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Plug-and-Play Fault Detection and Isolation for Large-Scale
Nonlinear Systems with Stochastic Uncertainties

Francesca Boem, Stefano Riverso, Giancarlo Ferrari-Trecate and Thomas Parisini

Abstract—This paper proposes a novel scalable model-based
Fault Detection and Isolation approach for the monitoring
of nonlinear Large-Scale Systems, consisting of a network of
interconnected subsystems. The fault diagnosis architecture is
designed to automatically manage the possible plug-in of novel
subsystems and unplugging of existing ones. The reconfiguration
procedure involves only local operations and communication
with neighboring subsystems, thus yielding a distributed and

scalable architecture. In particular, the proposed fault diagnosis
methodology allows the unplugging of faulty subsystems in order
to possibly avoid the propagation of faults in the interconnected
Large-Scale System. Measurement and process uncertainties are
characterized in a probabilistic way leading to the computation,
at each time-step, of stochastic time-varying detection thresholds
with guaranteed false-alarms probability levels. To achieve this
goal, we develop a distributed state estimation scheme, using a
consensus-like approach for the estimation of variables shared
among more than one subsystem; the time-varying consensus
weights are designed to allow plug-in and unplugging operations
and to minimize the variance of the uncertainty of the fault
diagnosis thresholds. Convergence results of the distributed
estimation scheme are provided. A novel fault isolation method is
then proposed, based on a Generalized Observer Scheme and pro-
viding guaranteed error probabilities of the fault exclusion task.
Detectability and isolability conditions are provided. Simulation
results on a power network model comprising 15 generation areas
show the effectiveness of the proposed methodology.

I. INTRODUCTION

In this paper, a distributed model-based Fault Detection and

Isolation (FDI) approach is proposed with stochastic bounds

on the measurement noise and modeling uncertainty. The
presented architecture is specifically designed for large-scale

interconnected systems, typically distributed and characterized

by a large number of states, inputs, and constraints. Further-
more, they often have a dynamic structure that changes along

the time. Reliability and resilience are therefore key require-
ments in Large-Scale Systems (LSSs), as their size, complexity

and possible evolution over time imply an increased risk of
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occurrence of faults. The interest towards LSSs [1], Systems-

of-Systems (SoS) [2] and Cyber-Physical Systems (CPS) [3]

is steadily growing both in industry and academia. When
monitoring this kind of systems, distributed or decentral-

ized algorithms are usually necessary due to computational,
communication, scalability and reliability limits (see, among

others, [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],

[15], [16], [17], and the references therein). Moreover, an
emerging requirement is the design of monitoring architectures

that are robust to changes that may occur in the dynamic

topology of the LSS. This is why, in this paper we model
LSSs as a network of interacting subsystems and develop a

scalable and distributed FDI methodology, properly designed

for Plug-and-Play (PnP) scenarios. The words ”Plug-and-Play”
have been borrowed from computer science to refer to the

possibility of adding or removing subsystems with minimal

effort or human intervention. More specifically, in the context
of control theory, as described in [18], the term PnP denotes a

scalable design procedure where a monitoring/control unit for

a subsystem can be synthesized using, at most, information
from neighboring subsystems, while preserving global prop-

erties of interest (such as stability, or convergence of state
estimators,...).

Differently from previous works ([8], [19], [20], [21], [22],

[17]) where a deterministic approach was adopted, in this
paper we consider stochastic models of noises and uncer-

tainties. The aim is to propose a monitoring architecture

which is closer to industrial applications, where deterministic
bounds on the uncertainties can be difficult to obtain and

can produce conservative results. In this connection, in the

recent paper [23], a fault detection and isolation method
is proposed with probabilistic performance, but considering

a centralized architecture. In [24], stochastic uncertainties

are considered for a distributed FDI architecture, but in a
completely different setting (non-overlapping models, linear

dynamics, output measurements only, different assumptions on
disturbances which require a distributed Kalman-like filtering

scheme).

It is important to note that the proposed technique is not a
data-driven statistical method (see [25] for a recent survey).

Instead, our approach is model-based [26] as it uses the

knowledge of a local and possibly uncertain model of the
system in order to compute local state estimates and related

detection and isolation thresholds. An integration of data-

driven and model-based approaches is proposed in [27], but
in a centralized setting, while here the detection and isolation

tasks are performed in a distributed way.

To the best of authors’ knowledge, this is the first time
that a comprehensive model-based distributed fault diagnosis

architecture is designed for LSSs in a PnP scenario consid-

ering stochastic uncertainties. A preliminary version of this
work has been presented in [28] considering only the fault
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detection problem. Some recent results are also presented

in [22], integrating distributed fault detection with MPC for

nonlinear LSSs. Compared with [22], the present paper shows
the following significant differences:

• the fault isolation problem is considered to determine
the source/type of the detected fault. This is important

because it may allow the reconfiguration of the local

controllers to take into account changes in the dynamics
of the faulty subsystem;

• a general class of nonlinear uncertain systems is ad-
dressed, while in [22] the analysis was limited to a class

of nonlinear systems with matched control inputs;

• stochastic uncertainties with known mean and variance
are assumed, while in [22] deterministic bounds were

considered. This choice allows the design of detection

and isolation thresholds that are less conservative (i.e.
with less missed detection of faults) than the ones based

on the knowledge of upper bounds on the norm of the

modeling uncertainty and of the disturbances.

This last point is also the one that mainly describes the novelty
with respect to [21]. In the present paper, the main contribution

is to define stochastic thresholds for fault detection, able to

guarantee a certain false alarms probability and allowing PnP
operations.

To this aim, we define a novel time-varying consensus-
like approach for the estimation of state variables shared by

multiple subsystems, and thus monitored by multiple local
diagnosers. Moreover, we propose a method to analytically

compute the time-varying consensus weights so as to allow

PnP operations and to reduce the amplitude of the thresholds
by minimizing the variance of the uncertainty. Convergence

of the estimator is studied and fault detectability conditions

are provided. Furthermore, we design a novel distributed fault
isolation scheme guaranteeing a certain probability error level,

and analyze its performance in terms of error probability

and fault isolability. The results on fault isolability show the
conditions on the local fault function so that the monitoring

agent can exclude the faults not occurring in the system.

The contributions mark a substantial difference with respect

to [29] (where PnP operations, convergence of the state estima-
tors, computation of the consensus weights, fault detectability,

and distributed fault isolation were not considered), [30] (that

does not consider PnP operations, consecutive false-alarms
analysis, and simulation results) and [28] (where the problems

of fault detectability and distributed fault isolation were not

addressed).

Recently, some works have been published dealing with
scalable and PnP scenarios: [31], [32], [18] analyze only the

control problem; [33] designs a fault-tolerant control strategy

for a centralized system; [34] presents a fault-tolerant PnP
controller, but, differently from the proposed work, it considers

linear systems with a centralized approach. [35] focuses on the

design process of diagnostic units for interconnected systems,
not dealing with a specific FDI method; finally, [36] proposes

a passive fault-tolerant control scheme, not involving fault

diagnosis methods, for a class of interconnected systems
with PnP capabilities of the subsystems in presence of a

broadcast network. Structural properties for the reconfiguration

of distributed fault-tolerant control architectures are analyzed
in [37], while [38] considers the problem of the reconfiguration

for fault-tolerant networked control systems using a coordina-

tor agent. [39] proposes a PnP reconfiguration of Intelligent

Electronic Devices in substations using event-based Petri Net
fault diagnosis methods.

The paper is organized as follows. The problem formulation
is presented in Section II; in Section III, the distributed PnP FD

scheme is derived, proposing the stochastic detection thresh-

olds in Subsection III-B, the time-varying consensus weights
in III-C and the analysis of the estimation convergence and

detectability in III-D and V-A, respectively. The distributed

fault isolation PnP architecture is presented in IV; then, in
V-B, the error probabilities are analyzed, and the isolability

conditions are derived in Section V-C. The PnP specific

operations are then described in Section VI. Simulation results
in the context of a fairly huge power system composed by 15

generation areas are presented in Section VIII. Finally, some

concluding remarks are given in Section IX.

A. Notation

We use a : b for the set of integers {a, a + 1, . . . , b}.
Given a stochastic variable x, E[x] denotes its expected value,

while Var[x] its variance; the notation x ≈ (µx, σ
2
x) denotes

that the probability distribution of the stochastic variable x is

characterized by mean value µx and variance σ2
x.

II. PROBLEM FORMULATION

Let us consider a LSS which can be modeled as a discrete-

time nonlinear system:

x̃+ = f̃(x̃, ũ), (1)

where x̃ ∈ Rn, ũ ∈ Rm represent the state and the control
input, respectively, at time t and x̃+ denotes the state at

time t + 1. The LSS can be equivalently represented by its

directed structural graph G = (V , E) [40], where the nodes
V represent the input and state variables, and the edges in

E show the dynamical relationships between the variables

(see Fig. 1 for an example). We assume that the system
is decomposed into M (possibly) overlapping subsystems

Si. Please note that non-overlapping decompositions can be

considered as well by the proposed monitoring architecture.
Formally, for each i ∈ M = 1 : M , we define Si as a

weakly connected subset of V that does not contain input
nodes only. The elements of Si form the local state vector

xi and the local input vector ui. For each Si, i ∈ M, we

introduce the set of the interconnection variables as Ii ,

{v ∈ V \ Si : (v, s) ∈ E , s ∈ Si ⊂ V , v is state variable}. We

denote as ψ[i] the vector of the interconnection variables,

collecting the elements of Ii. From (1) and using the above
definitions, each subsystem dynamics can be described as

Σ[i] : x
+
[i] = fi(x[i], ψ[i], u[i]), (2)

where x[i] ∈ Rni , u[i] ∈ Rmi , i ∈ M, are the local state and

input, respectively, at time t and x+[i] denotes x[i] at time t+1;

fi(·) : Rni ×Rpi ×Rmi → Rni represents possibly nonlinear

local nominal dynamics. The k-th component of vector x[i] is
specified by x[i,k]. For monitoring purposes, each subsystem

Σ[i] is equipped with a Local Fault Diagnoser (LFD). To this

purpose, we consider the influence of process disturbances and
measurement noise on the state dynamics and the possible
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presence of faults acting on the subsystem. Therefore, with

a little abuse of notation, each subsystem dynamics can be

described as

Σ[i] : x
+
[i] = fi(x[i], ψ[i], u[i])+wi(t)+φi(x[i], ψ[i], u[i], t),

(3)

y[i] = x[i] + ̺[i], (4)

where wi(·) : N → Rni represents modeling uncertainties,

considering unknown possibly nonlinear coupling among sub-
systems; y[i] ∈ Rni are the local measurements for each sub-

system i ∈ M, ̺[i] ∈ Rni is the local unknown measurement

error at time t, and φi(·) : R
ni ×R

pi ×R
mi ×R → R

ni repre-
sents the fault-function, capturing deviations of the dynamics

of Σi from the nominal healthy dynamics. φi is assumed null
before the (unknown) fault time T0.

If Si ∩ Sj 6= 0, then some variables of the LSS are
considered both in the dynamics of Σ[i] and of Σ[j]. If these are

state variables, they are named shared variables. In particular,

from (4) a variable x̃k included both in the local state vector
xi and in xj , is measured by both subsystems Σ[i] and Σ[j].

From the description above, the vector of interconnec-
tion variables ψ[i] ∈ Rpi collects components of the states

{x[j]}j∈Ni
that influence the dynamics of x[i], where Ni is

the set of parents of subsystem i defined as Ni = {j ∈ M :
∂x+

[i]

∂x[j]
6= 0, i 6= j}. We also define Ci = {k : i ∈ Nk} as the

set of children of Σ[i]. Finally, we say that Σ[i] and Σ[j] are

neighbors if j ∈ Ni or j ∈ Ci.
As a consequence, the considered decomposition of the LSS

is overlapping [1], since some of the variables appear in more

than one subsystem. Each subsystem is monitored by one LFD.
Shared variables are monitored by more than one LFD (see

Fig.1, as well as [40] and [19]). Examples of applications

that can be represented in this way are: power networks,
water/gas distribution networks and all facility networks that

are naturally split into subnetworks.

Fig. 1: An example of system structural graph [40], where the
nodes of the graph represent the state and input variables, and

a possible overlapping decomposition of it in two subsystems;
a shared state variable is represented by a yellow circle. Shared

variables are monitored and measured by more than one LFD.

Interconnection variables are represented by green circles.

Remark 1: Models Σ[i], i ∈ M, provide a possibly non-

minimal representation of the LSS. In the sequel, (3) will be
the model considered by the corresponding LFD.

In this paper, we assume that the i-th LFD has access to the
noisy measurements of the interconnection variables measured

by parent subsystems, i.e. the vector

z[i] = ψ[i] + θ[i]

where θ[i] collects the involved measurement error ̺[j], j ∈
Ni.

For the sake of notation simplicity, we assume that the
vector of the interconnection variables is large enough to

embrace coupling terms due to all subsystems that will be

possibly plugged-in over the system lifetime. At a certain
time t, some of these variables could be null (or set to a

defined value) because the corresponding parent subsystem
is not connected to Σ[i] at that time. This will allow us to

avoid using vectors ψ[i] and functions fi and φi that change

after every plug-in/out event. However, all the results in the
paper can be straightforwardly adapted to this case at the price

of introducing a more complex notation. We introduce the

following assumptions on uncertainties and noises.
Assumption 1: The modeling uncertainty wi is a stochastic

process of unknown distribution. We assume to know, at each
time instant t, the mean and the variance of the stochastic

variables wi(t), for all i ∈ M:

wi(t) ≈ (µwi
(t), σ2

wi
(t)),

Assumption 2: The measurement noise ̺[i] is a stochastic
process of known distribution. We assume to know at each

time instant t the mean and the variance of the stochastic

variables ̺[i](t) for all i ∈ M:

̺[i](t) ≈ (µ̺[i]
(t), σ2

̺[i]
(t)).

The values of mean and variance in Assumptions 1 and 2 are

assumed to be computable from the available information on
the local models, sensors and possibly on historical data. For

approaches based on Monte-Carlo methods, and a discussion

about their computational complexity, we refer the reader to
[41].

The PnP fault diagnosis framework we are proposing,
allows plug-in and unplugging operations of the interconnected

subsystems, without any need to reconfigure the entire LSS:
only neighboring subsystems have to be updated, continuing

to guarantee global convergence properties of the estimators

and operational capabilities of the diagnosers, including the
guaranteed properties of the proposed thresholds. Therefore,

the proposed PnP approach is scalable. More specifically,

plug-in and unplugging operations, that we generally call LSS

PnP operations, could happen due to changes of the dynamic

structure of the LSS system or could be the consequence

of a decision of the system operators after the detection
of a fault. In fact, one of the advantages of the proposed

framework is that, after fault detection, the faulty subsystem

can be disconnected, when this operation is physically feasible,
in order to possibly avoid the propagation of the fault in

the LSS system (see Section VII). We assume that only
healthy subsystems are connected to the LSS within the plug-

in operations. On the other hand, the unplugging process may

occur also in faulty conditions.
Remark 2: A prerequisite of the unplugging operation is

that the corresponding subsystem can be physically discon-
nected from the LSS. This possibility is totally application-

dependent. In the rest of the paper, we assume that any

subsystem can be physically unplugged, and focus on the
impact of this operation on the whole FDI architecture.
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III. THE PNP FAULT DETECTION ARCHITECTURE

In this section, we design a stochastic distributed FD archi-

tecture for the considered PnP framework. Each subsystem is

equipped with a local diagnoser.
An estimate x̂[i] of the local state variables is defined; the

estimation error ǫ[i] , y[i]− x̂[i] is then compared component-

wise with some properly designed time-varying stochastic

detection thresholds ǭ upp
[i] and ǭ low

[i] ∈ R
ni . If the residual

lies in the interval between the thresholds, then the local

fault decision about the status of the subsystem is healthy
with a certain probability; otherwise, if it crosses one of the

two thresholds, we say that a fault has probably occurred.

In the PnP framework, the diagnosers are designed so to
guarantee the convergence of the mean of the estimation error

both during healthy conditions and during the reconfiguration
process: the healthy subsystems diagnosers have to continue

to work properly also when the faulty subsystem(s) is (are)

unplugged and then plugged-in after problem solution. Fur-
thermore, properties are guaranteed during all the plug-in and

unplugging processes in healthy conditions.

A. The fault detection estimator

For detection purposes, each subsystem is monitored by a

local nonlinear estimator, based on the local model Σ[i] in (3).
The ki-th non-shared state variable of Σ[i] can be estimated

as

x̂+[i,ki]
= λ(x̂[i,ki ] − y[i,ki]) + fi,ki

(y[i], z[i], u[i]) , (5)

where z[i] are the measurements of the interconnection vari-

ables communicated by neighboring subsystems and λ is the
filter parameter, chosen in the interval 0 < λ < 1 in order

to guarantee convergence properties. Note that λ is a design

parameter, affecting estimation convergence speed. Let now
consider a shared variable x[i,ki] = x[j,kj ], where ki and kj
denote the ki-th and kj-th components of local vectors x[i] and

x[j], respectively. Thanks to overlapping, we use the redundant
measurements for implementing a deterministic consensus-like

approach (see [21] where the effectiveness of this consensus
approach is demonstrated for a stochastic framework). In

fact, as regards shared variables estimation, each subsystem

communicates with parents and children subsystems sharing
that variable. In the following, Sk is the time-varying set of

subsystems Σ[i] sharing a given state variable k of the LSS at

the current time step t. Let the shared variable be x[i,ki]. The
estimates of shared variables are provided by the following

estimation model:

x̂+[i,ki]
=
∑

j∈Sk

W k
i,j

[

λ(x̂[j,kj ] − y[j,kj ])

+fj,kj
(y[j], z[j], u[j])

]

, (6)

where W k
i,j are the components of a row-stochastic matrix

W k, which will be defined in Subsection III-C, designed to

allow plugging-in and unplugging operations. By now, notice
that W k collects the consensus weights used by Σ[i] to weight

the terms communicated by Σ[j], with j ∈ Sk.
Remark 3: It is worth noting that the proposed deterministic

consensus-like approach does not require convergence to a

consensus point in order to work. The goal of the consensus
step is to take advantage of redundant measurements of shared

variables to reduce uncertainty. This is achieved by taking a

linear combination of them through the consensus matrix.
We note that (6) can model also the case of estimation

of non-shared variables (5), since, in this case, Sk = {i},
and W k

i,i = 1 by definition and the summation takes into

account only local information. In the following, for the sake

of simplicity, we omit the subscript of the shared component
index k, i.e. we use x[i,k] instead of x[i,ki] when it is not

strictly necessary.

B. The detection thresholds

In order to properly define the stochastic upper and lower

thresholds for FD, we analyze the dynamics of the local diag-
noser estimation error in healthy conditions. DefiningW k such

that
∑

j∈Sk
W k

i,j = 1 and since for shared variables ∀i, j ∈ Sk

there are ki and kj such that it holds fi,ki
(x[i], ψ[i], u[i]) =

fj,kj
(x[j], ψ[j], u[j]), the k-th state estimation error dynamics

model is given by

ǫ+[i,k] =
∑

j∈Sk

W k
i,j

[

λǫ[j,k] +∆fj,k + wj,k + ̺+[i,k]

]

, (7)

where

∆fj,k , fj,k(x[j], ψ[j], u[j])− fj,k(y[j], z[j], u[j])

and ̺+[i,k] is the measurement error at time t + 1. This is a

general formulation, and it holds also in the case of non-shared
variables, where it is simply:

ǫ+[i,k] = λǫ[i,k] + ∆fi,k + wi,k + ̺+[i,k] . (8)

We now analyze the residual, first in the non–shared case

and then in the shared one, in order to derive the fault
detection thresholds. It is worth noting that at time t, when

the thresholds are computed for the step t + 1, ǫ[i,k] is not a

random variable, since it can be computed as the difference
between the measurement y[i,k] and the estimate x̂[j,kj ]. We

therefore analyze the stochastic part of the residual:

χ+
[i,k] = ∆fi,k + wi,k + ̺+[i,k].

The expected value and variance can be computed at each time
step, with respect to the stochastic variable χ[i,k], as

E[χ+
[i,k]] = E[∆fi,k] + E[wi,k] + E[̺+[i,k]]

Var[χ+
[i,k]] = Var[∆fi,k] + Var[wi,k] + Var[̺+[i,k]]

+ 2Cov[∆fi,k, ̺
+
[i,k]], (9)

where the following further assumptions are needed.
Assumption 3: The measurement noise ̺[i,k] and the mod-

eling uncertainty wi,k are not correlated.
Thanks to this assumption, we can assume also that the covari-

ance between ∆fi,k, which is the error on the nominal model

due to the measurement noise, and the modeling uncertainty
wi,k is null.

Assumption 4: Given the values of y[i], z[i], u[i] and known

the probabilistic distribution of ̺[i] (and so of θ[i]), it is
possible to compute E[∆fi,k] and Var[∆fi,k], where ∆fi,k =
fi,k(y[i] − ̺[i], z[i] − θ[i], u[i])− fi,k(y[i], z[i], u[i])

1.

1For example, we can use Monte Carlo methods [41].
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In the linear case, the solution of this problem is trivial since

∆fi,k = Ai,k̺[i] + Di,kθ[i], where Ai,k is the k-th row of

the local state equation matrix Ai, Di,k is the k-th row of the
coupling matrix Di representing relationships with external

variables, and we know the mean and variance of ̺[i] and θ[i]
due to Assumption 2. In the linear case it is therefore not
necessary to know the measurement noise distribution.

It is worth noting that, in the case the measurement noise
̺[i] is a white process, then Cov[∆fi,k, ̺

+
[i,k]] = 0 and (9)

can be simplified. Moreover, we consider the following non
restrictive assumption, permitting to simplify equation (9).2

Assumption 5: The measurement noise and the modeling

uncertainty are zero-mean: µ̺[i]
(t) = 0, µwi

(t) = 0, ∀t ≥ 0.
Then, (9) can be rewritten as:

E[χ+
[i,k]] = E[∆fi,k] (10)

Var[χ+
[i,k]] = Var[∆fi,k]+σ

2
wi,k

+σ2
̺+
[i,k]

+2Cov[∆fi,k, ̺
+
[i,k]]

(11)

We now derive some time-varying stochastic bounds for χ+
[i,k].

Chebyshev inequalities can be used, without any assumption

on the distribution of the residual (better results can be found

in case of known distribution of the residual process). For a
stochastic variable X , with mean µ(X) and standard deviation

σ(X), it holds:

Pr
(

µ(X)−ασ(X) ≤ X ≤ µ(X)+ασ(X)
)

≥ 1−1/α2 (12)

where α > 1 is a tunable real positive valued scalar.
Remark 4: It is important to note that α is a design pa-

rameter which is used to determine the maximum accepted

false-alarms rate. There is a trade-off between false-alarms

rate reduction and detectability maximization, as it will be
illustrated in Section V-A.

It follows that:

• at least 75% of the values are between µ−2σ and µ+2σ;
• at least 88% are between µ− 3σ and µ+ 3σ;

• at least 93% are between µ− 4σ and µ+ 4σ;
• at least 96% are between µ− 5σ and µ+ 5σ;

• at least 99% are between µ− 10σ and µ+ 10σ.

Therefore, it is possible to obtain a lower and a upper

stochastic thresholds for the residual signal, so that at each
time t

ǭ low
[i] ≤ ǫ[i] ≤ ǭ upp

[i] (13)

with a certain probability, which depends on α. For non-shared
variables, the thresholds can be computed at each step t for

the following step t+ 1 as:

ǭ
+ upp/low
[i,k] = λǭ

upp/low
[i,k] + E[χ+

[i,k]]± α
[

Var[χ+
[i,k]]

]
1
2

= λǭ
upp/low
[i,k] + E[∆fi,k]± α

[

Var[∆fi,k]

+ σ2
wi,k

+ σ2
̺+
[i,k]

+ 2Cov[∆fi,k, ̺
+
[i,k]]

]
1
2

. (14)

Let us now analyze the case of variables shared among

more than one subsystem. In the distributed FD architecture

2In case Assumption 5 is not satisfied, it is sufficient to introduce mean
values different from zero in the estimator formulation.

considering possibly overlapping decomposition, certain state

variables may be measured, estimated and monitored by more

than one LFD. In this shared-variable case, the residual is

ǫ+[i,k] =
∑

j∈Sk

W k
i,j

[

λǫ[j,k] +∆fj,k + wj,k + ̺+[i,k]

]

,

Similarly as before, we obtain the following expressions for

the lower and upper thresholds:

ǭ
+ upp/low
[i,k] =

∑

j∈Sk

W k
i,j

[

λǭ
upp/low

[j,k] + E[∆fj,k]
]

± α

{

∑

j∈Sk

(W k
i,j)

2

[

Var[∆fj,k] + σ2
wj,k

+ σ2
̺+
[j,k]

+ 2Cov[∆fj,k, ̺
+
[j,k]]

]}
1
2

. (15)

It is worth noting that, since 0 ≤ W k
i,j ≤ 1 for every (i, j),

then
∑

j∈Sk
(W k

i,j)
2 ≤ 1. Therefore, the variance component

of the threshold for the shared case in (15) is lower than in
the non-shared case in (14) in the case that the variance of

the uncertainty terms is equal for all the subsystems. Then,

in this case, we are able to show that, sharing some state
variables among more than one LFD by means of the proposed

consensus method implies the reduction of the variance of

the residual signal thus leading to less conservative detection
thresholds (in terms of misdetection compared to the case

without consensus, see [21]).

Remark 5: For diagnosis purposes, the information ex-
change between the local diagnosers is limited. It is not

necessary that each diagnoser knows the model of neighboring

subsystems. In the shared case (6), it is sufficient that each
subsystem Σ[i] communicates to neighboring subsystems in

Sk only the interconnection variables and the consensus terms

for estimates and thresholds, locally computed.

C. The consensus matrix

Now, we design a time–varying consensus matrix in an
appropriate way in order to allow PnP operations. Consensus is

applied to the shared variables, i.e. state variables representing

the interconnection between two or more subsystems. For PnP
capabilities, we use a square time-varying weighting matrix

W k. Hereafter we assume to fix the maximum number dk of

subsystems that can be plugged-in sharing that variable. This
allows us to keep the dimension of W k fixed and equal to

dk, irrespectively of the plug-in/out events occurring over the

system lifetime. Note, however, that this assumption is made
only for simplifying the notation. Moreover, dk can be chosen

arbitrarily large. So, even if the dimension of W k is fixed, the
scalability of our method is not compromised in practice.

Each row and each column represent a diagnoser (and so

the related subsystem) sharing the variable k: the generic

element W k
i,j indicates how much the i-th diagnoser weights

the consensus terms received by the j-th diagnoser in Sk.

Each row can have non null elements only in correspondence
of connected (plugged-in) subsystems. In the case that, at a

given time, the variable is not shared (and hence a single

subsystem is monitoring it) the only non-null weight is the
one corresponding to the considered subsystem (this does



not affect the convergence of the FD estimator as illustrated

in Subsection III-D). We define the time-varying consensus-

weighting matrix W k for each (i, j)-th component for PnP
purposes. The objective is to obtain the most reliable local

state estimation by using only the terms available in Sk at the

current time step. To do that, we want to find the weights that
allow to minimize the thresholds (15), by weighting more the

currently connected subsystems that have lower uncertainty in

its measurements and in the local model. Since the amplitude
of the thresholds is mainly due to the variance terms in (15),

we decide to minimize those terms. This is obtained by solving

the following quadratic optimization problem:

min
Wk

i,j

∑

j∈Sk

(W k
i,j)

2Var[χ[j,k]]

s. t.
∑

j∈Sk

W k
i,j = 1,

∣

∣W k
i,j

∣

∣ ≤ 1 ∀j ∈ S
k,

(16)

remembering that

Var[χ[j,k]] = Var[∆fj,k]+σ
2
wj,k

+σ2
̺+
[j,k]

+2Cov[∆fj,k, ̺
+
[j,k]].

We have the following result.
Proposition 1: The optimal weights for the minimization

problem in (16) are, ∀j ∈ Sk:

W k
i,j =

1

Var[χ[j,k]](
∑

j
1

Var[χ[j,k]]
)
. (17)

Proof: The problem is convex. Following the results in
[42], we formulate the Lagrangian problem:

L(W k
i,j , ξ, ν, λ) =

∑

j∈Sk

((W k
i,j)

2Var[χ[j,k]])

+λ(
∑

j∈Sk

W k
i,j−1)+

∑

j∈Sk

ξj(−1−W k
i,j)+

∑

j∈Sk

νj(W
k
i,j−1),

(18)

where λ ∈ R, ξ and ν ∈ R
|Sk|
+ , being

∣

∣Sk
∣

∣ the current cardi-

nality of the time-varying set Sk, are the dual variables. We

then derive the following necessary and sufficient optimality
conditions using the Karush-Kuhn-Tucker (KKT) conditions:

2Var[χ[j,k]]W
k∗
i,j + λ∗ − ξ∗j + ν∗j = 0 ,

ξ∗j (−1−W k∗
i,j ) = 0 ,

ν∗j (W
k∗
i,j − 1) = 0 ,

∑

j∈Sk

W k∗
i,j = 1 ,

− 1 ≤W k∗
i,j ≤ 1 ,

λ∗ ∈ R, ν∗j ∈ R
1
+, ξ∗j ∈ R

1
+, ∀j ∈ S

k,

(19)

denoting with a ∗ the optimal value of the decision variables.

It is possible to find the following optimal weights, ∀j ∈ Sk:

W k∗
i,j =

1

Var[χ[j,k]](
∑

j
1

Var[χ[j,k]]
)
,

λ∗ = −2/
∑

j

1

Var[χ[j,k]]
,

ν∗j = 0, ξ∗j = 0, ∀j ∈ S
k,

(20)

by noting that they satisfy all the KKT conditions, being

Var[χ[j,k]] > 0, ∀j ∈ Sk.

At each time-step, every local fault-diagnoser receives esti-

mates and consensus terms of variable x[i,k] only from the
subsystems sharing it at that specific time, thus allowing

PnP operations. Then, it selects and weights the contributions

affected by “smaller uncertainty”.

D. Estimator convergence

Next, we address the convergence properties of the overall

estimator before the possible occurrence of a fault, that is for

t < T0. Towards this end, we introduce a vector formulation of
the state error equation just for analysis purposes. Specifically,

we introduce the extended estimation error vector ǫk,E , which

is a column vector collecting the estimation error vectors
of the Nk subsystems sharing the k-th state component:

ǫk,E , col
(

ǫ[j,k] : j ∈ Skall

)

, where Skall collects all the

indices of the subsystems that can share variable k, also the
ones not currently connected. Hence, the dynamics of ǫk,E can

be described as:

ǫ+k,E =W k [λǫk,E +∆fk,E + wk,E ] + ̺+k,E , (21)

where ̺k,E is a column vector, collecting the corresponding
kj value of vector ̺[j], i.e. ̺[j,kj ], for each j ∈ Sk; ∆fk,E
and wk,E are column vectors collecting the vectors wj,k and

∆fj,k, with j ∈ Sk, respectively. The following convergence
result can now be provided.

Proposition 2: The mean of the estimation error modeled
in (21), where the consensus matrix is row-stochastic and 0 <
λ < 1, is BIBO stable.

Proof: The proof is similar to the one provided for
the estimation error convergence properties in [22]. Here we

consider the mean of the estimation error (21):

E[ǫ+k,E ] =W k

[

λE[ǫk,E ] + E[∆fk,E ] + E[wk,E ]

]

+ E[̺+k,E ].

(22)
By assumption, E[wk,E ] = 0, E[̺+k,E ] = 0 and it is possible

to compute E[∆fk,E ], for example with Monte Carlo simula-

tions. We define ∆̄fk,E := E[∆fk,E ]. The rest of the proof is
carried out similarly as in [22].

IV. PNP DISTRIBUTED FAULT ISOLATION

We now propose a novel distributed and scalable fault

isolation scheme in a stochastic uncertainty framework. The
fault isolation logic is based a Generalized Observer Scheme

(GOS, see [43], [44]). Similarly to [19], we assume that

each subsystem knows a local fault set Fi, collecting all
the NFi

possible nonlinear fault functions. In [19], a more

complex approach is introduced, where some approximators

are designed to learn also unknown fault functions. Here we
assume that the local fault functions are completely known:

φli(x[i], ψ[i], u[i], t), l ∈ {1, . . . , NFi
}.

Differently from previous works (see [19], [21]), here the

uncertainties are not bounded in a deterministic way, but
instead are modeled as stochastic processes. Therefore, in

this paper we design novel thresholds for the distributed fault

isolation task and we analyze the probability that a certain
fault has occurred in the considered subsystem.



Specifically, once a fault is detected at time Td in the i-th
subsystem, each involved diagnoser activates NFi

estimators,

where each filter is sensitive to a specific fault: the generic l–
th fault isolation estimator of the i–th LFD is matched to the

corresponding fault function φli, belonging to the local fault

set Fi. Each l–th estimator provides a local state estimate
x̂l[i] of the local state x[i] affected by the l-th fault. The

difference between the estimate x̂l[i] and the measurements y[i]
consists in the fault isolation estimation error ǫl[i] , y[i]− x̂

l
[i],

used as a residual and compared, component by component,

to some properly designed probabilistic isolation thresholds

ǭ
l upp/low
[i] ∈ R

ni

+ . We derive a lower and a upper stochastic

thresholds for the residual signal, so that, at each time t,

ǭ l low
[i] ≤ ǫl[i] ≤ ǭ l upp

[i] (23)

with a certain probability. The thresholds can be computed at

each step t for the following step t+1. If the residual crosses

one of the two thresholds, that is

ǫl[i,k](t) 6∈
(

ǭ l low
[i,k] (t), ǭ l upp

[i,k] (t)
)

,

we can exclude the occurrence of the considered l-th fault,
with a certain guaranteed probability error (see Section V-B

for the complete analysis). If we are able to exclude all the

faults but one, then we can say that the fault is isolated with
a certain probability.

A. The fault isolation estimators

After the fault φi has occurred, the dynamics of the k–th
state component of the i–th subsystem becomes

x+[i,k] = fi,k(x[i], ψ[i], u[i]) +wi,k + φi,k(x[i], ψ[i], u[i], t),

being φi,k 6= 0. The l–th estimate for the non–shared case is

designed as

x̂+l
[i,k] = λ(x̂l[i,k] − yl[i,k]) + fi,k(y[i], z[i], u[i])

+ φli,k(y[i], z[i], u[i], t), (24)

while it can be computed as follows for the general case of
a fault on a variable k shared with the currently connected

subsystems Sk:

x̂l+[i,k] =
∑

j∈Sk

W l k
i,j

[

λ(x̂l[j,k] − yl[j,k]) + fj,k(y[j], z[j], u[j])

+ φlj,k(y[j], z[j], u[j], t)

]

. (25)

The corresponding estimation error dynamic equation is

ǫl+[i,k] = λǫl[i,k] + ∆fi,k + wi,k + ∆φli,k + ̺+[i,k] ,

and

ǫl+[i,k] =
∑

j∈Sk

W l k
i,j

[

λǫl[j,k] +∆fj,k + wj,k +∆φlj,k + ̺+[j,k]

]

,

for the shared case, being

∆φlj,k = φj,k(x[j], ψ[j], u[j], t)− φlj,k(y[j], z[j], u[j], t).

B. Fault isolation thresholds

In the matched case, that is, φi,k = φli,k(x[i], ψ[i], u[i], t),
we can use a similar logic as in Section III-B and define an
upper and a lower isolation thresholds for each l-th residual

signal, based on the Chebyshev law:

ǭ
l + upp/low
[i,k] = λǭ

l upp/low
[i,k] + E[χφl+

[i,k]]± α
[

Var[χφl+
[i,k]]

]
1
2

= λǭ
l upp/low
[i,k] + E[∆fi,k +∆φli,k]± α [Var[∆fi,k]

+Var[∆φli,k] + σ2
wi,k

+ σ2
̺+
[i,k]

+ 2Cov[∆fi,k, ̺
+
[i,k]]

+2Cov[∆φli,k, ̺
+
[i,k]] + 2Cov[∆fi,k,∆φ

l
i,k]
]

1
2

, (26)

where χφl+
[i,k] = ∆fi,k + wi,k +∆φli,k + ̺+[i,k].

Assumption 6: Given the values of y[i], z[i], u[i] and known

the probabilistic distribution of ̺[i] (and so of θ[i]), it is

possible to compute3 E[∆φli,k], Var[∆φli,k], Cov[∆φli,k, ̺
+
[i,k]]

and Cov[∆fi,k,∆φ
l
i,k], where ∆φli,k = φli,k(y[i] − ̺[i], z[i] −

θ[i], u[i]) − φli,k(y[i], z[i], u[i]) is stochastic because of the
measurement error ̺[i].

For a shared variable, we have

ǭ
l + upp/low
[i,k] =

∑

j∈Sk

W l k
i,j

[

λǭ
l upp/low

[i,k] + E[χφl+
[i,k]]

]

± α

{

∑

j∈Sk

(W l k
i,j )2

[

Var[χφl+
[i,k]]

]

}
1
2

. (27)

As for the detection case (see (16) in Section III-C), here for

fault isolation estimators we propose to define the time vary-

ing consensus matrix elements W l k
i,j , for each l-th isolation

estimator, so to minimize the variance terms of the isolation

thresholds and allowing PnP operations:

W l k
i,j =

1

Var[χφl

[j,k]](
∑

j
1

Var[χφl

[j,k]
]
)
, ∀j ∈ S

k . (28)

The optimization problem and the proof can be derived simi-

larly as in Section III-C.

V. ANALYSIS OF THE FDI ARCHITECTURE

In this section we present some theoretical results about

the distributed FDI scheme, introduced in Sections III and IV,

which is summarized in Algorithms 1 and 2.

A. Fault detectability analysis

We derive some detectability conditions, characterizing the

faults that can be detected by the proposed PnP fault detection
method described in Section III, depending on the system

trajectories and noises features. The detection residual in (8)

can be written as:

ǫ[i,k](t) =

t−1
∑

h=0

λt−1−h(∆fi,k(h) + wi,k(h) + ̺[i,k](h+ 1)

+ φi,k(h)) + λtǫ[i,k](0), (29)

3For example, Monte Carlo methods can be used.



Algorithm 1 Fault detection for the i-th LFD

Initialize the estimate x̂[i](0) = y[i](0)
Measurements z[i](0) are acquired

Compute the estimate x̂[i](1) (Eq. (6))
Set t = 1
while A fault is not detected do

Measurements y[i](t) are acquired
Compute ǫ[i](t) = y[i](t)− x̂[i](t)

Information (z[i], ǭ
upp/low
[j,ks]

, E[χ[j,ks]], Var[χ[j,ks]]) from

neighbors is acquired, ∀ shared variables ks
Update consensus weights (Eq. (17))

Compute the thresholds ǭ
upp/low
[i] (t) (Eq. (14))

Compare ǫ[i](t) with ǭ
upp/low
[i] (t)

if ǫ[i,k](t) 6∈
(

ǭ low
[i,k] (t), ǭ

upp
[i,k] (t)

)

for at least one k then

A fault is detected
Decision: Unplugging or Fault isolation (Algorithm 2)

end if

Compute the novel estimate x̂[i](t+ 1) (Eq. (6))
t = t+ 1

end while

Algorithm 2 Fault isolation for the i-th LFD

For each l = 1 : NFi

Compute estimate x̂l[i](t) (Eq. (25))

while A fault is not isolated do

For each l = 1 : NFi

Measurements y[i](t) are acquired

Compute ǫl[i](t) = y[i](t)− x̂l[i](t)
Information from neighbors is acquired

Update consensus weights (Eq. (28))

Compute the thresholds ǭ
l upp/low
[i] (t) (Eq. (27))

Compare ǫl[i](t) with ǭ
l upp/low
[i] (t)

if ǫl[i,k](t) 6∈
(

ǭl low
[i,k] (t), ǭl upp

[i,k] (t)
)

for at least one k

then

Fault φli is excluded
end if

if All faults φli ∈ Fi excluded but p then

Fault φpi is isolated
Decision: Unplugging or Control reconfiguration

end if

Compute estimate x̂l[i](t+ 1) (Eq. (25))
t = t+ 1

end while

where φi,k(t) = φi,k(x[i], ψ[i], u[i], t), with some abuse of

notation. As φi,k(t) = 0 for t < T0, the residual can be
rewritten as

ǫ[i,k](t) = Ui,k(t) +

t−1
∑

h=T0

λt−1−hφi,k(h), (30)

where Ui,k(t) represents the part of the residual collecting all

the uncertainty terms, not including fault dynamics, i.e.

Ui,k(t) =

t−1
∑

h=0

λt−1−h(χ[i,k](h+ 1)) + λtǫ[i,k](0).

Since x̂[i,k](0) = y[i](0) and then ǫ[i,k](0) = 0, one has

Ui,k(t) =

t−1
∑

h=0

λt−1−h(χ[i,k](h+ 1)).

The threshold, as by definition in (13), is designed so that

ǭ low
[i,k] (t) ≤ Ui,k(t) ≤ ǭ upp

[i,k] (t)

with a certain probability depending on α. A fault is detected

at a certain time instant t = Td > T0 (detection time) if

ǫ[i,k](t) 6∈
(

ǭ low
[i,k] (t), ǭ

upp
[i,k] (t)

)

(31)

for at least one state component k = 1 : ni. Following (30),

condition (31) is equivalent to:

t−1
∑

h=T0

λt−1−hφi,k(h)

6∈
(

ǭ low
[i,k] (t)− Ui,k(t), ǭ

upp
[i,k] (t)− Ui,k(t)

)

.

The uncertainty term χ[i,k](t) can be expressed as

χ[i,k](t) = E[χ[i,k](t)] + ∆χ[i,k](t),

where ∆χ[i,k] is the deviation of the uncertainty from its mean,
and the thresholds defined in (14) can be rewritten as

ǭ
upp/low
[i,k] (t) =

t−1
∑

h=0

λt−1−h

{

E[χ[i,k](h+ 1)]

± α
[

Var[χ[i,k](h+ 1)]
]

1
2

}

+ λtǭ
upp/low
[i,k] (0), (32)

where the thresholds are initialized with ǭ
upp/low
[i,k] (0) = 0.

Thanks to these observations, the detectability condition (31)

becomes:

t−1
∑

h=T0

λt−1−hφi,k(h) 6∈

(

t−1
∑

h=T0

λt−1−h
{

− α
[

Var[χ[i,k](h+ 1)]
]

1
2 −∆χ[i,k](h+ 1)

}

,

t−1
∑

h=T0

λt−1−h
{

+α
[

Var[χ[i,k](h+ 1)]
]

1
2 −∆χ[i,k](h+1)

}

)

.

Since ∆χ[i,k](t) is zero–mean, using Chebishev inequalities

we obtain

−α
[

Var[χ[i,k](t)]
]

1
2 ≤ ∆χ[i,k](t) ≤ α

[

Var[χ[i,k](t)]
]

1
2

with a certain probability depending on α. Therefore, the

fault detection is guaranteed at time Td with a certain false–

alarms rate depending on α, when the following detectability
condition is satisfied:
∣

∣

∣

∣

∣

Td−1
∑

h=T0

λTd−1−hφi,k(h)

∣

∣

∣

∣

∣

>

2α

Td−1
∑

h=T0

λTd−1−h
[

Var[χ[i,k](h+ 1)]
]

1
2 . (33)



In this way, we have derived a characterization in a non-closed

form of a class of faults that can be detected given some

uncertainty conditions.
Remark 6: It is worth noting that, given a certain fault

evolution, bigger values of α make the detection of the fault

more difficult.

We can then obtain a detection condition in closed form, as
shown in the next proposition.

Proposition 3: Let us assume that a fault

φi,k(x[i], ψ[i], u[i], t) is occurring on the k-th variable of
the i-th subsystem. The fault will be detected at a certain

time Te if

φi,k(x[i], ψ[i], u[i], Te − 1) > λrupp[i,k](Te − 1)

+ 2αVar[χ[i,k](Te)]
1
2 (34)

or

φi,k(x[i], ψ[i], u[i], Te − 1) < λrlow[i,k](Te − 1)

− 2αVar[χ[i,k](Te)]
1
2 (35)

where r
upp/low
[i,k] := ǭ

upp/low
[i,k] − ǫ[i,k] is the distance of the

residual from the threshold.

Proof: In the case that a fault is occurring in the k-th
component of the i-th subsystem, the residual dynamics is

ǫ+[i,k] = λǫ[i,k] +∆fi,k +wi,k + ̺+[i,k] + φi,k(x[i], ψ[i], u[i], t)

In order to have that the i-th fault detection estimator detects

the fault at a certain time Te, we need that

ǫ[i,k](Te) > ǭ upp
[i,k] (Te)

or

ǫ[i,k](Te) < ǭ low
[i,k] (Te).

Using the faulty residual dynamics model, this is implied by

φi,k(Te − 1) > ǭ upp
[i,k] (Te)− (λǫ[i,k](Te − 1) + χ[i,k](Te))

or

φi,k(Te − 1) < ǭ low
[i,k] (Te)− (λǫ[i,k](Te − 1) + χ[i,k](Te)).

Since we know that χ[i,k] can be bounded with a certain

probability following the same reasoning used for the design

of the thresholds, and using the thresholds formulation in (14),
we have

φi,k(Te − 1) > λǭ upp
[i,k] (Te − 1) + E[χ[i,k](Te)]

+ αVar[χ[i,k](Te)]
1
2 − λǫ[i,k](Te − 1)

− (E[χ[i,k](Te)]− αVar[χ[i,k](Te)]
1
2 )

or

φi,k(Te − 1) < λǭ low
[i,k] (Te − 1) + E[χ[i,k](Te)]

− αVar[χ[i,k](Te)]
1
2 − λǫ[i,k](Te − 1)

− (E[χ[i,k](Te)] + αVar[χ[i,k](Te)]
1
2 )

By the definition of r
upp/low
[i,k] , we obtain the thesis of the

proposition.

B. False-exclusion error probability analysis

In this subsection we analyze the performance of the PnP
Fault isolation method proposed in Section IV. In particular,

we consider the false-exclusion error, that is, the probability

of mistakenly excluding a fault when it is actually occurring.
By the definition of the thresholds in (26), the probability

that the residual ǫl[i,k] lies inside the thresholds interval at

a certain time t, assuming that the fault is matched, that is

φi,k = φli,k(x[i], ψ[i], u[i], t), is

Pr
(

ǫl[i,k](t) ∈
(

ǭ l low
[i,k] (t), ǭ l upp

[i,k] (t)
)

|φi,k = φli,k
)

≥ 1−
1

α2
.

Therefore, the false-exclusion probability can be computed

as follows. The probability that the residual ǫl[i,k] crosses one

of the related thresholds ǭ
l + upp/low
[i,k] , thus excluding the l-th

fault in the case that the fault is matched, is lower than 1
α2 :

Pr
(

ǫl[i,k](t) /∈
(

ǭ l low
[i,k] (t), ǭ l upp

[i,k] (t)
)

|φi,k = φli,k
)

≤
1

α2
.

This is the probability of mistakenly excluding the l-th fault

using thresholds ǭ
l + upp/low
[i,k] .

Remark 7: It is worth noting that, given a certain fault

evolution, bigger values of α make false-exclusion error less
likely. This comes at the cost of making fault isolation more

difficult. We can therefore set α depending of the maximum

error probability we can accept.

Finally, the proposed monitoring architecture can show

better performance if we assume to know for each l-th fault the

probability that it occurs at a certain time t: Pr
(

φi,k = φli,k
)

.
The probability to have a correct fault isolation is therefore

Pr
(

ǫl[i,k](t) ∈
(

ǭ l low
[i,k] (t), ǭ l upp

[i,k] (t)
)

∩ φi,k = φli,k
)

= Pr
(

ǫl[i,k](t) ∈
(

ǭ l low
[i,k] (t), ǭ l upp

[i,k] (t)
)

|φi,k = φli,k
)

· Pr
(

φi,k = φli,k
)

≥ (1 −
1

α2
)Pr

(

φi,k = φli,k
)

,

thanks to the theorem of compound probability.

Furthermore, it is worth noting that the distance of the
residual from the thresholds gives us some useful information.

Given the mean and the variance of the theoretical residual
at a given time t, we can compute the probability that the

current measurement is explained by the considered model.

Computing

αl =
ǫl[i,k] − (λǭ

l upp/low
[i,k] + E[χφl+

[i,k]])
(

Var[χφl+
[i,k]]

)
1
2

,

if αl > 1, it follows that

Pr
(

ǫl[i,k](t) /∈
(

¯̃ǫ l low
[i,k] (t), ¯̃ǫ l upp

[i,k] (t)
)

|φi,k = φli,k
)

≤
1

α2
l

, (36)

where ¯̃ǫ l low
[i,k] (t) and ¯̃ǫ l upp

[i,k] (t) are the lower and upper thresh-

olds computed using αl. It is therefore possible to define some

new thresholds using αl and compute the error probability that
we get by excluding or accepting the l-th fault.



C. Fault isolability analysis

In this subsection, we derive some conditions characterizing
the faults that can be isolated by the PnP fault isolation method

in Section IV. In particular, we investigate the conditions (in

terms of system trajectories and noises features) allowing the
proposed architecture to exclude all the possible faults but

one. Let us consider the case of a non–matched fault, that is,

φi,k = φpi,k(x[i], ψ[i], u[i], t), with p 6= l. Then, in the case of a
non-shared variable k, the dynamics of the estimation error of

the l–th fault isolation estimator for each i-th subsystem can

be modeled as

ǫl+[i,k] = λǫl[i,k] + ∆fi,k + wi,k + ∆φ
p/l
i,k + ̺+[i,k] , (37)

where

∆φ
p/l
i,k = φpi,k(x[i], ψ[i], u[i], t)− φli,k(y[i], z[i], u[i], t).

Instead, for the shared case we have

ǫl+[i,k] =
∑

j∈Sk

W l k
i,j

[

λǫl[j,k] +∆fj,k + wj,k +∆φ
p/l
j,k + ̺+[j,k]

]

.

For the sake of notational simplicity, we now continue the
analysis only for non-shared variables. It is anyway simple

to extend in the general case of shared state components. We
have the following result:

Proposition 4: Given a fault φpi,k(x[i], ψ[i], u[i], t) occurring

on the k-th variable of the i-th subsystem, the l-th fault
isolation estimator will exclude the l-th fault function, with

l ∈ NFi
, if at a certain time Te,

φpi,k(x[i], ψ[i], u[i], Te − 1) > λrl[i,k](Te − 1) + E[∆φli,k]

+ α(Var[χφl

[i,k](Te)]
1
2 + Var[χ[i,k](Te)]

1
2 )

+ φli,k(y[i], z[i], u[i], Te − 1) (38)

or

φpi,k(x[i], ψ[i], u[i], Te − 1) < λrl[i,k](Te − 1) + E[∆φli,k]

− α(Var[χφl

[i,k](Te)]
1
2 + Var[χ[i,k](Te)]

1
2 )

+ φli,k(y[i], z[i], u[i], Te − 1) (39)

where rl[i,k] := ǭ
l + upp/low
[i,k] − ǫl+[i,k] is the distance of the

residual from the threshold at the previous step Te − 1.

Proof: In order to have that the l-th fault isolation

estimator exclude the l-th fault function at a certain time Te,

we need that

ǫl+[i,k] > ǭ l+ upp
[i,k]

or

ǫl+[i,k] < ǭ l+ low
[i,k] .

Basing on these conditions and using the expression for the

residual in the non-matched case (Eq.(37)), we have

∆φ
p/l
i,k > ǭ l+ upp

[i,k] − (λǫl[i,k] + ∆fi,k + wi,k + ̺+[i,k]).

∆φ
p/l
i,k < ǭ l+ low

[i,k] − (λǫl[i,k] + ∆fi,k + wi,k + ̺+[i,k]).

Since we know that λǫl[i,k] + ∆fi,k + wi,k + ̺+[i,k] can be

bounded with a certain probability following the same rea-

soning used for the design of the thresholds, and using the
isolation thresholds formulation in (26), we obtain

∆φ
p/l
i,k > λǭ l upp

[i,k] + E[∆fi,k +∆φli,k] + α
[

Var[χφl+
[i,k]]

]
1
2

− (λǫl[i,k] + E[∆fi,k]− α
[

Var[χ+
[i,k]]

]
1
2

).

∆φ
p/l
i,k < λǭ l low

[i,k] + E[∆fi,k +∆φli,k]− α
[

Var[χφl+
[i,k]]

]
1
2

− (λǫl[i,k] + E[∆fi,k] + α
[

Var[χ+
[i,k]]

]
1
2

).

Finally, by the definition of ∆φ
p/l
i,k and rl[i,k], we obtain the

thesis of the proposition.

Remark 8: It is worth noting that, given a certain fault evo-
lution, bigger values of α make fault exclusion, and therefore

fault isolation, more difficult.

VI. LSS PNP OPERATIONS

In the previous sections, we derived a distributed fault

detection and isolation architecture suitable for PnP operations
of the interconnected subsystems. We now describe plug-in

and unplugging operations. As already explained, these oper-

ations could happen due to changes over time of the dynamic
structure of the LSS system or could be done on purpose

after fault detection (see Section VII). In both cases (healthy

and faulty conditions), subsystems plug-in and unplugging are
designed as follows.

A. Subsystem unplugging

In this paragraph, we show how to reconfigure local diag-
nosers in the LSS when a subsystem Σ[j] is disconnected from

the LSS, guaranteeing estimators convergence and monitoring

of the new network with one less subsystem. We need to retune
fault diagnosers for children subsystems Σ[i], i ∈ Cj , since

they do not receive anymore the interconnection variables val-

ues from the parent subsystem Σ[j]. Moreover if the unplugged
subsystem was sharing variable k, its consensus contribution

will not be received by neighboring subsystems sharing k.

More specifically:

• In the children subsystems i ∈ Cj , the components of ψ[i]

and z[i] related to subsystem Σ[j] become equal to 0 or
set to defined values (in the case 0 is a not appropriate

value for the considered variable). This is needed for the

computation of detection (6) and isolation (25) estimates
and related thresholds (14) and (26) .

• In the neighboring subsystems i, with i ∈ Cj or i ∈ Nj ,

sharing some variables with Σ[j], the weights associated

with Σ[j] in the consensus matrices W k computed in (16)

are set to zero and j /∈ Sk.

B. Subsystem plugging-in

The plugging-in of a subsystem into the LSS may be needed

in case of replacement of a previously unplugged subsystem

or if a novel subsystem has to be added to the LSS. For what
concerns the distributed FD architecture, thanks to the way



the time-varying shared variables estimator is defined in (6)

and (25), the plug-in is always feasible. More specifically, if

a subsystem Σ[j] is added to the LSS:

• It receives from parents i ∈ Nj the probabilistic distri-
bution of ̺[i] so as to compute locally the distribution of

θ[j], which is needed for fulfilling Assumption 4.

• In the children subsystems i ∈ Cj , the vectors ψ[i] and z[i]
are expanded to include components related to subsystem

Σ[j]. Moreover, subsystems i ∈ Cj receive the distribution
of ̺[i] for computing locally the distribution of θ[i].

• In the neighboring subsystems i, with i ∈ Cj or i ∈
Nj , sharing some variables k with Σ[j], the consensus

matrices W k are computed as in (16) considering also
the components received from Σ[j], that is j ∈ Sk.

We highlight that when subsystem j is added or removed,

neighboring subsystems have to modify the local FDI al-

gorithm but the FDI units of all other subsystems are un-
affected. Furthermore, by performing the updates described

above, stability of state estimators (see Proposition 2) and

fault detectability/isolability properties (see Section V) are
preserved for the whole system. The scalability of the design

procedure, accompanied by formal guarantees about global
properties, allows us to qualify the architecture as PnP [18].

VII. RECONFIGURATION OPTIONS

In this section we describe the reconfiguration actions that

can be implemented thanks to the proposed PnP fault diagnosis
architecture. In fact, one of the advantages of the proposed

framework is that, after fault detection, the faulty subsystem

can be disconnected (when this operation is physically feasi-
ble), in order to avoid or reduce the propagation of the fault in

the network of the LSS system. After the detection of a fault,

depending on the specific application context and criticality,
two distinct actions may be feasible: i)“disconnection” of the

faulty subsystem after fault detection or ii) activation of the
fault isolation procedure explained in Section IV. Again, after

fault isolation, two alternatives are possible depending on the

additional available information: the unplugging of the faulty
subsystem or fault accommodation. We do not consider the

control reconfiguration problem in this paper.

A. Reduction of false-alarms and false-exclusion errors

In order to improve the reliability of the proposed decision

system strategy, to reduce the number of false-alarms and

false-exclusion errors and so to avoid unnecessary subsystems
unpluggings or wrong decisions, we propose the following

approach. In the case of fault detection, after the first alarm, we
do not disconnect immediately the alleged faulty subsystem,

but, depending on the desired reliability, we wait for q time

steps confirming the same decision in order to reduce the
probability of false alarms. We have the following theoretical

result.

Proposition 5: The probability of q > 1 consecutive false-

alarms is lower than ( 1
α2 )

q .

Proof: Since the probability of false-alarm, as explained

in Section V-B, is lower than 1
α2 , the probability of q > 1

consecutive false-alarms is lower than ( 1
α2 )

q . In fact,as shown

next, consecutive detection events can be considered inde-
pendent since the value of the thresholds are computed at

each time step independently, considering the residual as an

independent stochastic variable at each time step. Let us define

T l
i,k =

(

ǭ l low
[i,k] , ǭ l upp

[i,k]

)

.

We have that

Pr
(

ǫl +
[i,k] /∈ T l+

i,k |ǫ
l
[i,k] /∈ T l

i,k

)

is equivalent to

Pr
(

χl +
i,k /∈

(

λ(ǭl low
[i,k] − ǫl[i,k]) + E[χl +

[i,k]]− α
[

Var[χl +
[i,k]]

]
1
2

,

λ(ǭl upp
[i,k] − ǫl[i,k]) + E[χl +

[i,k]] + α
[

Var[χl +
[i,k]]

]
1
2

)

|

ǫl[i,k] /∈
(

ǭ l low
[i,k] , ǭ l upp

[i,k]

)

)

. (40)

At time t + 1, ǭ
l low/upp
[i,k] − ǫl[i,k] is a deterministic value. It

results that

Pr
(

ǫl +
[i,k] /∈ T+

i,k|ǫ
l
[i,k] /∈ Ti,k

)

= Pr
(

ǫl +
[i,k] /∈ T+

i,k

)

,

thus proving that consecutive detection events are independent.

The faulty subsystem can be disconnected after q consec-

utive alarms, depending on the specific risks and required
reliability. In the case that after fault detection we want to go

on with the fault isolation, on the other hand, we can activate

the fault isolation estimators immediately after the first fault
detection alarm.

Similarly to the approach proposed for fault detection, also
for the fault exclusion, it is possible to implement such a

procedure. The faults are not excluded at the first alarm, but

we wait for p > 1 consecutive alarms before taking a decision.

VIII. APPLICATION USE CASE: POWER NETWORKS

In this section, we apply the proposed FDI architecture to

a Power Network System (PNS) composed of 15 generation
areas connected through tie-lines (see Figure 2). The model of

each area is described in [45], parameters and constraints are

listed in Table I. For each area the local model is composed of
4 states (x[i] = (∆θi, ∆ωi, ∆Pmi

, ∆Pvi), respectively angu-

lar deviation, speed deviation, mechanical power deviation and

steam valve deviation), 1 control input (u[i] = ∆Prefi , refer-
ence set power deviation) and 1 exogenous input (d[i] = ∆PLi

load power deviation). This LSS is composed of 60 state

variables, 15 control inputs, 15 exogenous disturbances. In
this scenario we consider that the shared variables are ∆θi,
i = 1 : 15 meaning that if an area i is coupled with area

j then ∆θi is an overlapped state used by LFD-i and LFD-
j. Based on this overlapping decomposition the overall FD

architecture is composed of 94 states. The measurement errors
̺[i], i = 1 : 15 and the modeling uncertainties wi(·) are zero-

mean white Gaussian noise processes and their variances are

σ2
wi,·

= 0.0001 and σ2
̺[i,·]

= 0.0001 for noises associated

with states ∆Pmi
and ∆Pvi , and σ2

̺[i,·]
= 0.00001 for noises

associated with states ∆θi and ∆ωi, respectively.

In [22], we shown how to reconfigure LFDs in a determin-

istic framework. In order to test the proposed stochastic PnP

FDI architecture, we use the PNS example in Fig. 2 and similar
PnP Model Predictive Controllers (MPC) as in Section 7.2 in



TABLE I: Model parameters and constraints for systems Σ[i], i ∈ 1 : 15.

Σ[1] Σ[2] Σ[3] Σ[4] Σ[5] Σ[6] Σ[7] Σ[8] Σ[9] Σ[10] Σ[11] Σ[12] Σ[13] Σ[14] Σ[15]

Hi 12 10 8 8 10 7 7 11 8 9 10 11 12 7 9
Ri 0.05 0.0625 0.08 0.08 0.05 0.05 0.05 0.08 0.08 0.05 0.05 0.0625 0.05 0.08 0.05
Di 0.7 0.9 0.9 0.7 0.86 0.7 0.9 0.9 0.7 0.86 0.7 0.9 0.7 0.7 0.86
Tti 0.65 0.4 0.3 0.6 0.5 0.65 0.6 0.6 0.6 0.8 0.65 0.6 0.65 0.6 0.8
Tgi 0.1 0.1 0.1 0.1 0.15 0.1 0.1 0.1 0.1 0.15 0.1 0.1 0.1 0.1 0.15

|∆θi| ≤ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
|∆Prefi

| ≤ 0.5 0.65 0.65 0.55 0.5 0.5 0.65 0.65 0.55 0.5 0.5 0.65 0.65 0.55 0.5
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Fig. 2: Power network system composed of 15 generation
areas. For each area the local model [45] is composed of

4 states x[i] = (∆θi, ∆ωi, ∆Pmi
, ∆Pvi), 1 control input

u[i] = ∆Prefi and 1 exogenous input d[i] = ∆PLi
. The

weights on the edges represent Pij , the slope of the power

angle curve at the initial operating angle between area i and
area j. In Scenario 1, area 15 is initially disconnected and

plugged-in at time 70s. The overlapping decomposition is not

shown in this figure.

[22]. Moreover since the local models of each area and their
interactions are linear, we can easily compute Var[∆fi,·] for

each variable. For all LFDs we use λ = 0.3 and α = 2. Two

different scenarios are considered. To simulate each scenario
we used Matlab 2014a, PnPMPC toolbox [46] and CPLEX on

an Intel Core TM i7 2.20GHz. To run 1 step of the detection

Algorithm 1, in the worst case, the computational time is
4.1ms.

Remark 9: It is worth noting that since the proposed archi-

tecture is distributed and scalable, and both the design and

on-line operations only rely on local information, models and
communication, and can be parallelized, the complexity of the

problem is not increasing with the total number of subsystems.

A. Scenario 1: change of the governor time constant

At time t = 0s area 15 is disconnected and working

autonomously. At time t = 35s, a fault occurs in the speed

governor in area 4: in particular, its time constant Tg increases
from 0.1s to 1000s, which corresponds to a slower frequency

regulation, both in the primary and secondary control layers.

At time 70s area 15 is plugged in. In order to test robustness
of the proposed architecture, we have performed multiple sim-

ulations using different sets of uncertainties and measurement

errors. For the sake of clarity only one simulation is shown in
the figures.

In Figure 3, due to the fault, we note a decrease of the

input u[4] (power reference ∆Pref4 , green line in the Figure
3a) and hence a diverging behavior of the frequency deviation.

Therefore, the error ǫ[4,{3,4}] = y[4,{3,4}] − x̂[4,{3,4}] (blue

and red dashed lines in Figure 4) crosses the threshold: for
the simulation in figure, after 3 consecutively alarms, at time

t = 43s the LFD for area 4 is finally able to detect the
fault. After fault detection, similarly as in [22], we unplug

area 4 and reconfigure local MPC controllers and the LFDs

for areas 3, 5 and 13, that were directly connected with the
faulty area. The accommodation of faults is out of the scope

of the present paper and thus for area 4 we do not show

the frequency deviation and power reference when the area
is disconnected (see Figures 3a and 3d). As showed in Figure

3, we note the benefits of the unplugging operation, since,

after a short transient, all local power references can still
compensate local power loads and the fault is not propagated

in the network. Finally at time 70s a plug-in operation is

performed, where area 15 joins the PNS connected to area
14: retuning operations of LFDs and MPC controllers are not

propagated in the network and overall stability is guaranteed

(see Figures 3c and 3f specifically for area 14 in green and
15 in cyan).

In Figure 4 we also compare the proposed stochastic FD
architecture and the deterministic FD architecture proposed in

[22]: for this case deterministic bounds are set as upper bounds

of the same measurements errors and modeling uncertainties
values used for the stochastic example. Since real noises are

stochastic and unbounded, it is not easy to define deterministic

bounds guaranteeing the absence of false-alarms, as required
in [22]. Heuristic criteria can be used, possibly resulting in

conservative thresholds. Specifically, we generated 10 time

series with mean and variance specified above and bounded
the maximum absolute value of all samples. The chosen upper

bound is 0.0427. Figure 4 shows that the proposed stochas-

tic approach is able to detect faults when the deterministic
approach can not: this guarantees that the faulty area 4 can

be disconnected and faults are not propagated in the network.

This shows that in general the proposed stochastic approach
allows to obtain less conservative (in terms of missed detection

of faults) and more easily settable thresholds, relating the
thresholds with the false-alarm rate.

B. Scenario 2: sign change of the input signal

We then consider a second simulation scenario. At time

t = 45s a different fault occurs in area 5: an attacker is

able to change the sign bit of the digital input signal, so
that the applied control input is −u[5]. In few time instants

at time t = 62s the fault is detected. After fault detection,

in this case, we do not disconnect the faulty subsystem, but
we proceed with fault isolation. We consider three different
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(a) ∆Prefi , i = 1, . . . , 5 (in green ∆Pref4 ).
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(b) ∆Prefi , i = 6, . . . , 10.
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(c) ∆Prefi , i = 11, . . . , 15.
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(d) ∆ωi, i = 1, . . . , 5 (in green ∆ω4).
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(e) ∆ωi, i = 6, . . . , 10.
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(f) ∆ωi, i = 11, . . . , 15.

Fig. 3: Scenario 1. Figures 3a, 3b and 3c: for each area, the time-behaviors of the power reference set-points (solid lines) –
computed by PnPMPC controllers designed as in [22] – and of the local loads (dashed lines) are shown, respectively. Figures

3d, 3e and 3f: for each area, the time-behaviors of the frequencies are shown, respectively. Each color in the figures is associated

with the index i according to the following order: blue, red, magenta, green and cyan. The grey-shaded sections highlight the
time-interval between the occurrence of the fault and its detection.

attack control strategies: −u[5], 2u[5] and 10u[5]. The proposed
fault isolation method is able to exclude all the attacks but the

correct one: −u[5]. It is therefore possible to reconfigure the
attacked controller. As it is possible to see in Figures 5, 6 and

7, after the attack starts to have effect at time t = 45s the local

power reference in area 5 (cyan line) is not able to compensate
the local power load and starts diverging. After fault detection

at t = 48s (after 3 alarms), isolation and reconfiguration (at

t = 61s and t = 67s respectively), all local power references
can still compensate local power loads after a short transient

and the attack effect is not propagated in the network. This

is an example of CPS, where the attack, detection, isolation
and reconfiguration are all performed in an automatic way in

a PnP fashion.

IX. CONCLUDING REMARKS

In this paper, a model-based distributed fault detection and

isolation architecture for nonlinear interconnected systems is

designed in a PnP scenario. A stochastic characterization of
the process disturbances and measurement noise is considered.

The proposed fault diagnosis architecture is able to manage

plugging-in of novel subsystems and un-plugging of existent
ones, requiring reconfiguration operations only for the neigh-

boring subsystems. Moreover, the proposed PnP monitoring

framework allows the unplugging of faulty subsystems in the
case it is necessary to avoid the risk of propagation of faults

in the interconnected large-scale systems. Fault detection and

isolation probabilistic thresholds are designed, guaranteeing
maximum error levels set by the designer. Fault detectability

and isolability analysis are provided. Simulation results show

the potential of the proposed approach in a power networks ap-
plication. Future research efforts will be devoted to extend the

proposed methodology to the case in which the state variables
are not fully accessible and to consider real applications.
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upp,low

[4,{3,4}]
(solid lines) for

Stochastic-based LFD.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t [s]

ǫ
[4
,{
3
,4
}
]

|ǭ
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Fig. 4: Scenario 1. In Figures 4a, 4c and 4e, for area 4, for
each component (in curly brackets in the subscript), dashed

lines are the errors ǫ[4] = y[4] − x̂[4] and bold lines are the

thresholds ǭ
upp/low
[4] computed using the proposed stochastic

FD architecture. In Figures 4b, 4d and 4f, for area 4, dashed
lines are the absolute errors ǫ[4] = |y[4] − x̂[4]| and solid

lines are the thresholds ǭ[4] for each component computed

using the deterministic FD architecture proposed in [22]. The
grey-shaded sections highlight the time-interval between the

occurrence of the fault and its detection. In the deterministic
case the fault is not detected. In the stochastic case, after

detection, area 4 is disconnected.
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case ∆Pref5 (solid line, in cyan) allows balancing the load

thanks to the reconfiguration.
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