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Design of Symbolic Controllers

for Networked Control Systems

Alessandro Borri, Giordano Pola and Maria Domenica Di Benedetto ∗†‡

Abstract

Networked Control Systems (NCS) are distributed systems where plants,
sensors, actuators and controllers communicate over shared networks.
Non-ideal behaviors of the communication network include variable sam-
pling/transmission intervals and communication delays, packet losses, com-
munication constraints and quantization errors. NCS have been the ob-
ject of intensive study in the last few years. However, due to the inher-
ent complexity of NCS, current literature focuses on a subset of these
non-idealities and mostly considers stability and stabilizability problems.
Recent technology advances need different and more complex control ob-
jectives to be considered. In this paper we present first a general model
of NCS, including most relevant non-idealities of the communication net-
work; then, we propose a symbolic model approach to the control design
with objectives expressed in terms of non-deterministic transition systems.
The presented results are based on recent advances in symbolic control
design of continuous and hybrid systems. An example in the context of
robot motion planning with remote control is included, showing the effec-
tiveness of the proposed approach.

1 Introduction

Networked Control Systems (NCS) are complex, heterogeneous, spatially dis-
tributed systems where physical processes interact with distributed computing
units through non-ideal communication networks. In the past, NCS were limited
in the number of computing units and in the complexity of the interconnection
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network so that it was possible to obtain reasonable performance by aggregat-
ing subsystems that were locally designed and optimized. However the growth
of complexity of the physical systems to control, together with the continu-
ous increase in functions that these systems must perform, requires today to
adopt a unified design approach where different disciplines (e.g. control sys-
tems engineering, computer science, software engineering and communication
engineering) should contribute to reach new levels of performance. The het-
erogeneity of the subsystems that are to be connected in an NCS make the
control of these systems a hard but challenging task. NCS have been the fo-
cus of much recent research in the control community: Murray et al. in [1]
presented control over networks as one of the important future directions for
control. Following [2], the most important non-idealities in the analysis of NCS
are: (i) variable sampling/transmission intervals; (ii) variable communication
delays; (iii) packet dropouts caused by the unreliability of the network; (iv)
communication constraints (scheduling protocols) managing the possibly simul-
taneous transmissions over the shared channel; (v) quantization errors in the
digital transmission with finite bandwidth. There are two approaches to deal
with such non-idealities: the deterministic approach, which assumes worst-case
(deterministic) bounds on the aforementioned imperfections, and the stochastic
approach, which provides a stochastic description of the non-ideal communica-
tion network. We focus on the deterministic methods, which can be further dis-
tinguished according to the modeling assumptions and the controller synthesis:
a) the discrete-time approach (see e.g. [3], [4]) considers discrete-time controllers
and plants; b) the sampled-data approach (see e.g. [5], [6]) assumes discrete-time
controllers and continuous-time (sampled-data) plants; c) the continuous-time
(emulation) approach (see e.g. [7], [8]) focuses on continuous-time controllers
and continuous-time (sampled-data) plants. Results obtained in the determin-
istic approach during the past few years are mostly about stability and stabi-
lizability problems, see e.g. [9, 2, 10], and depend on the method considered
and the assumptions on the non-ideal communication infrastructure. In addi-
tion, current approaches in the literature take into account only a subset of
these non-idealities. As reviewed in [2], for example, [11] studies imperfections
of type (i), (iv), (v), [3], [12], [6] consider simultaneously (i), (ii), (iii), [8] fo-
cuses on (i), (iii), (iv), while [5] manages (ii), (iii) and (v). Three types of
non-idealities, namely (i), (ii), (iv), are considered for example in [13], [14],
[7]. In [15], the five non-idealities are dealt with but small delay and other
restrictive assumptions are considered. Finally, novel results in the stability
analysis of NCS can be found in [16], [17], [18], [19]. However, existing results
do not address control design of NCS with complex specifications, as for ex-
ample safety properties, obstacle avoidance, language and logic specifications.
This paper follows the deterministic approach and provides a framework for
NCS control design where the aforementioned non-idealities from (i) to (v) can
be taken into account. The proposed approach is based on the use of discrete
abstractions of continuous and hybrid systems [20, 21], and follows the work
in [22, 23, 24] based on the construction of symbolic models for nonlinear and
switched control systems. As such, it offers a sound paradigm to solve con-



trol problems where software and hardware interact with the physical world,
and to address a wealth of novel specifications that are difficult to enforce by
means of conventional control design methods. Symbolic models are abstract
descriptions of complex systems where a symbol corresponds to an “aggregate”
of continuous states and a symbolic control label to an “aggregate” of continu-
ous control inputs. Several classes of dynamical and control systems that admit
equivalent symbolic models have been identified in the literature. Within the
class of hybrid automata we recall timed automata [25], rectangular hybrid au-
tomata [26], and o-minimal hybrid systems [27, 28]. Early results for classes
of control systems were based on dynamical consistency properties [29], natural
invariants of the control system [30], l-complete approximations [31], and quan-
tized inputs and states [32, 33]. Further works include results on controllable
discrete-time linear systems [34], piecewise-affine and multi-affine systems [35],
[36, 37], set-oriented discretization approach for discrete-time nonlinear optimal
control problems [38], abstractions based on convexity of reachable sets [39],
incrementally stable and incrementally forward complete nonlinear control sys-
tems with and without disturbances [22, 23, 40, 41], switched systems [42] and
time-delay systems [43, 44]. The interested reader is referred to [45, 21] for an
overview on recent advances in this domain.

This paper addresses the control design of a fairly general model of NCS with
complex specifications, and provides an extended version of the preliminary
results published in [46, 47]. In particular, while in [46, 47] controllers are
assumed to be static, we consider here general dynamic controllers.

The main contributions are:
– A general model of NCS. We propose a general model of NCS, where the

plant is a continuous-time nonlinear control system, the computing units are
modelled by Moore machines, and the non-idealities introduced by the commu-
nication network include quantization errors, time-varying delay in accessing
the network, time-varying delay in delivering messages through the network,
limited bandwidth and packet dropouts.

– Symbolic models for NCS. We propose symbolic models that approximate
NCS with arbitrarily good accuracy, by using a novel notion, introduced in
this paper, called strong alternating approximate simulation. More specifically,
under the assumption of existence of an incremental forward complete Lyapunov
function for the plant of the NCS, we derive symbolic models approximating the
NCS in the sense of strong alternating approximate simulation. Stability of the
open-loop NCS is not required. In some recent work [48], symbolic models for
NCS are proposed, which, differently from our approach, are constructed on the
basis of a symbolic model of the plant.

– Symbolic control design of NCS. Building upon the obtained symbolic
models, we address the NCS control design problem, where specifications are
expressed in terms of transition systems. Given a NCS and a specification, a
symbolic controller is derived such that the controlled system meets the spec-
ification in the presence of the considered non-idealities in the communication
network.

The paper is organized as follows. In Section 2 notation is introduced. In



Section 3 a model is proposed for a general class of nonlinear NCS. In Section
4 symbolic models approximating NCS are derived. In Section 5 symbolic con-
trol design is addressed. An example of application of the proposed results is
included in Section 6. Finally, Section 7 offers some concluding remarks. The
Appendix recalls some technical notions that are instrumental in the paper.

2 Notation and preliminary definitions

Notation. The symbols N, N0, Z, R, R
−, R+ and R

+
0 denote the set of natural,

nonnegative integer, integer, real, negative real, positive real, and nonnegative
real numbers, respectively. The cardinality of a set A is denoted by |A|. Given
a set A we denote A2 = A×A and An+1 = A×An for any n ∈ N. Given a pair
of sets A and B and a relation R ⊆ A×B, the symbol R−1 denotes the inverse
relation of R, i.e. R−1 = {(b, a) ∈ B × A : (a, b) ∈ R}; for A′ ⊆ A we define
R(A′) = {b ∈ B|∃a ∈ A′ s.t. (a, b) ∈ R} and for B′ ⊆ B, R−1(B′) = {a ∈
A|∃b ∈ B′ s.t. (a, b) ∈ R}. Given sets A, B and C and relations Rab ⊆ A × B
and Rbc ⊆ B×C we recall that the composition relation R = Rab◦Rbc ⊆ A×C
is defined as Rab ◦ Rbc := {(a, c) ∈ A × C|∃b ∈ B s.t. (a, b) ∈ Rab ∧ (b, c) ∈
Rbc}. Note that, for any A′ ⊆ A, R(A′) = Rbc(Rab(A

′)) and for any C′ ⊆ C,
R−1(C′) = R−1

ab (R
−1
bc (C′)). Given an interval [a, b] ⊆ R

+
0 , we denote by [a; b]

(resp. [a; b[) the set [a, b] ∩ N0 (resp. [a, b[∩N0), if a ≤ b, and the empty set ∅
otherwise. We denote the ceiling of a real number x by ⌈x⌉ = min{n ∈ Z|n ≥ x}.
Given a vector x ∈ R

n we denote by ‖x‖ the infinity norm and by ‖x‖2 the
Euclidean norm of x. Given any function f : D → Y and any set A ⊆ D, we
denote by f(A) the image of the set A through f , namely f(A) = {y ∈ Y : y =
f(x), x ∈ D}.

Preliminary definitions. A continuous function γ : R+
0 → R

+
0 is said to be-

long to class K if it is strictly increasing and γ(0) = 0; a function γ is said
to belong to class K∞ if γ ∈ K and γ(r) → ∞ as r → ∞. Given ε ∈ R

+

and x = (x1, x2, ..., xn) ∈ R
n, the symbol Bε(x) denotes the closed ball of ra-

dius ε (in infinity norm) centered at x, i.e. Bε(x) = [−ε + x1, x1 + ε] × [−ε +
x2, x2 + ε] × ... × [−ε + xn, xn + ε], while the symbol B[ε[(x) denotes the set
[x1, x1 + ε[×[x2, x2 + ε[×... × [xn, xn + ε[. Following [49], given any µ ∈ R

+

and any x ∈ R
n, the symbol [x]µ denotes the unique vector in µZn such that

x ∈ B[µ[([x]µ). As a consequence, ‖x − [x]µ‖ ≤ µ. Given µ ∈ R
+ and

A ⊆ R
n, we set [A]µ := {b ∈ µZn : b = [a]µ, a ∈ A} and B[µ[(A) =

⋃

a∈A B[µ[(a);
if B =

⋃

i∈[1;N ] A
i we set [B]µ =

⋃

i∈[1;N ]([A]µ)
i. Consider a set A given

as a finite union of hyperrectangles, i.e. A =
⋃

j∈[1;J] Aj , for some J ∈ N,

where Aj =×k∈[1;n]
[aj,k, aj,k[⊆ R

n with aj,k < aj,k, aj,k, aj,k ∈ µ̂AZ for some

µ̂A ∈ R
+. By construction, for any integer nA ∈ N, by setting µ = µ̂A/nA, we

get that for any a ∈ A, ‖a− [a]µ‖ ≤ µ and [a]µ ∈ A, implying [A]µ ⊆ A.
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Figure 1: Networked Control System. A detailed description of the sub-systems
depicted in this figure is reported in Section III.

3 Networked Control Systems

and Control Problem

The class of NCS that we consider is depicted in Fig. 1 and is inspired by
the models reviewed in [2]. The sub-systems composing the NCS are described
hereafter.

Plant. The direct branch of the network includes the plant P that is a
nonlinear control system of the form:

{
ẋ(t) = f(x(t), u(t)),
x(t) ∈ R

n, u(·) ∈ U , t ∈ R
+
0 ,

(1)

where x(t) and u(t) are the state and the control input at time t, and U is the
set of control inputs, defined as functions from R

+
0 to a finite non-empty set

U ⊂ [Rm]µU
, for some µU ∈ R

+, and constant in any interval [sτ, (s+1)τ [ with
s ∈ N0 and for some given τ ∈ R

+, where s is the index identifying the sampling
interval (starting from 0). In the sequel we abuse notation by denoting the con-
stant control input u(t) = u in the domain [sτ, (s + 1)τ [ for all s ∈ N0 and for
some τ ∈ R

+ by u. The function f : Rn ×U → R
n is assumed to be Lipschitz

on compact sets with respect to the first argument. In the sequel we denote
by x(t, x0, u) the state reached by (1) at time t under the control input u from
the state x0. We assume that the control system P is forward complete in R

n,
namely that every trajectory x(·, x(0), u) of P is defined on [0,∞[. Sufficient
and necessary conditions for a control system to be forward complete can be
found in [50].



Sensor. On the right-hand side of the plant P in Fig. 1, a sensor is placed.
Since the sensor is physically connected to the plant, we assume that:

(A.1) The sensor acts in time-driven fashion, it is synchronized with the plant
and updates its output value at times that are integer multiples of τ ∈ R

+, i.e.
ỹs = x(sτ, x(0), u).

Quantizer. A quantizer follows the sensor. For simplicity, we assume that
the quantizer is uniform, with accuracy µX ∈ R

+. The role of the quantizer is:
i) to discretize the continuous-valued sensor measurement sequence {ỹs}s∈N0

to
get the quantized sequence {ys}s∈N0

, with ys = [ỹs]µX
; ii) to encode the sig-

nals into digital messages and to add overhead bits, resulting in the sequence
of digital messages {ȳs}s∈N0

. The transmission overhead takes into account the
communication protocol, the packet headers, source and channel coding as well
as data compression and encryption. We assume a fixed average relative over-
head N+

pc ∈]−1,+∞[ on each data bit (N+
pc may be negative to include the case

of data compression). More precisely:

(A.2) N+
pc bits are added per each bit of the digital signal encoding ys, for

all s ∈ N0.

Network. In the following, the index k ∈ N denotes the current iteration
in the feedback loop. Due to the non-idealities of the network, not all the out-
put samples can be transmitted through the network. We assume that only
one output sample per iteration is sent. In particular, {Mk}k∈N ⊆ N0 denotes
the subsequence of the sampling intervals when the output samples are sent
through the network, i.e. at time Mkτ the digital message ȳMk

encodes the
output sample yMk

= [x(Mkτ)]µX
and is sent (iteration k). We set M1 = 0.

The communication network is characterized by the following features:

Time-varying access to the network. The digital message ȳMk
cannot be

sent instantaneously to the network, because the communication channel is as-
sumed to be a resource which is shared with other nodes or processes in the
network. The policy by which a signal of a node is sent before or after a mes-
sage of another node is managed by the network scheduling protocol selected.
We assume that:

(A.3) The network waiting times ∆req,pc
k in the plant-to-controller branch

of the feedback loop are bounded, i.e. ∆req,pc
k ∈ [∆req

min,∆
req
max], for some ∆req

min,
∆req

max ∈ R
+
0 .

At time tpck := Mkτ + ∆req,pc
k , the message w̄k := ȳMk

is sent through the
network.

Limited bandwidth. In real applications, the capacity of the digital commu-
nication channel is limited and time-varying. We denote by Bmin, Bmax ∈ R

+,



with Bmin ≤ Bmax, the minimum and maximum capacities of the channel (ex-
pressed in bits per second, bps). In view of the binary coding and the transmis-
sion overhead (see Assumption (A.2)), we assume that:

(A.4) A delay ∆B,pc
k ∈ R

+, due to the limited bandwidth, is introduced in
the plant-to-controller branch of the feedback loop, for all k ∈ N.

Time-varying delivery of messages. The delivery of message w̄k may be
subject to further delays, due to congestion phenomena in the network, etc. We
assume that:

(A.5) Network communication delays ∆net,pc
k in the plant-to-controller branch

of the feedback loop are bounded, i.e. ∆net,pc
k ∈ [∆net

min,∆
net
max], for some ∆net

min,
∆net

max ∈ R
+
0 .

Packet dropout. In real applications, one or more messages can be lost dur-
ing the transmission, because of the unreliability of the communication channel.
We assume that:

(A.6) The maximum number of successive packet dropouts is Npd.

Symbolic Controller. After a finite number of possible retransmissions
(see Assumption (A.6)), message w̄k is decoded into the quantized sensor mea-
surement wk and reaches the controller. The symbolic controller C is dynamic,
non-deterministic, remote and asynchronous with respect to the plant and is
expressed as a Moore machine:

C :







ξk ∈ fC(ξk−1, wk), ξk ∈ ΞC , k ∈ N \ {1},
vk = hC(ξk), vk ∈ U, k ∈ N,
ξ1 ∈ Ξ0

C ,
(2)

where ΞC is the finite set of states of the controller, Ξ0
C⊆ ΞC is the set of initial

states of the controller, fC is a possibly partial function fC : ΞC×[Rn]µX
→ 2ΞC

and hC : ΞC → U. At each iteration k, the controller takes as input the mea-
surement sample wk ∈ [Rn]µX

, updates its internal state to ξk and returns the
control sample vk = hC(ξk) ∈ U as output, which is synthesized by a computing
unit that may be employed to execute several tasks. Note that, when ΞC is a
singleton set, C becomes static. The policy by which a computation is exe-
cuted before or after another computation depends on the scheduling protocol
adopted. We assume that:

(A.7) The computation time ∆ctrl
k for the symbolic controller to return

its output value vk is bounded, i.e. ∆ctrl
k ∈ [∆ctrl

min,∆
ctrl
max], for some ∆ctrl

min,
∆ctrl

max ∈ R
+
0 .

The control sample vk is encoded into a digital signal and some overhead in-
formation is added to take into account the communication protocol, the packet



headers, source and channel coding as well as data compression and encryption.
The resulting message is denoted by v̄k. We assume a fixed average relative
overhead N+

cp on each data bit, which may also be negative due to possible data
compression. The following Assumptions (A.8) to (A.11), describing the non-
idealities in the controller-to-plant branch of the network, correspond exactly to
Assumptions (A.2) to (A.5), previously given for the plant-to-controller branch:

(A.8) N+
cp ∈]− 1,+∞[ bits are added per each bit of vk.

(A.9) Network waiting times ∆req,cp
k in the controller-to-plant branch of the

feedback loop are bounded, i.e. ∆req,pc
k ∈ [∆req

min,∆
req
max].

At time tcpk := Mkτ+∆req,pc
k +∆B,pc

k +∆net,pc
k +∆ctrl

k +∆req,cp
k , the message

v̄k is sent.

(A.10) A delay ∆B,cp
k ∈ R

+, due to the limited bandwidth, is introduced in
the controller-to-plant branch of the feedback loop.

(A.11) Network communication delays ∆net,cp
k in the controller-to-plant branch

of the feedback loop are bounded, i.e. ∆net,cp
k ∈ [∆net

min,∆
net
max].

We denote by

∆k := ∆req,pc
k +∆B,pc

k +∆net,pc
k +∆ctrl

k +∆req,cp
k +∆B,cp

k +∆net,cp
k

the total delay induced by network and computing unit at iteration k, as a result
of the assumptions above. We can finally define

Nk := ⌈∆k/τ⌉ ∈ N (3)

as the discrete delay induced by iteration k, expressed in terms of number of
sampling intervals of duration τ . From the definitions of Mk and Nk, we get
Mk+1 = Mk +Nk.

ZoH. After a finite number of possible retransmissions (see Assumption
(A.6)), message v̄k is decoded into the control input vk and reaches the Zero-
order-Holder (ZoH), placed on the left-hand side of the plant P in Fig. 1. We
assume that:

(A.12) The ZoH is updated at time Mk+1τ to the new value vk, which is held
exactly for one iteration, until a new control sample shows up, i.e. u(t) = vk−1,
t ∈ [Mkτ,Mk+1τ [. At time t = 0 a reference control input v0 := ũ0 ∈ U is held
by the ZoH.

In the sequel we refer to the NCS model as Σ, which is also formally de-
scribed in (4). A trajectory of Σ is a function x : R+

0 → R
n satisfying (4). Due

to possible different realizations of the non-idealities and the non-deterministic



Σ :







Iteration delay: Nk =
⌈
∆k

τ

⌉
,∆k ∈ R

+, k ∈ N,

Sampling/holding time sequence:

{
Mk+1 = Mk +Nk, k ∈ N,
M1 = 0,

ZoH:

{
u(t) =

∑
∞
k=1vk−11[Mkτ,Mk+1τ [(t), t ∈ R

+
0 ,

v0 = ũ0 given,

Plant:

{
ẋ(t) = f(x(t), u(t)),
x(t) ∈ R

n, u(·) ∈ U , t ∈ R
+
0 ,

Sensor: ỹs = x(sτ, x(0), u)∈ R
n, s ∈ N0,

Quantizer: ys = [ỹs]µX
, s ∈ N0,

Switch: wk = ys, s = Mk, k ∈ N,

Controller:







ξk ∈ fC(ξk−1, wk), ξk ∈ ΞC , k ∈ N \ {1},
vk = hC(ξk), vk ∈ U, k ∈ N,
ξ1 ∈ Ξ0

C .
(4)

controller, the NCS Σ is non-deterministic. Note that the definition of NCS
given in this section allows taking into account different scheduling protocols
and communication constraints: any protocol or set of protocols satisfying As-
sumptions (A.2–A.5), (A.6) and (A.8–A.11), such as Controller Area Network
(CAN) [51] and Time Triggered Protocol (TTP) [52] used in vehicular and in-
dustrial applications, can be used.

We conclude this section by introducing the control problem that we address
in this paper. We consider a control design problem where the NCS Σ has to
satisfy a specification Q, given in terms of a non-deterministic transition system,
up to a desired accuracy ε, while being robust with respect to the non-idealities
of the communication network. More formally:

Problem 1 Consider a specification Q expressed in terms of a finite collection
of transitions TQ ⊆ XQ × XQ, with XQ ⊆ R

n, and let X0
Q ⊆ XQ be a set of

initial states. For any desired accuracy ε ∈ R
+, find a quantization parameter

µX ∈ R
+, a set of initial states X0 of the plant and a symbolic controller C in

the form of (2) such that, for any sequence {ỹs}s∈N0
generated by the NCS Σ

in (4) with ỹ0 ∈ X0, there exists a sequence {xs
Q}s∈N0

with x0
Q ∈ X0

Q such that,
for any discrete-time s ∈ N0, the following conditions hold:

1) (xs
Q, x

s+1
Q ) ∈ TQ;

2) ‖ỹs − xs
Q‖ ≤ ε.

4 Symbolic Models for NCS

In this section we propose symbolic models that approximate NCS with arbi-
trarily good accuracy, which is instrumental to give in Section 5 the solution to
Problem 1.



We start by providing tighter bounds on the delay defined in Section 3,
depending on the particular specification considered. Consider a set X, with
Bε(XQ) ⊆ X ⊆ R

n, given as a finite union of hyperrectangles X =
⋃

j∈[1;J] Xj ,

for some J ∈ N, each in the form Xj =×k∈[1;n]
[xj,k, xj,k[, with xj,k < xj,k,

xj,k, xj,k ∈ µ̂XZ for some µ̂X ∈ R
+. The property Bε(XQ) ⊆ X and condition

2) in Problem 1 imply that, if a controller C in the form (2) solves Problem 1,
then the corresponding sensor measurements ỹs belong to the bounded set X

for all s ∈ N0. As a consequence, it is possible to provide an upper-bound on
the length of the digital messages encoding sensor measurements and, in turn,
some uniform bounds on the delay ∆k induced by each network iteration. In
particular:

• Assumption A.2) implies that the number of bits of message ȳs is bounded
by ⌈(1 +N+

pc)⌈log2 |[X]µX
|⌉⌉, for all s ∈ N0;

• from Assumption A.4), one has ∆B,pc
k ∈ [∆B,pc

min ,∆B,pc
max ], with ∆B,pc

min =
⌈(1+N+

pc)⌈log2 |[X]µX
|⌉⌉/Bmax and ∆B,pc

max = ⌈(1+N+
pc)⌈log2 |[X]µX

|⌉⌉/Bmin;

• Assumption (A.8) implies that the number of bits of v̄k is bounded by
⌈(1 +N+

cp)⌈log2 |U|⌉⌉;

• from Assumption (A.10), one has

∆B,cp
k ∈ [∆B,cp

min ,∆B,cp
max ], with ∆B,cp

min = ⌈(1 + N+
cp)⌈log2 |U|⌉⌉/Bmax and

∆B,cp
max = ⌈(1 +N+

cp)⌈log2 |U|⌉⌉/Bmin.

In the absence of packet dropouts, one has ∆k ∈ [∆̄min, ∆̄max], where ∆̄min,
∆̄max ∈ R

+ are the minimum and maximum delays computed according to the
given assumptions (excluding (A.6)), as

∆̄min := ∆B,pc
min +∆ctrl

min +∆B,cp
min + 2∆req

min + 2∆net
min,

∆̄max := ∆B,pc
max +∆ctrl

max +∆B,cp
max + 2∆req

max + 2∆net
max.

In presence of packet dropouts, under Assumption (A.6) and following the
so-called emulation approach, reformulating them in terms of additional delays,
see e.g. [2], it is readily seen that iteration k introduces a time-varying delay
∆k ∈ [∆min,∆max] in (4), with ∆min = ∆̄min and ∆max = (1+Npd)∆̄max, where
Npd is the maximum number of subsequent packet dropouts. Consequently,
discrete delays Nk in (3) will be bounded as follows:

Nk ∈ [Nmin;Nmax] ∀k ∈ N, (5)

with bounds given by:

Nmin = ⌈∆min/τ⌉ ∈ N, Nmax = ⌈∆max/τ⌉ ∈ N. (6)

We are now ready to use the notion of system as a unified mathematical
framework to describe NCS.



Σd :







Σ̄d :







Iteration delay: Nk ∈ N, k ∈ N,

Sampling/holding time sequence:

{
Mk+1 = Mk +Nk, k ∈ N,
M1 = 0,

Sampled-data control system Pd:







zs+1 = f̄(zs, vk−1)= x(τ, zs, vk−1)∈ R
n, s ∈ [Mk;Mk+1[, k ∈ N,

ỹs = zs, s ∈ N0,

z0= x(0), v0 = ũ0 given,

Quantizer: ys = [ỹs]µX
, s ∈ N0,

Switch: wk = ys, s = Mk, k ∈ N,

Controller:







ξk ∈ fC(ξk−1, wk), ξk ∈ ΞC , k ∈ N \ {1},
vk = hC(ξk), vk ∈ U, k ∈ N,
ξ1 ∈ Ξ0

C .
(7)

Definition 1 [21] A system is a sextuple

S = (X,X0, U, ✲ , Y,H)

consisting of a set of states X, a set of initial states X0 ⊆ X, a set of inputs
U , a transition relation ✲ ⊆ X ×U ×X, a set of outputs Y and an output
function H : X → Y . A transition (x, u, x′) ∈ ✲ of S is denoted by

x
u
✲ x′. For such a transition, state x′ is called a u-successor or simply a

successor of state x. We denote by Postu(x) the set of u-successors of a state x
and by U(x) the set of inputs u ∈ U for which Postu(x) is nonempty.

System S is said to be symbolic (or finite), if X and U are finite sets,
(pseudo)metric, if the output set Y is equipped with a (pseudo)metric d :
Y × Y → R

+
0 , deterministic, if for any x ∈ X and u ∈ U there exists at

most one state x′ ∈ X such that x
u
✲ x′, non-blocking, if U(x) 6= ∅ for any

x ∈ X . The evolution of systems is captured by the notions of state and output
runs. A state run of S is a possibly infinite sequence {xi} such that x0 ∈ X0

and, for any i, there exists ui ∈ U for which xi
ui
✲ xi+1. An output run is

a possibly infinite sequence {yi} such that there exists a state run {xi} with
yi = H(xi) for any i. In order to give a representation of NCS in terms of sys-
tems, we first need to provide an equivalent formulation of NCS. Given the NCS
Σ, consider the NCS Σd depicted in Fig. 2 and with evolution formally specified
by equations (7). In equations (7), we replace the interconnected blocks ZoH,
Plant and Sensor of (4) by the nonlinear sampled-data control system Pd, where

f̄(x, u) := x(τ, x, u),

for any x ∈ R
n and u ∈ U, which is the time discretization of the plant P with

sampling time τ . A sequence {zs}s∈N0
satisfying (7) for some sequence {vk}k∈N0

is called a trajectory of Σd. We stress that control sample vk−1, designed at
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τ
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ṽs
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Figure 2: Illustration of Σd, which is formally described by the equations in (7).
The sequence {ỹs}s∈N0

includes all output samples of the sampled-data control
system Pd. At each iteration k, the quantized output wk = ys = [ỹs]µX

for
s = Mk reaches the controller and a control input value vk is computed. The
Delay block takes into account the total delay Nk of the NCS loop at iteration
k and the fact that the control value computed at iteration k becomes active at
iteration k + 1.

iteration k − 1, is applied to the plant Pd at iteration k; this delay in the
iteration index translates into a physical delay Nk−1τ for the application of
the new control sample; indeed, sample vk−1 is applied at time t = Mkτ , with
Mk = Mk−1 + Nk−1. We give the following result that is instrumental for the
further developments.

Proposition 1

a) For any trajectory x : R+
0 → R

n of Σ there exists a trajectory {zs}s∈N0
of

Σd such that zs = x(τs) for all s ∈ N0;

b) For any trajectory {zs}s∈N0
of Σd there exists a trajectory x : R+

0 → R
n

of Σ such that zs = x(τs) for all s ∈ N0.

We now have all the ingredients to provide a system representation of Σ̄d.

Definition 2 Given Σ̄d in (7), with Nk satisfying (5), define the system

S(Σ̄d) = (Xτ , X0,τ ,U,
τ
✲ , Yτ , Hτ ),

where

• Xτ = (Rn × {ũ0}) ∪ {(x1, ..., xN , ū) ∈ R
nN × U : ∃u ∈ U s.t. xi+1 =

f̄(xi, u) ∀i ∈ [1;N − 1], N ∈ [Nmin;Nmax]};

• X0,τ = R
n × {ũ0};

• x1 = (x0, ũ0)
u

τ
✲ x2 =

(
x2
1, ..., x

2
N2

, ū2
)
, if x1 ∈ X0,τ , ū2 = u, x2

1 =

f̄(x0, ũ0) and x2
i+1 = f̄(x2

i , ũ0) for i ∈ [1;N2 − 1], N2 ∈ [Nmin;Nmax];



• x1=
(
x1
1, ..., x

1
N1

, ū1
) u

τ
✲ x2=

(
x2
1, ..., x

2
N2

, ū2
)
, if ū2 = u, x2

1 = f̄(x1
N1

, ū1)

and x2
i+1 = f̄(x2

i , ū
1) for i ∈ [1;N2 − 1], N1, N2 ∈ [Nmin;Nmax];

• Yτ = R
n ∪ (

⋃

N∈[Nmin;Nmax]
R

nN );

• Hτ (x0, ũ0) = x0 for all x0 ∈ R
n;

• Hτ (x1, x2, ..., xN , ū) = (x1, x2, ..., xN ), for all (x1, x2, ..., xN , ū) ∈ Xτ ,
N ∈ [Nmin;Nmax].

Note that S(Σ̄d) is non-deterministic because, depending on the values of
N2 in the transition relation, multiple u-successors of x1 exist. System S(Σ̄d)
can be regarded as a pseudometric system with the pseudometric dYτ

on Yτ

naturally induced by the metric d(x1, x2) = ‖x1−x2‖ on R
n, as follows. Given

any xi = (xi
1, x

i
2, ..., x

i
Ni
, ūi), i = 1, 2, we set

dYτ
(Hτ (x

1), Hτ (x
2))=

{

maxi∈[1;N1] ‖x
1
i − x2

i ‖, if N1 = N2;

+∞, otherwise.

Since the state vectors of S(Σ̄d) are built from the trajectories of Pd in Σ̄d, it
is readily seen that:

Proposition 2 For any trajectory {zs}s∈N0
of Σd, with Nk satisfying (5), there

exists a state run

(x(0), ũ0)
︸ ︷︷ ︸

x0

ũ1
✲ (x̄1, ũ1)

︸ ︷︷ ︸

x1

ũ2
✲ (x̄2, ũ2)

︸ ︷︷ ︸

x2

ũ3
✲ ... (8)

of S(Σ̄d) such that:

{x(0) , x̄1
1, ..., x̄

1
N1

︸ ︷︷ ︸

x̄1

, x̄2
1, ..., x̄

2
N2

︸ ︷︷ ︸

x̄2

, ...} = {zs}s∈N0
.

(9)

Conversely, for any state run (8) of S(Σ̄d), there exists a trajectory {zs}s∈N0
of

Σd such that (9) holds.

Although system S(Σ̄d) contains all the information of the NCS available at
the sensor, it is not a finite model. Hereafter, we illustrate the construction of
symbolic models that approximate possibly unstable NCS in the sense of strong
alternating approximate simulation, whose definition is formally introduced in
the Appendix. Our results rely on the assumption of existence of an incremental
forward complete (δ-FC) Lyapunov function for the plant of the NCS. More
formally:

Definition 3 [23] A continuously differentiable function V : Rn × R
n → R

+
0 is

a δ-FC Lyapunov function for the plant control system of the NCS if there exist
a real number λ ∈ R and K∞ functions α and α such that, for any x1, x2 ∈ R

n

and any u ∈ U, the following conditions hold:



(i) α(‖x1 − x2‖) ≤ V (x1, x2) ≤ α(‖x1 − x2‖),

(ii) ∂V
∂x1

(x1, x2) f(x1, u)+
∂V
∂x2

(x1, x2) f(x2, u)≤λV (x1, x2).

We refer the interested reader to [23] for further details on this notion. In
the following, we suppose the existence of a δ-FC Lyapunov function V for the
control system P in the NCS Σ and of a K∞ function γ such that V (x, x′) −
V (x, x′′) ≤ γ(‖x′ − x′′‖), for every x, x′, x′′ ∈ R

n. We assume without loss of
generality that V is symmetric, i.e. V (x1, x2) = V (x2, x1) for all x1, x2 ∈ R

n.

Definition 4 Given Σ̄d in (7), with Nk satisfying (5), define the system

S∗(Σ̄d) := (X∗, X0,∗,U,
∗

✲ , Y∗, H∗),

where

• X∗ = ([Rn]µX
× {ũ0})∪{(x

∗
1, x

∗
2, ..., x

∗
N , ū∗) ∈ [RnN ]µX

×U : ∃u∗ ∈ U s.t.
V ([f̄(x∗

i , u∗)]µX
, x∗

i+1) ≤ (eλτ + 2)γ(µX), ∀i ∈ [1;N − 1], N ∈ [Nmin;Nmax]};

• X0,∗ = [Rn]µX
× {ũ0},

• x1 = (x0, ũ0)
u∗

∗

✲ x2 =
(
x2
1, ..., x

2
N2

, ū2
∗

)
, if x1 ∈ X0,∗, ū

2
∗ = u∗, N2 ∈

[Nmin;Nmax], and
{

V ([f̄(x0, ũ0)]µX
, x2

1)≤ (eλτ+2)γ(µX),

V ([f̄(x2
i , ũ0)]µX

, x2
i+1)≤ (eλτ+2)γ(µX), i∈ [1;N2 − 1];

(10)

• x1 =
(
x1
1, ..., x

1
N1

, ū1
∗

) u∗

∗

✲ x2 =
(
x2
1, ..., x

2
N2

, ū2
∗

)
, if ū2

∗ = u∗, N1, N2 ∈

[Nmin;Nmax], and
{

V ([f̄(x1
N1

, ū1
∗)]µX

, x2
1)≤ (eλτ+2)γ(µX),

V ([f̄(x2
i , ū

1
∗)]µX

, x2
i+1)≤ (eλτ+2)γ(µX), i∈ [1;N2 − 1];

(11)

• Y∗ = Yτ ;

• H∗ (x0, ũ0) = x0 for all x0 ∈ [Rn]µX
;

• H∗ (x
∗
1, x

∗
2, ..., x

∗
N , ū∗) = (x∗

1, x
∗
2, ..., x

∗
N ), for all (x∗

1, x
∗
2, ..., x

∗
N , ū∗) ∈ X∗,

N ∈ [Nmin;Nmax].

System S∗(Σ̄d) is pseudometric when Y∗ is equipped with the pseudometric
dYτ

. We can now present the following result.

Theorem 1 Consider Σ̄d in (7), with Nk satisfying (5), and suppose that there
exists a δ-FC Lyapunov function V for the control system P in the NCS Σ.
Then, S∗(Σ̄d) �s,alt

ε S(Σ̄d) for any desired accuracy ε ∈ R
+ and any state

quantization µX ∈ R
+ satisfying

µX = µ̂X/nX ≤ ε, (12)

for some integer nX.



Proof 1 Consider the relation R ⊆ X∗ ×Xτ defined by (x∗, x) ∈ R if and only
if x∗ = (x∗

1, x
∗
2, ..., x

∗
N , ū∗), x = (x1, x2, ..., xN , ū), for some N , x∗

i = [xi]µX
,

for all i ∈ [1;N ], and ū∗ = ū. We first prove condition (i) of Definition 6
in the Appendix. By definition of [Rn]µX

, for any x∗ = (x∗
0, ũ0) ∈ X0,∗, there

exists x = (x0, ũ0) ∈ X0,τ with x∗
0 = [x0]µX

. We now consider condition (ii) of
Definition 6. For any (x∗, x) ∈ R, from the definition of the pseudometric dYτ

,
the definition of R and condition (12) we get dYτ

(H∗(x
∗), Hτ (x)) = maxi ‖x

∗
i −

xi‖ ≤ µX ≤ ε. We now show condition (iii′′). Consider any (x∗, x) ∈ R, with
x∗ = (x∗

1, x
∗
2, ..., x

∗
N , ū∗) and x = (x1, x2, ..., xN , ū); then pick any u = u∗ ∈ U

and consider any transition x
u

τ
✲ x̄, with x̄ = (x̄1, x̄2, ..., x̄N̄ , u), for some

N̄ . Pick x̄∗ = (x̄∗
1, x̄

∗
2, ..., x̄

∗

N̄
, u∗) defined by x̄∗

i = [x̄i]µX
for all i ∈ [1; N̄ ].

By definition of x̄∗ we get (x̄∗, x̄) ∈ R. We conclude the proof by showing that

x∗
u∗

∗

✲ x̄∗, i.e. it is a transition of S∗(Σ̄d). By using condition (ii) in Definition

3, one has ∂V
∂x∗

N

(x∗
N , xN )f(x∗

N , ū∗) +
∂V
∂xN

(x∗
N , xN )f(xN , ū) ≤ λV (x∗

N , xN ). By

the definitions of γ, R and S(Σ̄d), and by integrating the previous inequality,
the following holds:

V ([f̄(x∗
N , ū∗)]µX

, x̄∗
1)≤V (f̄(x∗

N , ū∗), x̄
∗
1) + γ(µX)

≤V (f̄(x∗
N , ū∗), x̄1) + 2γ(µX)

≤eλτV (x∗
N , xN ) + 2γ(µX)

≤eλτ (V (x∗
N , [xN ]µX

)+γ(µX))+2γ(µX)

=(eλτ + 2)γ(µX), (13)

where the last equality holds by condition (i) of Definition 3. By similar compu-
tations, it is possible to prove that V ([f̄(x̄∗

i , ū∗)]µX
, x̄∗

i+1) ≤ (eλτ +2)γ(µX), i ∈
[1; N̄ − 1]. Hence, from the inequality above, from (13) and from the definition

of the transition relation of S∗(Σ̄d) in (11), we get x∗
u∗

∗

✲ x̄∗.

5 NCS Symbolic Control Design

In this section we provide the solution to Problem 1, which is based on the use of
the symbolic models proposed in the previous section. We first design a symbolic
controller system SC∗ that solves an appropriate approximate similarity game
associated with Problem 1. We then refine the controller system SC∗ to a
controller C∗ in the form of (2) which solves Problem 1.

We start by reformulating the specification Q in Problem 1 in terms of the
following system:

S(Q) = (Xq, X
0
Q, Uq,

q
✲ , Yq, Hq), (14)

where

• Xq = X0
Q ∪ {x = (x1, x2, ..., xN ) ∈ XN

Q , N ∈ [Nmin;Nmax]|(xi, xi+1) ∈
TQ, i ∈ [1;N − 1]};



• Uq = {uq}, where uq is a dummy symbol;

• x1 uq

q
✲ x2, if x1 = (x1

1, ..., x
1
N1

), x2 = (x2
1, ..., x

2
N2

) and x1
N1 Q

✲ x2
1;

• Yq = Yτ ;

• Hq(x) = x, for all x ∈ Xq.

We now consider the following symbolic control problem:

Problem 2 Consider the specification S(Q) in (14), the system S(Σ̄d), and a
desired accuracy ε ∈ R

+. Find a symbolic controller system SC , some param-
eters θ, µX ∈ R

+ and a strong AθA simulation relation R from SC to S(Σ̄d)
such that:

1) the θ-approximate feedback composition of S(Σ̄d) and SC , denoted S(Σ̄d)×
R
θ

SC , is approximately simulated1 by S(Q) with accuracy ε, i.e. S(Σ̄d)×
R
θ

SC �ε S(Q);

2) the system S(Σ̄d)×
R
θ SC is non-blocking;

3) for any pair of states x = (x1, x2, ..., xN , u) and x′ = (x′
1, x

′
2, ..., x

′
N , u′) of

S(Σ̄d) if [xi]µX
= [x′

i]µX
for all i ∈ [1;N ], then R−1({x}) = R−1({x′}).

The control design problem above, except for condition 3), is known in the
literature as an approximate similarity game (see e.g. [21]). Condition 1) re-
quires the state trajectories of the NCS to be close to the state run of the
specification S(Q) up to the accuracy ε irrespective of the particular realiza-
tion of the network non-idealities, and condition 2) prevents deadlocks in the
interaction between the plant and the controller. Condition 3) requires that
aggregate states of S(Σ̄d) with the same quantization are indistinguishable for
the controller. By adding condition 3) and by using the notion of strong al-
ternating simulation relation (embedded in the notion of approximate feedback
composition), we are able to deal with approximate similarity games where state
measurements are only available through their quantizations. Symbolic control
problems for control systems with quantized state measurements and safety and
reachability specifications have been studied in [24]. We also recall the recent
work [53] that extends [24] to general specifications for the class of nonlinear
systems. The present control problem extends those considered in [24] to NCS
and specifications expressed as non-deterministic transition systems.

In order to solve Problem 2, some preliminary definitions and results are
needed. Given two systems Si = (Xi, X0,i, Ui,

i
✲ , Yi, Hi) (i = 1, 2), S1

is a sub-system of S2 if X1 ⊆ X2, X0,1 ⊆ X0,2, U1 ⊆ U2,
1
✲ ⊆

2
✲ ,

Y1 ⊆ Y2 and H1(x) = H2(x) for any x ∈ X1. Moreover, given two sub-systems
Si = (Xi, X0,i, Ui,

i
✲ , Yi, Hi) (i = 1, 2) of a system S, define the union

1The notions of approximate feedback composition and of approximate simulation are
formally recalled in the Appendix.



system S1

⊔
S2 as (X1 ∪X2, X0,1 ∪X0,2, U1 ∪ U2,

1
✲ ∪

2
✲ , Y1 ∪ Y2, H),

where H(x) = H1(x) is x ∈ X1 and H(x) = H2(x) otherwise. Note that
S1

⊔
S2 is a sub-system of S. It is easy to see that the union operator enjoys

the associative property. We now have all the ingredients to introduce the
controller SC∗ that will solve Problem 2.

Definition 5 The symbolic controller SC∗ is the maximal non-blocking sub-
system2 SC of S∗(Σ̄d) such that:

1) SC is approximately simulated by S(Q) with accuracy µX, i.e. SC �µX

S(Q);

2) SC is strongly alternatingly 0-simulated by S∗(Σ̄d), i.e.

SC �s,alt
0 S∗(Σ̄d).

Condition 1) of the definition above requires that for any state run rc of
SC there exists a state run rq in S(Q) such that rc approximates rq within the
accuracy µX. Condition 2) ensures that the controller enforces the specifica-
tion irrespective of the time-delay realization induced by the communication
network. The following result holds.

Proposition 3 The symbolic controller SC∗ is the union of all non-blocking
sub-systems SC of S∗(Σ̄d) satisfying conditions 1) and 2) of Definition 5.

Proof 2 Let SC and S′
C be a pair of non-blocking sub-systems of S∗(Σ̄d) sat-

isfying both conditions 1) and 2) of Definition 5. Let Ra (resp. R′
a) be a

µX-approximate simulation relation from SC (resp. S′
C) to S(Q). Let Rb (resp.

R′
b) be a strong alternating 0-approximate simulation relation from SC (resp.

S′
C) to S∗(Σ̄d). Consider the system SC

⊔
S′
C. By definition of operator

⊔
,

relation Ra ∪ R′
a is a µX-approximate simulation from SC

⊔
S′
C to S(Q), and

relation Rb∪R′
b is a strong alternating 0-approximate simulation from SC

⊔
S′
C

to S∗(Σ̄d). Hence, SC

⊔
S′
C satisfies condition 1) and 2) of Definition 5. More-

over, since SC and S′
C are non-blocking, again by definition of operator

⊔
,

system SC

⊔
S′
C is non-blocking as well. Finally, since SC∗ is the union of all

non-blocking sub-systems SC of S∗(Σ̄d) satisfying conditions 1) and 2) of Def-
inition 5, it is the maximal non-blocking sub-system SC of S∗(Σ̄d) satisfying
conditions 1) and 2) of Definition 5.

Although S∗(Σ̄d) is countable, since the set X is bounded and S(Q) is sym-
bolic, the controller system SC∗ is symbolic and can be computed in a finite
number of steps by adapting standard fixed point characterizations of simula-
tion [54, 21]. We now provide the solution to Problem 2.

Theorem 2 Consider the NCS Σ and the specification S(Q). Suppose that
there exists a δ-FC Lyapunov function V for the control system P in the NCS

2Here maximality is defined with respect to the preorder induced by the notion of sub-
system.



Σ. For any desired accuracy ε ∈ R
+, choose the parameters θ, µX ∈ R

+ such
that:

µX + θ ≤ ε (15)

with µX = µ̂X/nX, for some integer nX. Then a strong AθA simulation
relation R from SC∗ to S(Σ̄d) exists solving Problem 2 with SC = SC∗.

Proof 3 By condition 2) in Definition 5, a (non-empty) strong A0A simulation
relation R1 from SC∗ to S∗(Σ̄d) exists. Let R2 be the relation defined in the
proof of Theorem 1. Since there exists a δ-FC Lyapunov function for the plant
P and condition (15) holds, by Theorem 1, R2 is a strong AθA simulation
relation from S∗(Σ̄d) to S(Σ̄d). Define the relation R = R1 ◦ R2. By Lemma
1 (ii), R is a strong AθA simulation relation from SC∗ to S(Σ̄d). We start
by showing condition 1) of Problem 2. The existence of R1 and R2 implies

by Definition 6 that SC∗ �s,alt
0 S∗(Σ̄d) and S∗(Σ̄d) �s,alt

θ S(Σ̄d). Hence, from
Lemma 1 (ii) in the Appendix, by combining the previous implications, one

gets SC∗ �s,alt
θ S(Σ̄d) which, by Lemma 1 (iii), leads to S(Σ̄d)×

R
θ SC∗ �θ

SC∗. Since SC∗ �µX
S(Q) by condition 1) in Definition 5, Lemma 1 (ii) and

condition (15) imply S(Σ̄d) ×
R
θ SC∗ �ε S(Q). We now show that condition

2) holds. Consider any state (x, xc) of S(Σ̄d) ×
R
θ SC∗ . Pick any uc ∈ Uc(xc),

which is a non-empty set because SC∗ is non-blocking. Since (xc, x) ∈ R, for

any x
u

τ
✲ x′ in S(Σ̄d) there exists xc

u

c
✲ x′

c in SC∗ with (x′
c, x

′) ∈ R.

Hence, from Definition 7, the transition (x, xc)
u
✲ (x′, x′

c) is in S(Σ̄d)×
R
θ SC∗ ,

implying that S(Σ̄d)×
R
θ SC∗ is non-blocking. We conclude by showing condition

3). Consider a pair of states x = (x1, x2, ..., xN , u) and x′ = (x′
1, x

′
2, ..., x

′
N , u′)

of S(Σ̄d) such that [xi]µX
= [x′

i]µX
for all i ∈ [1;N ]. Since R−1

2 ({x}) = {[x]µX
},

R−1
2 ({x′}) = {[x′]µX

} = {[x]µX
}, by recalling that R−1({x}) = R−1

1 (R−1
2 ({x}))

and R−1({x′}) = R−1
1 (R−1

2 ({x′})), we get condition 3).

We now proceed with a further step by refining the controller SC∗ solving
Problem 2 to a controller C∗ in form of (2) which can be applied to the original
NCS and solves Problem 1. Let UC∗(·) and Post(·) be the operators defined in
Definition 1 but applied to system SC∗ . Let SC∗ = (XC∗ , X0,C∗ , UC∗ ,

C∗

✲ ,

YC∗ , HC∗). Define ΞC = XC∗ , Ξ0
C = X0,C∗ and

{

hC(ξ) ∈ UC∗(ξ),

fC(ξ, w) = {ξ′ = (ξ′1, ..., ξ
′
N ′ , ū) ∈ PosthC(ξ)(ξ) : ξ

′
N ′ = w},

(16)

for any (ξ, w) ∈ ΞC × [X]µX
. Note from the first line in (16) that the controller

C, as in (2), derived from a non-blocking non-deterministic system SC∗ is not
uniquely determined, since UC∗(ξ) 6= ∅ may not be a singleton. Moreover, the
second line in (16) takes into account that ξ′N ′ is the state of the aggregate vector
x∗ in ξ′ which is required to match the output sample w, sent through the plant-
to-controller branch of the network and reaching the controller (as illustrated
in Section 3). We conclude this section by proving the formal correctness of the
controller C∗ as defined above.



Theorem 3 Assume that the conditions of Theorem 2 hold, implying the ex-
istence of some parameters θ, µX ∈ R

+ satisfying the inequality in (15), with
µX = µ̂X/nX for some integer nX, of a symbolic controller system SC = SC∗

and of a strong AθA simulation relation R from SC to S(Σ̄d) solving Problem
2. Set X0 such that R(X0,C∗) = X0 × {ũ0}. Then the controller C∗ solves
Problem 1.

Proof 4 Consider the strong AθA simulation relation R = R1 ◦ R2 from SC∗

to S(Σ̄d) defined in the proof of Theorem 2. Now consider any ỹ0 = x(0) ∈ X0,
implying that x0 = (x(0), ũ0) ∈ R(X0,C∗) by definition of X0. Then consider the
state ξ1 := ([x(0)]µX

, ũ0); by definition of R we get ξ1 ∈ R−1(x0), implying that
ξ1 ∈ X0,C∗. From the first line in the refinement equation (16), the control input
v1 = hC(ξ1) ∈ UC∗(ξ1) is uniquely determined. Furthermore, since (ξ1, x

0) ∈ R,
which is a strong AθA simulation relation from SC∗ to S(Σ̄d), then v1 ∈ U(x0)

in S(Σ̄d) and, for any transition x0 v1
✲ x1 = (x̄1, v1) = ((x̄1

1, ..., x̄
1
N1

), v1)

in S(Σ̄d), there exists a transition ξ1
v1
✲ ξ2 = ((ξ2,1, ..., ξ2,N1

), v1) in SC∗

such that (ξ2, x
1) ∈ R, implying ξ2,N1

= [x1
N1

]µX
from the definition of R.

By induction, assume now (ξk, x
k−1) ∈ R for some k ∈ N, with xk−1 in the

form xk−1 = (x̄k−1, vk−1), and again by exploiting the non-blocking property of
SC∗, the definition of R and the refinement equation (16), it is readily seen
that by choosing vk = hC(ξk) ∈ UC∗(ξk), then one has vk ∈ U(xk−1) in

S(Σ̄d) and, for any transition xk−1 vk
✲ xk = (x̄k, vk) = ((x̄k

1 , ..., x̄
k
Nk

), vk)

in S(Σ̄d), there exists a transition ξk
vk
✲ ξk+1 = ((ξk+1,1, ..., ξk+1,Nk

), vk)
in SC∗ such that (ξk+1, x

k) ∈ R, implying ξk+1,Nk
= [xk

Nk
]µX

from the defi-
nition of R. As a result of the procedure above, we built an infinite sequence

{(ξk, x
k−1)}k∈N ⊆ R and two infinite state runs ξ1

v1
✲ ξ2

v2
✲ ξ3

v3
✲ ...

and x0 v1
✲ x1 v2

✲ x2 v3
✲ ... in SC∗ and S(Σ̄d), respectively. By Definition

7 of approximate feedback composition, this implies that

(x0, ξ1)
v1
✲ (x1, ξ2)

v2
✲ (x2, ξ3)

v3
✲ ... (17)

is an infinite state run of S(Σ̄d)×
R
θ SC∗ . From Proposition 2, the existence of an

infinite state run x0 v1
✲ x1 v2

✲ x2 v3
✲ ... in S(Σ̄d) implies the existence

of an infinite trajectory {ỹs}s∈N0
= {zs}s∈N0

of Σd such that

{x(0), x̄1
1, ..., x̄

1
N1

︸ ︷︷ ︸

x̄1

, x̄2
1, ..., x̄

2
N2

︸ ︷︷ ︸

x̄2

, ...} = {zs}s∈N0
= {ỹs}s∈N0

. (18)

From the definition of quantizer and switch in (7), one can write, for any k ∈
N \ {1}, wk = yMk

= [ỹMk
]µX

= [xk−1
Nk−1

]µX
= ξk,Nk−1

. This implies, from the

second line in (16), that ξk ∈ fC(ξk−1, wk), so the evolution of the controller in
(2) is well defined at all iterations k. Finally, from Proposition 1, the existence
of the trajectory {zs}s∈N0

of Σd in (18) implies that there exists a trajectory
x : [0,+∞[→ R

n of the NCS Σ such that ỹs = zs = x(τs) for all s ∈ N0. This



concludes the proof that any sequence {ỹs} generated by the NCS is defined for all
s ∈ N0. Since the assumptions of Theorem 2 hold, condition 1) of Problem 2 is
fulfilled by the controller SC∗ , i.e. S(Σ̄d)×

R
θ SC∗ �ε S(Q). Hence, Definition 6

(approximate simulation) implies that, for any initial state (x0, ξ1) of S(Σ̄d)×
R
θ

SC∗, there exists x0
q ∈ X0

Q such that dYτ
(Hτ (x

0), Hq(x
0
q)) = ‖x(0) − x0

q‖ ≤ ε,

and the existence of a state run (17) in S(Σ̄d)×
R
θ SC∗ implies the existence of

a state run
x0
q

uq

q
✲ x1

q

uq

q
✲ x2

q

uq

q
✲ ... (19)

in S(Q), with xk
q in the form xk

q = (xk
q,1, ..., x

k
q,Nk

), such that dYτ
(Hτ (x

k), Hq(x
k
q )) =

maxi ‖x̄
k
i − xk

q,i‖ ≤ ε, implying

‖x̄k
i − xk

q,i‖ ≤ ε, ∀k ∈ N and ∀i = 1, ..., Nk. (20)

In turn, from the definition of specification Q, the existence of a state run in
S(Q) in Eq. (19) implies the existence in Q of the transitions (xs

Q, x
s+1
Q ) ∈ TQ,

for all s ∈ N0, such that:

{x0
q , x1

q,1, ..., x
1
q,N1

︸ ︷︷ ︸

x1
q

, x2
q,1, ..., x

2
q,N2

︸ ︷︷ ︸

x2
q

, ...} = {xs
Q}s∈N0

. (21)

Hence, condition 1) of Problem 1 holds. Finally, by (18), (21), and (20), we
get condition 2) of Problem 1.

6 Application to Robot Motion Planning

with Remote Control

Symbolic techniques for robot motion planning and control have been success-
fully exploited in the literature, see e.g. [55] and the references therein. However,
existing work does not consider the symbolic control of robot motion over non-
ideal communication networks. In this section we exploit the remote control of
an electric car-like robot, with limited power, sensing, computation and com-
munication capabilities, whose goal is the surveillance of an area. The motion
of the robot P is described by means of the following nonlinear control system:





ẋ1

ẋ2

ẋ3



 =






u1
cos(x3+δ(u2))

cos(δ(u2))

u1
sin(x3+δ(u2))
cos(δ(u2))

u1

b
tan(u2)




 , (22)

where δ(u2) = arctan
(

a tan(u2)
b

)

, a = 0.5 is the distance of the center of mass

from the rear axle and b = 1.5 is the wheel base, see Fig. 3 (left panel) (modified
from Fig. 2.16 in [56]). States x1 and x2 are the 2D-coordinates of the center of
mass of the vehicle and state x3 is its heading angle, while the inputs u1 and u2

are the velocity of the rear wheel and the steering angle, respectively. Note that



u1 is always nonnegative to guarantee that the vehicle does not move backwards.
All the quantities are expressed in units of the International System (SI). We
consider an accuracy ε = 0.02, and the bounded set including all the specifica-
tion trajectories up to ε isX = [−x1,max, x1,max[× [−x2,max, x2,max[× [−x3,max, x3,max[,
and u ∈ U⊂ [0, u1,max[× [−u2,max, u2,max[, where xmax = [x1,max, x2,max, x3,max]

′ =
[50, 50, π]′ and umax = [u1,max, u2,max]

′ = [5, π
3 ]

′. The model above is known in
the literature as single-track vehicle model and is widely used because, in spite
of its simplicity, it well captures the major features of interest of the vehicle
cornering behavior [57]. The robot P is remotely connected to a controller, im-
plemented on a shared CPU, by means of a non-ideal communication network.
The control loop forms a NCS, as the one in Fig. 1, whose network/computation
parameters are Bmin = 0.1 kbit/s, Bmax = 1 kbit/s, τ = 1s, ∆ctrl

min = 0.01s,
∆ctrl

max = 0.1s, ∆req
min = 0.05s, ∆req

max = 0.2s, ∆net
min = 0.1s, ∆net

max = 0.25s. Given
the different nature of the three state variables, the state quantization is as-
sumed to be different (in absolute values) for each component and equal to
xi,max/100 for the state xi (i = 1, 2, 3), so that we have 200 quantization val-
ues for each state component. Similarly, we assume the input quantization to
be equal to ui,max/5 for the input ui (i = 1, 2) and the network protocols to
introduce a relative overhead which is bounded by the 20% of the total number
of data bits (N+

cp = N+
pc = 0.2). This implies |[X]µX

| = 2003 and |U| = 50,

hence ∆B,pc
min = 0.0276s, ∆B,pc

max = 0.276s, ∆B,cp
min = 0.0072s, ∆B,cp

max = 0.072s.
We assume there may be packet dropouts, with the constraint that two con-
secutive dropouts are not allowed (Npd = 1). The motion planning problem
considered here is described in the following. We require that the robot leaves
its support (HOME location) and visits (in the exact order) two buildings, de-
noted by B1 and B2, to then reach an outlet where it possibly powers up the
battery (CHARGE location). Finally, the vehicle returns HOME. During the
whole path, the robot is requested to avoid some obstacles, such as walls and
other buildings. We denote the union of the obstacles locations as the UN-
SAFE location. We now start applying the results in Section 4 regarding the
design of a symbolic model for the given NCS. According to the definition of
Σd, the minimum and maximum delays in a single iteration of the network
amount to ∆min = 0.24s and ∆max = 2.07s, respectively. From (6), this results
in Nmin = 1, Nmax = 3. In order to have a uniform quantization in the state
space, we apply the results to a normalized plant P̃ , whose state is the one of P ,
but component-wise normalized with respect to xmax. According to the previous
description of the NCS, this results in µ̂X = 1, nX = 200 and µX = 0.005. We
assume that the normalized signals are sent through the network and the static
block implementing the coordinate change from P to P̃ and vice versa (omitted
in the general scheme) is physically connected to the sensor. It is possible to
show that the quadratic Lyapunov-like function V (x, x′) = 0.5 ‖x−x′‖22, is δ-FC

for control system (22), with λ =
2u1,max

cos(δ(u2,max))
, α(r) = 0.5r2, α(r) = 1.5r2 and

γ(r) = 6r; hence Theorem 1 can be applied. In the symbolic control design
step, we apply the results illustrated in Section 5. We first construct a finite
transition system Q which encodes a number of randomly generated trajectories



satisfying the given specification. For the choice of θ = 0.0125, Theorem 2 holds
and the controller SC∗ in Definition 5 solves the control problem. Estimates of
the space complexity in constructing SC∗ indicate 4 · 1013 32-bit integers. Be-
cause of the large computational complexity in building the controller SC∗ , we
do not construct the whole symbolic model S∗(Σ̄d), from which deriving SC∗ ,
but only the part of S∗(Σ̄d) that can implement (part of) the specification Q;
similar ideas were explored in [47], see also [49]. The total memory occupation
and time required to construct SC∗ are respectively 3742 32-bit integers and
2833 s. The computation has been performed on the Matlab suite through an
Apple MacBook Pro with 2.5GHz Intel Core i5 CPU and 16 GB RAM. In Fig.
3 (right panel), we show a sample path of the NCS (blue solid line), for a partic-
ular realization of the network uncertainties, compared to the trajectory of the
system controlled through an ideal network (black dash-dotted line). Each time
delay realization Nk is sampled from a discrete uniform random distribution
over [Nmin;Nmax]. As a result, the NCS used just 59 control samples, in spite
of the 94 control samples (one at each τ) used in the ideal case. Note that,
although the behavior of the NCS is not as regular as in the ideal case, the
specification is indeed met.

7 Conclusions

In this paper we proposed a symbolic approach to the control design of nonlinear
NCS, where the most important non-idealities in the communication channel are
taken into account. Under the assumption of existence of incremental forward
complete Lyapunov functions, we derived symbolic models that approximate
NCS in the sense of strong alternating approximate simulation. NCS symbolic
control design, where specifications are expressed in terms of transition systems,
was then solved and applied to an example of remote robot motion planning.
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We here recall from [58, 40], the notion of (alternating) approximate sim-
ulation relations and introduce the notion of strong alternating approximate
simulation relations. Approximate feedback composition is also introduced and
adapted from [21].

Definition 6 Let Si = (Xi, X0,i, Ui,
i
✲ , Yi, Hi) (i = 1, 2) be (pseudo)metric

systems with the same output sets Y1 = Y2 and (pseudo)metric d, and let ε ∈ R
+
0

be a given accuracy. Consider a relation R ⊆ X1 ×X2 satisfying the following
conditions:

(i) ∀x1 ∈ X0,1 ∃x2 ∈ X0,2 such that (x1, x2) ∈ R;

(ii) ∀(x1, x2) ∈ R, d(H1(x1), H2(x2)) ≤ ε.

Relation R is an ε-approximate simulation relation from S1 to S2 if it enjoys
conditions (i), (ii) and the following one:

(iii) ∀(x1, x2) ∈ R if x1
u1

1
✲ x′

1 then ∃x2
u2

2
✲ x′

2 such that (x′
1, x

′
2) ∈ R.

System S1 is ε-simulated by S2 or S2 ε-simulates S1, denoted S1 �ε S2, if there
exists an ε-approximate simulation relation from S1 to S2. Relation R is an
alternating ε-approximate (AεA) simulation relation from S1 to S2 if it enjoys
conditions (i), (ii) and the following one:



(iii′) ∀(x1, x2) ∈ R ∀u1 ∈ U1(x1) ∃u2 ∈ U2(x2) such that ∀x2
u2

2
✲ x′

2 ∃x1
u1

1
✲ x′

1

with (x′
1, x

′
2) ∈ R.

Relation R is a strong alternating ε-approximate (strong AεA) simulation re-
lation from S1 to S2 if it enjoys conditions (i), (ii) and the following one:

(iii′′) ∀(x1, x2) ∈ R ∀u1 ∈ U1(x1), u2 = u1 ∈ U2(x2) and ∀x2
u2

2
✲ x′

2 ∃x1
u1

1
✲ x′

1

such that (x′
1, x

′
2) ∈ R.

System S1 is strongly alternatingly ε-simulated by S2 or S2 strongly alternatingly
ε-simulates S1, denoted S1 �s,alt

ε S2, if there exists a strong AεA simulation
relation from S1 to S2.

The notion of strong AεA simulation relation has been inspired by the notion
of feedback refinement relations recently introduced in [53]. Interaction between
plants and controllers in the systems domain is formalized as follows:

Definition 7 [21] Consider a pair of (pseudo)metric systems Si = (Xi, X0,i, Ui,
i
✲ ,

Yi, Hi) (i = 1, 2) with the same output sets Y1 = Y2 and (pseudo)metric d, and
let ε ∈ R

+
0 be a given accuracy. Let R be a strong AεA simulation relation from

S2 to S1. The ε-approximate feedback composition of S1 and S2, with com-
position relation R, is the system S1 ×

R
ε S2 = (X,X0, U, ✲ , Y,H), where

X = R−1, X0 = X∩(X0,1×X0,2), U = U1, (x1, x2)
u
✲ (x′

1, x
′
2) if x1

u

1
✲ x′

1

and x2
u

2
✲ x′

2, Y = Y1 and H(x1, x2) = H1(x1) for any (x1, x2) ∈ X.

We conclude with a useful technical lemma.

Lemma 1 [21] Let Si = (Xi, X0,i, Ui,
i
✲ , Yi, Hi) (i = 1, 2, 3) be (pseudo)metric

systems with the same output sets Y1 = Y2 = Y3 and (pseudo)metric d. Then,
the following statements hold:

(i) for any ε1≤ε2, S1 �
(s,alt)
ε1 S2 implies S1 �

(s,alt)
ε2 S2;

(ii) if S1 �
(s,alt)
ε12 S2 with relation R12 and S2 �(s,alt) S3 with relation R23 then

S1 �
(s,alt)
ε12+ε23

S3 with relation R12 ◦ R23;

(iii) for any ε ∈ R
+
0 and any strong AεA simulation relation R from S2 to S1,

S1 ×
R
ε S2 �ε S2.
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