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Low-Rank Optimization with Convex

Constraints

Christian Grussler, Anders Rantzer, and Pontus Giselsson.

Abstract

The problem of low-rank approximation with convex constraints, which appears in data analysis, system iden-

tification, model order reduction, low-order controller design and low-complexity modelling is considered. Given a

matrix, the objective is to find a low-rank approximation that meets rank and convex constraints, while minimizing

the distance to the matrix in the squared Frobenius norm. In many situations, this non-convex problem is convexified

by nuclear norm regularization. However, we will see that the approximations obtained by this method may be far

from optimal. In this paper, we propose an alternative convex relaxation that uses the convex envelope of the squared

Frobenius norm and the rank constraint. With this approach, easily verifiable conditions are obtained under which the

solutions to the convex relaxation and the original non-convex problem coincide. An SDP representation of the convex

envelope is derived, which allows us to apply this approach to several known problems. Our example on optimal

low-rank Hankel approximation/model reduction illustrates that the proposed convex relaxation performs consistently

better than nuclear norm regularization and may outperform balanced truncation.

Index Terms

Low-rank Approximation, Model Reduction, System Identification, k-support norm, Compressed Sensing.

I. INTRODUCTION

Optimization problems with a low-rank (sparsity) constraint have received considerable attention in data driven

areas such as image analysis, multivariate linear regression and matrix completion (see, e.g. [1]–[5]), as well as

many control subjects such as model order reduction, low order/sparse controller design, low complexity modelling,

system identification, etc. [6]–[17]. This is because low-rank approximations allow us to study high dimensional

(complex) problems in lower dimensional (simpler) domains. For example, the low-rank approximation of a Hankel

operator or matrix requires a smaller number of equations to describe a dynamical system or controller, see, e.g. [6],

[8], [18], [19].

For unitarily invariant norms an optimal low-rank approximation can be found by performing a singular value

decomposition (SVD). Unfortunately, these approximations usually do not fulfil desired structural constraints such

as element-wise nonnegativity, Hankel structure or prescribed entries [2], [3], [12], [20]. Only in a few cases, an

explicit solution to the constrained low-rank approximation problem is known [3], [18], [21]. For this reason, other

concepts based on convex optimization have been developed [2], [7], [22]–[24]. Many of them rely on nuclear

norm regularization, which for particular constraints and assumptions can guarantee a minimum rank solution [2],

[25]. As a result, this technique (see [7], [13], [14], [26]) and its extensions (see [16], [17]) has become a standard

http://arxiv.org/abs/1606.01793v3
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tool within control. Nevertheless, it is demonstrated here that nuclear regularization may be far from obtaining the

optimal solution to the underlying non-convex problem.

In this work, we study the optimal Frobenius norm low-rank approximation problem with a prescribed target

rank and convex constraints (see Problem 1). We provide an expression for the convex envelope (or equivalently

the bi-conjugate) of

f (M) = ‖N −M‖2
F + χrank(M)≤r(M),

where N is a known data matrix and χrank(M)≤r(M) is the indicator function that allows for matrices of rank at

most r. This is used to extend our work in [27] to a more general setting and to provide further analysis.

One formulation of this convex envelope has recently been presented in [22]. In this work, we show how the

bi-conjugate can be expressed very neatly in terms of the dual norm of the r-norm (the ℓ2 norm of the r largest

singular values). This dual norm is referred to as the r∗ norm. A convex relaxation to problems involving f with an

additional constraint then naturally arises from the convex envelope of f . We provide guarantees and an example

for when a globally optimal solution to our non-convex problem involving f can be found by the proposed convex

relaxation. We also show how to construct r∗ norms for non-integer valued r. This gives rise to other convex

relaxations in which the r can be used as a regularization parameter to trade-off rank and data misfit in the solution.

Further, an SDP-representation of the convex envelope is presented, which allows us to compute solutions

to problems with SDP-representable constraints. This is particularly useful if the problem is of medium size

(see e.g. [8]), but where it may be tedious to handle a large number of constraints with first order methods [28].

Nevertheless, there are several important cases, e.g. Hankel structure, where first order methods can be used to

solve problems of large size (see [29]–[31] and [32] for available implementations).

The paper is organized as follows. In Section II, we introduce some definitions, recap the unconstrained low-rank

approximation problem and define our main problem. Our main approach is derived and discussed in Section III. Ex-

tensions of our approach to non-integer valued r are discussed in Section IV and corresponding SDP-representations

are derived in Section V. In Section VI, an application to the open problem of Hankel structure optimal low-

rank approximation [33] is presented. These approximations are used to construct reduced order models and to

compare their performance with balanced truncation [21]. Finally, we draw conclusions and discuss future research

in Section VII.

II. BACKGROUND

A. Notations

The following notations for real matrices X = (xi j) ∈ R
n×m is used throughout this paper. Without loss of

generality, it is assumed that n ≤ m. Submatrices of X are denoted by

X(p:q,s:t) := (xi j)p≤i≤q, s≤ j≤t ∈R
p−q+1×s−t+1.

If X = XT is positive definite (semi-definite) we use the notation X ≻ 0 (X � 0). We also use these notations to

describe the relation between two matrices, e.g. A � B means A−B � 0.
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− f ∗(D1)

− f ∗(D2)

− f ∗(D3)

− f ∗(D4)

− f ∗(D5)

M

Fig. 1: Schematic plot of f (M), f ∗∗(M) and tangents through − f ∗(Di).

The non-increasingly ordered singular values of X ∈ R
n×m are denoted by σ1(X) ≥ ·· · ≥ σn(X), counted with

multiplicity. The Frobenius inner-product for X ,Y ∈R
n×m is defined as

〈X ,Y 〉 :=
m

∑
i=1

n

∑
j=1

xi jyi j = trace(XTY ).

Correspondingly, the Frobenius norm is given by

‖X‖F :=

√

n

∑
i=1

n

∑
j=1

x2
i j =

√

m

∑
i=1

σ2
i (X).

The Frobenius norm is so-called unitarily invariant, i.e. ‖UXV‖F = ‖X‖F for all unitary matrices U and V . The

pseudo-inverse of X is denoted by X† (see e.g. [34]).

For a function f : Rn×m → R∪{∞} that is linearly minorized, i.e. there exists X ∈ R
n×m with f (M) ≥ 〈M,X〉

for all M ∈R
n×m, the conjugate function f ∗ is defined as

f ∗(D) := sup
M∈Rn×m

[〈D,M〉− f (M)]

for all D ∈ R
n×m. The bi-conjugate function of f is given by f ∗∗ := ( f ∗)∗. It is well-known that f ∗ and f ∗∗

are convex (see [35]). Moreover, f (M) ≥ f ∗∗(M) for all M ∈ R
n×m. In fact, f ∗∗ is the largest convex minorizer

of f (see [36, Theorem X.1.3.5]), because it is the point-wise supremum of all affine functions majorized by f

(see Figure 1).

Finally, if S ⊂ R
n×m and f : Rn×m → R∪{∞}, then argminS f denotes the set of minimizers of f over S. We

write x⋆ = argminS f , if argminS f = {x⋆} is a singleton. Further, we use conv(S) to denote the convex hull of S.
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B. Problem

Let us turn to the underlying problem of this work. We start with the traditional optimal low-rank approximation

problem in R
n×m, which is formulated as follows. Given N ∈R

n×m and r ∈ {1, . . . ,n}, find a solution M⋆ ∈R
n×m

to

minimize
1

2
‖N −M‖2

F

subject to rank(M)≤ r

(1)

In case of the Hilbert-Schmidt norm, the natural operator generalization of the Frobenius-norm, this problem has

been solved by Schmidt (see [37]). The result is stated next.

Proposition 1. Let N ∈R
n×m and r ∈ {1, . . . ,n}. Then,

min
M∈Rn×m

rank(M)≤r

‖N −M‖F = ‖diag(σr+1(N), . . . ,σn(N))‖F .

All solutions to (1) are given by

svdr(N) :=

{

r

∑
i=1

σi(N)uiv
T

i : N =
n

∑
i=1

σi(N)uiv
T

i is SVD of N

}

,

and each element in svdr(N) is refered to as a standard SVD-approximation of N. If σr(N) = σr+1(N), then svdr(N)

contains infinitely many such solutions, because {ur,ur+1} and {vr,vr+1} are not uniquely determined. Otherwise,

svdr(N) is a singleton, i.e., if σr(N) 6= σr+1(N) or σr(N) = 0, and we simply write svdr(N) for the unique solution

to (1).

This work addresses the following extension of (1).

Problem 1. Given N ∈R
n×m, find M⋆ ∈R

n×m with rank(M⋆)≤ r such that

min
M∈Rn×m

rank(M)≤r

[

1

2
‖N −M‖2

F + g(M)

]

=
1

2
‖N −M⋆‖2

F + g(M⋆),

where g :Rn×m →R∪{∞} is a given closed, proper and convex function, i.e., the epi-graph of g is closed, non-empty

and convex, respectively.

Compared to (1), Problem 1 has an additional function g that can be used to add information about the desired

solution. Both problems are non-convex due to the rank constraint. Nevertheless, we will see in Section III that

they can often be solved by convex optimization and semi-definite programming.

In the following, we often use g(M)≡ χC (M), where

χC (M) :=











0, M ∈ C

∞, M /∈ C

is defined to be the indicator function of a (convex) set C ⊂R
n×m. We also use χrank(M)≤r to denote the indicator

function of the set of matrices with at most rank r. In the remainder of this paper, it is assumed that g+χrank(M)≤r

is proper.
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C. Nuclear Norm Regularization

One of the most widely used methods to convexify rank constrained problems is to use nuclear norm regularization.

It borrows techniques from sparse regularized regression (see [1]), where the ℓ1 norm is used as a sparsifier.

In our case, rather than having a sparse solution, we are interested in having a small number of non-zero singular

values. The nuclear norm imposes an ℓ1 norm penalty on the singular values. Therefore, for given N ∈ R
n×m, a

matrix version for convexifying Problem 1 reads

min
M∈Rn×m

1

2
‖N −M‖2

F + µ‖M‖1∗+ g(M), (2)

where g : Rn×m →R∪{∞} is a closed and proper convex function. The simplicity of this convexification, as well as

the results in [2], [7], stimulated a large growth in the application of this method. However, it is often challenging to

choose µ a priori in order to obtain a solution of specific rank. Commonly one assumes that the rank as a function

of µ looks like a staircase, i.e., a large/small µ decreases/increases the rank.

In general, this heuristic does not return an optimal solution to Problem 1. In particular, in the case g = 0, one

usually cannot choose µ such that the SVD-approximation is obtained. Finally, there is no certificate for checking

whether a solution is a minimizer of Problem 1.

III. THE r∗ APPROACH

In the following, we consider the problem of finding solutions to Problem 1. Our approach is based on convex

relaxations of Problem 1 by means of what we call the r∗ norms. These norms are defined in the following lemma.

Lemma 1. Let M ∈R
n×m, and r ∈ {1, . . . ,n}. Then,

‖M‖r :=

√

r

∑
i=1

σ2
i (M) = sup

‖X‖F=1

rank(X)≤r

〈M,X〉 (3)

is a unitarily invariant norm with dual norm

‖M‖r∗ := max
‖X‖r≤1

〈M,X〉= max
∑r

i=1 s2
i ≤1

[

r

∑
i=1

σi(M)si + sr

n

∑
i=r+1

σi(M)

]

.

Moreover,

‖M‖1 ≤ ·· · ≤ ‖M‖n = ‖M‖F = ‖M‖n∗ ≤ ·· · ≤ ‖M‖1∗, (4)

rank(M)≤ r if and only if ‖M‖r = ‖M‖F = ‖M‖r∗. (5)

A proof to this lemma is provided in Appendix B. Notice that ‖M‖1 = σ1(M) is equal to the spectral norm

and its dual norm ‖M‖1∗ = ∑n
i=1 σi(M) is equal to the nuclear (trace norm). These norms can be formulated using

convex linear matrix inequalities (see [2], [7]). In Section III it is shown that the same holds true for ‖ · ‖2
r and

‖ · ‖2
r∗.

Next we show that the r∗ norm can be used to construct the largest convex minorizer (convex envelope) of

f (M) :=
1

2
‖N −M‖2

F + χrank(M)≤r(M).
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Theorem 1. Let N ∈R
n×m, and r ∈ {1, . . . ,n}. Then the conjugate and bi-conjugate functions of

f (M) :=
1

2
‖N −M‖2

F + χrank(M)≤r(M)

are given by

f ∗(D) =
1

2
‖N +D‖2

r −
1

2
‖N‖2

F , (6)

f ∗∗(M) =
1

2
‖M‖2

r∗−〈N,M〉+
1

2
‖N‖2

F (7)

for all D,M ∈R
n×m.

A proof to Theorem 1 can be found in Appendix C. Note that by Fenchel duality (see [38, Section 31]) the

following Lemma holds.

Lemma 2. Let f ,g : Rn×m →R∪{∞} be such that g is proper, closed and convex. Then,

inf
M∈Rn×m

[ f (M)+ g(M)]≥− inf
D∈Rn×m

[ f ∗(D)+ g∗− (D)] (8)

= inf
M∈Rn×m

[ f ∗∗(M)+ g(M)] . (9)

If M⋆ is a solution to (9) such that f (M⋆) = f ∗∗(M⋆), then M⋆ is also a solution to the left-hand side of (8).

Therefore, we can construct the dual and bi-dual problems to Problem 1 as

− min
D∈Rn×m

[

g∗(−D)+
1

2
‖N +D‖2

r −
1

2
‖N‖2

F

]

, (A)

min
M∈Rn×m

[

1

2
‖M‖2

r∗−〈N,M〉+
1

2
‖N‖2

F + g(M)

]

, (B)

which are accompanied by the next central result.

Proposition 2. Let N ∈R
n×m and g :Rn×m →R∪{∞} be a closed proper convex function. Then for all r ∈ {1, . . . ,n}

min
M∈Rn×m

rank(M)≤r

[

1

2
‖N −M‖2

F + g(M)

]

≥ − min
D∈Rn×m

[

g∗(−D)+
1

2
‖N +D‖2

r −
1

2
‖N‖2

F

]

(C)

= min
M∈Rn×m

[

1

2
‖M‖2

r∗−〈N,M〉+
1

2
‖N‖2

F + g(M)

]

.

Assume that (B) has a minimizer M⋆ with rank(M⋆)≤ r. Then,

argmin
M∈Rn×m

rank(M)≤r

[

1

2
‖N −M‖2

F + g(M)

]

⊂ argmin
M∈Rn×m

[

1

2
‖M‖2

r∗−〈N,M〉+
1

2
‖N‖2

F + g(M)

]

.

Thus obtaining a rank-r solution to the convex relaxation problem (B) implies solving the original non-convex

problem. This is why we suggest to use (B) instead of the the nuclear norm heuristic (see (2) in Section II-C)

as convex relaxation to Problem 1. Nevertheless, in general there may be a duality-gap for some choices of g

(see Section V). This is reflected by the inequality in (C). Fortunately, there are many situations with no duality-

gap. Next, an important case is discussed to provide additional insights.
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Proposition 3. Assume that D⋆ is a solution to (A) and σr(N+D⋆) 6= σr+1(N+D⋆) or σr(N+D⋆) = 0. Then there

is no duality gap in (C) and svdr(N +D∗) is the unique minimizing argument of Problem 1, i.e.

svdr(N +D⋆) = argmin
M∈Rn×m

rank(M)≤r

[

1

2
‖N −M‖2

F + g(M)

]

.

Proposition 3 provides a simple sufficient condition for the uniqueness of a solution to Problem 1, which in many

applications is fulfilled (see Section VI). However, this is not a necessary condition. A proof of Proposition 3 is

given in a more general setting in Theorem 2, which also allows us to say something about the rank of the solution

to the convex relaxation if there is a duality-gap.

Theorem 2. Let D⋆ and M⋆ be solutions to (A) and (B), respectively. Further, suppose that an SVD of N +D⋆ is

given by N +D⋆ = ∑n
i=1 σiuiv

T

i with σr = · · ·= σr+s 6= σr+s+1, where s = n− r if σn = σr. Then,

M⋆ ∈ conv(svdr(N +D⋆)).

In particular, rank(M⋆)≤ r+ s. Moreover, if σr 6= σr+1 or σr = 0, then M⋆ = svdr(N +D⋆).

A proof to this theorem is given in Appendix D. Observe that whenever (B) does not have a unique solution, it

follows by Theorem 2 that

σr(N +D⋆) = σr+1(N +D⋆)

for all solutions D⋆ to (A). Furthermore, Theorem 2 shows that svdr(N) with σr(N) 6= σr+1(N) can be determined

by solving a convex problem.

Corollary 1. Let N ∈R
n×m, and r ∈ {1, . . . ,n}. Then,

min
M∈Rn×m

rank(M)≤r

1

2
‖N −M‖2

F =
1

2
‖N‖2

F −
1

2
‖N‖2

r = min
M∈Rn×m

[

1

2
‖M‖2

r∗−〈N,M〉+
1

2
‖N‖2

F

]

and

svdr(N)⊂ argmin
M∈Rn×m

[

1

2
‖M‖2

r∗−〈N,M〉

]

.

If σr(N) 6= σr+1(N) or σr = 0 then

svdr(N) = argmin
M∈Rn×m

[

1

2
‖M‖2

r∗−〈N,M〉

]

.

Proof. Since g = 0, g∗(D) is finite if and only if D = 0. Thus the result follows by Theorem 2.

The low-rank inducing property of the r∗ norm can also be seen by characterizing the extreme points of its unit

ball.

Lemma 3. The set of the extreme points of the unit-ball B1 := {X : ‖X‖r∗ ≤ 1} is

E := {X ∈R
n×m : ‖X‖F = 1, rank(X)≤ r}.

Hence, B1 = conv(E).
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Proof. By (3) in Lemma 1, it holds that for all N ∈R
n×m

sup
M∈conv(E)

〈N,M〉 = ‖N‖r = sup
M∈B1

〈N,M〉. (10)

Since conv(E) and B1 are closed convex sets, [38, Corollary 13.1.1.] implies that B1 = conv(E). If a point M̄ ∈ E

is not an extreme point of E , then

M̄ = ∑i αiMi, with ∑i αi = 1,

such that

Mi ∈ K \ {M̄} and αi > 0 for all i.

Hence, by the Cauchy-Schwarz inequality we conclude that

1 = 〈M̄,M̄〉= ∑i αi〈M̄,Mi〉 ≤ ∑i αi = 1.

However, this can only be true if 〈M̄,Mi〉= 1 for all i. Equivalently, M̄ = Mi and that is a contradiction.

Finally, the preceding results cover several extensions of Problem 1. By letting N = diag(v) and M = diag(w) for

v,w ∈ R
n, there are analogous norms for vector-valued problems, (see e.g. [39], [40]) where our analysis carries

over. Further, it is possible to consider the weighted case

min
M∈Rn×m

rank(M)≤r

[

1

2
‖W (N −M)‖2

F + g(M)

]

, (11)

where W ∈R
l×n and rank(W ) = n. Since rank(M̃) = rank(W †M̃) = rank(M), (11) can be reformulated such that it

fits Problem 1 by letting g̃(M̃) := g(W †M̃):

min
M∈Rn×m

rank(M)≤r

[

1

2
‖W (N −M)‖2

F + g(M)

]

= min
M̃∈Rn×m

rank(M̃)≤r

[

1

2
‖WN − M̃‖2

F + g̃(M̃)

]

.

Since another inner product and norm is defined by W as

‖W (N −M)‖2
F = trace((N −M)TWTW (N −M))

=: 〈N −M,N −M〉WTW ,

a suitable W may enable us to satisfy the requirements of Proposition 3 in situations where the Frobenius norm

fails. In particular, W may be used for iterative re-weighting. For vector-valued problems, this generalizes the idea

of ℓ1 norm re-weighting (see [41]) to r∗ norms.

IV. REAL-VALUED EXTENSION

In the following, it is shown that allowing r to be real-valued can be considered as a regularization parameter.

Unlike typical regularization methods (see [7], [22]), this parameter has a close relationship to the rank of the

corresponding solutions.

It suffices to discuss the case where Proposition 3 does not apply. Therefore, let

D⋆
t := argmin

D∈Rn×m

[

g∗(−D)+
1

2
‖N +D‖2

t

]

,
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and

M⋆
t := argmin

M∈Rn×m

[

1

2
‖M‖2

t∗−〈N,M〉+ g(M)

]

.

be defined for all t ∈ {1, . . .n}, and assume that there exists r ∈N with

σr(N +D⋆
r) = σr+1(N +D⋆

r ) and rank(M⋆
r )> r.

Furthermore, let
1

2
‖N −M⋆

r ‖
2
F + g(M⋆

r )>
1

2
‖N −M⋆

r+1‖
2
F + g(M⋆

r+1)

with

rank(M⋆
r+1)> rank(M⋆

r ).

In such a scenario, one often faces the situation that rank(M⋆
r ) is small, but the cost 1

2
‖N −M⋆

r ‖
2
F +g(M⋆

r ) is poor,

whereas 1
2
‖N −M⋆

r+1‖F + g(M⋆
r+1) may be acceptable, but rank(M⋆

r+1) is too large. Then a trade-off between M⋆
r

and M⋆
r+1 is desired. Such a trade-off can be achieved by letting r become non-integer valued in the r norm. The

r norm extends to

‖ · ‖r :=

√

√

√

√

⌊r⌋

∑
i=1

σ2
i (·)+ (r−⌊r⌋)σ2

⌈r⌉(·), (12)

where ⌊r⌋ := max{z ∈Z : z ≤ r} and ⌈r⌉ := min{z ∈Z : z ≥ r}. For r ∈N and α ∈ [0,1] we have

‖ · ‖2
r+α = (1−α)‖ · ‖2

r +α‖ · ‖2
r+1, (13)

which means that ‖ · ‖2
r+1−α is a convex combination of ‖ · ‖2

r and ‖ · ‖2
r+1, and thus indicates its usefulness in

supplying the desired trade-off solution. Similar to Theorem 2, it remains true by Proposition 4 that rank(M⋆
r ) ≤

⌈r⌉+ s if r ∈R≥1 and

σ⌈r⌉(N +D⋆
r ) = · · ·= σ⌈r⌉+s(N +D⋆

r )> σ⌈r⌉+s+1(N +D⋆
r ). (14)

Hence, allowing r to assume real values may allow us to find solutions of both lower rank and lower cost. Next

we look at the dependency of s on r in (14). We define

F(D,r) := g∗(−D)+
1

2
‖N +D‖2

r +
1

2
‖N‖2

F .

Using the piecewise linearity in (13), it can be shown that F is (jointly) continuous on the relative interior of its

domain. Therefore, Berge’s Maximum Theorem (see [42, p. 116]) implies that the parameter depending set

C
⋆(r) := argmin

D∈Rn×m

[

g∗(−D)+
1

2
‖N +D‖2

r +
1

2
‖N‖2

F

]

is upper hemicontinuous in r. This means that for all

r ∈ [1,min{m,n}] and all ε > 0 there exists δ > 0 such that for all t ≥ 1

|t − r|< δ ⇒ C
⋆(t)⊂ Bε (C

⋆(r)) , (15)

where

Bε (C
⋆(r)) :=

{

X ∈R
n×m : ∃D ∈ C

⋆(r) with ‖X −D‖F < ε
}

.
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For simplicity assume that D⋆
r is unique. By (15) and the continuity of the singular values (see [37, Corollary 4.9]),

it follows that a sufficiently small increase of r does not increase s in (14). Hence, just as for nuclear norm

regularization, rank(M⋆
t ) often looks like a staircase as t varies over [r,r + 1] (see Figure 2b in Section VI). In

summary, real-valued r can be considered as a regularization parameter, similar to other regularization methods

such as in [7], [22].

V. SDP-REPRESENTATIONS

Next we develop SDP-representations of the problems (A) and (B) under the assumption that g is SDP-representable.

We start with an SDP-representation of the optimization problem

min
D∈Rn×m

‖N +D‖2
r , (16)

where ‖ · ‖r is defined as in (12) and r ∈ [1,n]. Let T ∈R
n×n be such that

T � (N +D)(N +D)T.

Then σi(T )≥ σ2
i (N +D) for all i such that 1 ≤ i ≤ n (see [34, Corollary 7.7.4]) and trace(T ) = ∑n

i=1 σi(T ). Hence,

‖N +D‖2
r ≤ trace(T )− (n− r)σn(T ),

which implies that

‖N +D‖2
r ≤ min

T�(N+D)(N+D)T
trace(T )− (n− r)σn(T ). (17)

In particular, equality in (17) can be achieved with

T ⋆ :=
⌈r⌉

∑
i=1

σ2
i (N +D)uiu

T

i +σ2
⌈r⌉(N +D)

n

∑
i=⌈r⌉+1

uiu
T

i ,

where N +D = ∑n
i=1 σi(N +D)uiv

T

i is an SVD of N +D. Using the Schur-complement condition for T − (N +

D)(N +D)T � 0 (see [34, Theorem 7.7.7]) yields that

minimize
D,T,γ

trace(T )− γ(n− r)

subject to





T N +D

(N +D)T I



� 0, T � γI, D ∈R
n×m.

is an SDP-representation for (16). Then, an SDP-formulation of (B) can be obtained by deriving the dual of this

optimization problem as

minimize
M,P,W

1

2
trace(W )− trace(NTM)+ g(M)

subject to





I−P M

MT W



� 0, P � 0, trace(P) = n− r.

(18)
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VI. MODEL ORDER REDUCTION

In system and control, the rank of a Hankel matrix/operator is important, because it determines the order, e.g.

of a linear time invariant discrete-time system

xk+1 = Axk +Buk,

yk =Cxk +Duk,
(19)

where A ∈R
n×n, B ∈R

n×nu , C ∈R
ny×n and D ∈R

ny×nu . Note that if (A,B,C,D) is a minimal realization, then n

is the order of the system and thus decides how costly it is to simulate or control the system (see, e.g. [8], [19],

[21]). As a result, the field of model order reduction has emerged [21]. Whereas the Adamyan-Arov-Krein theorem

[21] answers the question of optimal low-rank approximation of infinite dimensional Hankel operators, the finite

dimensional case

minimize
M

‖N −M‖2
F

subject to M ∈ H , rank(M)≤ r,

(20)

where N ∈ H := {H : H is Hankel}, is still an open problem [33]. The finite dimensional case (20) is important,

e.g for model approximation or system identification (see [12], [19]), where N is formed through the known or

measured impulse response, h0 = D, ht =CAt−1B, t ≥ 1, of a stable linear system (19):

N = Hk,l+1 :=

















h1 h2 · · · hl+1

h2 h3 · · · hl+2

...
...

...

hk hk+1 · · · hk+l

















.

Assuming that k, l ≥ n, it holds that rank(N)≤ n and N can be mapped onto a minimal realization of (19) through

Kung’s (or Ho-Kalman-Kung) algorithm [12], [19], [21]. Moreover, also a Hankel structured rank-r approximation

M⋆ of N can be mapped by Kung’s algorithm onto a linear system (Â, B̂,Ĉ, D̂) of order r if rank
(

M⋆
(1:rny,1:rnu)

)

= r.

The system matrices are derived as

Â = O†M⋆
(1:k,2:l+1)R

†, B̂ = R(1:r,1:nu),

Ĉ = O(1:ny,1:r), D̂ = h0,
(21)

where an SVD of M⋆
(1:k,1:l) = ∑r

i=1 σruiv
T

i determines

O :=
(

σ1u1 . . . σrur

)

and R :=
(

σ1v1 . . . σrvr

)

T

.

Consequently, the impulse response matches M⋆, i.e. it fulfils

ĈÂt−1B̂ =











M⋆
((t−1)ny+1:tny,1:nu)

, 1 ≤ t ≤ k,

M⋆
(1:ny,(t−1)nu+1:tnu)

, k+ 1 ≤ t ≤ k+ l.

In the following, we compare the performance of the r∗ approach (B) and nuclear norm regularization (2) to

balanced truncation for the minimal system (19) of order 10 with

A = diag(0,0.1, . . . ,0.9), C = BT = (1, . . . ,1), D = 0 (22)
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and N =H71,71 being the intrinsic Hankel matrix. We use Kung’s algorithm to map the Hankel matrix approximations

of the convex methods onto systems and compare their H∞ norm errors (see Figure 2a) with balanced truncation.

Further, we construct Hankel matrix approximations of N from the balanced truncated models and compare their

Frobenius norm errors with those of the convex methods (see Figure 2a).

By the rank evolution in Figure 2b, we can see that the r∗ approach exhibits the expected staircase behaviour

as discussed in Section IV. Further, it can be observed that there is a zero duality gap for all r ∈ {1, . . . ,9}. Thus

by Proposition 2, the Frobenius norm error in Figure 2a is the lowest for the r∗ approach. In particular, nuclear

norm regularization performs 2 – 34 times worse than BT, whereas the r∗ approach has about 9 – 16 % smaller

error than BT. An even stronger error difference reveals for the corresponding system errors, where our method

performs 17 – 39 % better than BT and the nuclear norm 3 – 200 times worse. Finally, the complete evolution of

the normalized errors for the r∗ approach in Figure 2b shows that good approximations can be achieved for both

the system as well as N. The small gap between the two errors, which increases with r, is due to the large sampling

horizon in N. The horizon of 141 samples insures that the first 10 singular values in N are close to the Hankel

singular values of the system.

Note that a larger horizon would improve the approximation quality even further. However, our chosen horizon

seems to give a good trade-off between error performance and computational cost when solving (18) through

conventional SDP solvers (see e.g. [43]). Moreover, a smaller horizon seems to mainly affect the quality of higher

order approximations. Finally, note that our method does not necessarily need to reduce the original system. It

could also be used after an initial reducing step through other methods [21].

An implementation of our example can be found in [32].

VII. CONCLUSION

In this work, a method for determining Frobenius norm optimal low-rank approximations with convex constraints

has been studied. The main benefits of our approach are that it is essentially regularization parameter free and may

give a certificate of optimality. Moreover, we have seen that our approach can be turned into a regularization

dependent method, where, unlike other approaches, the parameter has a direct relationship to the desired rank (see

Section IV). The model reduction example shows the superiority of our approach over the nuclear-norm heuristic

as well as balanced truncation. In addition, our approach allows us to impose further convex constraints onto the

impulse response. In the future, we would like to investigate the distinct properties of such approximations, e.g.

error bounds, as well as their effectiveness in system identification problems. Furthermore, it would be interesting to

see how system characteristics effect a possible duality gap. Most of our results can be extended to Hilbert-Schmidt

operators. In case of Hankel operators, the singular values translate to Hankel singular values. Nevertheless, our

results cannot be easily extended to other unitarily invariant norms, e.g. the spectral norm. This is because other

norms often lack the following properties: (1) The norm of a difference of two matrices is not decomposable such

that the convex envelope can be easily derived (see [30] for more details), (2) If the norm does not depend on all

singular values, then even for g = 0 there are (infinitely) many solutions and thus minimizing its convex envelope
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‖ · ‖F error ratio: r∗ approach, nuclear norm reg.
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(b) normalized errors: ‖ · ‖F , ‖ · ‖H∞
, rank

Fig. 2: Model Order Reduction for (22) – (a) Frobenius norm error of the best achievable approximations to

N =H71,71 in (20) through the r∗ approach (B) (left y-axis in linear scale) as well as the nuclear norm regularization

(2) (right y-axis in log scale); H∞ norm error of the corresponding reduced order systems (21) resulting from Kung’s

algorithm; both errors are divided by the analogous errors of the balanced truncated (BT) models. (b) Evolution of

the rank (left y-axis) as well as the normalized Frobenius and H∞ norm errors (right y-axis in log scale) of the r∗

approach with real-valued r ∈ (0,9].

would almost certainly result in a high rank convex combination of these solutions. Similar effects can be expected

for g 6= 0.

Finally note that our approach can also be used to numerically evaluate the performance of heuristics where no

relationships to the optimal solutions are known.
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APPENDIX

A. Subdifferentials

Let f : Rn×m →R∪{∞} be a convex function, then the subdifferential of f in X ∈R
n×m is defined as

∂ f (X) := {Z : f (Y )≥ f (X)−〈Y −X ,Z〉 for all Y}.

The following proposition on the subgradiential of ‖ ·‖r has been shown in [44] for r ∈N. It is straightforward to

extend it to the real-valued case.

Proposition 4. Let A ∈R
n×m \ {0}, r ∈ [1,n] and r̄ := ⌈r⌉. Further, let an SVD of A be given by A = ∑n

i=1 σiuiv
T

i

with

σr̄−t 6= σr̄−t+1 = · · ·= σr̄ = · · ·= σr̄+s 6= σr̄+s+1,

where t = r̄ and s = n− r̄ if σ1 = σr̄ and σn = σr̄, respectively. Then M ∈ ∂‖A‖r if and only if

M =
1

‖A‖r

(

r̄−t

∑
i=1

σiuiv
T

i +σr̄R

)

,

R =
(

ur̄−t+1 . . . ur̄+s

)

T
(

vr̄−t+1 . . . vr̄+s

)

T

,

where T � 0, ‖T‖1∗ = t − r̄+ r, and ‖T‖1 ≤ 1. Moreover,

∂‖0‖r = {M ∈R
n×m : ‖M‖r∗ ≤ 1}.

It is readily seen that Proposition 4 is equivalent to

∂‖A‖r∗ =
1

‖A‖r

conv(svdr(A)).

B. Proof of Lemma 1

Proof. Let 1 ≤ r ≤ n, M ∈R
n×m and the function g : Rn →R≥0 be defined by

g(x1, . . . ,xn) := ‖diag(x1, . . . ,xn)‖r.

The unitary invariance of ‖·‖r follows by [34, Theorem 7.4.7.2.], because g is a symmetric gauge function. By [34,

Corollary 7.4.1.3.] it holds that

sup
‖X‖F=1

rank(X)≤r

〈X ,M〉= sup
∑r

i=1 σ 2
i (X)=1

r

∑
i=1

σ2
i (X)σi(M) = ‖M‖r.

Then the r∗-norm inherits the unitary invariance of the r-norm and with Σ := diag(σ1(M), . . . ,σn(M)) it follows

that

‖M‖r∗ = ‖Σ‖r∗ = max
‖X‖r≤1

〈Σ,X〉 = max
∑r

i=1 σ 2
i (X)=1

n

∑
i=1

σi(M)σi(X) = max
∑r

i=1 σ 2
i (X)≤1

[

r

∑
i=1

σi(M)σi(X)+σr(X)
n

∑
i=r+1

σi(M)

]

.

The third equality follows by [34, Corollary 7.4.1.3.]. Hence,

‖M‖1∗ = max
∑1

i=1 s2
i =1

n

∑
i=1

σi(M)si ≥ . . . ≥ max
∑n

i=1 s2
i =1

n

∑
i=1

σi(M)si = ‖M‖n∗ = ‖M‖F .
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Moreover, by the definition of the r-norm

‖M‖F = ‖M‖n ≥ ·· · ≥ ‖M‖1

and therefore (4) is shown. In particular,

‖M‖r∗ = max
∑r

i=1 s2
i =1

n

∑
i=1

σi(M)si ≥ ‖M‖F ≥ max
∑r

i=1 s2
i =1

r

∑
i=1

σi(M)si = ‖M‖r.

Obviously, ‖M‖F = ‖M‖r if and only if rank(M)≤ r, and thus ‖M‖r∗ = ‖M‖r if and only if rank(M)≤ r.

C. Proof of Theorem 1

Proof. The conjugate function satisfies

f ∗(D) = sup
M∈Rn×m

rank(M)≤r

[

〈D,M〉−
1

2
‖N −M‖2

F

]

= sup
M∈Rn×m

rank(M)≤r

−
1

2
‖N −M+D‖2

F + 〈D,N〉+
1

2
‖D‖2

F

=−
1

2
‖N +D‖2

F +
1

2
‖N +D‖2

r + 〈D,N〉+
1

2
‖D‖2

F

=−
1

2
‖N‖2

F +
1

2
‖N +D‖2

r ,

where the third equality follows by Proposition 1. Hence,

f ∗∗(M) = sup
D∈Rn×m

[

〈D,M〉+
1

2
‖N‖2

F −
1

2
‖N +D‖2

r

]

= sup
D∈Rn×m

[

〈D−N,M〉+
1

2
‖N‖2

F −
1

2
‖D‖2

r

]

=
1

2
‖N‖2

F −〈N,M〉+ sup
D∈Rn×m

[

〈D,M〉−
1

2
‖D‖2

r

]

=
1

2
‖N‖2

F −〈N,M〉+
1

2
‖M‖2

r∗,

where the last equality follows by [38, Corollary 15.3.1] with

1

2
‖ · ‖2

r∗ =

(

1

2
‖ · ‖2

r

)∗

.

D. Proof of Theorem 2

Proof. If D⋆ and M⋆ are solutions to (A) and (B), respectively, then by [38, Theorem 31.1] it holds that

f ∗∗(M⋆) = 〈D⋆,M⋆〉− f ∗(D⋆),

where f ∗ and f ∗∗ are given by (6) and (7). Hence, by [38, Theorem 23.5.] it follows that

M⋆ ∈ ∂D
1

2
‖N +D‖2

r

∣

∣

∣

∣

D=D⋆

= ‖N +D⋆‖r∂D‖N +D‖r|D=D⋆

and invoking Proposition 4 proves the result.
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