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A note on distributed finite-time observers
Haik Silm, Rosane Ushirobira, Denis Efimov, Jean-Pierre Richard, Wim Michiels

Abstract—The robust distributed estimation for a class of
time-invariant plants is achieved via a finite-time observer,
its error reaching zero after a finite time in the absence of
perturbation. Two types of robustness are also shown. First,
input-to-state stability with respect to measurement noises and
additive perturbations is proven. Second, we demonstrate that
the estimation error stays bounded in the presence of known
transmission delays.

Index Terms—Distributed estimation problem, finite-time ob-
servers, weighted homogeneity, time-delay.

I. INTRODUCTION

Recent developments in technology have enabled to em-
ploy more and more distributed networked systems, where
a large set of agents endowed with computational capacities
communicate with each other to perform collaborative tasks.
In control theory, this has created an increasing demand
for decentralized solutions of previously solely centralized
concepts. The communication network between the agents
comes here explicitly into play, formally described by a graph
which is dictated by the neighborhood relations of the agents.
For state observation, this has given rise to the distributed
estimation problem [1]. In this setting each agent measures
a different output of a (large-scale) system. The goal is to
design a distributed observer, such that all agents are able
to reconstruct the full state of the system using only their
individual measurement and state estimates from neighboring
agents, while the challenge is that not a single agent is able
to do so using only its measurement.

Up to now the solvability of the distributed estimation
problem under a given graph has been established among
others in [2]–[4], which loosely speaking amounts to connec-
tivity conditions on the communication graph. Furthermore,
different designs of distributed observers for discrete and
continuous-time linear systems have been proposed based on
Luenberger Observers [5], Kalman Filtering [6] or Moving
Horizon Estimation [7], to mention a few. While they vary
in their aims, as for example being robust with respect to
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disturbances as in [8], a key characteristic of an observer is
the convergence rate of the error. This has only recently been
addressed in [9], where a design was proposed yielding a
linear distributed observer capable of estimating the state at
an arbitrary asymptotic convergence rate.

The contribution of this work is to propose an observer
for the distributed estimation problem, which reaches the
correct estimate in an ideal noise-free case in finite time
instead of asymptotically. In addition, we will show that such
a nonlinear observer possesses interesting robustness features
with respect to external disturbances or noises and commu-
nication delays, which are natural issues for large-scale and
distributed systems. This follows the recent achievements of
developing finite-time estimators [10]–[14] in the centralized
setting. This work is inspired by the results of [15] and [12],
where an observer has been designed whose error dynamics is
homogeneous with negative degree. We apply that approach to
the distributed estimation of a system composed of multiple
chain of integrators (a preliminary version of this, without
proofs, was presented in [16]) and by robustness arguments
the result is extended to more general classes of plants with
communication delays. A proposal of a fixed-time converging
distributed observer is also briefly presented.

The outline of this technical note is as follows. First,
underlying stability concepts and the notion of weighted
homogeneity are presented in Section II. The main steps of
[12] are recapitulated in Section III with a small extension
(stating an explicit bound for the degree of homogeneity).
In Section IV the distributed finite-time converging observer
is presented, and a discussion on its robustness with respect
to disturbances, measurement noise and transmission delays
follows. A simulation example is presented in Section V. Con-
cluding remarks and future works are discussed in Section VI.

Notation

• For x = [x1 . . . xn]
T ∈Rn and α = [α1 . . . αn]

T ∈Rn
+, we

denote by dxcα =
[
sign(x1)|x1|α1 . . . sign(xn)|xn|αn

]T
the sign preserving element-wise exponentiation.

• diag(x) denotes the diagonal matrix with x1, . . . ,xn on the
main diagonal and 0 otherwise, and diag{Bi}N

i=1 is a N p×
Nq block diagonal matrix with blocks B1, . . . ,BN ∈Rp×q.

• 1n ∈ Rn is the vector with all entries equal 1, In is the
n×n identity matrix.

• λmin(P) and λmax(P) are the smallest and the greatest
eigenvalues of a real symmetric matrix P, respectively.

• A sequence of integers 1,2, ...,n is denoted by 1,n.
• For a closed set S⊂ Rn, denote its boundary as ∂S.
• ‖ · ‖ denotes the Euclidean norm on Rn.
• L∞ is the set of essentially bounded measurable functions
R→ Rm with the norm ‖ · ‖[0,+∞)=supt∈[0,+∞) ‖ · ‖.
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II. PRELIMINARIES

Consider a generic nonlinear system:

ẋ(t) = f (x(t),d(t)) , t ≥ 0, (1)

where x ∈Rn is the state, d ∈Rm is the input, f : Rn×Rm→
Rn ensures forward existence and uniqueness of the system
solutions (at least locally) for d ∈ L∞ and f (0,0) = 0. For an
initial condition x0 ∈ Rn and an input d, the corresponding
solution is X(t,x0,d), ∀t ≥ 0 for which the solution exists.

Following [17]–[19], let Ω be an open neighborhood of the
origin in Rn.

Definition 1: At the steady state x = 0 the system (1) with
d = 0 is said to be
(a) stable on Ω if for any x0 ∈ Ω, X(t,x0,0) is defined for

all t ≥ 0, and for any ε > 0 there is δ > 0 such that for
any x0 ∈Ω, if ‖x0‖ ≤ δ then ‖X(t,x0,0)‖ ≤ ε , ∀t ≥ 0;

(b) asymptotically stable on Ω if it is stable and for any κ > 0
and ε > 0 there exists T (κ,ε)≥ 0 such that for any x0 ∈
Ω, if ‖x0‖ ≤ κ then ‖X(t,x0,0)‖ ≤ ε for all t ≥ T (κ,ε);

(c) finite-time stable on Ω if it is stable and finite-time
converging from Ω, i.e. for any x0 ∈ Ω there exists
0 ≤ T < +∞ such that X(t,x0,0) = 0 for all t ≥ T . The
function T0(x0) = inf{T ≥ 0 : X(t,x0,0) = 0, ∀t ≥ T} is
called the settling time of the system (1);

(d) fixed-time stable on Ω if it is finite-time stable and
supx0∈Ω T0(x0)<+∞.

The set Ω is called the domain of stability/attraction.
If Ω = Rn, then the corresponding properties are called

global stability/asymptotic stability/finite-time/fixed-time sta-
bility of (1) at x = 0. Similarly, these stability notions can be
defined with respect to a compact invariant set, by replacing
the distance to the origin in Definition 1 with the distance to
the invariant set.

In the case of an input d 6= 0 we are interested in the
following stability property [20]:

Definition 2: The system (1) is called input-to-state stable
(ISS), if for any input d ∈L∞ and any x0 ∈Rn there are some
functions β ∈KL,γ ∈K such that for all t ≥ 0

‖X(t,x0,d)‖ ≤ β (‖x0‖, t)+ γ(‖d‖[0,t)).
For the definition of classes of functions K, K∞ and KL,

we refer to [18].

A. Weighted homogeneity

Following [21], [22], for strictly positive numbers ri, i= 1,n
called weights and λ > 0, define:
• the vector of weights r =

[
r1 . . . rn

]T , rmax =
max1≤ j≤n r j and rmin = min1≤ j≤n r j;

• the dilation matrix function Λr(λ ) = diag{λ ri}n
i=1.

Note that ∀x ∈ Rn and ∀λ > 0 we have Λr(λ )x =[
λ r1x1 . . . λ rn xn

]T ;

• the r–homogeneous norm ‖x‖r = (∑n
i=1 |xi|

ρ
ri )

1
ρ for any

x ∈ Rn and ρ ≥ rmax. This is not a norm in the standard
sense, since the triangle inequality is not satisfied for
‖ · ‖r, however there exist σ ,σ ∈K∞ such that

σ(‖x‖r)≤ ‖x‖ ≤ σ(‖x‖r) ∀x ∈ Rn;

• for ρ ≥ 0, the sphere and the ball in the homogeneous
norm Sr(ρ) = {x ∈Rn : ‖x‖r = ρ} and Br(ρ) = {x ∈Rn :
‖x‖r ≤ ρ}.

Definition 3: A function g :Rn→R is r–homogeneous with
degree µ ∈R if ∀x∈Rn and ∀λ > 0 we have λ−µ g(Λr(λ )x) =
g(x). A vector field f : Rn → Rn is r–homogeneous with
degree ν ∈ R, with ν ≥ −rmin if ∀x ∈ Rn and ∀λ > 0 we
have λ−ν Λ−1

r (λ ) f (Λr(λ )x) = f (x) (this means that the ith

component of f is a r-homogeneous function of degree ri+ν).
The system (1) with d = 0 is r–homogeneous of degree ν

if the vector field f is r–homogeneous of the degree ν .
Theorem 1 ([21], [23], [24]): For the system (1) with d = 0

and r–homogeneous and continuous function f the following
properties are equivalent:
• the system (1) is (locally) asymptotically stable;
• there exists a continuously differentiable r–homogeneous

Lyapunov function V : Rn→ R+ such that

α1(‖x‖)≤V (x)≤ α2(‖x‖),

L fV (x) =
∂V
∂x

(x) f (x)≤−α(‖x‖),
λ−µV (Λr(λ )x) =V (x), µ > rmax,

∀x ∈ Rn and ∀λ > 0, for some α1,α2 ∈K∞ and α ∈K;
• there is a compact strictly positively invariant set S

containing the origin (i.e. X(t,x0,0) ∈ S\∂S for all t > 0
and all x0 ∈ ∂S).

The requirement on continuity of the function f has been
relaxed in [25] (the function V can still be selected smooth).

Theorem 2 ([26]): If (1) with d = 0 is r–homogeneous of
degree ν and asymptotically stable at the origin, then it is
(i) globally finite-time stable at the origin if ν < 0;

(ii) globally exponentially stable at the origin if ν = 0;
(iii) globally fixed-time stable with respect to the unit ball

Br(1), if ν > 0.
For d 6= 0 in (1), let f̃ ∈ Rn+m be an auxiliary vector field,

defined as f̃ =
[

f
0

]
.

Theorem 3 ([27]): Let f̃ be homogeneous with the weights
r =

[
r1 . . . rn

]
> 0, r̃ =

[
r̃1 . . . r̃m

]
> 0 with a degree

ν ≥ −rmin, i.e. f (Λr(λ )x,Λr̃(λ )d) = λ ν Λr(λ ) f (x,d) for all
x ∈ Rn,d ∈ Rm and all λ > 0. Assume that the system (1) is
globally asymptotically stable for d = 0, then (1) is ISS.

III. FINITE-TIME OBSERVER DESIGN

To introduce later a distributed finite-time observer, let us
briefly recall a centralized concept of finite-time estimator
from [12]. For this purpose consider a chain of integrators:

ẋ = Ax, y = cTx, (2)

where x ∈ Rn is the state, y ∈ R is the output of the system
and the matrix A ∈ Rn×n and the output vector c ∈ Rn are:

A =


0 1 0 . . . 0
0 0 1 . . . 0

. . .
0 0 . . . 0 1
0 0 . . . 0 0

 , c =


1
0
...
0

 .
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Note that any fully observable linear system can be trans-
formed into a chain of integrators modulo an output injection,
as well as some nonlinear systems [28], [29].

Based on Luenberger observer design, a finite-time observer
has been constructed in [12] as

ż = Az+diag(`)
⌈
(cTz− y)1n

⌋γ
, (3)

where z ∈ Rn is the estimate of the state x, the observer gain
` ∈ Rn and γ ∈ Rn are defined later. Introducing the observer
error as e = z− x yields with (2) and (3) the error system:

ė = f (e) = Ae+diag(`)
⌈
(cTe)1n

⌋γ
. (4)

A complete design procedure includes a suitable change of
coordinates to the canonical representation (2) and choice of
design vectors ` and γ , but next we only sketch the proof of
finite-time stability of the system in (4), as these arguments
will be reused later in the distributed scenario. Compared to
[12] we provide a bound for the degree of homogeneity.

A. Homogeneity

First, we check that the error system (4) is homogeneous
for a proper selection of γ , meaning that f (e) verifies the
restrictions imposed in Definition 3 for some homogeneity
degree ν < 0 and weights r. For this goal, choose

rs = 1+(s−1)ν , s = 1,n, (5)

then rs > 0 for − 1
n < ν < 0. For each s = 1,n−1 this gives

fs (Λr(λ )e) = λ rs+1es+1 + `sλ r1γsde1cγs

and fn(Λr(λ )e) = `nλ r1γnde1cγn .

Therefore, for γ =
[
γ1 . . . γn

]T in (3) with

γs =
rs+1

r1
= 1+ sν , s = 1,n,

the error system (4) is homogeneous with a negative degree
ν . In addition, 0 < γs < 1.

B. Stability

Next, we show that (4) has a strictly positively invariant set.
Rewrite the system (4) as follows:

ė =
(
A+ `cT)e+diag(`)

(
de11ncγ − e11n

)
. (6)

Let us analyze the Lyapunov function

V (e) = eTPe,

with P = PT > 0 as the solution of the Lyapunov equation

ÃTP+PÃ+Q = 0,

with Ã = A+`cT, a matrix Q = QT > 0 and under an auxiliary
not restricting condition P≥ In.

Since the system is observable, then there always exist `, P
and Q such that these linear matrix inequalities are satisfied.
The time derivative of V for (6) can be written as follows:

V̇ (e) =−eTQe+2eTPdiag(`)(de11ncγ − e11n)

≤−λmin(Q)

λmax(P)
V +2‖e‖‖Pdiag(`)‖‖de11ncγ − e11n‖

0 0.5 1 1.5 2

0

0.1

0.2

x

g̃(
x)

Fig. 1. Example of g̃(x) with α = 0.8

Considering e∈ S= {e∈Rn : V (e) = 1} (i.e. ‖e‖2≤ λ−1
min(P)≤

1) we obtain

V̇ ≤−λmin(Q)

λmax(P)
+2‖Pdiag(`)‖

√
n

∑
s=1

(|e1|γs −|e1|)2. (7)

Note that for ν = 0 the above expression is reduced to

V̇ ≤−λmin(Q)

λmax(P)
.

Then by continuity it is also satisfied for a negative ν close
to zero since λmin(Q)

λmax(P)
> 0.

To derive an expression for ν , which guarantees that (7) is
negative definite on S, we have to calculate an upper bound
for |e1|γs −|e1| taking in mind that |e1| ∈ [0,1] for e ∈ S. To
get an idea, consider the function g̃(x) = |xα−x| for x = [0,1].
An example of g̃ is given in Fig. 1 for α = 0.8. Inspired by
the graph of g̃, we apply the Mean Value Theorem:

g(a)−g(b) = g′(θ)(a−b), θ ∈ [a,b]

to the function g : α 7→ xα , considering x∈ [0,1] as a parameter
and α ∈ [0,1) as the argument. For α ∈ [0,1), we obtain

g(α)−g(1) = ξ (x,θ)(α−1)

with ξ (x,θ) = ln(x)xθ for some θ ∈ [α,1]. For any such fixed
θ , ξ (0,θ) = ξ (1,θ) = 0 and ξ (x,θ)≤ 0 for any x ∈ [0,1]. It
is easy to check that the minimal value of ξ is reached at

xopt = exp(−θ−1), ξ (xopt,θ) =−θ−1 exp(−1).

Thus, we can use the bound

|e1|γs −|e1| ≤ exp(−1)
1− γs

γs
= exp(−1)

−sν
1+ sν

.

Additionally, using
∣∣ sν

1+sν
∣∣≤ ∣∣ nν

1+nν
∣∣ for s = 1,n in (7) leads to

V̇ ≤−λmin(Q)

λmax(P)
+2exp(−1)‖Pdiag(`)‖√n

n|ν |
1+nν

.

Now a bound for ν can be selected as

|ν |< η
n(
√

n+η)
, η =

exp(1)
2

λmin(Q)

λmax(P)‖Pdiag(`)‖ ,

which ensures that V̇ (e) < 0 for e ∈ S and that the set S is
strictly positively invariant for (4). Thus by Theorem 1 the
system is globally asymptotically stable, and since ν < 0, it is
globally finite-time stable by Theorem 2.
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Observer 2

y2
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y3

α2,1

α1,2 α2,3

α3,2

Fig. 2. Scheme depicting a distributed observer with N = 3

IV. DISTRIBUTED OBSERVER

Now we turn to the networked observer case. In this setting,
the plant has N > 1 outputs available for measurements:

ẋ = Ax+d, yi = cT
i x+wi, i = 1,N, (8)

each having an output vector ci ∈Rn with measurement noise
wi ∈R and with an additive disturbance d ∈Rn (an exogenous
input or a function of the state d = δ (x)). For d = 0, the
distributed N observers are selected in the following form:

żi = Azi +diag(`i)
⌈
(cT

i zi− yi)1n
⌋γi + ∑

j∈Ni

αi, jdz j− zicβ , (9)

for each i = 1,N, where zi ∈ Rn is an estimate of the state
generated by the ith observer; `i ∈ Rn, αi, j ∈ R+, γi ∈ Rn and
β ∈ Rn are observer parameters selected later. The observers
are connected in a graph and Ni denotes the set of neighboring
nodes, i.e. j ∈Ni if there is a directed edge from j to i (αi, j = 0
otherwise), see an example in Fig. 2 with N1 = {2},N3 = {2}
and N2 = {1,3}. Of course, if there exists one ci such
that the system (8) is observable from that output, then a
distributed structure may become redundant, but if the pair
(A,
[
c1 . . . cN

]
) is observable and each separate pair (A,ci)

is not, then coupling αi, j 6= 0 between observers is obligatory.
For each node, the observer error is

ei = zi− x (10)

and the error system is (with d = 0 and wi = 0)

ėi = Aei +diag(`i)
⌈
1n(cT

i ei)
⌋γi + ∑

j∈Ni

αi, j
⌈
(e j− ei)

⌋β
. (11)

The goal of this section is to propose conditions under
which the interconnected systems in (11) are finite-time stable.
The construction below will follow the main ideas given in
Section III for the design and the analysis of a finite-time
centralized observer (3).

Similar to the centralized case we presume that the plant
(8) is in the form of multiple chains of integrators:

A =


A1 0 . . . 0
0 A2 . . . 0

. . .
0 0 . . . AN

 , (12)

cT
i =

[
0 . . . 1︸︷︷︸

pi−th

. . . 0
]
, (13)

where pi ∈ [1,n] for i = 1,N is such that the head of each
integrator chain Ai ∈ Rni×ni , with n = ∑

N
i=1 ni, is measured by

a single observer node. Since each node can only reconstruct
the partial state corresponding to its integrator chain (i.e. the
pairs (Ai,ci) are observable, but not (A,ci)) the observers must
be connected in a network.

Unlike in the centralized case, there does not always exist a
coordinate transformation to the form (12) and (13), hence it
does not constitute a canonical form for the distributed estima-
tion problem, especially since the integrators are disconnected.
However, in Section IV-C we show that if the observed system
is not in the form of (12), the stability result is still valid under
some conditions.

A. Homogeneity

Lemma 1: The system (11) with (12),(13) and d = 0,wi = 0
is homogeneous with respect to the weights in (5) for

γi,s =
1+ sν

1+(pi−1)ν
, βs =

1+ sν
1+(s−1)ν

, (14)

where i = 1,N and s = 1,n.
Note that the properties 0 < βs < 1 and γi,s > 0 are satisfied

by construction.
Proof: For s = 1,n−1 the relation

λ ν λ 1+(s−1)ν ėi,s = λ 1+sν µsei,s+1−`i,sλ (1+(pi−1)ν)γi,sdepi,scγi,s

+ ∑
j∈Ni

αi, jλ (1+(s−1)ν)βsd(e j,s− ei,s)cβs

has to be fulfilled, where µs =

{
0 if s ∈ {∑k

j=1 n j|k = 1,N},
1 otherwise. �

B. The main result formulation

For ν = 0, the observers in (9) are standard linear Luen-
berger observers with couplings and the asymptotic stability
of the network can be evaluated using the error system

Ė =WE (15)

for the large scale error ET =
[
eT

1 . . . eT
N
]
∈ RNn with

W = diag{A+ `icT
i }N

i=1 +H⊗ In,

H = [hi j]
N
i, j=1, hi j =

{
−∑k∈Ni αi,k for i = j,
αi, j for i 6= j.

We now assume that with γi = 1n,β = 1n and appropriate
gains li,αi, j in (9) an asymptotically converging observer
can be designed (possible using methods referenced in the
introduction). This justifies the following assumption:

Assumption 1: There exist solutions P = PT > 0 and Q =
QT > 0 of the following system of linear matrix inequalities:

W TP+PW +Q = 0, P≥ INn. (16)

Now we may formulate the main result of this note:
Theorem 4: Let Assumption 1 be satisfied and d = 0,wi = 0,

then the estimation error of the observer network (9) with (8),
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(12), (13) is globally finite-time stable, provided that γi,β are
chosen according to (14) and

|ν | ≤ (2n−1)h+a+b−
√
(h+a+b)2−4bh

2((a+nh)(n−1)+bn)
, (17)

where

a = ‖Pdiag{diag(`i)}N
i=1‖exp(−1)n

√
Nn,

b = ‖PM‖ ln(2)2N
√

n, h =
λmin (Q)

2λmax(P)
,

M = diag{αT
i ⊗ In}N

i=1, αT
i =

[
αi1 . . . αiN

]
,

and P, Q are the solutions of (16).
The proof is given in Subsection VII.
Remark 1: The inequality (17) always admits a solution and

consequently, the choice of ν depend on `i and αi, j, and it will
influence the settling time: it is expected to be smaller for a
decreasing degree of homogeneity. It is obtained by replacing
in (26) and (27) (see below) the variables s and pi by their
limit values 1 and n, which is a rather conservative substitution
allowing a guaranteed upper bound to be derived explicitly.
Then, for an application, the left-hand side of expressions (26)
and (27) can be used.

Remark 2: A fixed-time distributed observer might be de-
signed by introducing additional terms with positive homo-
geneity degree in (9):

żi =Azi+diag(`i)
2

∑
k=1
d(cT

i zi)1n−yi1ncγ
k
i + ∑

j∈Ni

αi, j

2

∑
k=1
dz j−zicβ

k
,

where, following (14):

γk
i,s =

1+ sνk

1+(pi−1)νk
, β k

s =
1+ sνk

1+(s−1)νk

for i = 1,N , s = 1,n with − 1
n < ν1 < 0 and ν2 > 0. The

proof of fixed-time stability of this observer would follow local
homogeneity arguments (as in [10], [30]) and by repeating the
main steps used in the proof of Theorem 4.

C. Robustness with respect to disturbances

We turn to the case where the plant is disturbed by d 6= 0
and the measurements are tainted by noise wi 6= 0 (e.g. due
to sensor imperfections), which for i = 1,N yields the error
system

ėi = Aei +diag(`i)
⌈
1n(cT

i ei−wi)
⌋γi +∑

j∈Ni

αi, j
⌈
(e j− ei)

⌋β −d.

(18)
Corollary 1: Let the networked observer (9) with (8), (12),

(13) satisfy the conditions of Theorem 4, then its error system
(18) is ISS with respect to d and wi.

Proof: Recall that the weights r in Lemma 1 take the form
rs = 1+(s− 1)ν , s = 1,n. The proper weights for d and wi
for homogeneity in the sense of Theorem 3 are r̃d = r+1nν ,
r̃wi = rpi respectively, as can be seen from the equation

λνλ1+(s−1)ν ėi,s=λ1+sν µsei,s+1−`i,sλ(1+(pi−1)ν)γi,sdepi,s−wicγi,s

+ ∑
j∈Ni

αi, jλ(1+(s−1)ν)βsde j,s− ei,scβs +λν λ1+(s−1)ν d

for s= 1,n−1 and µs ∈ {0,1}. The global asymptotic stability
of the error system for d = 0,wi = 0 follows from the global
finite-time stability of (11). �

It follows that due to its homogeneity, the distributed
observer is robust with respect to disturbances of the plant and
measurement noises. Note that with a similar reasoning, the
network is also robust to noise in the communication channel.

Moreover, using the features of ISS, the finite-time stability
is retained for an additional state feedback provided it is
bounded by a nonlinear stability margin [20]. For a homo-
geneous system of negative degree a stability margin can be
estimated to be

ρ(‖e‖r) = κ min
{
‖e‖r̃max

r ,‖e‖r̃min
r
}
, (19)

with r̃ from Theorem 3 and a constant κ > 0 [27]. Using this
and Corollary 1, we can extend the results of Theorem 4 to a
more general class of systems.

Corollary 2: Assume that all conditions of Theorem 4
are satisfied for the plant (8) with (12), (13) and d = δ (x),
where δ : Rn 7→ Rn is a locally Lipschitz continuous function
modelling more general system dynamics. Then the estimation
error of the observer network

żi = Azi +diag(`i)
⌈
(cT

i zi− yi)1n
⌋γi + ∑

j∈Ni

αi, jdz j− zicβ +δ (zi)

is globally finite-time stable if

‖δ (zi)−δ (x)‖ ≤ ρ(‖zi− x‖r), (20)

where ρ is defined in (19) with r̃ = r̃d from Corollary 1.
Compared to (11), the resulting error system will have an

additional term δ (zi)− δ (x) and for a general linear system
δ (x) = ∆x with ∆ ∈ Rn×n, it takes the form ∆(zi− x) = ∆ei.
Then if the bound (20) is satisfied only for big or small
estimation errors, practical or local stability and convergence
can be ensured for the distributed observer.

D. Boundedness with respect to known transmission delays

Next to robustness with respect to disturbances and noises,
robustness with regard to time-delay effects is a desirable
property of distributed observers, when communication delays
are induced by the network.

In [31], the concept of homogeneity was defined analo-
gously to Definition 3 for time-delayed systems described by
functional differential equations of the retarded type

ẋ(t) = f (xt), t ≥ 0, (21)

where x(t) ∈ Rn and xt ∈ C[−τ,0] is the state function, xt(s) =
x(t + s),−τ ≤ s≤ 0 and f : C[−τ,0]→Rn. Here C[−τ,0] denotes
the Banach space of continuous functions φ : [−τ,0]→ Rn

with the uniform norm ‖φ‖ := sup−τ≤ξ≤0 |φ(ξ )|. In the fol-
lowing lemma, Bτ

ε := {φ ∈ C[−τ,0] : ‖φ‖r ≤ ε}.
Lemma 2 ([32]): Let f (xt) = F [x(t),x(t − τ)] (i.e. it has

a pointwise-delay), in (21) be uniformly continuous and the
system (21) be r-homogeneous with degree ν < 0 and globally
asymptotically stable at the origin for τ = 0, then for any ε > 0
there is 0 < τ0 <+∞ such that (21) is globally asymptotically
stable with respect to Bτ

ε for any delay 0≤ τ ≤ τ0.
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We now assume that there is a delay in the communication
channel between the observer nodes which is known (e.g.
using time stamps and a clock synchronization method [33]).
Delays in the measurements are not included, especially be-
cause the distributed design allows to select a configuration
which specifically avoids measurement delays.

Therefore, at node i the estimates from neighboring nodes
z j, j ∈Ni are delayed by 0≤ τi, j ≤ τ . Since the τi, j are known,
the delays can be countered by shifting the state of the observer
zi(t) by the same τi, j in the cross-coupling term:

żi(t) = Azi(t)+diag(`i)
⌈
1n(cT

i zi(t)− yi(t))
⌋γi

+ ∑
j∈Ni

αi, j
⌈
z j(t− τi, j)− zi(t− τi, j)

⌋β
, (22)

In the undisturbed case this leads to the error system

ėi(t) = Aei(t)+diag(`i)
⌈
1ncT

i ei(t)
⌋γi

+ ∑
j∈Ni

αi, j
⌈
e j(t− τi, j)− ei(t− τi, j)

⌋β (23)

and if γi and β are chosen as in Lemma 1 then it is homoge-
neous with negative degree and Lemma 2 can be applied:

Corollary 3: Let the networked observer (22) with (8),
(12), (13) satisfy the conditions of Theorem 4, then for any
upper bound on the asymptotic estimation error there exists
an admissible transmission delay τi, j ≥ 0.

V. EXAMPLE

Let us consider an example with a linear system of order
n = 7 and N = 3 outputs:

ẋ =



−1.5 −0.9 0 0 0 0.2 0.2
−0.5 −0.7 0 0 0 0.1 0.1

0 0 0 −1.5 0 0.1 0.1
0 0 0 0.1 −1.1 0.1 0.1
0 0 0 0 0 0.1 0.1
0 0 0 0 0 −0.8 −1.0
0 0 0 0 0 −1.0 −0.8


x,

The observer nodes are connected in a graph as shown in
Fig. 2. Observer 1 measures the first coordinate of the state
vector x (i.e. c1 =

[
1 0 0 0 0 0 0

]T), Observer 2 the
third coordinate and Observer 3 the sixth.

First, a solution of (16) for Q = InN is obtained. Using the
method presented in [34], the observer gains are selected as
α1,2 = α2,1 = α2,3 = α3,2 = 4 and

`1 =
[
−1.6 1.87 0.04 −0.07 0.04 0

]T
,

`2 =
[
0 0 −13.2 17.55 −8.48 0 0

]T
,

`3 =
[
−0.62 0.27 −0.11 −0.83 0.93 −2.8 2.48

]T
.

Next, this leads with (17) to the bound ν ≥−3.8×10−4.
As already stated in Remark 1, the resulting ν is rather

conservative and the corresponding settling time is too large
to show the finite time behavior visually. If compared to the
linear observer (i.e. ν = 0) the error will reach asymptotically
machine precision only slightly However, following Remark 1
a more accurate assessment of ν is possible. For instance, in

0 200 400 600 800 1,00010−163

10−103

10−43

1017

t

‖E
(t
)‖

Fig. 3. Comparison of the error for the linear (dashed) and finite-time
observer (solid) in logarithmic scaling.

0 20 40 60 80 100

0

2

4

t

‖E
(t
)‖

Fig. 4. Comparison of the error for the linear (dashed) and finite-time
observer (solid) in case of disturbances and measurement noise.

Fig. 3 the error norm ‖E(t)‖ is plotted in a logarithmic scale
with ν =−0.02 and compared to the linear observer with the
same gains, clearly showing the finite time behavior for the
former and the exponential decrease for the latter.

The error in the presence of zero-mean uniformly distributed
noise and disturbance of magnitude 1 is shown in Fig. 4 for
the same example. This demonstrates that the linear and finite-
time observers have similar robustness performances.

Furthermore, the example is tested to illustrate Corollary
3 with a transmission delay of τi, j = 0.27 for all communica-
tions. The delays are compensated using observers of the form
(22). As expected from the linear version of the observer its
margin of stability is reached for a sufficiently big delay, and
thus the error grows to infinity, see Fig. 5. In contrast, the
error of the finite-time observer stays bounded, demonstrating
its advantage when coping with transmission delays.

VI. CONCLUSION

A distributed observer was designed having the ability of
converging in a finite or in a fixed time. Using homogeneity
concepts and properties, we have shown that the designed
observer possesses the input-to-state stability property with
respect to additive disturbances and measurement noises. This
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Fig. 5. Comparison of the error for the linear observer (dashed) and finite-
time observer (solid) for transmission delays of τ j = 0.27.

resulted into a class of systems for which the design can
be applied, but the extension of the results to general linear
systems is subject to future work. The error of the finite-time
observer stays bounded for any known transmission delays
which are accounted for. It would be interesting to consider
varying or unknown delays. Additionally, refined estimates on
the degrees of homogeneity for the fixed-time observer found
in the present technical note should be investigated.

VII. PROOF OF THEOREM 4
The large scale error system in (11) can be rewritten as:

Ė = diag{A}N
i=1E

+diag{diag(`i)}N
i=1
⌈(

diag{cT
i }N

i=1⊗1n
)

E
⌋γ̃

+MdΓEcβ̃ ,
(24)

with the notation γ̃T =
[
γT

1 . . . γT
N
]
, β̃ = 1N2 ⊗β and

Γ =

Γ1
...

ΓN

 , Γi =

Γi1
...

ΓiN

 , Γi j = [0 . . . −In︸︷︷︸
i−th

. . . In︸︷︷︸
j−th

. . .0]

(Γii has only entries equal zero). Rewriting (24) as

Ė =WE +diag{diag(`i)}N
i=1

(⌈(
diag{cT

i }N
i=1⊗1n

)
E
⌋γ̃

−
(
diag{cT

i }N
i=1⊗1n

)
E
)
+M

(
dΓEcβ̃ −ΓE

)
and using the Lyapunov function V (E) = ETPE, we repeat
the steps presented in Section III, and for E ∈ S= {E ∈RNn :
V (E) = 1} we obtain

V̇ ≤−λmin(Q)

λmax(P)
+2

(
‖Pdiag{diag(`i)}N

i=1‖

×
√

N

∑
i=1

n

∑
s=1

(|epi,s|γi,s −|epi,s|)2

+‖PM‖

√√√√ N

∑
i=1

N

∑
j=1

n

∑
s=1

(
|e j,s− ei,s|βs −|e j,s− ei,s|

)2

)
. (25)

Again, if ν = 0 then the above inequality is reduced to

V̇ ≤−λmin(Q)

λmax(P)
< 0.

Such an inequality may be preserved for a sufficiently small
ν , so let us try to estimate its value.

1) First square root: The first terms in (25) are similar to
the ones in (7), but γi,s can be greater than one. Therefore,
two cases have to be distinguished when applying the Mean
Value Theorem:

|epi,s|γi,s −|epi,s| ≤ exp(−1)
|1− γi,s|

θ

θ ∈
{
[γi,s,1] if s > pi−1,
[1,γi,s] if s≤ pi−1,

which gives

1− γi,s

θ
≤ 1− γi,s

γi,s
=

(pi−1− s)ν
1+ sν

or
γi,s−1

θ
≤ γi,s−1 =

(s− pi +1)ν
1+(pi−1)ν

,

and subsequently for 1≤ s, pi ≤ n:

∣∣∣∣γi,s−1
θ

∣∣∣∣≤

∣∣∣∣ nν
1+nν

∣∣∣∣ if s > pi−1, (26)∣∣∣∣ (n−2)ν
1+(n−1)ν

∣∣∣∣ if s≤ pi−1. (27)

The right-hand side of (26) is bigger than of (27), so√
N

∑
i=1

n

∑
s=1

(|epi,s|γi,s −|epi,s|)2 ≤ exp(−1)
√

Nn
n|ν |

1+nν
. (28)

2) Second square root: If ‖E‖ ≤ 1, then |e j,s− ei,s| ≤ 2.
For a fixed α ∈ [0,1) consider the function g̃(x) = |xα − x|
for x ∈ [0,2]. It is easy to check that g̃(0) = g̃(1) = 0, then
g̃(x) = xα − x for x ∈ [0,1] and the maximal value of g̃ on
this interval is reached for x̃opt = α

1
1−α with sup0≤x≤1 g̃(x) =

α
α

1−α −α
1

1−α . For x ∈ [1,2], a simple analysis of dg̃(x)
dx shows

that g̃ is a strictly increasing function, then sup1≤x≤2 g̃(x) =
2−2α . For α ∈ [0,1), the second derivatives with respect to
α of α

α
1−α −α

1
1−α and 2−2α are

d2

dα2 α
1

1−α (α−1−1)

=−α−1/(α−1)−2((1−α)(α−1)2+α(ln(α)−(α−1))2)
(α−1)3 > 0,

which means it is convex, and
d2

dα2 (2−2α) =−2α ln2(2)< 0,
which means it is concave, respectively. Since both functions
meet at α = 0 and α = 1 (see Fig. 6), we obtain:

α
α

1−α −α
1

1−α ≤ 2−2α .

Consequently, returning to the second square root in (25):∣∣∣|e j,s− ei,s|βs −|e j,s− ei,s|
∣∣∣≤ 2−2βs

= ln(2)2θ (1−βs)≤ ln(2)2(1−βs) = ln(2)2
−ν

1+(n−1)ν
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Fig. 6. Comparison of maximums for different α

for s = 1,n, where θ ∈ [βs,1] and the Mean Value Theorem
has been used. Therefore, we get√√√√ N

∑
i=1

N

∑
j=1

n

∑
s=1

(
|e j,s− ei,s|βs −|e j,s− ei,s|

)2

≤ ln(2)2N
√

n
|ν |

1+(n−1)ν
. (29)

3) Combining the estimates: Inserting (28), (29) into (25)

V̇ ≤−λmin(Q)

λmax(P)
+2

(
‖Pdiag{diag(`i)}N

i=1‖

× exp(−1)
√

Nn
n|ν |

1+nν
+‖PM‖ ln(2)2N

√
n

|ν |
1+(n−1)ν

)
.

That gives finally a quadratic equation in |ν |, whose solution
is provided in the formulation (17) of Theorem 4. �
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