect to e and w. To this end, let us consider Lyapunov
function V (x) = 1

2x
TPx+ 2

∫ x1

0
h(r)dr, where x = [x1 x2]T and P = [1 1; 1 2]. Then

by choosing k = 1 we have V̇ (x) = −x1h(x1)−x2
2 + 2x2(−e+w) + x1(−e+w). Next

we can rewrite the last two terms in V̇ as 2x2(−e + w) = − 1
4 (x2 + 4e)2 − 1

4 (x2 −
4w)2 + 1

2x
2
2 +4e2 +4w2 and x1(−e+w) = − 1

4 (x1 +2e)2− 1
4 (x1−2w)2 + 1

2x
2
1 +e2 +w2.

Assuming h to be in the sector [1, 2], we conclude that r2 6 rh(r) 6 2r2. Taking this
into account, we obtain V̇ (x) 6 −σ̄(|x|) + β1(|e|) + β2(|w|), where σ̄(r) = r2/2 and
β1(r) = β2(r) = 5r2.

We also claim that when e ≡ 0, the continuous-time system is finite gain locally
L2-stable. To see this, consider the Lyapunov function W (x) = λV (x) for some
λ ∈ R>0. Then since V̇ (x) = −x1h(x1) − x2

2 + 2x2w + x1w = −x2
1(1 − ε1) − x2

2(1 −
ε2) + ( 1

4ε
−1
1 + ε−1

2 )w2 = −ε1(x1 − 1
2ε
−1
2 w)2 − ε2(x2 − ε−1

2 w)2, we conclude Ẇ (x) 6
λ(1 − ε2)z2 + λ(ε−1

1 /4 + ε−1
2 )w2, i.e., the continuous-time system has local L2-gain

less than or equal to
√

(4ε1 + ε2)/(4ε1ε2(1− ε2)). The minimum value of this upper
bound on the L2-gain of the system is 4.4861 and obtained by setting ε1 = 1 and
ε2 = 0.4721.

To verify condition (16) we restrict w to satisfy |w(t)|6 γ3(|x(t)|), where γ3(r) =√
c̄/2r for some c̄ ∈ (0, 1) is a solution to the inequality (15). So far we have showed

that Assumptions 3.1, 3.2 hold. Therefore it suffices to verify conditions (i)-(iii) in
Theorem 3.1 hold as well. Condition (iii) is readily hold for functions f and k. Also,
condition (i) holds for σ3(r) = λ(‖P‖+2c2)r since we have

|∂W
∂x

(x)|= λ

∣∣∣∣[x1 + x2 + 2h(x1)
x1 + 2x2

]∣∣∣∣ 6 λ(‖P‖+2c2)|x|.

Condition (ii) in Theorem 3.1 is not satisfied for the given functions σ̄, β1. However,
we will redefine functions ψ and β̄1 in (18) and show the results of theorem are still
valid. To this end, let us start with (9) which can be written as ∇V (x) · f(x, k(x +
e), w) 6 −(1 − c0)σ̄(|x|) + β1(|e|) for some c0 ∈ (0, 1) when |w|6 γ3(|x|). This is
true since choosing c0 > 5c̄ ensures β2(|w|) 6 c0σ̄(|x|). Therefore, (53) reduces to
U̇(x) 6 −(1−c0)σ̄(|x|)+β1(|e|)+σ0(|x|)β0(|e|)+Γ2|w|2−|z|2. Using the definition of
β1 in this example, we can write β1(|e|) + σ0(|x|)β0(|e|) = β1(|e|) +LfLk|e|σ3(|x|) =
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(
√

5|e|+LfLkσ3(|x|)/(2
√

5))2 − L2
fL

2
kσ

2
3(|x|)/20 and hence

U̇(x) 6 −(1− c0)σ̄(|x|)−
L2
fL

2
k

20
σ2

3(|x|) + (
√

5|e|

+
LfLk

2
√

5
σ3(|x|))2 + Γ2|w|2−|z|2. (44)

Therefore, we can define ψ(r)
.
=
√
σ̄(r) + L2

fL
2
kσ3

2(r)/20 − LfLkσ3(r)/(2
√

5) and

β̄1(r)
.
=
√

5r. Thus if for some c ∈ (0, 1 − c0) the next triggering of control task
occurs when

√
5|e|>

√
cσ̄(|x|) +

LfL2
k

20
σ2

3(|x|)− LfLk

2
√

5
σ3(|x|) (45)

we conclude that U̇(x) 6 −(1 − c0 − c)σ̄(|x|) + Γ2|w|2−|z|2. As a consequence, the
event-based system has the local L2-gain less than or equal to 4.4861. Also one can
check the local Lipschitz-continuity of ψ−1(β̄1/c) in Rn which is necessary to prove
Zeno-freeness property for the system.

To find Q, we have to find functions σ1 and σ2 so that (7) holds. Since x2
1 6

2
∫ x1

0
h(r)dr 6 2x2

1 and V (x) = (xTPx)/2 + 2
∫ x1

0
h(r)dr, one can choose σ1(r) =

Σmin(P1)r2/2 and σ2(r) = Σmax(P2)r2/2, where Σmax(A) (respectively Σmin(A)) de-
notes maximum (respectively minimum) eigenvalue of matrix A, and P1 = [3 1; 1 2],
P2 = [5 1; 1 2]. Thus we can take Q = Lγ3 ε̄ = Lγ3σ

−1
1 (σ2(ε)) = ε

√
(c̄Σmax(P2))/(2Σmin(P1)),

where ε is the upper bound on the norm of admissible initial conditions. For numer-
ical simulations we take ε = 1, λ = 10−3, c = 0.7, c̄ = 0.05, κ = κ̂ = 50, ζ = θ = 1,
∆ = 4 and Q = 0.62. The verification of L2-gain of the system for x0 = [0.87 0.5]T

is presented in Fig. 3 as it suggests (42) holds for Γ = 4.4861.
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Figure 3: Verification of L2-gain (Left). Actuator signal (Right).

The state trajectories of the system is also plotted in Fig. 4.
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Figure 4: System’s trajectories.

Finally, a comparison of the number of triggering instants and the minimum in-
tersampling period is given in Table 2. To this end, we consider 100 initial conditions
uniformly distributed in circle of radius 1 and average the obtained results.

Table 2: Comparison of different scenarios.

Simulation Section 3 Section 4
time (sec) 4.1 4.2

Number of samples
10 47 6 3
30 139 89 8
100 466 415 70

Min inter-event time
10 0.09 1.21 4
30 0.09 0.1 4
100 0.09 0.09 0.49

In the next example, we apply the refsults of Theorem 3.1 but replacing the Eu-
clidean vector norm with the infinity norm.

Example 5.3. Using similar notations as in Example 5.2, we define the following
second order system 

ẋ1 = x2 − bx1,

ẋ2 = −ax3
1 + u+ w,

z = x2,

(46)

where |w|6 1. Defining Lyapunov function V (x) = ax4
1/4 + |x|2/2, where x =

[x1 x2]T , we will have V̇ (x) = x1x2 − bx2
1 − abx4

1 + x2u + x2w, which by taking
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u = −(x1 + e1)− (x2 + e2) can be written as

V̇ (x) 6 −bx2
1 − abx4

1 − x2
2 −
√

2|x|∞|e|+|x|∞|w| (47)

where e1 and e2 are the measurement errors in x1 and x2, respectively and e =
[e1 e2]T . Then in view of the following inequality

bx2
1 + abx4

1 +
1

4
x2

2 >

{
b|x|2∞ + ab|x|4∞, if |x1|> |x2|,
1
4 |x|

2
∞, otherwise,

we conclude that bx2
1 + abx4

1 + x2
2/4 > σ̄(|x|∞), where function σ̄(r) = min{br2 +

abr4, r2/4} is of class K∞. This enables us to write (47) as

V̇ (x) 6 −σ̄(|x|∞) +
√

2|x|∞|e|+|x|∞|w|. (48)

To show finite gain stability of continuous-time system, consider W (x) = λV (x) as
the Lyapunov function. Thus for e ≡ 0, we have V̇ (x) = −bx2

1 − abx4
1 − x2

2 + x2w 6
−z2 + zw which by using zw = ε̂z2/2 + w2/(2ε̂) − ε̂(z − w/ε̂)2

/2 for some ε̂ ∈ R>0,
gives Ẇ (x) 6 −λ(1− ε̂/2)z2 +λw2/(2ε̂). As a consequence, it is not difficult to show
that the minimum upper bound on the L2-gain of continuous-time system (46) can be
achieved by choosing ε̂ = 1 and is equal to 1. This value, however, may be improved
by a different choice of Lyapunov function W (x).

Defining σ3(r)
.
= λr + aλr3 for r ∈ R≥0, we have |∂W∂x (x)|∞ 6 σ3(|x|∞) since

|∂W
∂x

(x)|
∞

= λ

∣∣∣∣[ax3
1 + x1

x2

]∣∣∣∣
∞

6

{
aλ|x|3∞ + λ|x|∞, if |x1|(1 + ax2

1) > |x2|,
λ|x|∞, otherwise,

and hence |∂W∂x (x)|∞ 6 max{λ|x|∞, λ|x|∞ + aλ|x|3∞} = λ|x|∞ + aλ|x|3∞. Therefore,
by taking U = V +W and following the similar lines as in deriving (54), we can write

U̇(x) 6 −λ
2
z2+

λ

2
w2+|x|∞

(
−|x|∞min{b+ab|x|2∞,

1

4
}

+
√

2|e|+|w|+2λLfLk(1 + a|x|2∞)|e|
)
,

where we used the fact that

∂W

∂x
(x)(f(x, k(x+ e), w)− f(x, k(x), w)) 6

2|∂W
∂x

(x)|
∞
|f(x, k(x+ e), w)− f(x, k(x), w)|∞ 6

2|∂W
∂x

(x)|
∞
|f(x, k(x+ e), w)− f(x, k(x), w)| 6

2LfLk|e||
∂W

∂x
(x)|

∞
.
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We note that since u = k(x) = −(x1 + x2), it can be easily inferred that Lk =
√

2.
Now assuming |w(t)|6 γ3(|x(t)|∞) where γ3(r) = min{br + abr3, r/4}c̄ and taking
c ∈ (0, 1− c̄), we conclude that if the execution of control task occurs when

|e|> c
|x|∞min{b+ ab|x|2∞,

1
4}√

2(1 + 2λLf (1 + a|x|2∞))
, (49)

the system (46) is finite gain local L2-stable with zero bias and local L2-gain 6 1.
To find Q, let σ1(x) 6 V (x) 6 σ2(x), where σ1(r) = r2/2 and σ2(r) = (2 + a)r2/4.
As a consequence, assuming initial conditions to be norm bounded by ε, we can take
Q = Lγ3 ε̄ = Lγ3σ

−1
1 (σ2(ε)) = Lγ3ε

√
1 + a/2, which by choosing b > 1/4, reduces to

Q = (c̄ε
√

1 + a/2)/4. In simulations, let a = 1, b = 10, ε = 1, c = 0.5, c̄ = 0.45,
κ = 10, κ̄ = 10, ζ = 1, θ = 5, ∆ = 1 and Q = 0.138. Therefore, the only parameter
left to study the system’s response is λ which appears in triggering condition (49).
We start our simulation with λ = 1, however, the effect of this parameter on our
results will be discussed later. Similar to the past examples, in the next table, we
give a comparison of number of samplings and minimum intersampling times over
different scenarios. The results are, indeed, the average over 100 initial conditions
uniformly distributed in the circle of radius 1.

Table 3: Comparison of different scenarios.

Simulation Section 3 Section 4
time (sec) 4.1 4.2

Number of samples
10 420 8 10
30 1190 23 30
100 3882 75 100

Min inter-event time
10 0.007 0.61 1
30 0.007 0.57 1
100 0.007 0.53 1

Recalling from Definition 2.5, the system (46) has local L2-gain 6 Γ if for any
T we have (42). The local L2-gain of the system is then verified in Fig. 5 for
x0 = [0.87 0.5]T and Γ = 1. Also the corresponding state trajectories is presented in
Fig. 6.
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Figure 6: System’s trajectories.

Finally, the effect of parameter λ on the above results in the first 100 seconds
of response is investigated in Table 4. It suggests that λ has negligible effect on the
triggering numbers and minimum inter-event times using the methods of Sections 4.1,
4.2. However, choosing λ > 10−2 degrades the efficiency of the results of Section 3,
significantly.
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Table 4: Investigating the effect of parameter λ.

λ
Method of

Section 10−3 10−2 10−1 1

Number of samples
3 149 152 176 420

4.1 8 8 8 8
4.2 10 10 10 10

Min inter-event time
3 0.023 0.022 0.019 0.007

4.1 0.670 0.669 0.680 0.610
4.2 0.999 0.999 0.999 0.999

Example 5.4. The following example illustrates the necessity of using a local L2

theory. The example shows that while under arbitrary perturbations w in L2 space,
the event times are not necessarily guaranteed to be isolated, the local notion serves
to exclude Zeno phenomenon. Consider the following linear example from [4]

ẋ(t) = Ax(t) +Bu(t) + w(t), u(t) = Kx(t), (50)

where A, B, K are matrices of appropriate dimensions and the controller is applied
in an event-based fashion. The desired output is taken as z(t) = x(t). Assume t0 = 0,
x0 6= 0, and the triggering condition |e(t)|> p|x(t)| for some p ∈ R>0, it is shown
in [4] that under the following choice of disturbance

w(t) = ((t− 1)A+ (ti − 1)BK)x0 − x0, t ∈ [ti, ti+1) (51)

for t ∈ [0, 1] and zero elsewhere (which is a signal in L2(R≥0) space), the state and
triggering instants are analytically given by x(t) = (1 − t)x0 and ti = 1 − (1 + p)−i,
i ∈ Z≥0, respectively. It is then obvious that event times has an accumulation point
at t = 1. To address this issue, [4] suggests using the input-to-state practically stable
(ISpS) property instead of ISS condition (8). The proposed method, however, is not
applicable to the problem studied in this paper since the L2-gain performance of the
event-based system can not be guaranteed.

Note that the above discussion suggests that when w is an arbitrary signal in
L2(R≥0), as in (51), the execution rules of the form (18) does not exclude the Zeno-
behaviour. However, in this paper our solution to this problem is to restrict w to be
in the admissible space WQ and also satisfy condition (16) with γ3(r)

.
= ĉr, ĉ ∈ R>0.

The price we paid is then the local character of the results. We remark that w defined
in (51) does not satisfy (16), and hence is not a counter example of the local thoery.
This is because (16) is violated near t = 1.

Indeed, applying the results of Theorem 3.2 one can show that limiting w as above,
the triggering instants are separated at least by

τ =
1

‖A‖+ĉ
ln (1 +

‖A‖+ĉ
p(‖A‖+‖BK‖+ĉ) + ‖BK‖

).
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6 Conclusion

This paper addresses the disturbance rejection problem of nonlinear event-based sys-
tems. Assuming the existence of a pre-designed control law with desirable local L2

performance characteristics, we propose a triggering condition that preserves finite
gain local L2-stability of the original continuous-time design. Our formulation is
rather general; i.e. we consider a nonlinear plant and assume that disturbances are
bounded by a Lipschitz-continuous function of the state. We also show that, in the
absence of external disturbances, the control law render the origin asymptotically
stable.

In addition to stability and disturbance rejection, we also study the intersampling
behaviour of the proposed event-triggering condition. First we show that the inter-
event time period is lower bounded by a nonzero constant and focus on enlarging
this constant. We show that, regardless of the construction of the event-triggered
mechanism, the inter-event time period increase is actually lower bounded by a con-
stant. Increasing the value of this constant can be done at the expense of relaxing
the stability properties of the design.

7 Appendix

Proof of Theorem 2.2. We need to show that if there exist class K∞ functions σ, γi
(i = 1, 2) so that ∇V (ξ)·f(ξ, k(ξ+µ), w) 6 −σ(|ξ|) holds for any ξ ∈ Rn, any µ ∈ Rn
and any w ∈ WQ such that |ξ|> γ1(|µ|)+γ2(|w|) then one can find class K∞ functions
σ̄, βi (i = 1, 2) such that ∇V (ξ) · f(ξ, k(ξ + µ), w) 6 −σ̄(|ξ|) + β1(|µ|) + β2(|w|) and
vice versa. Let us start by assuming ∇V (ξ) · f(ξ, k(ξ + µ), w) 6 −σ(|ξ|) for |ξ|>
γ1(|µ|) +γ2(|w|). Then we can say that ∇V (ξ) ·f(ξ, k(ξ+µ), w) +σ(|ξ|) 6 β̄(|µ|, |w|)
where

β̄(|µ|, |w|) = max{∇V (ξ)·f(ξ, k(ξ + r), s) + σ(|ξ|)| |r|6 |µ|,
|s|6 |w|, |ξ|6 γ1(|r|) + γ2(|s|)}.

Defining class K∞ functions β1(|µ|) .
= β̄(|µ|, |µ|) and β2(|w|) .

= β̄(|w|, |w|) it is not
difficult to verify that β̄(|µ|, |w|) 6 β1(|µ|) for |µ|≥ |w| and β̄(|µ|, |w|) 6 β2(|w|) oth-
erwise. Therefore we conclude that β̄(|µ|, |w|) 6 β1(|µ|)+β2(|w|) that proves one part
of the claim. To prove the other side, assume that we have ∇V (ξ) ·f(ξ, k(ξ+µ), w) 6
−σ̄(|ξ|)+β1(|µ|)+β2(|w|). Then we can write ∇V (ξ)·f(ξ, k(ξ+µ), w) 6 −σ̄(|ξ|)/2 for
σ̄(|ξ|)/4 > β1(|µ|) and σ̄(|ξ|)/4 > β2(|w|). Finally defining γi

.
= σ̄−1(4βi) (i = 1, 2),

we may conclude that ∇V (ξ) · f(ξ, k(ξ+µ), w) 6 −σ̄(|ξ|)/2 for |ξ|> γ1(|µ|) + γ2(|w|)
which completes the proof. �

Proof of Lemma 3.1. (a) This is an immediate consequence of Theorem 2.2. (b)
We need to show that under conditions I-III, there exists a class K∞ function γ so
that ∇V (ξ) · f(ξ, k(ξ+ µ), w) 6 −σ(|ξ|) for |ξ|> γ(|µ|). To this end, let us start with
conditions II and III that suggest γ4 ◦ (|ξ|−γ2(|w|)) > γ4 ◦ (γid − γ2 ◦ γ3)(|ξ|) > |ξ|.
Now taking γ = γ4 ◦ γ1 we can say that if |ξ|> γ(|µ|), we have |ξ|−γ2(|w|) > γ1(|µ|)
which, in view of condition I, implies that ∇V (ξ) · f(ξ, k(ξ + µ), w) 6 −σ(|ξ|). �
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Proof of Lemma 3.2. (if) From (17) we may conclude that ∇V (ξ) · f(ξ, k(ξ +
µ), w) 6 −σ̂(|ξ|) for cψ(|ξ|) > β̄1(|µ|). Then taking σ = σ̂, γ = ψ−1(β̄1/c) and
applying Lemma 3.1 part (a), the desired result is obtained. (only if) Starting from
Assumption 3.2, by adding and subtracting σ0(|ξ|)β0(µ) term to the right hand side of
inequality (14), we may write ∇V (ξ)·f(ξ, k(ξ+µ), w) 6 −(1−c)σ̄(|ξ|)−σ0(|ξ|)β0(|µ|)
for β1(µ) +σ0(|ξ|)β0(|µ|) 6 cσ̄(|ξ|). Now defining functions ψ(r)

.
= σ̄(r)/(1 + σ0(r)),

β̄1(r)
.
= max{β1(r), β0(r)}, we claim that if cψ(|ξ|) > β̄1(|µ|) we have β1(µ) +

σ0(|ξ|)β0(|µ|) 6 cσ̄(|ξ|). This is true since cσ̄(|ξ|) > (1+σ0(|ξ|))·max{β1(µ), β0(µ)} >
β1(µ) + σ0(|ξ|)β0(|µ|). Therefore, if cψ(|ξ|) > β̄1(|µ|), (17) holds for σ̂ = (1 − c)σ̄
and hence the proof is complete. �

Proof of Theorem 3.1. Let us start with Assumption 3.2 which, in view of proof
of Lemma 3.2, implies the existence of C1 function V such that

∇V (x) · f(x, k(x+ e), w) 6 −(1− c)σ̄(|x|)− σ0(|x|)β0(|e|) (52)

for any x ∈ Rn, any e ∈ Rn and any w ∈ WQ such that cψ(|x|) > β̄1(|e|). Now
consider positive definite C1 function U = V +W , where W is a positive definite C1

function that, in view of Assumption 3.1, guarantees the finite gain local L2-stability
of continuous-time system Gc. We can easily write

U̇(x) = ∇V (x) · f(x, k(x+ e), w) +∇W (x) · f(x, k(x), w)

+∇W (x) · (f(x, k(x+ e), w)−f(x, k(x), w)). (53)

Also applying condition (i) and inequality (22) gives ∇W (x) · (f(x, k(x + e), w) −
f(x, k(x), w)) 6 σ0(|x|)β0(|e|). As a consequence, in view of (13), (52) and (53) we
can write

U̇(x) 6 −(1− c)σ̄(|x|) + Γ2|w|2−|h(x,w)|2 (54)

for any x ∈ Rn, any e ∈ Rn and any w ∈ WQ such that cψ(|x|) > β̄1(|e|). Thus under
event condition (18) we obtain HΓ(U, k(x + e)) 6 0, i.e., the event-based system Ge
has the disturbance attenuation local L2-gain ‖Ge‖L2

6 Γ. �
Proof of Lemma 3.3. We deduce from inequality (20) that σ̄(|x|) − β1(|e|) −

β0(|e|)σ0(|x|) > (1 − c)σ̄(|x|) and hence σ̄(|x|) − β1(|e|) > 0. Thus we conclude
from (14) that V̇ (x) 6 0 and consequently V (x(t)) 6 V (x(0)) for all t ∈ R≥0. Since
V is a radially unbounded positive definite function, we conclude that there exists σ1,
σ2 ∈ K∞ so that (7) holds and hence σ1(|x(t)|) 6 V (x(t)) 6 V (x(0)) 6 σ2(|x(0)|).
Then we can write |x(t)|6 σ−1

1 (σ2(x0)) and since x0 ∈X0 and σ−1
1 , σ2 are class k∞

functions, the desired result is obtained. �
Proof of Theorem 3.2. From Lemma 3.3, we have x(t) ∈X for all t ∈ R≥0. Now

in view of Properties 3.1, 3.2 it can be inferred that function ψ−1(β̄1/c) is Lipschitz-
continuous in any compact set in R≥0. Let us denote by L̄ the Lipschitz constant of
this function on set De defined as De = {β̄−1

1 (cψ(s))|s ∈ [0, ε̄]} = [0, β̄−1
1 (cψ(ε̄))].

Thus we have ψ−1(β̄1(|e|)/c) 6 L̄|e| which suggests that a more conservative lower
bound on inter-event times can be achieved when instead of (18), the next triggering
of control task occurs when L̄|e|> |x|. Following the same procedure as in ( [22],
Theorem III.1), we can upperbound the dynamics of y

.
= |e|/|x| as ẏ 6 (1 + y)|ẋ|/|x|,
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which using (23) reads as

ẏ 6 Lf
(

1 + y
)(
Lk + Lγ3 + 1 + Lky

)
. (55)

Thus the inter-execution times are lower bounded by the solution τ of y(τ) = 1/L̄,
where y is the solution to

ẏ = Lf (1 + y)(L+ Lky), y(0) = 0 (56)

with L = Lk + Lγ3 + 1. It then follows that the lower bound on inter-event times is

0 < τ =
1

Lf (L− Lk)
ln (1 +

L− Lk
LL̄+ Lk

). (57)

�
Proof of Property 3.1. Let us define εm

.
= maxr∈Dx

{r}. Also let Lσ0
and Lσ̄−1 be

the Lipschitz constants of functions σ0 and σ̄−1 on compact sets {ψ−1(r)|r ∈ Dx} =
[0, ψ−1(εm)] and {σ̄(ψ−1(r))|r ∈ Dx} = [0, σ̄(ψ−1(εm))], respectively. Using the fact
that σ̄ and σ0 are class K∞ functions, one can write

|ψ(r)− ψ(r̃)| =
∣∣∣ σ̄(r)

1 + σ0(r)
− σ̄(r̃)

1 + σ0(r̃)

∣∣∣
>
∣∣∣ (1 + σ0(r))∆r,r̃(σ̄)− σ̄(r)∆r,r̃(σ0)

(1 + σ0(εm))2

∣∣∣
>

(1 + σ0(r))|∆r,r̃(σ̄)| − σ̄(r)|∆r,r̃(σ0)|
(1 + σ0(εm))2

for any r, r̃ ∈ {s|ψ(s) ∈ Dx}, where functional ∆r,r̃ is defined as ∆r,r̃(ϕ)
.
= ϕ(r)−ϕ(r̃)

for some function ϕ. The Lipschitz-continuity of functions σ0 and σ̄−1 imply that
|∆r,r̃(σ0)|6 Lσ0

|r − r̃| and |r − r̃|6 Lσ̄−1 |∆r,r̃(σ̄)| which together with Lemma 3.3
reduces the above inequality to

|ψ(r)− ψ(r̃)| >
L−1
σ̄−1 − Lσ0

σ̄(εm)

(1 + σ0(εm))2
|r − r̃|. (58)

�
Proof of Corollary 3.1. From Remark 3.3 we conclude that β1(|e|) 6 cσ̄(|x|)

between triggering instants. Then assuming w = 0 and taking (14) into account, we
can write ∇V (x)·f(x, k(x+e), 0) 6 −(1−c)σ̄(|x|) < 0, i.e., x = 0 is an asymptotically
stable point for disturbance-free system Ge. The above argument is global since from
Assumption 3.2, V is radially unbounded. �

Proof of Theorem 4.1. Following the similar lines as in the proof of Theorem 3.1,
we can upper bound U̇ as

U̇(x) 6 −(1− c)σ̄(|x|) + κe−ζt + Γ2|w|2−|h(x,w)|2 (59)

for any x ∈ Rn, any e ∈ Rn and any w ∈ WQ such that cψ̃(|x|) > β̄1(|e|). Inte-
grating (59) from 0 to T ∈ R>0 and using the positive definiteness of U we obtain
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∫ T
0
|h(x(t), w(t))|2dt 6 Γ2

∫ T
0
|w(t)|2ds + κ(1 − e−ζT )/ζ + U(x0), which by applying

Definition 2.5 with η = κ/ζ and µ = U , completes the proof. �
Proof of Corollary 4.1. It can be inferred from execution rule (25) that between

successive triggering instants we have β1(|e|) 6 β̄1(|e|) 6 cσ̄(|x|) + κe−ζt. Then from
(14), we can upper bound V̇ as

V̇ (x) 6 −(1− c)σ̄(|x|) + κe−ζt. (60)

Defining c̄ = 1 − c, we conclude that V̇ (x) < 0 for |x|> σ̄−1(κe−ζt/c̄). Now define
compact set Λi = {x ∈ Rn||x|6 σ̄−1(κe−ζi/c̄)} for i ∈ Z≥0. Also the set of boundary
points of Λi is defined as ∂Λi = {x ∈ Rn||x|= σ̄−1(κe−ζi/c̄)} for i ∈ Z≥0. We
denote by mi the argument of maximum value of V (x) over the set ∂Λi, i.e., mi =
arg maxx∈∂Λi

V (x). Next define compact set Ωi
.
= {x ∈ Rn|V (x) 6 V (mi)} for i ∈

Z≥0. Clearly Ωi is positive invariant under the dynamics of event-based system Ge for
t > i. We claim that Ωi is the global attracting set of system Ge for t > i. To see this,
let us define the complement of Ωi in Rn as Ωci = {x ∈ Rn|V (x) > V (mi)}. If x ∈ Ωci ,
we conclude that |x|> mi and since mi ∈ ∂Λi we deduce that |x|> σ̄−1(κe−ζi/c̄).
Then since t > i it follows that |x|> σ̄−1(κe−ζt/c̄) and consequently V̇ (x) < 0 for all
x ∈ Ωci which confirms our claim. For t > i+1, however, Ωi+1 ⊂ Ωi is the new global
attracting set of the event-based system Ge. Thus the sequence of positive invariant
attracting sets {Ωi}i∈Z≥0

with Ω0 ⊃ Ω1 ⊃ · · · ⊃ Ωi ⊃ · · · shrinks to the origin as

i → ∞ (since mi converges to 0) which confirms the convergence of trajectories of
system Ge to the origin. �

Proof of Theorem 4.2. First we apply (60) to conclude that V̇ (x) 6 −c̄σ̄(|x|) + κ
and hence V̇ (x) < 0 for |x|> σ̄−1(κ/c̄), where c̄ = 1− c. Then we just need to show
conditions (a)-(c) in Definition 4.1 hold. To satisfy condition (a) we can choose δ(ε)
such that 0 < δ(ε) < ε. For condition (b) one can choose υ(r) = σ̄−1(κ/c̄) for r 6
σ̄−1(κ/c̄) and some υ(r) > r for r > σ̄−1(κ/c̄). Finally, to satisfy condition (c) we
consider two cases. For r 6 σ̄−1(κ/c̄) we can choose T (r, ε) to be any positive number
since trajectories of the system Ge do not leave the ball {x ∈ Rn||x|6 σ̄−1(κ/c̄)} and
hence |x(t)|< ε for all t > 0 and all ε > σ̄−1(κ/c̄). However, for r > σ̄−1(κ/c̄) we
need a more detailed argument. Let us choose T ′ such that |x(T ′)|= ε and integrate

(60) from 0 to T ′ to obtain V (ε) − V (x0) 6 −c̄
∫ T ′

0
σ̄(|x(t)|)dt + κ

∫ T ′
0
e−ζtdt 6

−c̄T ′σ̄(|ε|) + κ
ζ (1− e−ζT ′). Since V (ε)− V (r) 6 V (ε)− V (x0) we can upperbound T ′

as the solution to inequality c̄T ′σ̄(|ε|) + κe−ζT
′
6 V (r) − V (ε) + κ. One can find a

more conservative upper bound on T ′ by neglecting the exponential term in left hand
side, i.e., c̄T ′σ̄(|ε|) 6 V (r)− V (ε) + κ− κe−ζT ′ 6 V (r)− V (ε) + κ and obtain T ′ 6
(V (r)−V (ε)+κ)/(c̄σ̄(|ε|)). This is exactly what if we integrate the more conservative
inequality V̇ (x) 6 −c̄σ̄(|x|)+κ instead. Choosing T (r, ε) > (V (r)−V (ε)+κ)/(c̄σ̄(|ε|))
completes the proof. �

Proof of Theorem 4.3. It can be inferred from (35) that ti 6 t′i and hence we
have β̄1(|e(t)|) 6 cψ̌(|x(t)|) for t ∈ [ti−1, ti). Then following similar lines as the
proof of Theorem 3.1, for t ∈ [ti−1, ti) we obtain U̇(x) 6 −(1 − c)σ̄(|x|) + κ̂θi/i! +

Γ2|w|2−|h(x,w)|2 for any x ∈ Rn, any e ∈ Rn and any w ∈ WQ such that cψ̌(|x|) >
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β̄1(|e|). Integrating this inequality from 0 to some T> 0, we arrive at

U(x(T )) 6 U(x0) +

∫ T

0

(Γ2|w(t)|2−|h(x(t), w(t))|2)dt

+κ̂
{∫ t1

t0=0

θ1

1!
dt+ · · ·+

∫ ti

ti−1

θi

i!
dt+ · · ·+

∫ T

tN−1

θN

N !
dt
}
,

where we assume N triggering instants (including the first one at t0 = 0) occur
until t = T , i.e., tN−1 = maxti6T {ti}. Now since U(x(T )) > 0 we conclude that∫ T

0
|h(x(t), w(t)|2dt 6 U(x0) + Γ2

∫ T
0
|w(t)|2dt + κ̂ max

1≤i≤N
{ti − ti−1}

∑N
i=1 θ

i/i! and
hence ∫ T

0

|h(x(t), w(t)|2dt 6 U(x0) + Γ2

∫ T

0

|w(t)|2dt+ κ̂∆eθ. (61)

We then choose η = κ̂∆eθ and µ = U in Definition 2.5 to obtain the desired result.
�

Proof of Corollary 4.2. Following similar lines as the proof of Corollary 4.1 we
deduce that β1(|e|) 6 cσ̄(|x|) + κ̂θi/i! for t ∈ [ti−1, ti) and hence from (14) it follows
that

V̇ 6 −c̄σ̄(|x|) + κ̂
θi

i!
(62)

for t ∈ [ti−1, ti). As a consequence we conclude that V̇ (x) < 0 for |x|> σ̄−1(κ̂θi/(c̄i! ))
and t ∈ [ti−1, ti). Now define compact set Λi = {x ∈ Rn||x|6 σ̄−1(κ̂θi/(c̄i! ))} for
i ∈ Z>0. Then the set of boundary points of Λi can be defined as ∂Λi = {x ∈
Rn||x|= σ̄−1(κ̂θi/(c̄i! ))}. We denote the argument of maximum value of V (x) over
set ∂Λi by mi = arg maxx∈∂Λi

V (x). We remark that the discrete function θi/i! takes
its maximum value at i = bθc and is strictly decreasing over i > bθc. Now define
compact set Ωi = {x ∈ Rn|V (x) 6 V (mi)} for i ∈ Z>0. Following similar lines as the
proof of Corollary 4.1, we can show that for i > bθc, Ωi is positive invariant under
dynamics of the event-based system Ge and moreover, is the global attracting set of
this system for t > ti. Since ti − ti−1 6 ∆, we conclude that i → ∞ as t → ∞,
i.e., the triggering instants never terminate. Thus the sequence of positive invariant
attracting sets {Λi}bθc6i∈Z>0

with Λbθc ⊃ Λbθc+1 ⊃ · · · ⊃ Λi ⊃ · · · shrinks to the
origin and hence completes the proof. �

Proof of Theorem 4.4. In view of (62) which is valid in [ti−1, ti), we conclude
that V̇ (x) 6 −c̄σ̄(|x|) + κ̂θ for all t ∈ R≥0. Hence we have V̇ (x) < 0 for |x|>
σ̄−1(κ̂θ/c̄). Then we just need to show conditions (a)-(c) in Definition 4.1 hold.
To satisfy condition (a) we can choose δ(ε) such that 0 < δ(ε) < ε. To satisfy
condition (b) we can choose υ(r) = σ̄−1(κ̂θ/c̄) for r 6 σ̄−1(κ̂θ/c̄) and υ(r) > r for
r > σ̄−1(κ̂θ/c̄). For condition (c) we consider two cases. For r 6 σ̄−1(κ̂θ/c̄) we can
choose T (r, ε) to be any positive number since the trajectories do not leave the ball
{x ∈ Rn| |x|6 σ̄−1(κ̂θ/c̄)} and hence |x(t)|< ε for all t > 0 and all ε > σ̄−1(κ̂θ/c̄).
For r > σ̄−1(κ̂θ/c̄), choose T ′ such that |x(T ′)|= ε. Then integrating (62) from 0 to
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T ′ gives

V (ε)− V (x0) 6 −c̄
∫ T ′

0

σ̄(|x(t)|)dt+ κ̂
{∫ t1

t0=0

θ1

1!
dt

+ · · ·+
∫ ti

ti−1

θi

i!
dt+ · · ·+

∫ T ′

tN′−1

θN
′

N ′!
dt
}
.

Hence we have V (ε) − V (x0) 6 −c̄T ′σ̄(|ε|) + max16i6N ′{ti − ti−1}κ̂
∑N ′

i=1
θi

i! 6
−c̄T ′σ̄(|ε|) + max16i6N ′{ti − ti−1}κ̂eθ, where we assume N ′ triggering instants (in-
cluding the first one at t0 = 0) occur until t = T ′, i.e., tN ′−1 = maxti6T ′{ti}.
Then we can find an upper bound on T ′ as the solution to inequality c̄T ′σ̄(|ε|) 6
V (r) − V (ε) + max16i6N ′{ti − ti−1}κ̂eθ since V (ε) − V (r) 6 V (ε) − V (x0). We
remark that max16i6N ′{ti − ti−1} is a function of ε since N ′ depends on T ′ which
is a function of ε. Then one can choose T (r, ε) so that T (r, ε) > (V (r) − V (ε) +
max16i6N ′{ti − ti−1}κ̂eθ)/(c̄σ̄(|ε|)). �
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