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Equilibrium-Independent Dissipativity with

Quadratic Supply Rates
John W. Simpson-Porco, Member, IEEE

Abstract—Equilibrium-independent dissipativity (EID) is a re-
cently introduced system property which requires a system to be
dissipative with respect to any forced equilibrium configuration.
This paper is a detailed examination of EID with quadratic
supply rates for a common class of nonlinear control-affine
systems. We provide an algebraic characterization of EID for
such systems in the spirit of the Hill-Moylan lemma, where
the usual stability condition is replaced by an incremental
stability condition. Based on this characterization, we state results
concerning internal stability, feedback stability, and absolute
stability of EID systems. Finally, we study EID for discrete-time
systems, providing the relevant definitions and an analogous Hill-
Moylan-type characterization. Results for both continuous-time
and discrete-time systems are illustrated through examples on
physical systems and convex optimization algorithms.

Index Terms—Nonlinear systems, dissipative systems, passivity,
stability analysis, absolute stability, Lyapunov methods

I. INTRODUCTION

Dissipation inequalities provide a general framework for the

analysis and design of interconnected nonlinear dynamical sys-

tems. Introduced by Williems in [1], dissipativity is an input-

output system property which unifies classical properties such

as finite-gain, passivity, and conicity [2]. Further advances

in [3], [4] by Hill and Moylan characterized dissipativeness

for control-affine systems in terms of a system of nonlinear

equations. Dissipative systems theory and associated control

design techniques are now fairly mature, with several reference

books available [5]–[7].

When applied to state-space systems for the purposes of

stability analysis, dissipation inequalities are referenced to a

chosen equilibrium input-state-output configuration (ū, x̄, ȳ),
which is typically taken to be the origin. If several such

dissipative systems are interconnected with one another, the

origin is an equilibrium point for the closed-loop system, and

dissipativity theory provides tools for assessing its stability [7].

This framework however assumes considerable knowledge of

the equilibrium sets of the individual subsystems, and this may

not be justified in applications. When considering uncertain,

large-scale, nonlinear systems, equilibrium sets of subsystems

may be uncertain or otherwise difficult to characterize. Further

complicating the situation, the very act of interconnection

between subsystems will induce a closed-loop equilibrium

set, determined by the simultaneous solution of all subsys-

tem equilibrium equations and all interconnection constraints.
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When many uncertain systems are interconnected, explicitly

calculating this equilibrium set may prove infeasible. It then

becomes challenging to construct classical storage functions

for the subsystems in order to verify internal stability and/or

I/O properties of the interconnection; classical dissipativity

falls short as an effective tool.

One remedy to these issues is termed incremental dis-

sipativity, which requires that a dissipation inequality hold

along any two arbitrary trajectories of a forced system [8]. A

closely related property termed differential dissipativity is dis-

cussed in [13], [14]. Under appropriate technical assumptions,

incremental dissipativity implies the existence of a unique

equilibrium trajectory towards which all other trajectories

converge. As such, incremental dissipativity has proven useful

for studying output regulation [8], [9] and synchronization

of interconnected systems [10]–[12], where all subsystem

trajectories converge to a common global steady-state tra-

jectory. Incremental dissipativity however is quite demanding

as a system property, since often we wish only to establish

stability/dissipativity of trajectories with respect to the set of

equilibrium configurations, and not with respect to all other

possible trajectories.

As an intermediate property between classical and in-

cremental dissipativity, equilibrium-independent dissipativity

(EID) has recently been introduced [15]–[17], requiring a

dissipation inequality to hold between any system trajectory

and any forced equilibrium point. The utility of this property

is that as the operating point of the system moves — either

intentionally due to set-point changes, or unintentionally due

to disturbances — one is guaranteed that the dissipation

inequality under consideration will continue to hold with

respect to the new operating point. This property has been

used for the control of port-Hamiltonian systems [18], [19],

for performance certification of interconnected systems [20],

[21], for network congestion control [22], for stability analysis

of various power system models [23]–[25], and for analysis of

optimization algorithms [26]. Particularly relevant to this paper

is [18], where a Lyapunov construction based on the Bregman

divergence was used to establish equilibrium-independent pas-

sivity.1

The theory of EID systems presented in [15]–[17] has not

however been developed to the level of the classical dissi-

pativity literature [5]–[7], and no consistent, comprehensive

reference is available. In addition, two particularly important

items absent from the literature are an algebraic Hill-Moylan-

1The use of the Bregman divergence in the control literature apparently
traces to [27]; we thank N. Monshizadeh for this observation.

http://arxiv.org/abs/1709.06986v2
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type characterization of EID, and analogous definitions and

results for the discrete-time case. The former is theoretical

bedrock and a key step towards EID control design [7], while

the author sees the latter as important for analyzing and de-

signing interconnections of physical systems with optimization

algorithms. Putting these future directions/applications to the

side, here we focus instead on developing and illustrating the

basic theory of equilibrium-independent dissipativity.

A. Contributions

The overarching goal of this paper is to provide a detailed

treatment of EID systems with quadratic supply rates, develop-

ing basic characterizations and stability results, and illustrating

the results with examples. We restrict our discussion to nonlin-

ear control-affine systems with constant input and throughput

matrices, in both continuous and discrete-time.2

There are three main contributions.3 First, we show in

Section III that EID can be characterized in terms of an

appropriately modified Hill-Moylan lemma [4]. The key mod-

ification is that the usual stability-like condition is replaced

by an incremental stability-like condition. Roughly speaking,

the results can be interpreted as saying that dissipativity plus

an appropriate incremental stability-like condition yields EID;

we present various examples illustrating the results. Second, in

Section IV, we study stability of EID systems, stating results

for internal and feedback stability, and study an equilibrium-

independent variant of the absolute stability problem. Third

and finally, in Section V we consider the discrete-time case,

providing the relevant definitions, corresponding Hill-Moylan-

type conditions, and illustrating how the results can be applied

to analyze the gradient method for convex optimization.

Two major implications of our results are that (i) EID can

be established and applied to problems in much the same way

as standard dissipativity, and (ii) for square EID systems in

feedback, the existence/uniqueness of closed-loop equilibria

can be inferred by studying the monotonicity of the subsystem

I/O relations.

B. Notation

The set R (resp. R≥0) is the set of real (resp. nonnegative)

numbers. The n×n identity matrix is In, 0 is a matrix of zeros

of appropriate dimension, while 0n is the n-vector of all zeros.

Throughout, ‖x‖2 = (xTx)1/2 denotes the 2-norm of x, while

for P = PT ≻ 0, ‖x‖P = (xTPx)1/2; when convenient, we

will (ab)use this notation even if P � 0. The set of real-valued

square-integrable signals v : [0,∞) → R
m is denoted by

Lm
2 [0,∞), with Lm

2e [0,∞) denoting the associated extended

2We consider this particular subclass of control-affine systems because
(i) it is sufficient for the applications we have considered, and (ii) it
permits a relatively intuitive extension of Hill-Moylan conditions for classical
dissipativity to EID.

3A short version of this paper has been submitted to ACC 2018. The ACC
version contains Lemma 3.4, its proof, and the statement of Theorem 4.5.
The ACC version does not contain Example 3.8, Example 3.9, Example 3.10,
Lemma 4.3, Theorem 4.4, the proof of Theorem 4.5, Example 4.6, Lemma
A.1, and Lemma A.3, or any of the material from Section V. This is noted
to emphasize that the contributions of this paper differ substantially from the
conference version.

signal space [7, Chapter 1]; the corresponding discrete-time

spaces are denoted by ℓm2 [0,∞) and ℓm2e[0,∞). For a twice-

differentiable function V : R
n → R, ∇V : R

n → R
n is

its gradient while ∇2V : R
n → R

n×n is its Hessian. A

differentiable function V : Rn → R is convex if

[∇V (x) −∇V (z)]T(x− z) ≥ k(x, z)‖x− z‖22
for all x, z ∈ R

n and some function k : Rn × R
n → R≥0. If

k(x, z) > 0 for all x 6= z, then V is strictly convex, and if

k(x, z) ≥ µ > 0 for all (x, z), then V is µ-strongly convex; in

the twice differentiable case, these statements are equivalent to

∇2V (x) ≻ 0 and ∇2V (x) � µIn for all x ∈ R
n, respectively.

II. NONLINEAR DISSIPATIVE SYSTEMS

A. Control-Affine Systems and Forced Equilibria

Consider the continuous-time nonlinear control-affine sys-

tem with constant input and throughput matrices

Σ :

{
ẋ(t) = f(x(t)) +Gu(t)

y(t) = h(x(t)) + Ju(t)
(1)

with state x(t) ∈ X := R
n, input u(t) ∈ U := R

m and output

y(t) ∈ Y := R
p where m, p ≤ n. The maps f : X → R

n

and h : X → Y are assumed to be sufficiently smooth such

that trajectories are forward complete for all initial conditions

x(0) ∈ X and all input functions u(·) ∈ Lm
2e [0,∞), with

corresponding output trajectories y(·) ∈ L
p
2e[0,∞). The input

matrix G ∈ R
n×m is constant and has rank m (full column

rank). The throughput matrix J ∈ R
p×m is constant. An equi-

librium configuration of (1) is a triple (ū, x̄, ȳ) ∈ U ×X ×Y
satisfying

0n = f(x̄) +Gū

ȳ = h(x̄) + Jū .
(2)

When m = n, the system is fully actuated and for any desired

equilibrium point x̄ ∈ X , ū = −G−1f(x̄) is the associated

equilibrium input. When m < n, let G⊥ ∈ R
(n−m)×n be a

full-rank left annihilator of G; that is, G⊥ satisfies G⊥G = 0

and rank(G⊥) = n−m [28, Lemma 2]. It follows that

EΣ :=

{
X if m = n

{x̄ ∈ X | G⊥f(x̄) = 0n−m} if m < n

is the set of assignable equilibrium points. For every x̄ ∈ EΣ,

we have the associated unique equilibrium input and output

ū = ku(x̄) := −(GTG)−1GTf(x̄)

ȳ = ky(x̄) := h(x̄)− J(GTG)−1GTf(x̄) .
(3)

While the input-to-state map ku : X → U defined above is a

function, it is useful to reinterpret it as a relation

Ku := {(x, u) | u+ (GTG)−1GTf(x) = 0m} ⊂ X × U ,

and consider the inverse relation K−1
u ⊂ U × X , which

relates the domain of equilibrium inputs to the codomain of

forced equilibria. As is standard, we overload the notation and

interpret the relation K−1
u (·) as a set-valued mapping when

convenient. From (3) then, we may define an equilibrium
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input/output (I/O) relation KΣ := ky ◦ K−1
u ⊆ U × Y , or

equivalently

KΣ := {(ū, ȳ) ∈ U × Y | there exists x̄ ∈ X solving (3)} ,

which relates compatible steady-state inputs and outputs.

Remark 2.1: (Assignable Equilibria): If 0n−m is a regular

value for E(x) := G⊥f(x), then the associated fiber EΣ =
E−1(0n−m) is a m-dimension embedded submanifold of Rn

[29, Corollary 5.24]. In the case of LTI systems where f(x) =
Fx with F ∈ R

n×n, the set of assignable equilibria becomes

EΣ = ker(G⊥F ). If in addition F is invertible, this simplifies

further to EΣ = F−1Im(G). �

B. Classical Dissipativity of Control-Affine Systems

We provide a brief review of dissipativity theory for control-

affine nonlinear systems; see [5]–[7] for various overviews

of dissipativity and related concepts. In this subsection, we

make the additional assumptions for (1) that f(0n) = 0n and

h(0n) = 0p, so that (ū, x̄, ȳ) = (0m, 0n, 0p) is an equilibrium

configuration. Let w : U × Y → R be a continuous function

called the supply rate. The system Σ in (1) is dissipative with

respect to the supply rate w(u, y) if there exists a continuously

differentiable storage function V : X → R≥0 with V (0n) = 0
such that

d

dt
V (x(t)) := ∇V (x)T(f(x) +Gu) ≤ w(u(t), y(t)) (4)

for all t ≥ 0 and all measurable inputs u(·) ∈ Lm
2e [0,∞).

The inequality (4) is called a dissipation inequality; the

interpretation is that the rate of change of energy V (x) stored

by the system is less than the supplied power w(u, y). In this

paper we focus exclusively on quadratic supply rates

w(u, y) =

[
y
u

]T [
Q S
ST R

] [
y
u

]
, (5)

where Q = QT, S, and R = RT are matrices of appro-

priate dimensions. To ensure that the inequality (4) is not

trivially satisfied, we make the standard assumption that the

block matrix in (5) is sign-indefinite [4]. The supply rate

(5) contains some common I/O system properties as special

cases, including passivity (Q,S,R) = (0, 12Im, 0) and finite

L2-gain (Q,S,R) = (−Ip, 0, γ2Im) for γ ≥ 0. The key

characterization of quadratically dissipative continuous-time

control-affine systems is due to Hill and Moylan.

Lemma 2.2: (Hill-Moylan Conditions [4]): The control-

affine system Σ in (1) is dissipative with respect to the supply

rate (5) with continuously-differentiable storage function V :
X → R≥0 if and only if there exists an integer k > 0, a matrix

W ∈ R
k×m and a function l : X → R

k such that

∇V (x)Tf(x) = h(x)TQh(x)− l(x)Tl(x) (6a)

1

2
∇V (x)TG = h(x)T(QJ + S)− l(x)TW (6b)

WTW = R+ JTS + STJ + JTQJ . (6c)

In most applications, the first equation in (6) enforces some

type of stability; the remaining equations ensure a proper

matching of inputs and outputs to generate the supply rate

(5). When specialized to LTI systems ẋ = Fx + Gu , y =
Hx + Ju, with quadratic storage functions V (x) = xTPx,

P = PT � 0, Lemma 2.2 states that dissipativity with respect

to the quadratic supply rate (5) is equivalent to the existence

of an integer k > 0 and matrices L ∈ R
k×n,W ∈ R

k×m

solving the linear matrix equality

[
FTP + PF PG

GTP 0

]
−
[
H J
0 Im

]T [
Q S
ST R

] [
H J
0 Im

]

+

[
LT

WT

] [
L W

]
= 0 .

(7)

III. EQUILIBRIUM-INDEPENDENT DISSIPATIVITY FOR

CONTINUOUS-TIME CONTROL-AFFINE SYSTEMS

The presented state-space definitions of dissipativity implic-

itly reference a specific equilibrium configuration (the origin).

Often however, we are interested in operating a control system

around an equilibrium configuration (ū, x̄, ȳ), and we wish

to establish input/output properties with respect to this forced

equilibrium configuration. In general, verifying dissipativeness

with respect to the forced equilibrium must be done with a new

storage candidate Vx̄(x), which depends on the equilibrium x̄.

Simply shifting a storage function V (x) as used in Lemma

2.2 need not suffice, as the following simple example shows.

Example 3.1: (Second-Order System): Consider the

second-order system

ẋ1 = x2 , ẋ2 = −∇U(x1)− x2 + u

y = x2

where U : R → R is differentiable and strictly convex,

with ∇U(0) = 0. Clearly (ū, x̄1, x̄2, ȳ) = (0, 0, 0, 0) is an

equilibrium configuration, and the storage function V (x) =
1
2x

T

2x2 + U(x1) − U(0) satisfies V (0, 0) = 0 and certifies

output-strict passivity:

V̇ = ∇U(x1) · x2 − x2 · ∇U(x1)− x22 + x2u = −y2 + yu

:= w(u, y) .

Consider now a forced equilibrium configuration (ū, x̄1, 0, 0),
where ū = ku(x̄) := ∇U(x̄1). A natural choice for a storage

candidate is Vx̄(x) = V (x)−U(x̄1), satisfying Vx̄(x̄1, 0) = 0.

However, a similar calculation shows that

V̇x̄ = −(y − ȳ)2 + (y − ȳ)u

6= w(u − ū, y − ȳ) ,

and therefore Vx̄(x) does not establish the desired equilibrium-

independent passivity property. �

The concept of equilibrium-independent dissipativity (EID)

requires dissipativity of a system with respect to any equi-

librium configuration [15], [17], [21]. Our definition roughly

follows [17], [21].

Definition 3.2: (Equilibrium-Independent Dissipativity):

The control-affine system (1) is equilibrium-independent dis-

sipative (EID) with supply rate w : U × Y → R if, for every
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equilibrium x̄ ∈ EΣ, there exists a continuously-differentiable

storage function Vx̄ : X → R≥0 such that Vx̄(x̄) = 0 and

d

dt
Vx̄(x(t)) := ∇Vx̄(x)T(f(x)+Gu) ≤ w(u− ū, y− ȳ) , (8)

for all t ≥ 0 and all measurable inputs u(·) ∈ Lm
2e [0,∞),

where ū = ku(x̄), ȳ = ky(x̄). A set of storage functions

{Vx̄(x) , x̄ ∈ EΣ} satisfying (8) is an EID storage function

family.

Note that in Definition 3.2, the supply rate w(·, ·) does not

depend on x̄. In other words, EID requires uniformity in the

supply rate across all assignable equilibrium points.

Suppose that x̃ ∈ EΣ is another assignable equilibrium point

with associated equilibrium inputs/outputs ũ = ku(x̃) and ỹ =
ky(x̃). If one selects (x, u) = (x̃, ũ) in Definition 3.2, then

the left-hand side of (8) becomes zero and we find that w(ũ−
ū, ỹ − ȳ) ≥ 0. One quickly arrives at the following result.

Lemma 3.3: (I/O Relation Constraint): If Σ is EID, then

its equilibrium I/O relation KΣ satisfies

[
ȳ − ỹ
ū− ũ

]T [
Q S
ST R

] [
ȳ − ỹ
ū− ũ

]
≥ 0 (9)

for any two pairs (ū, ȳ), (ũ, ỹ) ∈ KΣ.

In the square case m = p with (Q,S,R) = (0, 12Im, 0), the

inequality (9) says that KΣ is a monotone (i.e., incrementally

passive) relation. Monotone relations have been extensively

studied in the convex analysis literature, but most useful

results require a slightly stronger property termed maximal

monotonicity [30, Chap. 20]. Lemma A.1 in the appendix

presents some sufficient conditions which ensure that a mono-

tone equilibrium I/O relation is KΣ is maximally monotone.

For nonlinearities ψ : D ⊂ R
m → R

p, all storage functions

in Definition 3.2 are taken as zero and ψ is EID if

[
ψ(z2)− ψ(z1)

z2 − z1

]T [
Q S
ST R

] [
ψ(z2)− ψ(z1)

z2 − z1

]
≥ 0 (10)

for every z1, z2 ∈ D. In the square case where m = p, EID

encompasses several standard classes of mappings associated

with gradients of convex functions [30], including

(i) monotone: Q = 0, S = 1
2Im, R = 0,

(ii) ν-strongly monotone: Q = 0, S = 1
2Im, R = −νIm,

(iii) ρ-cocoercive: Q = −ρIm, S = 1
2Im, R = 0,

as well as γ-Lipschitz mappings with Q = −Im, S = 0, and

R = γ2Im.

A. Hill-Moylan Conditions for EID

Our first major result gives a version of Lemma 2.2 appro-

priate for EID systems. The Lyapunov construction is inspired

by [18], and provides a convenient parameterization of the EID

storage function family {Vx̄(x), x ∈ EΣ}.

Lemma 3.4: (Hill-Moylan Conditions for EID): Consider

the control-affine system Σ in (1). Let V : X → R≥0 be

continuously differentiable and convex, and for x̄ ∈ EΣ, let

Vx̄(x) := V (x) − V (x̄)−∇V (x̄)T(x− x̄) . (11)

The system Σ is EID with respect to the quadratic supply rate

w(u, y) in (5) with storage function family {Vx̄(x) , x̄ ∈ EΣ}
if and only if there exists an integer k > 0, a matrix W ∈
R
k×m, and a function ℓ : X × X → R

k such that

[∇V (x) −∇V (x̄)]T[f(x)− f(x̄)]

= [h(x)− h(x̄)]TQ[h(x)− h(x̄)]− ‖ℓ(x, x̄)‖22
(12a)

1

2
[∇V (x)−∇V (x̄)]TG = [h(x)− h(x̄)]T(QJ + S)

− ℓ(x, x̄)TW
(12b)

WTW = R+ JTS + STJ + JTQJ (12c)

for all (x, x̄) ∈ X × EΣ. The function ℓ(x, x̄) appearing in

(12a)–(12b) may always be chosen to have the form

ℓ(x, x̄) = l(x)− l(x̄) + Tq(x, x̄) ,

where l : X → R
k, the columns of T ∈ R

k×r with r =
dim(ker(WT)) form a basis for ker(WT), and q : X × X →
R
r satisfies q(x, x) = 0r for all x ∈ X .

From a procedural point of view, Lemma 3.4 says that if

one can find a convex function V (x) along with ℓ(x, x̄) and W
satisfying (12a)–(12c), then (11) parameterizes the entire EID

storage function family certifying EID with quadratic supply

rate (5). Here we have opted to state the result in terms of

the existence of these quantities for the particular EID storage

function Vx̄(x) in (11), rather than infer the existence of an

EID storage function family from an appropriately defined

input/output EID property. This choice conforms with how

storage functions are selected in practice, and highlights the

utility of the particular parameterization (11).

Remark 3.5: (Incremental Stability): The condition (12a)

strengthens the standard stability-like condition (6a), requiring

instead an incremental-stability-like property. To see why this

terminology is appropriate, consider the case of a quadratic

storage function V (x) = 1
2x

TPx, P ≻ 0, state measurement

h(x) = x, and Q ≺ 0. The first condition (12a) then implies

that

[P (x− x̄)]Tf(x) + [P (x̄− x)]Tf(x̄) ≤ −εVx̄(x) (13)

for some ε > 0. If this holds for all x, x̄ ∈ R
n, it follows

that Vx̄(x) =
1
2‖x− x̄‖2P is an incremental Lyapunov function

[31] for the unforced system ẋ = f(x). Alternatively, it can be

shown [32, Appendix A] that (13) implies the matrix inequality

(
∂f

∂x
(x)

)T

P + P

(
∂f

∂x
(x)

)
≺ 0 ,

for all x ∈ R
n, which is the Demidovich condition for

convergence/incremental stability/contraction [33]. We note

however that (11) is in general not an incremental Lyapunov

function. �

Proof of Lemma 3.4: Sufficiency: Let x̄ ∈ EΣ be arbitrary,

with associated equilibrium inputs/outputs given by (3). Con-

sider the storage function candidate (11). It follows from
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Lemma A.2 that Vx̄(x̄) = 0 and Vx̄(x) ≥ 0 for all x 6= x̄.

We compute that along system trajectories

V̇x̄ = [∇V (x) −∇V (x̄)]T[f(x) +Gu]

= [∇V (x) −∇V (x̄)]T[f(x)− f(x̄)]

+ [∇V (x)−∇V (x̄)]TG(u− ū)

(14)

where we have used that f(x̄) +Gū = 0n and, for notational

simplicity, suppressed the time-dependence. Adding the non-

negative quantity ‖ℓ(x, x̄)+W (u− ū)‖22 to the right-hand side

of the dissipation rate, we obtain

V̇x̄ ≤ [∇V (x) −∇V (x̄)]T[f(x)− f(x̄)]

+ ‖ℓ(x, x̄)‖22 + [∇V (x)−∇V (x̄)]TG(u− ū)

+ 2ℓ(x, x̄)TW (u− ū) + (u− ū)TWTW (u− ū) .

Inserting (12a) and (12c), we obtain

V̇x̄ ≤ [h(x) − h(x̄)]TQ[h(x)− h(x̄)]

+ [∇V (x) −∇V (x̄)]TG(u − ū)

+ 2ℓ(x, x̄)TW (u− ū) + (u − ū)TR̂(u− ū) ,

where R̂ = R+JTS+STJ +JTQJ . Inserting (12b) into the

dissipation inequality, we find

V̇x̄ ≤ [h(x) − h(x̄)]TQ[h(x)− h(x̄)]

+ (u− ū)TJTQJ(u− ū)

+2[h(x)− h(x̄)]T(QJ + S)(u− ū)

+ 2(u− ū)TSTJ(u− ū) + (u− ū)TR(u− ū) .

Inserting h(x) = y−Ju and h(x̄) = ȳ−Jū, collecting terms,

and simplifying, one arrives at V̇x̄ ≤ w(u − ū, y − ȳ) which

shows the system is EID.

Necessity: Assume Σ is EID with supply rate w(u, y) and

storage function (11), i.e., for each x̄ ∈ EΣ it holds that V̇x̄ ≤
w(u− ū, y− ȳ). Defining dx̄(x, u) := −V̇x̄+w(u− ū, y− ȳ),
we find that

0 ≤ dx̄(x, u) = −[∇V (x) −∇V (x̄)]T[f(x) +Gu]

+ (y − ȳ)TQ(y − ȳ) + (u− ū)TR(u− ū)

+ 2(y − ȳ)TS(u− ū)

Substituting for y and ȳ, after some manipulation one obtains

dx̄(x, u) =

[
1

u− ū

]T [
a(x, x̄) b(x)T − b(x̄)T

b(x)− b(x̄) R̂

]

︸ ︷︷ ︸
:=D(x,x̄)

[
1

u− ū

]

where

a(x, x̄) = −[∇V (x)−∇V (x̄)]T[f(x)− f(x̄)] ,

+ [h(x)− h(x̄)]TQ[h(x)− h(x̄)]

b(x)T = −1

2
∇V (x)TG+ h(x)T(QJ + S) ,

(15)

and R̂ is as before. Since dx̄(x, u) ≥ 0 for all u, we in fact

have that D(x, x̄) � 0 for all (x, x̄) [7, Lemma 4.1.3]; in

particular then a(x, x̄) ≥ 0 and R̂ � 0. For each pair (x, x̄),
the matrix D(x, x̄) may be factorized as

D(x, x̄) =

[
ℓ̃(x, x̄)T

W (x, x̄)T

] [
ℓ̃(x, x̄) W (x, x̄)

]
(16)

where ℓ̃ : X × X → R
k and W : X × X → R

k×m for

some nonnegative integer k.4 It follows by equating blocks of

D(x, x̄) that

ℓ̃(x, x̄)Tℓ̃(x, x̄) = a(x, x̄) (17a)

W (x, x̄)Tℓ̃(x, x̄) = b(x)− b(x̄) (17b)

W (x, x̄)TW (x, x̄) = R̂ (17c)

for all pairs (x, x̄). We now show that without loss of

generality, one may select W (x, x̄) = W as constant. From

Lemma A.5, (17c) holds if and only if W (x, x̄) = O(x, x̄)W
for an orthogonal matrix O(x, x̄) ∈ R

k×k and a constant

matrix W ∈ R
k×m. Defining ℓ(x, x̄) := O(x, x̄)Tℓ̃(x, x̄) and

inserting these expressions into (17), the orthogonal matrices

vanish and we find that

ℓ(x, x̄)Tℓ(x, x̄) = a(x, x̄) (18a)

WTℓ(x, x̄) = b(x)− b(x̄) (18b)

WTW = R̂ (18c)

which shows that we may indeed select W (x, x̄) = W
independent of (x, x̄). Substitution of the expressions for

a(x, x̄), b(x) and R̂ into (18a)–(18c) immediately leads to the

three equations (12a)–(12c). To show the final statement, note

from (15) that a(x, x) = 0, and hence it follows from (18b)

that ℓ(x, x) = 0k. Using Lemma A.6, the equation (18b) holds

if and only if

WT(ℓ(x1, x2) + ℓ(x2, x3) + ℓ(x3, x1)) = 0m (19)

for any triple (x1, x2, x3). With z ∈ R
k as an auxiliary

variable for brevity, observe that a particular solution of the

equation WTz = 0m in (19) is zpar = ℓ(x1, x2)+ ℓ(x2, x3)+
ℓ(x3, x1) = 0k. Using Lemma A.6 once more, this implies that

ℓ(x, x̄) = l(x)− l(x̄) for an appropriate function l : X → R
k.

Let r := dim(ker(WT)), let t1, . . . , tr ∈ R
k be a basis for

ker(WT), and set T :=
[
t1 · · · tr

]
. Then WTT = 0 and

the homogeneous solution to WTz = 0m can be written as

zhom = T [q(x1, x2) + q(x2, x3) + q(x3, x1)]

for some function q : X × X → R
r satisfying q(x, x) =

0r. Combining the particular and homogeneous solutions, it

follows that we may take ℓ(x, x̄) = l(x) − l(x̄) + Tq(x, x̄),
which completes the proof. �

The equation (12c) is identical to the third Hill-Moylan

condition (6c). When WT has full column rank, then the final

statement of Lemma 3.4 implies that ℓ(x, x̄) may always be

chosen in the form ℓ(x, x̄) = l(x) − l(x̄). In this case, the

second equation (12b) of Lemma 3.4 may be alternatively

written as

1

2
∇V (x)G = h(x)T(QJ + S)− l(x)TW + ξT

for a constant vector ξ ∈ R
m, which is quite similar to the sec-

ond Hill-Moylan condition (6b). As a special case of Lemma

4For example, if one uses an SVD decomposition then k can be chosen as
the maximum rank of D(x, x̄) over (x, x̄), and hence k ≤ m + 1. This is
just one option though; see [7, Chapter 4.1] for some further discussion.
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3.4, consider the supply rate w(u, y) = −yTy + γ2uTu; this

corresponds to Σ having a finite L2-gain less than or equal

to γ. The conditions of Lemma 3.4 for EID reduce to

[∇V (x)−∇V (x̄)]T[f(x)− f(x̄)] + ‖h(x)− h(x̄)‖22
= −‖ℓ(x, x̄)‖22

1

2
[∇V (x) −∇V (x̄)]TG = −[h(x)− h(x̄)]TJ − ℓ(x, x̄)TW

γ2Im − JTJ =WTW
(20)

which is an incremental nonlinear-bounded-real type result

(c.f. [4, Example 1]). The assumption for Lemma 3.4 that the

input and throughput matrices G and J are state-independent

allows for (12b)–(12c) to remain similar to the corresponding

equations in the standard Hill-Moylan result of Lemma 2.2.

We do not pursue the extension to state-dependent input and

throughout matrices here here, but see [21, Section 3.1] for

the case of scalar systems.

In [21, Example 3.1], the single-input single-output scalar

system ẋ = f(x) + u with output y = h(x) was shown to

be equilibrium-independent passive if f is continuous and

decreasing and h is continuous and increasing, with EIP

storage function family parameterized as

Vx̄(x) =

∫ x

x̄

[h(z)− h(x̄)] dz . (21)

Since h is increasing, there exists a continuously differentiable

convex function V : R → R such that h(x) = ∇V (x), and

(21) can be seen as a special case of the construction (11)

used in Lemma 3.4. Concerning the requirement that f be

decreasing, the following corollary of Lemma 3.4 generalizes

this idea to higher-dimensional systems.

Corollary 3.6: (Equilibrium-Independent Passive Sys-

tems): Consider the square control-affine nonlinear system

ẋ = f(x) +Gu , y = GT∇V (x) (22)

where V : Rn → R is continuously differentiable and strongly

convex. If the mapping −f ◦∇V −1 is monotone, then (22) is

equilibrium-independent passive with storage function (11).

Proof: Since V is continuously differentiable and strongly

convex, x 7→ ∇V (x) is both maximally and strongly mono-

tone, and is therefore a bijection on X [30, Example 22.9].

Therefore, f̃ := −f ◦ ∇V −1 is well-defined, and by assump-

tion satisfies

(x1 − x2)
T(f̃(x1)− f̃(x2)) ≥ 0 , x1, x2 ∈ X . (23)

For the system (22) with supply rate (Q,S,R) = (0, 12Im, 0)
one may quickly verify that (12b)–(12c) automatically hold

with W = 0, and therefore (12a) holds if and only if

[∇V (x)−∇V (x̄)]T[f(x)− f(x̄)] ≤ 0 (24)

for all (x, x̄) ∈ X × EΣ. Setting x1 := ∇V (x), x2 = ∇V (x̄),
we see that (23) implies (24), which shows the result. �

Remark 3.7: (Computational Verification of EID): While

appropriate functions V (x) for the Lyapunov construction (11)

can sometimes be chosen for a system based on intuition, a

suitable choice may not always be obvious. To verify the EID

property for a given nonlinear system (1) using Lemma 3.4, in

general one would seek to find a differentiable function V (x)
such is convex and establishes the dissipation inequality, i.e.,

[∇V (x) −∇V (x̄)]T(x− x̄) ≥ 0

[∇V (x) −∇V (x̄)]T[f(x) +Gu] ≤ w(u− ū, y − ȳ)

for all (x, x̄, u) with corresponding values for (y, ȳ, ū). For

LTI systems with quadratic storage functions, these constraints

reduce to finding a symmetric matrix P � 0 such that the left-

hand side of (7) is negative semidefinite; this is a linear matrix

inequality. When f(x) and h(x) are polynomial functions, the

search for a polynomial function V (x) certifying EID can be

cast as a sum-of-squares feasibility problem and solved via

semidefinite programming; see [21] for further discussion. �

B. Illustrative Examples

Our first example illustrates the usefulness of the Lyapunov

construction (11).

Example 3.8: (Port-Hamiltonian Systems): A port-

Hamiltonian system with state-independent input, dissipation,

and interconnection matrices G, R, and J takes the form

ẋ = [J −R]∇H(x) +Gu+ d

y = GT∇H(x) ,
(25)

where H : X → R≥0 is a convex function, d ∈ R
n is an

unknown constant disturbance, and J ,R ∈ R
n×n satisfy J =

−J T and R = RT � 0. The system from Example 3.1 is

a special case of the above port-Hamiltonian model. Forced

equilibria are determined by

EΣ = {x̄ ∈ X | ∃ū ∈ U s.t. [J −R]∇H(x̄)+Gū+d = 0n} ,

and therefore depend on the unknown disturbance d. With

V (x) = H(x), we have the EID storage candidate Vx̄(x) =
H(x) − H(x̄) − ∇H(x̄)T(x − x̄), and a direct computation

shows that

V̇x̄ = −(∇H(x)−∇H(x̄))TR(∇H(x) −∇H(x̄))

+ (y − ȳ)T(u− ū) .

Note that due to the incremental nature of the dissipation

inequality, the unknown constant disturbance d does not

appear. The conditions of Lemma 3.4 are satisfied with

(Q,S,R) = (0, 12Im, 0), k = n, W = 0n×m, and ℓ(x, x̄) =

R 1

2 [∇H(x)−∇H(x̄)]. Suppose that we now wish to regulate

the output of the system (25) to a desired set point ȳ ∈ Y;

we assume there exists an assignable equilibrium x̄ ∈ EΣ such

that ȳ = ky(x̄). Consider the PI controller with input e(t) and

output yc(t):

ζ̇ = e , yc = KPe+KIζ , (26)

where KP,KI ≻ 0. A quick calculation shows that with EID

storage function Wζ̄(ζ) =
1
2‖ζ − ζ̄‖2KI

, the PI controller (26)

satisfies the EID inequality

Ẇζ̄ = (yc − ȳc)
T(e− ē)− (e− ē)TKP(e− ē) .
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With the negative feedback interconnection e = y − ȳ,

u = −yc, we may add the EID dissipation inequalities to

obtain V̇x̄ + Ẇζ̄ ≤ −‖y − ȳ‖2KP
. From this point, one can

argue in a standard fashion that y(t) → ȳ; under additional

assumptions (see Section IV) global exponential stability of

the corresponding equilibrium x̄ ∈ EΣ can be obtained. This

example illustrates the utility of the EID property, namely that

tasks such as constant disturbance rejection, certification of

subsystem input-output properties, and assessment of closed-

loop stability become independent of the operating point being

considered. For some recent extensions of these ideas to the

case where J and R are state-dependent, see [34]. �

The next example shows how one may work backwards

from a desired supply rate using the algebraic conditions (12).

Example 3.9: (Gradient System w/ Feedthrough): Con-

sider the square (m = p = n) system

Σ :

{
τẋ = −∇φ(x) + gu

y = gx+ ju ,
(27)

where g, j > 0, τ ≻ 0 is diagonal, and φ : Rn → R is a

µ-strongly convex and differentiable function, i.e., there exists

µ > 0 such that

(x1 − x2)
T[∇φ(x1)−∇φ(x2)] ≥ µ‖x1 − x2‖22 (28)

for all x1, x2 ∈ R
n. We will use Lemma 3.4 to derive

conditions under which (27) is EID with respect to the supply

rate w(u, y) = −ρyTy − νuTu + uTy, for values ρ, ν ≥ 0 to

be determined. To begin, the condition (12c) becomes

WTW = (−ν + j − ρj2)In. (29)

Assuming that

j − ρj2 > ν , (30)

the right-hand side of (29) is positive definite, and we may take

k = n and W = (j − ρj2 − ν)1/2In. With V (x) = 1
2x

Tτx
and G = τ−1g, the condition (12b) reads (after substituting

W ) as

g(x− x̄) = (1− 2ρj) g(x− x̄)− 2
√
j − ρj2 − ν ℓ(x, x̄) .

We may therefore take ℓ(x, x̄) = β(x− x̄), where

β =
−gρj√

j − ρj2 − ν
.

Finally, to establish that the system is EID, we can in fact

enforce (12a) as an inequality. With f(x) = −τ−1∇φ(x),
after substitution of ℓ(x, x̄) (12a) becomes

−(x− x̄)T[∇φ(x) −∇φ(x̄)]
≤ −ρg2‖x− x̄‖22 − β2‖x− x̄‖22 .

(31)

Substituting (28) into (31), one finds that the required condi-

tion for (31) to be satisfied is µ ≥ ρg2 + β2, or equivalently

(after some algebra)

ρ ≤ µ

g2
ν − j

ν − j − µj2/g2
. (32)

The two inequalities (30),(32) define the achievable set of

EID dissipativity parameters (ν, ρ) as a function of (µ, j, g);

Condition (30)

Condition (32)

ν

ρ

j

1/j

µ
µj+1

Fig. 1: Feasible set for passivity parameters (ν, ρ) with g = 1.

for g = 1, this set is plotted in Figure 1. Note that the

input-passivity parameter ν can be increased by increasing

the feedthrough j, but only at the expense of lowering the

achievable size of the output-passivity parameter ρ. Moreover,

the mere presence of non-zero feedthrough j places limits on

achievable values of ρ, irrespective of the convexity parameter

µ. �

The final example of this section shows how EID may be

used to assess the input-output performance of a common

continuous-time optimization algorithm.

Example 3.10: (AHU Saddle-Point Algorithm): Consider

the constrained optimization problem

minimize
z∈Rn1

n1∑

i=1

φi(zi) +
1

2
(Az − b)TK(Az − b)

subject to Az = b ,

(33)

where A ∈ R
n2×n1 has full row rank, K = KT ≻ 0,

b ∈ R
n2 , and each map φi : R → R is µi-strongly convex

and differentiable. For simplicity, we set φ(z) =
∑n1

i=1 φi(zi).
The Lagrangian function is given by L(z, λ) = φ(z)+ 1

2 (Az−
b)TK(Az − b) + λT(Az − b), where λ ∈ R

n2 is a vector

of dual variables (multipliers). To calculate the optimizer,

the saddle-point or primal-dual algorithm [26], [35], [36]

performs gradient descent on the primal variables and gradient

ascent on the dual variables, which reduces to

ż = −∇φ(z)−ATK(Az − b)−ATλ , λ̇ = Az − b , (34)

with composite state vector x = (z, λ). Consider now the

associated input/output system

ż = −∇φ(z)−ATK(Az − b)−ATλ+ u

λ̇ = Az − b

y = z

(35)

We claim that (35) is EID with respect to the supply rate

w(u, y) = −yTy + γ2uTu for some γ to be determined. The

third condition in (20) gives that W = γIn, while with V (x) =
V (z, λ) = α

2 z
Tz + 1

2λ
Tλ, where α > 0, the second condition

in (20) yields ℓ(x, x̄) = − α
2γ (z − z̄). A quick computation

shows that

[∇V (x)−∇V (x̄)]T[f(x)− f(x̄)]

= −α(z − z̄)T[∇φ(z)−∇φ(z̄)] − α(z − z̄)TATKA(z − z̄)

≤ −αλmin(M +ATKA)‖z − z̄‖22 ,
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where M = diag(µ1, . . . , µn1
) is the diagonal matrix of

convexity coefficients. The first condition in (20) therefore will

hold with inequality sign if

αλmin(M +ATKA) ≥ 1 +
α2

4γ2
.

The choice α = 2γ2λmin(M +ATKA) makes this inequality

the tightest it can be, in which case it becomes

γ ≥ γ⋆ :=
1

λmin(M +ATKA)
. (36)

We conclude that the system is EID with the given supply

rate for any choice of γ ≥ γ⋆, and in particular, with γ =
γ⋆. This shows the system has equilibrium-independent L2-

gain less than or equal to γ⋆. As discussed in [26], γ⋆ can

in some situations be minimized by a judicious choice of the

free parameter matrix K . When K = 0, the L2-gain is limited

only by the convexity parameters M of the cost functions. �

IV. STABILITY OF EID SYSTEMS

This section presents internal and feedback stability results

for continuous-time EID systems. The results are natural

extensions of classical stability results for dissipative systems,

but have not been stated in the literature.

A. Internal Stability of EID Systems

Standard stability results for dissipative systems proceed

along the following lines. Consider the system Σ in (1) under

the assumptions of Section II-B. If the system is dissipative

with respect to the supply rate (5) with storage function V (x)
satisfying V (0n) = 0 and V (x) > 0 for x 6= 0n, then with

zero input the origin x = 0n is 1) stable if Q � 0, 2)

asymptotically stable if Q ≺ 0 and Σ is zero-state observable5,

and 3) globally asymptotically stable if Q ≺ 0, Σ is zero-state

observable, and V (x) → ∞ as ‖x‖2 → ∞ (i.e., V is radially

unbounded).6

We begin with an observability definition.

Definition 4.1: (Equilibrium-Independent Observability):

The system (1) is equilibrium-independent observable if, for

every x̄ ∈ EΣ with associated equilibrium input/output vectors

ū = ku(x̄) and ȳ = ky(x̄), no trajectory of ẋ = f(x) + Gū
can remain within the set {x ∈ X | h(x) + Jū = ȳ} other

than the equilibrium trajectory x(t) = x̄.

Definition 4.1 is the natural extension of zero-state observ-

ability to EID systems, requiring that every forced system be

“zero-state” observable. Compared to the general discussion

of forced equilibria in Section II-A, Definition 4.1 rules out

the possibility that two distinct equilibria x̄, x̃ ∈ EΣ yield the

same input/output pairs through (3).

Proposition 4.2: (Observability & Equilibrium Unique-

ness): If the system (1) is equilibrium-independent observable,

then for a given equilibrium I/O pair (ū, ȳ) ∈ KΣ, there is

exactly one x̄ ∈ EΣ satisfying (3).

5The system is said to be zero-state observable if no solution of ẋ = f(x)
can stay within the set {x | h(x) = 0p} other than x(t) = 0n.

6We will restrict our attention to cases where the storage function has a
strict local minimum at the equilibrium point.

Proof: Let (ū, ȳ) ∈ KΣ be an equilibrium I/O pair and sup-

pose that x̄ and x̄′ are distinct points both satisfying (3). Then

x(t) = x̄ and x(t) = x̄′ are both trajectories of ẋ = f(x)+Gū,

and both remain within the set {x ∈ X | h(x) + Jū = ȳ},

which contradicts equilibrium-independent observability. �

Lemma 4.3: (Internal Stability of EID Systems): Suppose

that a system Σ satisfies the conditions of Lemma 3.4 with

V (x) strictly convex and Q ≺ 0. If Σ is equilibrium-

independent observable, then for every x̄ ∈ EΣ, x = x̄ is

a locally asymptotically stable equilibrium of the associated

forced system ẋ = f(x) +Gū. Moreover, if V (x) in Lemma

3.4 is strongly convex, then x̄ is globally asymptotically stable.

Proof: Fix an arbitrary x̄ ∈ EΣ with associated ū and ȳ, and

let Vx̄(x) be as in Lemma 3.4. Since Vx̄(x̄) = 0 and Vx̄(x) > 0
for x 6= x̄ (Lemma A.2(i)), Vx̄(x) is a Lyapunov candidate and

satisfies the dissipation inequality

V̇x̄(x(t)) ≤ (y(t)− ȳ)TQ(y(t)− ȳ)

along trajectories of the forced system ẋ = f(x) + Gū.

Since Q ≺ 0, there exists an α > 0 such that V̇x̄(x(t)) ≤
−α‖y(t) − ȳ‖22. Standard arguments then show that y(t) =
h(x(t)) + Jū converges to ȳ which, due to equilibrium-

independent observability, implies that x(t) → x̄ showing

local asymptotic stability. When V (x) is µ-strongly convex,

Lemma A.2(ii) shows that Vx̄(x) ≥ µ
2 ‖x−x̄‖22, and thus Vx̄(x)

is radially unbounded; standard results (e.g., [5, Corollary 2.2])

then yield global asymptotic stability of x̄. �

Variations on this result are possible, for example, by

weakening the observability requirement to an appropriate

notion of equilibrium-independent detectability; we omit the

details.

B. Interconnection and Feedback Stability

Consider now two control-affine systems

Σi :

{
ẋi = fi(xi) +Giui

yi = hi(xi) + Jiui

i ∈ {1, 2}, with compatible input/output spaces U1 = Y2 =
R
m and Y1 = U2 = R

p, subject to the negative feedback

interconnection of Figure 2:

u1 = v1 − y2 , u2 = v2 + y1 .

As is standard, we assume that Ip + J1J2 is nonsingular,

which ensures that the feedback interconnection is well-posed.

Given constant input vectors v̄1, v̄2, the conditions for a forced

equilibrium of the closed-loop system are that

ȳ1 ∈ KΣ1
(v̄1 − ȳ2)

ȳ2 ∈ KΣ2
(v̄2 + ȳ1) .

(37)

Lemma A.3 in the appendix presents sufficient conditions for

square EID systems which guarantee that for any pair of

constant inputs (v̄1, v̄2), the simultaneous inclusions (37) are

uniquely solvable for corresponding outputs (ȳ1, ȳ2). We will

make explicit use of this lemma in Section IV-C. For now,

we simply assume that (37) yields a well-defined equilibrium
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Σ1

Σ2

v1

v2

y1

+
y2

−

Fig. 2: Feedback interconnection of two EID systems.

input-output relation KΣcl
⊂ (U1 × U2) × (Y1 × Y2) for the

closed-loop system.

Theorem 4.4: (Dissipativity and Stability of EID Feed-

back Systems): Consider the feedback interconnection of

Figure 2. Suppose that

• Σ1 and Σ2 satisfy the conditions of Lemma 3.4 with con-

vex functions Vi(xi) and supply parameters (Qi, Si, Ri)
for i ∈ {1, 2};

• for every constant (v̄1, v̄2), the inclusions (37) possess a

unique solution (ȳ1, ȳ2), with (x̄1, x̄2) ∈ EΣcl
:= EΣ1

×
EΣ2

being a corresponding closed-loop equilibrium point.

Then for any κ > 0, the closed-loop system with inputs

(v1, v2) and outputs (y1, y2) is EID with supply parameters

Qcl =

[
Q1 + κR2 −S1 + κST

2

−ST

1 + κS2 R1 + κQ2

]

Scl =

[
S1 R2

R1 S2

]
, Rcl =

[
R1 0

0 R2

]
.

and storage function Vx̄(x) = V1,x̄1
(x1) + κV2,x̄2

(x2). More-

over, if

• V1(x1) and V2(x2) are strictly convex,

• Σ1 and Σ2 are equilibrium-independent observable, and

• there exists κ > 0 such that Qcl ≺ 0,

then x̄ = (x̄1, x̄2) ∈ EΣcl
with associated constant inputs

(v̄1, v̄2) = ku(x̄) is the unique closed-loop equilibrium point

for the constant inputs (v1, v2) = (v̄1, v̄2) and is locally

asymptotically stable. If the respective functions V1(x1) and

V2(x2) from Lemma 3.4 are strongly convex, then the previous

statement is strengthened to global asymptotic stability of x̄.

Proof: A simple calculation shows the closed-loop system

Σcl may be written as ẋ = f(x)+Gv, y = h(x)+ Jv, where

f =

[
f1(x1)−G1(h2(x2) + J2h1(x1))
f2(x2) +G2(h1(x1) + J1h2(x2))

]
, J =

[
J1 0

0 J2

]

G =

[
G1 −G1J2
G2J1 G2

]
, h =

[
Ip −J1
J2 Im

] [
h1(x1)
h2(x2)

]

If G⊥
1 and G⊥

2 are the full-rank left annihilators of G1 and

G2, then G⊥ = blkdiag(G⊥
1 , G

⊥
2 ) serves as a full-rank left

annihilator for G, and

EΣcl
= {x = (x1, x2) | G⊥f(x) = 0n1+n2

}
= {x | G⊥

1 f1(x1) = 0n1
and G⊥

2 f2(x2) = 0n2
}

= EΣ1
× EΣ2

.

For any x̄ ∈ EΣcl
, taking Vx̄(x) = V1,x̄1

(x1) + κV2,x̄2
(x2)

and differentiating leads immediately to an EID dissipa-

tion inequality V̇x̄(x) ≤ w(v − v̄, y − ȳ) with parameters

(Qcl, Scl, Rcl) as given. The final statement on stability follows

by applying Lemma 4.3 to the closed-loop system. �

C. Equilibrium-Independent Absolute Stability

We now consider the feedback system shown in Figure 3,

consisting of a square (U = Y = R
m) system Σ in feedback

with a static nonlinear element ψ : Rm → R
m; we assume

ψ is sufficiently smooth to ensure well-defined closed-loop

trajectories.

Σ

ψ

0m y

−

Fig. 3: System with static feedback nonlinearity.

Classically, the absolute stability problem is to determine

conditions under which the feedback system in Figure 3 is

internally stable for all memoryless nonlinearities ψ satisfying

a sector condition. Crucially, in the standard formulation, Σ is

assumed to have an equilibrium point at the origin, and ψ is

assumed to satisfy ψ(0m) = 0m; these assumptions ensure

that the feedback interconnection has an unforced equilib-

rium point at the origin.7 The development of equilibrium-

independent dissipativity allows us to consider a sensible

variant on this problem, where rather than being assumed,

the existence of a closed-loop equilibrium point is inferred

from the EID properties of the subsystems. For simplicity of

exposition, we assume that J = 0 (Σ has no feedthrough).

Theorem 4.5: (Equilibrium-Independent Circle Crite-

rion): Consider the feedback system in Figure 3, where Σ
is square (m = p) and is equilibrium-independent observable.

Assume that

(i) the nonlinearity ψ : Rm → R
m satisfies the incremental

dissipation inequality (10), with parameters8

(Qψ, Sψ, Rψ) =

(
−Im,

K1 +K2

2
,−K1K2

)
, (38)

where K1,K2 are diagonal and K = K2 −K1 ≻ 0;

(ii) the system

Σ′ :

{
ẋ = f(x) −GK1h(x) +Guℓ

yℓ = Kh(x) + uℓ
(39)

is EID, satisfying Lemma 3.4 with V (x) strictly convex

and supply rate (5), with parameters

(QΣ′ , SΣ′ , RΣ′) =

(
−εIm,

1

2
Im, 0

)
(40)

7Typically Σ is further assumed to be an LTI system.
8Equivalently, ψ satisfies the incremental sector condition

[ψ(z2)− ψ(z1)−K1(z2 − z1)]
T[ψ(z2)− ψ(z1)−K2(z2 − z1)] ≤ 0 .
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for some ε > 0 .

Then the closed-loop system possesses a unique and locally

asymptotically stable equilibrium point. If V (x) is strongly

convex, then the equilibrium is globally asymptotically stable.

Proof: Through a standard loop transformation (see, e.g., [37,

Pg. 267]), we may transform the feedback interconnection of

Figure 3 to the feedback interconnection in Figure 4. The new

nonlinearity ψ′ : R
m → R

m in the feedback path satisfies

the incremental dissipation inequality (10) with parameters

(Qψ′ , Sψ′ , Rψ′) =
(
0, 12Im, 0

)
, i.e., ψ′ is monotone [37, Pg.

233].

Σ′

ψ K−1

K1

0m uℓ yℓ

−

− +

ψ′

Fig. 4: Loop-transformed feedback system.

We first address the equivalence of equilibria between the

two feedback loops, and the existence of an equilibrium point.

Equilibria x̄ of Figure 3 are determined by

0n = f(x̄)−Gψ(ȳ)

ȳ = h(x̄)
⇔ 0n = f(x̄)−Gψ(h(x̄)) (41)

while equilibria x̃ of Figure 4 are determined by

0n = f(x̃)−GK1h(x̃)−Gψ′(ỹℓ) (42a)

ỹℓ = Kh(x̃)− ψ′(ỹℓ) (42b)

Since ψ′ is continuous and monotone, the mapping z 7→ z +
ψ′(z) is continuous and 1-strongly monotone, and therefore for

every b ∈ R
m the equation b = γ(z) := z+ψ′(z) has a unique

solution; we denote this solution by z = γ−1(b). It follows

that (42b) may be uniquely solved for ỹℓ = γ−1(Kh(x̃)), and

(42) is therefore equivalent to the single equation

0n = f(x̃)−GX(h(x̃)) , (43)

where X(h) := K1h + ψ′(γ−1(Kh)). Comparing (41) and

(43), equivalence of equilibria will follow if ψ = X . To show

this, note from Figure 4 that ψ′ is defined by

ψ′(z′) = ψ(K−1(z′ + ψ′(z′)))−K1K
−1(z′ + ψ′(z′)) .

Substituting γ(z′) = z′ + ψ′(z′), we find that

ψ′(z′) = ψ(K−1γ(z′))−K1K
−1γ(z′) .

Changing variables now to h := γ−1(Kz′), this further

simplifies to

ψ′(γ−1(Kh)) = ψ(h)−K1h

from which it follows by comparison that ψ(h) = X(h).
Therefore, the equilibrium sets of the two feedback systems

are equal. To address existence and uniqueness of an equi-

librium point, note that since ψ′ is a continuous monotone

function, Kψ′ = ψ′ is maximally monotone (Lemma A.1).

Moreover, since Σ′ is EID with supply rate parameters (40),

KΣ′ is ε-cocoercive, and is therefore maximally monotone

(Lemma A.1). Applying Lemma A.3 with KΣ1
= KΣ′ and

KΣ2
= Kψ′ , we conclude that the closed-loop system in Figure

4 possesses a unique equilibrium I/O pair (ūℓ, ȳℓ) ∈ KΣ′

with −ūℓ = ψ′(ȳℓ). Therefore, by definition, there exists an

associated equilibrium point x̄ ∈ EΣ′ , and this equilibrium

point is unique by Proposition 4.2. By the previous arguments

on equivalence of equilibria between the systems, x̄ ∈ EΣ as

well.

Using the EID storage function Vx̄(x), we compute that

V̇x̄ ≤ −ε‖yℓ − ȳℓ‖22 + (yℓ − ȳℓ)
T(uℓ − ūℓ)

= −ε‖yℓ − ȳℓ‖22 − (yℓ − ȳℓ)
T(ψ′(yℓ)− ψ′(ȳℓ))

≤ −ε‖yℓ − ȳℓ‖22 ,

where we have used that ψ′ is monotone; the rest of the result

follows from Lemma 4.3. �

Example 4.6: (SMIB Power System): Consider the single-

machine infinite-bus (SMIB) power system model

θ̇ = ω ,

Mω̇ = Pm − bV 2 sin(θ) −Dω + u ,

y = ω

where θ ∈ R is the rotor angle, ω ∈ R is the generator fre-

quency, Pm ∈ R is the mechanical power, and M,D, b, V > 0;

let y = ω be the output. By inspection, the set of assignable

equilibrium points is

EΣ = {(θ̄, ω̄) | ω̄ = 0, θ̄ ∈ R} ,

with corresponding input ū = ku(θ̄) = bV 2 sin(θ̄) − Pm. For

a fixed Γ ∈ [0, π/2), we restrict our attention to equilibria in

the set Θ(Γ) × {0} ⊂ EΣ where Θ(Γ) = {θ | |θ| ≤ Γ}; this

ensures that the nonlinearity sin(·) is strongly monotone in

a neighbourhood of any equilibrium θ̄ ∈ Θ(Γ). We further

assume that |Pm| < bV 2 sin(Γ), which is necessary and

sufficient for the existence of an equilibrium θ̄ ∈ Θ(Γ)
when u = 0. Consider now the frequency feedback control

u = −ψ(ω), where ψ : R → R is incrementally in the

sector [α, β] with α < β.9 Following Theorem 4.5, we

examine the loop-transformed system (39). Let V (θ, ω) =
1
2Mω2 + bV 2(1 − cos(θ)); this function is strongly convex

in a neighbourhood of (θ̄, 0) ∈ Θ(Γ) × {0}. Using (11),

a simple computation shows that (39) is quadratically EID

with parameters (40), where ε = (D + α)/(2D + β + α). It

follows that the closed-loop equilibrium point (θ̄, 0) is locally

asymptotically stable for α > −D and α < β < +∞. �

9In this particular case, the interconnection preserves the open-loop equi-
librium point (θ̄, ω̄) ∈ ∆(Γ) × {0}.
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V. EQUILIBRIUM-INDEPENDENT DISSIPATIVITY FOR

DISCRETE-TIME CONTROL-AFFINE SYSTEMS

In this section we consider discrete-time control-affine non-

linear systems with constant input and throughput matrices

Σ :

{
xt+1 = f(xt) +Gut

yt = h(xt) + Jut
(44)

where t ∈ Z≥0 is the time index. Similarly to Section II-A,

the set of assignable equilibrium points for (44) is

EΣ :=

{
X if m = n

{x̄ ∈ X | G⊥(x̄ − f(x̄)) = 0n−m} if m < n

with equilibrium-to-input map ū = ku(x̄) = (GTG)−1GT(x̄−
f(x̄)) and equilibrium-to-output map ȳ = ky(x̄) = h(x̄)+Jū.

A. Review of Discrete-Time Dissipativity

In this subsection we make the additional assumptions that

f(0n) = 0n and h(0n) = 0p. Mirroring the definitions from

Section II-B, the system (44) is dissipative with respect to the

supply rate (5) if there exists a storage function V : X → R≥0

with V (0n) = 0 such that

V (xt+1)− V (xt) ≤ w(ut, yt) ,

for all t ∈ Z≥0 and all inputs u ∈ ℓm2e[0,∞).

While the characterization of continuous-time quadratically

dissipative control-affine systems is well understood, the situ-

ation for discrete-time control-affine systems is less settled.

The cases of lossless and passive systems were studied in

[38], [39]. Dissipativity with general quadratic supply rates

was studied in [40] and further generalized to arbitrary supply

rates in [41], [42], which is the most general result the author

is aware of. All useful known results however are restricted to

the situation where the storage function V (xt+1) = V (f(xt)+
Gut) evaluated at the next time step is a quadratic function

of ut. Under this restriction, the following result is known.

Lemma 5.1: (Discrete-Time Hill-Moylan Conditions

[42]): Consider the control-affine system Σ in (44). Suppose

there exists a twice continuously-differentiable function V :
X → R≥0 such that V (f(x) +Gu) is quadratic in u. Then Σ
is dissipative with respect to the supply rate (5) with storage

function V (x) if and only if there exists an integer k > 0 and

continuous functions l : X → R
k, W : X → R

k×m, such that

V (f(x)) − V (x) = h(x)TQh(x)− ‖l(x)‖22 (45a)

1

2
∇V (f(x))TG = h(x)T(QJ + S)−W (x)Tl(x) (45b)

W (x)TW (x) = R̂− 1

2
GT[∇2V (f(x))]G , (45c)

where R̂ = R+ JTS + STJ + JTQJ .

B. Discrete-Time Equlibrium-Independent Dissipativity

We begin with the key definition.

Definition 5.2: (Discrete-Time EID): The control-affine

system (44) is equilibrium-independent dissipative (EID) with

supply rate w(u, y) if, for every equilibrium x̄ ∈ EΣ, there

exists a storage function Vx̄ : X → R≥0 such that Vx̄(x̄) = 0
and

Vx̄(xt+1)− Vx̄(xt) ≤ w(ut − ū, yt − ȳ) , (46)

for all t ∈ Z≥0 and all inputs u ∈ ℓm2e[0,∞), where ū = ku(x̄),
ȳ = ky(x̄).

Lemma 3.3 holds for discrete-time systems without changes.

To go from dissipativity to equilibrum-independent dissipativ-

ity for continuous-time systems in Section III, we were obliged

to (i) strengthen the requirements on the storage function (in

the continuous-time case, convexity was assumed), and (ii)

replace the first two Hill-Moylan conditions (6a)–(6b) with

incremental variants. To obtain similar results for discrete-

time, we will be obliged to do the same. Here in discrete-time,

we strengthen the requirement that V (f(x)+Gu) be quadratic

in u to requiring quadratic storage functions V (x) = xTPx.

Lemma 5.3: (Conditions for Discrete-Time EID): Con-

sider the discrete-time control-affine system Σ in (44). Let

P = PT ∈ R
n×n be positive semidefinite, and for x̄ ∈ EΣ, let

Vx̄(x) := ‖x− x̄‖2P . The system Σ is EID with respect to the

supply rate w(u, y) in (5) with storage function Vx̄(x) if and

only if there exists an integer k > 0, a matrix W ∈ R
k×m

and a continuous function ℓ : X × X → R
k such that

‖f(x)−f(x̄)‖2P − ‖x− x̄‖2P = −‖ℓ(x, x̄)‖22
+ [h(x)− h(x̄)]TQ[h(x)− h(x̄)]

(47a)

[f(x) − f(x̄)]TPG = [h(x) − h(x̄)]T(QJ + S)

−ℓ(x, x̄)TW
(47b)

WTW = R̂−GTPG (47c)

where R̂ = R + JTS + STJ + JTQJ . The function ℓ(x, x̄)
appearing in (12a)–(12b) may always be chosen to have the

form

ℓ(x, x̄) = l(x)− l(x̄) + Tq(x, x̄) ,

where l : X → R
k, the columns of T ∈ R

k×r with r =
dim(ker(WT)) form a basis for ker(WT), and q : X × X →
R
r satisfies q(x, x) = 0r for all x ∈ X .

Proof: See appendix. �

Equation (47c) is the third condition from Lemma 5.1,

specialized to a quadratic storage function, while (47a)–(47b)

are incremental variants of the previous conditions (45a)–

(45b). To interpret the new condition (47a), consider the case

where P ≻ 0 and Q � 0. Then (47a) implies that

‖f(x)− f(x̄)‖2P ≤ ‖x− x̄‖2P .
for all (x, x̄) ∈ X × EΣ. If this holds for all x, x̄ ∈ X ,

then f is non-expansive on X in the norm ‖ · ‖P . Thus,

Lemma 5.3 replaces the stability-like condition (45a) with

the new incremental-stability-like condition (47a). Internal and

feedback stability results for EID systems can be derived in
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the discrete-time case just as they were in continuous-time in

Section IV; we omit the details, but illustrate the application

of these results with an example.

Example 5.4: (Input/Output Gradient Method): Consider

the unconstrained optimization problem

minimize
x∈Rn

φ(x) (48)

where φ : Rn → R is differentiable, µ-strongly convex and

∇φ is L-Lipschitz, with 0 < µ ≤ L. Let us define an

input/output gradient method for (48):

xt+1 = xt − α(∇φ(xt)− vt)

yt = xt
(49)

where α > 0 is the step size and v ∈ ℓn2e[0,∞) is an auxiliary

input. We interpret v as a disturbance to (or error in) the

calculated gradient ∇φ(xt), with v = 0m recovering the usual

gradient method [43, Sec. 1.2]. A standard analysis from the

optimization literature when v = 0m shows that, under the

stated assumptions, the gradient method (49) converges to the

unique global minimizer of φ if α < 2
L [43, Prop. 1.2.3].

We will show that this result can be obtained via EID theory.

To begin, the system (49) can be considered as the negative

feedback interconnection of the LTI system

xt+1 = xt + αut

yt = xt
(50)

with the static nonlinearity ỹt = ∇φ(ũt), i.e., the interconnec-

tion ut = −∇φ(yt) + vt. Regarding (50), note that ū = 0n is

the only possible equilibrium input. Consider now the function

V (x) = 1
2α‖x‖22, leading to the candidate EID storage function

family Vx̄(x) =
1
2α‖x−x̄‖22. A simple computation shows that

along trajectories of (50),

Vx̄(xt+1)− Vx̄(xt) = (yt − ȳ)Tut +
α

2
uTt ut . (51)

Therefore, (50) is EID with supply parameters (Q,S,R) =
(0, 12In,

α
2 In).

Since φ is µ-strongly convex, ∇φ is µ-strongly mono-

tone and satisfies the EID inequality (10) with (Q,S,R) =
(0, 12In,−µIn). Moreover, since ∇φ is both monotone and

L-Lipschitz, it is also 1
L -cocoercive [30, Corollary 18.16],

and therefore ∇φ satisfies a second EID inequality with

(Q,S,R) = (− 1
LIn,

1
2In, 0). Taking a convex combination

of these two EID inequalities, it follows that for any λ ∈
[0, 1], ∇φ satisfies the EID inequality (10) with (Q,S,R) =
(−λ 1

LIn,
1
2In,−(1−λ)µIn). Applying (the discrete-time ana-

log of) Theorem 4.4, it follows that for any λ ∈ [0, 1], the

interconnection with input vt and outputs (yt, ỹt) is EID with

supply rate (Qcl, Scl, Rcl) given by

Qcl = −
[
(1 − λ)µ 0

0 λ
L − α

2

]
, Scl =

[
1/2
α/2

]
, Rcl =

α

2
.

The closed-loop system is internally stable if Qcl ≺ 0, which

is true if and only if λ ∈ (0, 1) and 0 < α < αcrit(λ) :=
2
Lλ.

Maximizing the upper bound αcrit(λ) over λ ∈ (0, 1), we see

that α ∈ (0, 2
L) is sufficient for stability, which recovers the

known step-size result.

Moving beyond stability to input-output performance, we

can examine the equilibrium-independent ℓ2-gain for the map-

ping vt 7→ yt = xt, as a measure of robustness to disturbances.

For this mapping, we set λ = 0 and therefore have EID with

respect to the supply rate

w(v, y) = −µyTy + yTv +
α

2
vTv .

Applying Lemma A.4 (see appendix), we conclude that the

I/O mapping v 7→ x has finite equilibrium-independent ℓ2-

gain, bounded as

‖Σv 7→x‖2ℓ2 ≤ γ2 :=
1

µ2

µα2 + 1+
√
2µα+1
4

1− 1
1+

√
2µα+1

. (52)

Note that the Lipschitz constant L of ϕ does not enter

explicitly10 into this bound, which depends only on the strong

convexity parameter µ and the step size α. The upper bound

is a monotonically increasing function of α; small step sizes

therefore improve the worst-case I/O performance, but will

also lead to slower convergence. Finally, we note that the

bound satisfies γ → 1/µ as α → 0 (c.f. [26, Theorem 4.1]).

Therefore, input-output performance is ultimately limited by

the modulus of strong convexity of φ. �

VI. CONCLUSIONS

This paper has presented a systematic treatment of

equilibrium-independent dissipativity for a common class of

control-affine nonlinear systems. We have provided a Hill-

Moylan-type characterization of EID for both continuous and

discrete-time systems, presented some associated internal and

feedback stability results, and applied the results to examples

in both continuous and discrete time.

Future work will explore applications of these results to

the analysis and control of large-scale cyber-physical systems

[45], in particular to applications in power systems. For

such applications, extending the present results to differential-

algebraic systems would be desirable. Another key direction

is to further apply EID and the associated Hill-Moylan con-

ditions developed here to the analysis and design of convex

optimization algorithms. In this latter context, an EID-based

approach seems particularly well suited due to the presence of

monotone nonlinearities, and similar to [44] may provide an

intuitive framework for both certifying and improving algo-

rithm performance. Treating EID from a purely input/output

point of view is also of interest, as is developing local versions

of the results herein.
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APPENDIX

SUPPORTING LEMMAS AND PROOFS

Lemma A.1: (Maximal Monotonicity of KΣ): Suppose that

the equilibrium I/O relation KΣ ⊂ R
m × R

m for a square

continuous-time system (1) (resp. discrete-time system (44))

system is monotone. Then KΣ is maximally monotone if

(i) KΣ is ρ-cocoercive with ρ > 0, or

(ii) K−1
u ⊆ R

m × R
n is upper hemicontinuous, or

(iii) f is a homeomorphism (resp. x 7→ f(x) − x is a

homeomorphism), or

(iv) f is the zero map (resp. the identity map).

Proof: (i): If KΣ is monotone and ρ-cocoercive, then it

is ρ−1-Lipschitz, and is therefore a continuous mapping;

continuous monotone mappings are maximally monotone [30,

Corollary 20.25]. (ii): If K−1
u is upper hemicontinuous, then

KΣ = ky ◦ K−1
u is also upper hemicontinuous, and monotone

upper hemicontinuous relations are maximally monotone [30,

Prop. 20.24]. (iii): If f (resp. F (x) := f(x) − x) is a

homeomorphism, then for any ū ∈ R
m there exists x̄ ∈ R

n

satisfying the equilibrium equations 0n = f(x̄) + Gū in

continuous-time or 0n = F (x̄) + Gū in discrete-time. In

particular, the solution is a continuous function of ū and is

given by x̄ = k−1
u (ū) = f−1(−Gū) (resp. x̄ = F−1(−Gū)).

It follows that KΣ = ky ◦ k−1
u is a continuous monotone

mapping, and is therefore maximally monotone [30, Cor.

20.25]. (iv): If f is the zero map (resp. the identity map), then

K−1
u = {(ū, x̄) | ū = 0m}, which is upper hemicontinuous,

and the result follows from (ii). �

Lemma A.2: (Bregman Divergence Properties): Let V :
R
n → R be differentiable and for z ∈ R

n let Vz(x) := V (x)−
V (z)−∇V (z)T(x− z). If V is (strictly, µ-strongly) convex,

then

(i) Vz(x) ≥ 0 (resp. Vz(x) > 0, Vz(x) ≥ µ
2 ‖x− z‖22) for all

x 6= z;

(ii) x 7−→ Vz(x) is (strictly, strongly) convex;

Proof: Clearly Vz(z) = 0. That Vz(x) ≥ 0 for x 6= z
follows immediately from convexity, since Vz(x) = V (x) −
[V (z)+∇V (z)T(x−z)] is the difference between V (x) and its

linear approximation at z, with strict inequality if V is strictly

convex. Strong convexity of V (x) is equivalent to

V (x)− V (z) ≥ ∇V (z)T(x− z) +
µ

2
‖x− z‖22

which immediately shows that Vz(x) ≥ µ
2 ‖x − z‖22. Con-

vexity of x 7→ Vz(x) follows by directly checking that

Vz(x) − Vz(x
′) − ∇Vz(x′)T(x − x′) ≥ 0 for all x, x′ ∈ R

n,

with strict inequality when V is strictly convex, and with zero

replaced by µ
2 ‖x− x′‖22 when V is µ-strongly convex. �

Lemma A.3: (Intersecting Monotone Relations): Let

KΣ1
⊆ R

m × R
m and KΣ2

⊆ R
m × R

m be two maximally

monotone relations, each satisfying the dissipation inequal-

ity (9) with parameters (Q1,
1
2Im, R1) and (Q2,

1
2Im, R2),

respectively. For any v1, v2 ∈ R
m, the pair of simultaneous

inclusions

y1 ∈ KΣ1
(v1 − y2) , y2 ∈ KΣ2

(v2 + y1) , (53)

possess a unique solution if

R2 +Q1 ≺ 0 or R1 +Q2 ≺ 0 .

Proof: Let v1, v2 ∈ R
m be arbitrary. Through simple elimi-

nation, the pair of inclusions (53) is equivalent to either of the

two inclusions

v1 ∈ F (y1) := KΣ2
(y1 + v2) +K−1

Σ1
(y1) (54a)

v2 ∈ G(y2) := K−1
Σ2

(y2)−KΣ1
(−y2 + v1) (54b)

where K−1
Σ1

= {(v, u) | (u, v) ∈ KΣ1
} is the inverse relation

of KΣ1
, and similarly for KΣ2

. Note that since KΣ1
and KΣ2

are maximally monotone, we have that Q1, R1, Q2, R2 � 0.

Consider first the inclusion for F . Since KΣ1
and KΣ2

are

maximally monotone, it follows that so is F [30, Prop 20.22],

which satisfies the dissipation inequality (9) with parameters

(R2+Q1,
1
2Im, 0). By (i) then, F is µ-strongly monotone with

µ = −λmax(R2 +Q1) > 0, and the inclusion (54a) possesses

a unique solution [30, Example 22.9]. The second condition

follows by applying analogous arguments to the relation G.

�

Proof of Lemma 5.3: Sufficiency: For (x, x̄) ∈ X × EΣ, we

compute

∆Vx̄ := Vx̄(f(x) +Gu)− Vx̄(x)

= ‖f(x) +Gu− x̄‖2P − ‖x− x̄‖2P
= ‖f(x)− f(x̄) +G(u− ū)‖2P − ‖x− x̄‖2P
= ‖f(x)− f(x̄)‖2P − ‖x− x̄‖2P
+ 2[f(x)− f(x̄)]TPG(u− ū)

+ (u− ū)TGTPG(u− ū) .

Substituting (47a) and (47c), we find that

∆Vx̄ = [h(x) − h(x̄)]TQ[h(x)− h(x̄)]

− ‖ℓ(x, x̄)‖22 + 2[f(x)− f(x̄)]TPG(u − ū)

+ (u− ū)TR̂(u− ū)− (u− ū)TWTW (u − ū) .

Substituting (47b), we further obtain

∆Vx̄ = [h(x)− h(x̄)]TQ[h(x)− h(x̄)]

−‖ℓ(x, x̄‖22 − 2ℓ(x, x̄)TW (u− ū)

+ 2[h(x)− h(x̄)]T(QJ + S)(u− ū)

+ (u− ū)TR̂(u− ū)− (u− ū)TWTW (u− ū)
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Adding the nonnegative quantity ‖ℓ(x, x̄) +W (u− ū)‖22 to

the right-hand side of the dissipation equality, after canceling

terms we obtain the bound

∆Vx̄ ≤ [h(x) − h(x̄)]TQ[h(x)− h(x̄)]

+ (u− ū)TR̂(u − ū)

+ 2[h(x)− h(x̄)]T(QJ + S)(u− ū)

Substituting h(x) = y − Ju and collecting terms yields the

desired dissipation inequality ∆Vx̄ ≤ w(u− ū, y − ȳ).

Necessity: Suppose that Σ is EID with the supply rate (5),

i.e., for each x̄ ∈ EΣ it holds that Vx̄(f(x) +Gu)− Vx̄(x) ≤
w(u− ū, y − ȳ). Define the dissipation function

dx̄(x, u) := −[Vx̄(f(x) +Gu)− Vx̄(x)] + w(u − ū, y − ȳ)

which by construction is nonnegative. Using the definition of

Vx̄(x) and x̄ = f(x̄) + Gū, substituting for y and ȳ, and

collecting terms, one finds that

dx̄(x, u) = ‖x− x̄‖2P − ‖f(x)− f(x̄) +G(u − ū)‖2P
+ [h(x)− h(x̄)]TQ[h(x)− h(x̄)]

+ (u− ū)TR̂(u− ū)

+ 2[h(x)− h(x̄)]T(S +QJ)(u− ū)

(55)

where R̂ = R + JTS + STJ + JTQJ . This expression is

quadratic in (u− ū), and may be written as

dx̄(x, u) =

[
1

u− ū

]T [
a(x, x̄) b(x)T − b(x̄)T

b(x)− b(x̄) R̂−GTPG

]

︸ ︷︷ ︸
:=D(x,x̄)

[
1

u− ū

]

(56)

where

a(x, x̄) = ‖x− x̄‖2P − ‖f(x)− f(x̄)‖2P
+ [h(x)− h(x̄)]TQ[h(x)− h(x̄)]

b(x) = −f(x)TPG+ h(x)T(S +QJ)

Arguments similar to those made in the proof of Lemma 3.4

show that D(x, x̄) can be factored as

D(x, x̄) =

[
ℓ(x, x̄)T

WT

] [
ℓ(x, x̄) W

]
(57)

for an appropriate matrix W ∈ R
k×m and function ℓ :

X × X → R
k. Equating the two expressions for D(x, x̄) im-

mediately yields (47a)–(47c). The remaining statement follows

by arguments identical to those used in the proof of Lemma

3.4. �

Lemma A.4: (IFP/OSP to Finite L2-Gain): If the system

Σ in (1) is dissipative with respect to the supply rate

w(u, y) = −ayTy + yTu+ buTu

where a > 0 and b ≥ 0, then it is dissipative with respect to

the supply rate

w̃(u, y) = −yTy + γ2uTu

with

γ2 =
1

a2
ab+ 1+

√
4ab+1
4

1− 1
1+

√
4ab+1

(58)

Proof: Let δ > 1/(2a), then

w(u, y) = −ayTy − 1

2δ
(y − δu)T(y − δu)

︸ ︷︷ ︸
≥0

+ buTu+
δ

2
uTu+

1

2δ
yTy

≤ −
(
a− 1

2δ

)
yTy +

(
b+

δ

2

)
uTu

After rescaling by a− 1
2δ > 0, this is equivalent to dissipativity

with respect to the supply rate

w̄(u, y) = −yTy + Γ(δ)uTu

with

Γ(δ) =
b+ δ

2

a− 1
2δ

.

The function Γ(δ) is strictly convex on its domain ( 1
2a ,∞),

and achieves its global minimum of γ2 at δ⋆ = (
√
4ab+ 1+

1)/(2a), where γ is as in (58). �

Lemma A.5: Let R̂ ∈ R
m×m be positive semidefinite, and

let W : RN → R
k×m. Then W (z)TW (z) = R̂ for all z ∈ R

N

if and only if there exists an orthogonal matrix O(z) ∈ R
k×k

and a constant matrix W ′ ∈ R
k×m such that (W ′)TW ′ = R̂

and W (z) = O(z)W ′ for all z ∈ R
N .

Proof: That the existence of such quantities is sufficient for

W (z)TW (z) = R̂ is straightforward. To show necessity, first

note (trivially) that W (z)TW (z) and R̂ commute. It follows by

applying [46, 2.6.P11] point-wise that there exist orthogonal

matrices U(z) ∈ R
k×k and V ∈ R

m×m and diagonal matrices

Σ ∈ R
k×m and Λ ∈ R

m×m such that R̂ = V ΛV T and

W (z) = U(z)ΣV T; the result follows then with O(z) = U(z)
and W ′ = ΣV T. �

Lemma A.6: Let f : Rn × R
n → R

m. The following two

statements are equivalent:

(i) f(x1, x2) + f(x2, x3) + f(x3, x1) = 0m for all

x1, x2, x3 ∈ R
n

(ii) there exists a function g : R
n → R

m such that

f(x1, x2) = g(x1)− g(x2) for all x1, x2 ∈ R
n.

Proof: The implication (ii) ⇒ (i) is immediate. To show that

(i) ⇒ (ii), first set x1 = x2 = x3 to find that f(x1, x1) = 0m.

Similarly, set x1 = x3 to find that

f(x1, x2) + f(x2, x1) + f(x1, x1)︸ ︷︷ ︸
=0m

= 0m

which shows that f(x1, x2) = −f(x2, x1). Finally, set g(x) =
f(x, 0n) and set x3 = 0n in (i) to find that

f(x1, x2) = −f(x2, 0n)− f(0n, x1) = −g(x2) + g(x1) ,

which shows the result. �
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