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Detection of Sensor Attack and Resilient State
Estimation for Uniformly Observable Nonlinear

Systems having Redundant Sensors
Junsoo Kim, Chanhwa Lee, Hyungbo Shim, Yongsoon Eun, and Jin H. Seo

Abstract—This paper presents a detection algorithm for sensor
attacks and a resilient state estimation scheme for a class
of uniformly observable nonlinear systems. An adversary is
supposed to corrupt a subset of sensors with the possibly
unbounded signals, while the system has sensor redundancy. We
design an individual high-gain observer for each measurement
output so that only the observable portion of the system state is
obtained. Then, a nonlinear error correcting problem is solved
by collecting all the information from those partial observers
and exploiting redundancy. A computationally efficient, on-line
monitoring scheme is presented for attack detection. Based on
the attack detection scheme, an algorithm for resilient state
estimation is provided. The simulation results demonstrate the
effectiveness of the proposed algorithm.

I. INTRODUCTION

Recent developments in network communication and the
increase in computational power have made control systems
more connected. As this connectivity increases, the resulting
large-scale networked control systems, often referred to as
cyber-physical systems, are inherently exposed to the risk of
malicious attacks [1]–[3]. A variety of attack strategies are
adopted by adversaries, and in particular, the sensors them-
selves or the measurement data of communication networks
are often compromised. For example, the StuxNet worm on
the SCADA system [4] and false data injection into power
grids [5] have been reported in literature.

To cope with the threats of these attacks, system designers
or defenders have devised sophisticated control algorithms that
are more reliable even when some (not all) actuators and
measurements are corrupt. For example, considering the attack
signal as an unknown input, Pasqualetti et al. [6] characterized
fundamental limitations in attack detection and identification
for descriptor linear systems.

Considering only sensor attacks, the attack identification
problem leads to an attack-resilient state estimation problem.
The challenges of this problem are due to the computational
complexity being NP-hard [6] because the general attack
identification problem is combinatorial in nature, and hence,
solutions require significant computational effort. Inspired by
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recent work in the field of compressed sensing [7], [8], Fawzi
et al. [9] converted a computationally heavy `0-minimization
to a convex optimization problem with additional assumptions
in their design of an attack-resilient estimator. An observer-
based approach was adopted in [10]; however, many observers
are required to prepare all possible combinations. A simpler
estimation algorithm with a considerably smaller number of
observers was independently proposed in [11], where an
observer from each measurement output is constructed and
“partial” information of the full state is generated. With all the
information collected from each partial observer, the original
state can be recovered using an error correction technique.
On the other hand, if a full state observer can be constructed
from each sensor, then the method detailed in [12] can be
used. Their idea is to select correct estimates using a simple
median operation, thereby further reducing the computation.

Although most control systems are nonlinear in practice, all
the aforementioned studies are restricted to linear dynamical
systems. An attempt to tackle the resilient state estimation
problem for nonlinear systems was first made in [13], which
is a direct extension of the results [14] of linear systems to a
class of nonlinear systems, called differentially flat systems.
However, assuming the measurement output to be a “flat”
output limits the class of systems; for example, the given
system should not have non-trivial zero dynamics [15]. On
the other hand, a secure state estimator was constructed in
[16] for a special form of nonlinear systems whose stacked
outputs can be represented by a linear function of the initial
state and the attack vector.

In this paper, we present a dynamic observer-based resilient
state estimation scheme under a substantially less restrictive
class of uniformly observable nonlinear systems. Assuming
that there are enough number of sensors, we present how
to counteract the limited number of sensor attacks. In par-
ticular, q-redundant observability (to be defined) is used for
attack detection and 2q-redundant observability for resilient
state estimation under q-sparse sensor attacks. The idea of
implementation is to design partial observers for each output,
as in [11], which are used to estimate the observable sub-
state only and then to process the partial information col-
lected from each sensor. For this, the “uniformly observable
decomposition” from [17], which is an analogous concept
of Kalman observability decomposition for linear systems,
and a high gain observer [18] are utilized to construct the
final detector/estimator. As a byproduct of high gain observer
construction, we obtain an assignable convergence rate of the
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estimation error that converges to zero.
The proposed attack detection scheme generates a type of

residual that is compared with a time-varying threshold. The
required condition for this attack detection is less strong than
that for resilient state estimation; this is expected because
the attack can also be revealed/identified once the state has
been estimated correctly. It is shown that a detection alarm
rings whenever influential sensor attacks are injected. By
“influential,” we mean that if the alarm does not ring, then
either there is no attack or the attack is so small that it
cannot be distinguished from measurement noise/disturbance.
Finally, by employing the time-varying threshold, the proposed
scheme also considers the transient of the estimation error
caused by the dynamic observers. The proposed attack detec-
tion algorithm enables resilient state estimation by signaling
corruption in the current combination of sensor information.
In this way, one can avoid solving an optimization problem at
each sampling time as in [9]–[11]. The preliminary version of
this paper has been presented in [19].

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

We consider a smooth nonlinear system given by

ẋ(t) = f(x(t)) + g(x(t))u(t) (1a)

where x ∈ Rn is the state and u ∈ R is the input. We assume
that the state and the input of system (1) are bounded. More
specifically, u(t) ∈ U for all t ≥ 0 where U is a compact set,
and x(t) ∈ X := {w ∈ Rn : ‖w‖∞ ≤ Mx}, t ≥ 0, with a
constant Mx > 0, where ‖w‖∞ := max1≤i≤n |wi|.

Suppose that there are p sensors to measure (a smooth
function of) the state, which is vulnerable to sensor attack:

yi(t) = hi(x(t)) + ai(t) + vi(t), i ∈ [p] := {1, · · · , p} (1b)

where yi ∈ R is the value of sensor i, ai ∈ R is the attack
signal injected to the sensor, and vi ∈ R is the measurement
noise. Throughout the paper, the measurement noise vi(t) is
assumed to be bounded by a constant Mv,i for each i ∈ [p].
On the other hand, the attack signal ai(t) is not assumed to
be a bounded signal, and a craftily designed ai(t) can corrupt
yi(t) to have an arbitrary value. This fact makes it difficult to
detect attacks, and more difficult to estimate the state x from
the measured outputs.

Instead of imposing restrictions on the attack signal ai(t)
itself, we assume q-sparsity on the set of attack signals
{ai}i∈[p], motivated by the rationale that the attack resource is
limited so that only a portion of the sensors is compromised
(see [9]–[11], [13], [14]).

Assumption 1: Up to q (q < p) sensors are compromised. In
other words, with the index set U of uncompromised sensors,
defined by U := {i ∈ [p] : ai ≡ 0}, it is assumed that |U | ≥
p− q where |U | is the cardinality of the set U . The set U is
unknown (to the defender). ♦

Based on this assumption, two problems are of interest in
this paper. The first is the real-time detection of the sensor
attack from only the information of the system model (1),
input u, and the outputs {yi}i∈[p] up to time t. It is shown

that this problem is solved if system (1) satisfies “q-redundant
observability,” which basically implies observability of (1),
even when any q sensors (out of p sensors) are removed.
The second problem is the generation of a signal x̂(t) that
converges to the true state x(t) despite the attack satisfying
Assumption 1. This problem is called the resilient state
estimation, and to solve this, we require a stronger condition
of “2q-redundant observability” for system (1).

B. Preliminaries

Our idea for solving these problems is to construct p
nonlinear observers to each individual output yi, i ∈ [p]. As
there is no guarantee that the state x is observable from the
single output yi, each observer cannot recover the full state x
in general. Instead, each observer can recover an observable
portion of the state only. By observable portion, we mean
the observable substate at a special coordinate. For linear
systems, this substate corresponds to the observable subsystem
in the well-known Kalman observable decomposition. For
nonlinear systems, we assume that the observable subsystem is
“uniformly observable1 [18]”. The following assumption asks
uniform observability of the observable portion of system (1)
for the individual output yi.

Assumption 2: For each i ∈ [p], there exist a natural
number ni and a diffeomorphism Ξi : Rn → Rni × Rn−ni
such that, by [zTi , z

′T
i ]T := Ξi(x), system (1) is transformed

into the form

żi =


żi,1
żi,2

...
żi,ni

 =


zi,2

...
zi,ni
αi(zi)

+


βi,1(zi,1)

βi,2(zi,1, zi,2)
...

βi,ni(zi,1, · · · , zi,ni)

u (2a)

ż′i = F ′i (zi, z
′
i) +G′i(zi, z

′
i)u (2b)

yi = zi,1 + ai + vi. (2c)

Moreover, the functions α : Rni → R and βi,j : Rj → R,
j ∈ [ni], are globally Lipschitz. ♦

A few comments follow regarding Assumption 2.
1) The first ni component of the diffeomorphism Ξi is

given by [hi, Lfhi, L
2
fhi, · · · , L

ni−1
f hi]

T ; i.e.,

zi =


zi,1
zi,2

...
zi,ni

 =


hi(x)
Lfhi(x)

...
Lni−1
f hi(x)

 =: Φi(x) (3)

which is easily verified by comparing (1) and (2) with
u ≡ 0.

2) The substate zi corresponds to the observable substate
from the output yi, whereas z′i is the unobservable
substate. This is obvious from the structure of (2).
On the other hand, the triangular structure of βi =
[βi,1, · · · , βi,ni ]T is a necessary and sufficient condition

1Unlike linear systems, a nonlinear system can be both observable and
unobservable depending on the input signal u(t) in general. In contrast, a
uniformly observable nonlinear system is observable for every input; i.e.,
observable uniformly in inputs. See [18] for details. This stronger notion
allows nonlinear observer design in most cases.
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for uniform observability of the zi-subsystem (see [18]
for the proof of this statement).

3) Requesting global Lipschitz properties for αi and βi.j ,
j ∈ [ni], is not a restriction owing to the boundedness
of x(t). Indeed, noting that x(t) ∈ X , one can find a
constant Mz,i such that ‖zi‖∞ = ‖Φi(x)‖∞ ≤Mz,i for
all x ∈ X . Then, one can modify αi and βi,j outside
the set Zi := {zi : ‖zi‖∞ ≤ Mz,i} so that αi and
βi,j are globally Lipschitz while they remain the same
in Zi. In theory, this modification is always possible by
Kirszbraun’s Lipschitz extension theorem2 [20, p. 21].
In practice, a simpler method can be used. For example,
αi(zi) is replaced by

αi(zi) = αi(sat(zi,Mz,i)) (4)

where sat is the component-wise saturation function;
i.e., for w = [w1, · · · , wk]T ∈ Rk and M > 0,

sat(w,M) :=

min{max{w1,−M},M}
...

min{max{wk,−M},M}

 ∈ Rk.

See [21, Sec. 3.3] for more details.
4) For linear systems, Assumption 2 always holds.

For each i ∈ [p], a partial high gain observer only for
observable part (2a) and (2c) is constructed by

˙̂zi =


˙̂zi,1
˙̂zi,2
...

˙̂zi,ni

 =


ẑi,2

...
ẑi,ni
αi(ẑi)

+


βi,1(ẑi,1)

βi,2(ẑi,1, ẑi,2)
...

βi,ni(ẑi,1, · · · , ẑi,ni)

u
− P−1

i CTi (Ciẑi − yi) (5)

where ẑi is the estimated state of zi, Ci := [1, 0, · · · , 0] ∈
R1×ni , and Pi(θi) ∈ Rni×ni is the unique positive definite
solution of

0 = −θiPi −ATi Pi − PiAi + CTi Ci

where θi is a constant to be determined, and Ai ∈ Rni×ni
is a matrix whose (i, j)-th element is 1 if i + 1 = j and 0
otherwise. We suppose that the initial condition is set such
that ‖ẑi(0)‖∞ ≤Mz,i. The parameter θi is determined by the
following lemma (while θi is often taken as a sufficiently large
number obtained from repeated simulations in practice).

Lemma 1: ([18], [21]) There exist positive constant θ∗i ≥ 1
and non-decreasing functions ηi(θi) and εi(θi) such that, for
each θi ≥ θ∗i , the observer (5) guarantees

‖ẑi(t)−zi(t)‖∞ ≤ max{ηi(θi)e−
θi
8 t‖ẑi(0)−zi(0)‖∞, εi(θi)},

(6)
provided ai(t) = 0 for all t ≥ 0. ♦

Proof: The proof is given in Appendix. �
The estimate ẑi from a compromised observer (i.e., ai(t) 6≡

0) is not expected to satisfy (6), and may have arbitrarily large

2For a function f : X → R that is Lipschitz on X , a Lipschitz extension
is given by f(x) := infy∈X(f(y) + Lip(f)|x − y|) where Lip(f) is a
Lipschitz constant of f on X . For a vector-valued function f , this extension
is applied to each component.

values when the attack signal is unbounded. In order to prevent
ẑi(t) from diverging to infinity during the attack on sensor i,
let us introduce the following reset rule3 for the observer (5):

ẑi(t
+)← ẑ0 if ‖ẑi(t)‖∞ > max{2ηiMz,i, εi}+Mz,i, (7)

where ẑ0 is any vector such that ‖ẑ0‖∞ ≤ Mz,i. This rule
is inspired by the fact that, if ai(t) ≡ 0, then Lemma 1
guarantees that ‖ẑi(t)‖∞ ≤ ‖ẑi(t) − zi(t)‖∞ + ‖zi(t)‖∞ ≤
max{2ηiMz,i, εi}+Mz,i. Therefore, the proposed observer (5)
with (7) guarantees that ‖ẑi(t)‖∞ ≤ max{2ηiMz,i, εi}+Mz,i

for all i ∈ [p] and for all t, which is used in Section III.D to
relax Assumption 1.

III. MAIN RESULTS

Lemma 1 ensures lim supt→∞ ‖ẑi(t) − zi(t)‖∞ ≤ εi pro-
vided there is no attack on sensor i. However, if the output yi
of sensor i is compromised by an attack, the estimate ẑi(t) be-
haves unpredictably and useful information cannot be obtained
from ẑi(t). Fortunately, under Assumption 1, at least p − q
estimates in {ẑi(t)}i∈[p] remain uncompromised. It is noted
that the benefit of installing partial observers to individual
outputs yi, rather than a single full observer for the full set
{yi}i∈[p] of measurements, is clear; the effect of attack signal
ai is restricted to ẑi and does not propagate to other estimates.
Thus, our task is to determine the uncompromised estimates
and recover the state x(t) from them. In the forthcoming
discussion, we deal with partitions of vectors frequently; thus,
let us define some notation and terminology that facilitate this
discussion.

A. Notation and Terminology
Recall that [p] denotes the set of natural numbers from 1 to

p as [p] = {1, 2, · · · , p}. For a finite sequence N of p natural
number ni’s, i.e., N = (n1, n2, · · · , np), RN is defined as the
Cartesian product of Euclidean spaces:

RN = R(n1,n2,··· ,np) = Rn1 × Rn2 × · · · × Rnp

= {(z1, z2, · · · , zp) : zi ∈ Rni , i ∈ [p]}.

While this space can be identified as a single Euclidean space
of dimension N =

∑p
i=1 ni; i.e.,

RN = RN , (z1, z2, · · · , zp) = [zT1 , z
T
2 , · · · , zTp ]T ,

we consider RN more often than RN . A subsequence of N
with indices in a subset I = {i1 < i2 < · · · < il : ij ∈ [p]} is
denoted by NI := (ni1 , ni2 , · · · , nil). With the index set I , a
canonical projection

πI : RN → RNI

(z1, z2, · · · , zp) 7→ (zi1 , zi2 , · · · , zil)
(8)

selects l elements out of p tuples. For a given vector z ∈ RN
and for a given function Φ : X → RN , respectively, we define

zI := πI(z) so that zI ∈ RNI ,
ΦI := πI ◦ Φ so that ΦI : X → RNI .

3This reset rule does not yield “zeno behavior,” i.e., it does not make
infinitely many resets in finite time, unless the attack signal ai(t) tends to
infinity in finite time.
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Let |I| for an index set I be the cardinality of I , and define a
collection of index subsets as

(
I
q

)
:= {J ⊂ I : |J | = q} with

a nonnegative integer q ≤ |I|. Finally, for a given sequence of
natural numbers N of length p and for w = (w1, w2, · · · , wp)
∈ RN , define ‖w‖N0 = |{i ∈ [p] : wi 6= 0}| (by abusing the
conventional l0-norm notation), and the vector w is said to
be q-sparse if ‖w‖N0 ≤ q; that is, there exists an index set
I ∈

(
[p]
p−q
)

:= {J ⊂ [p] : |J | = p− q} such that wI = 0.
The notion of bi-Lipschitz function and its left inverse is

actively used in this paper. With X ⊂ Rn, a mapping φ :
X → Rm is Lipschitz (on X) if there exists a constant L such
that

‖φ(x1)− φ(x2)‖∞ ≤ L‖x1 − x2‖∞, ∀x1, x2 ∈ X.

The infimum of such L is indicated as Lip(φ). It is bi-Lipschitz
(on X) if, in addition, there exists a positive constant L such
that

L‖x1 − x2‖∞ ≤ ‖φ(x1)− φ(x2)‖∞, ∀x1, x2 ∈ X.

The supremum of such L is indicated as Lip(φ). For a given
bi-Lipschitz function φ : X → Rm, a function ψ : Rm → X is
called a Lipschitz-extended left inverse of φ if it is defined and
Lipschitz on Rm and satisfies ψ(φ(x)) = x for all x ∈ X . It is
obvious that a bi-Lipschitz map is injective, and thus its inverse
exists on its image Y = φ(X) and the inverse is Lipschitz on
Y . However, it should be noted that the Lipschitz-extended
left inverse ψ is defined on the whole codomain Rm and its
image ψ(Rm) is X ⊂ Rn. The identity function on the set X
is denoted by idX .

A differentiable function φ : X → Rm is called an
immersion if its Jacobian matrix has full column rank for every
x ∈ X .

Proposition 1: If φ is an injective immersion on a compact
set X , then it is bi-Lipschitz on X . ♦

Proof: The proof is given in Appendix. �

For example, if X = [−1, 1] × [−1, 1] ⊂ R2 and φ(x) =
Tx with a matrix T ∈ R3×2 of full column rank, then φ is
an injective immersion and thus it is a bi-Lipschitz function
on X . One of its Lipschitz-extended left inverses is given by
ψ(z) = sat(T †z, 1) where T † ∈ R2×3 is a left inverse matrix
of T , which maps R3 to X .

B. Redundant Observability

Let us rewrite the equations in (3) for all i ∈ [p] simultane-
ously as

z :=

z1

...
zp

 =

Φ1(x)
...

Φp(x)

 =: Φ(x) (9)

so that the stack z is defined as a partitioned vector in RN
where N = (n1, n2, · · · , np). To recover the state x from
the collection of estimates ẑ := (ẑ1, ẑ2, · · · , ẑp) in (5), the
function Φ : X → Φ(X ) ⊂ RN should have injectivity so
that it has a left inverse Φ−1, defined at least on its image
Φ(X ). Let the estimate of x be the left inverse of ẑ if ẑ = z.
In addition to injectivity, we require that the mapping Φ is an
immersion in order to ensure bi-Lipschitzness (which is used

later) on the domain X . Asking Φ to be an injective immersion
is, in fact, an extension of the linear case since the Jacobian
of Φ corresponds to the observability matrix, which has full
column rank. Moreover, since up to q estimates in {ẑi}i∈[p]

might be compromised, we require some redundancy in the
map Φ to ensure that the map remains an injective immersion
if any q components Φi are eliminated from Φ. The following
definition states this requirement precisely.

Definition 1: System (1) is said to be k-redundant observ-
able if, for the mapping Φ : X → RN in (9), the function
ΦI : X → RNI is an injective immersion for all I ⊂ [p] such
that |I| = p− k. ♦

It is straightforward to see that k-redundant observability
implies k′-redundant observability for any k′ < k, and 0-
redundant observability can be regarded as conventional ob-
servability of (1).

Now, it is noted that, although k-redundant observability of
(1) guarantees the existence of a left inverse Φ−1

I of ΦI where
I ∈

(
[p]
p−k
)
, the inverse Φ−1

I is defined only on ΦI(X ). While
it is true that zI(t) ∈ ΦI(X ) ⊂ RNI , there is no guarantee that
the estimate ẑI(t), that converges to zI(t), belongs to ΦI(X ).
To use the left inverse of ΦI on the whole space RNI , let us
define our Lipschitz-extended left inverse of ΦI as

ΨI : RNI → X

zI 7→ sat(Φ−1
I (zI), Mx)

(10)

in which, Φ−1
I is a Lipschitz extension of Φ−1

I from ΦI(X )
to RNI (refer to Item 3 following Assumption 2), and the
saturation function is employed to map the image of Φ−1

I into
the set X . Indeed, this function ΨI is globally Lipschitz on
RNI because ΦI is bi-Lipschitz on X by Proposition 1; and
thus, a left inverse of ΦI exists on ΦI(X ) which is Lipschitz
on ΦI(X ). It is then extended to be globally Lipschitz on RNI ,
and the saturation function at the end preserves the Lipschitz
property. With the global Lipschitz inverse function ΨI at
hand, let an estimate of x(t) be

x̂I(t) := ΨI(ẑI(t)) ∈ X .

Remark 1: For the simple construction of the Lipschitz
extension Φ−1

I in practice, one may want to employ a method
using saturation functions as in (4). Let Mz := maxi∈[p]Mz,i,
and ZI := {zI ∈ RNI : ‖zI‖∞ ≤Mz} which contains Φ(X )
by construction. If there is a smooth function Φ′−1

I defined on
ZI such that Φ′−1

I (zI) = Φ−1
I (zI) for all zI ∈ Φ(X ), then a

Lipschitz extension Φ−1
I is easily obtained by

Φ−1
I (zI) = Φ′−1

I (sat(zI , Mz))). (11)

♦
Suppose that system (1) is q-redundant observable. Since

up to q sensors are compromised, there is at least one index
set I ⊂ [p] with |I| = p− q such that I is contained in the set
U of Assumption 1. In this case, by Lemma 1, we have

‖x̂I(t)− x(t)‖∞ = ‖ΨI(ẑI(t))−ΨI(zI(t))‖∞
≤ Lip(ΨI) max{γ(t), ε}
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in which

γ(t) := max
i∈[p]
{2Mz,iηi(θi)e

− θi8 t}, ε := max
i∈[p]
{εi(θi)}. (12)

Thus, x(t) is recovered by x̂I(t) and the error is eventually
bounded by Lip(ΨI)ε, which is an upper error bound caused
by the measurement noise. The remaining question is that,
since the set U is unknown, how to find I such that I ⊂ U .

C. Detection of Sensor Attack
We begin by observing that the difference between ẑ(t) and

z(t) = Φ(x(t)) is written as

ẑ(t)− Φ(x(t)) = e(t) + r(t) ∈ RN (13)

where the vector e represents the error caused by the injected
sensor attack, and the vector r is the estimation error in the
partial observers. Thus, if there is no attack, then e(t) ≡ 0,
and the norm of ri(t) = ẑi(t) − Φi(x(t)) ∈ Rni decreases
as in (6) of Lemma 1 for all i ∈ [p]. Under Assumption 1,
eU (t) ≡ 0, and thus, ‖rU (t)‖∞ = ‖ẑU (t) − ΦU (x(t))‖∞ is
eventually bounded by the constant ε from (12). In contrast,
the vector e[p]−U (t) may not be zero and the estimation error
ẑ[p]−U (t) − z[p]−U (t) may become large. Since we have no
restriction on the value of e[p]−U , it is equivalent to treat e[p]−U
and r[p]−U as

e[p]−U = ẑ[p]−U − Φ[p]−U (x) and r[p]−U = 0

because it holds that ẑ[p]−U (t)−Φ[p]−U (x(t)) = e[p]−U (t) +
r[p]−U (t). Moreover, we have

‖e(t)‖N0 ≤ q, ‖r(t)‖∞ ≤ δ(t) := max{γ(t), ε} (14)

from Lemma 1 and Assumption 1.
Now, the following theorem presents a detection mechanism

for influential attacks.
Theorem 1: Under Assumptions 1 and 2, assume that

system (1) is 2q-redundant observable. For a given I ⊂ [p]
with |I| = p− q, consider an inequality for the distance from
ẑI to a point in the image of ΦI :

‖ẑI(t)−ΦI(Ψ
I(ẑI(t)))‖∞ > Lip(idRNI−ΦI◦ΨI)δ(t). (15)

1) If (15) holds, then eI(t) 6= 0; i.e., there is a sensor attack
among the sensors whose indices i belong to I .

2) If (15) is violated, then

‖x̂I(t)− x(t)‖∞ ≤
Lip(idRNI − ΦI ◦ΨI) + 1

min{J⊂I:|J|=p−2q} Lip(ΦJ)
δ(t).

♦
Proof: 1) It follows that

‖ẑI − ΦI(Ψ
I(ẑI))‖∞

= ‖(ẑI − ΦI(Ψ
I(ẑI)))− (ΦI(x)− ΦI(Ψ

I(ΦI(x))))‖∞
= ‖(idRNI − ΦI ◦ΨI)(ẑI)− (idRNI − ΦI ◦ΨI)(ΦI(x))‖∞
≤ Lip(idRNI − ΦI ◦ΨI)‖ẑI − ΦI(x)‖∞ (16)

= Lip(idRNI − ΦI ◦ΨI)‖eI + rI‖∞.

Hence, if eI(t) = 0, then

‖ẑI(t)− ΦI(Ψ
I(ẑI(t)))‖∞ ≤ Lip(idRNI − ΦI ◦ΨI)δ(t)

as ‖rI(t)‖∞ ≤ δ(t). This proves the claim.
2) As eI is q-sparse (by the fact that e is q-sparse), i.e.,
‖eI‖N0 ≤ q, in which |I| = p− q, there is an index set J ⊂ I
such that |J | = p−2q and eJ = 0. Then, it follows from (13)
that ẑJ = ΦJ(x) + rJ and we have

‖ẑI − ΦI(Ψ
I(ẑI))‖∞ ≥ ‖ẑJ − ΦJ(ΨI(ẑI))‖∞

= ‖ΦJ(x) + rJ − ΦJ(x̂I)‖∞
≥ Lip(ΦJ)‖x− x̂I‖∞ − ‖rJ‖∞
≥ Lip(ΦJ)‖x− x̂I‖∞ − δ.

Therefore, when (15) is violated, we obtain

Lip(ΦJ)‖x̂I − x‖∞ − δ ≤ Lip(idRNI − ΦI ◦ΨI)δ.

From 2q-redundant observability, it follows that Lip(ΦJ) > 0
for any J such that |J | = p− 2q as ΦJ is bi-Lipschitz on X
according to Proposition 1. This completes the proof. �

Corollary 1: Under Assumptions 1 and 2, assume that
system (1) is q-redundant observable. Consider

‖ẑ(t)− Φ(Ψ(ẑ(t)))‖∞ > Lip(idRN − Φ ◦Ψ)δ(t) (17)

where Ψ is a Lipschitz-extended left inverse of Φ.
1) If (17) holds, then e(t) 6= 0; i.e., there is a sensor attack.
2) If (17) is violated, then

‖x̂(t)− x(t)‖∞ ≤
Lip(idRN − Φ ◦Ψ) + 1

min{J⊂[p]:|J|=p−q} Lip(ΦJ)
δ(t)

where x̂(t) := Ψ(ẑ(t)).
♦

Proof: This follows from the proof of Theorem 1 in which
I is replaced by [p], and the condition |J | = p−2q is replaced
by the condition |J | = p−q. Hence, q-redundant observability
is sufficient in this case. �

Inequality (17) is the key to sensor attack detection. It is
noted that both sides of (17) can be readily evaluated as all
the quantities are available at all time t ≥ 0. By checking
(17), one can detect a sensor attack. Of course, violation of
(17) does not necessarily imply no sensor attack. However,
even when there is an attack, its effect on the state estimation
is limited as seen in the theorem, as δ is usually small. This
case occurs when the size of error e is so small that distinction
between the error r caused by measurement noise and the error
e caused by the attack is not possible.

Note that Theorem 1 explains the sensor attack detection
for a given subset I , whereas Corollary 1 detects sensor
attacks for the whole set [p]. Thus, the discussion in (17) also
applies to (15). When (15) is violated, we suppose that there
is no influential attack in {yi}i∈I , and the signals {ẑi}i∈I
are trustworthy. By repeating (15) with all subsets I ⊂ [p]
satisfying |I| = p − q, one can always find a trustworthy set
of sensors as at most q sensors are compromised. This is the
main idea of the resilient state estimation scheme presented
in the next subsection, and the following remark justifies why
2q-redundant observability is required in Theorem 1 unlike in
Corollary 1.

Remark 2: The reason why 2q-redundant observability,
which is stronger than q-redundant observability, is needed
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in Theorem 1 is as follows. Suppose that there is x′ ∈ X such
that x′ 6= x and ΦI(x

′)−ΦI(x) is q-sparse and not necessarily
small. If a q-sparse attack eI happens to be the same as
ΦI(x

′)−ΦI(x), i.e., eI = ΦI(x
′)−ΦI(x), then, even when the

estimation error rI is zero, we have ‖ẑI−ΦI(Ψ
I(ẑI))‖∞ = 0

because ẑI = ΦI(x) + eI = ΦI(x
′). Hence, condition (15)

cannot detect the attack. Fortunately, this pathological case
does not occur owing to 2q-redundant observability. Indeed,
with J ⊂ I such that |J | = p − 2q and eJ = 0, we have
ΦJ(x′) = ΦJ(x). As ΦJ is injective, it follows that x′ = x.
This is the underlying idea of the proof of Theorem 1. ♦

D. Resilient State Estimation

To present the proposed resilient state estimation scheme
in a more practical situation, let us assume that the sensors
compromized by the attack can change from time to time; that
is, we assume a relaxed version of Assumption 1 as follows.

Assumption 3: Let ∆1 and ∆2 be sufficiently large con-
stants such that

(max{2ηiMz,i, εi}+ 2Mz,i)ηie
− θi8 ∆1 ≤ εi (18a)

2Mz,iηie
− θi8 ∆2 ≤ εi (18b)

for all i ∈ [p], and let ∆ be such that ∆ > ∆1 + ∆2. Assume
that |U(t)| ≥ p− q for all t ≥ 0 where

U(t) :=
⋂

max{t−∆,0}≤τ≤t

{i ∈ [p] : ai(τ) = 0}. (19)

♦
Under this relaxed assumption, at any time t, there are at

least p− q sensors that are attack free for the last ∆ seconds.
As will be shown in Theorem 2, it ensures the existence of an
“attack free” index set I∗(t) ∈

(
[p]
p−q
)

for each t such that all
estimates ẑi(t)’s with respect to i ∈ I∗(t) obeys Lemma 1 so
that (15) is violated with I = I∗(t). Now, one idea to estimate
the state x(t) under q-sparse sensor attack is to prepare all(
p
p−q
)

index sets I ∈
(

[p]
p−q
)
, and test the attack detection (15)

for all of them at each time instant4. Then, one can always
find at least one set I∗ that violates (15) implying that there
is no influential attack in {ẑi}i∈I∗ . Therefore, the true state
x(t) is estimated by x̂(t) = ΨI∗(ẑI∗(t)) with the estimation
error discussed in Theorem 1. However, testing (15) at each
sampling instant with all index sets is computationally heavy.
This burden may be relieved by introducing a simple switching
algorithm as in the following theorem.

Theorem 2: Under Assumptions 2 and 3, assume that
system (1) is 2q-redundant observable. Let Λ : [

(
p
p−q
)
] →(

[p]
p−q
)

be a bijection set-valued map, such that {Λ(i) : i ∈(
p
p−q
)
} =

(
[p]
p−q
)
. Consider a switching signal σ(t) generated

from σ(0) = 1 by the update rule

σ(t+)←
(
σ(t) mod

(
p

p− q

))
+ 1 (20)

4In fact, it is checked at each sampling instant since the proposed scheme
is implemented in a digital computer.

whenever

‖ẑΛ(σ(t))(t)− ΦΛ(σ(t))(Ψ
Λ(σ(t))(ẑΛ(σ(t))(t)))‖∞

> Lip(idRNΛ(σ(t)) − ΦΛ(σ(t)) ◦ΨΛ(σ(t)))δ(t).
(21)

Then, the state estimate for x(t) is given by

x̂(t) = ΨΛ(σ(t))(ẑΛ(σ(t))(t))

which has the property

‖x̂(t)−x(t)‖∞ ≤
max

I∈( [p]
p−q)

Lip(idRNI − ΦI ◦ΨI) + 1

min
J∈( [p]

p−2q)
Lip(ΦJ)

δ(t)

(22)
for all t ≥ 0 except at the switching times of σ(t). ♦

Update of the switching signal σ in Theorem 2 is understood
as follows. Whenever the value of σ(t) is updated at time t,
condition (21) is checked again at the same time t with the
updated σ(t+) until the inequality is violated (i.e., consecutive
updates can occur). This update does not repeat for infinitely
many times as is shown in the proof. While this behavior can
be described more rigorously by introducing a hybrid time
domain (t, j) with continuous time t and jump time j, as done
in, e.g., [22], we do not follow such convention for the sake
of simplicity.

Proof: Consider a sequence of time interval T0 := [0,∆] and
Tk := (tk−1, tk], for k = 1, 2, · · · , where tk := ∆ + k(∆ −
∆1 − ∆2). Then, ∪∞k=0Tk = {t : t ≥ 0}. We claim that, for
each Tk, k = 0, 1, · · · , there is a natural number mk ≤

(
p
p−q
)

such that Λ(mk) ⊆ U(tk) and

‖ẑΛ(mk)(τ) − ΦΛ(mk)(x(τ))‖∞ ≤ δ(τ), ∀τ ∈ Tk. (23)

Indeed, when k = 0, the claim follows from Assumption 3 and
Lemma 1. For the case when k ≥ 1, Assumption 3 ensures
the existence of mk such that Λ(mk) ⊆ U(tk), implying that
ai(τ) = 0 for i ∈ Λ(mk) and τ ∈ (tk − ∆, tk]. Then, for
the state ẑi where i ∈ Λ(mk), we observe the following.
First, since the reset rule (7) guarantees that ‖ẑi(t)‖∞ ≤
max{2ηiMz,i, εi} + Mz,i for all t ≥ 0, if no reset occurs
for ẑi during (tk − ∆, tk − ∆ + ∆1], then we have that
‖ẑi(τ) − zi(τ)‖∞ ≤ εi for τ ∈ [tk − ∆ + ∆1, tk] by
(18a) and Lemma 1 because ‖ẑi(t − ∆) − zi(t − ∆)‖∞ ≤
‖ẑi(t−∆)‖∞+‖zi(t−∆)‖∞ ≤ max{2ηiMz,i, εi}+2Mz,i. If
not, that is, a reset (7) occurs at t̄ ∈ (tk−∆, tk−∆+∆1], then
it follows from (18b) and Lemma 1 that ‖ẑi(τ)−zi(τ)‖∞ ≤ εi
for τ ∈ (t̄ + ∆2, tk]. In both cases, it can be seen that (23)
holds because εi ≤ δ(τ),∀i ∈ [p].

Now, it is seen that (23) implies that ‖ẑΛ(mk)(t) −
ΦΛ(mk)(Ψ

Λ(mk)(ẑΛ(mk)(t)))‖∞ ≤ Lip(idRNΛ(mk) −ΦΛ(mk) ◦
ΨΛ(mk))δ(t) for every t ∈ Tk, k = 0, 1, · · · . Therefore,
according to the update rule of σ, there is a maximum of(
p
p−q
)
− 1 (consecutive) switchings of σ(t) (until (21) is

violated) in each time interval Tk, k = 0, 1, · · · . (However,
σ does not necessarily become identical to mk.) Then, the
proof is completed from the upper bound of the estimation
error in Theorem 1, by considering that the set I ∈

(
[p]
p−q
)

is
arbitrary. �

Remark 3: Compared to the result in [11], where the
search for uncompromised sensors (or, search for suitable σ)
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is performed at each sampling time, Theorem 2 only searches
when the inequality condition of (21) is satisfied. In this sense,
the computational burden is relieved in the proposed scheme.
♦

Note that no zeno behavior appears in the switching scheme
of Theorem 2 because no infinitely many switchings occur
in any finite time interval. On the other hand, since the
estimator is implemented on a digital computer in practice, a
few sampling delays may occur owing to consecutive updates,
and during these delays, the state estimation can be corrupted,
which is seen in the simulation results in the next section.

IV. SIMULATION RESULTS

We consider a numerical example of system (1) given asẋ1

ẋ2

ẋ3

 =

 −2x1 − x3
2

−x2

−x2 cosx2 + sinx2 − x3

+

1 + 3x2
2

1
cosx2

u

y1

y2

y3

y4

 =


x1 + x2 − x3

2 − sinx2 + x3

x1 + sinx2 − x3
2 − x3

−x1 + x3
2 + x2

−x2 − sinx2 + x3

+


a1

a2

a3

a4

+


v1

v2

v3

v4


where u(t) = 0.25 sin(0.2πt) − 0.1, for which it is verified
that the state x remains in X = {x ∈ R3 : ‖x‖∞ ≤ 0.5} with
sufficiently small initial conditions. The bounded measurement
noises {vi}4i=1 are generated from a uniform distribution over
[−10−6, 10−6]. For this system, the function Φ : X → RN in
(3) and (9) is computed by


Φ1(x)
Φ2(x)
Φ3(x)
Φ4(x)

=



h1(x)
Lfh1(x)
h2(x)
Lfh2(x)
h3(x)
Lfh3(x)
h4(x)


=



x1 + x2 − x3
2 − sinx2 + x3

−2x1+sinx2−x2+2x3
2−x3

x1 + sinx2 − x3
2 − x3

−2x1 − sinx2 + 2x3
2 + x3

−x1 + x3
2 + x2

2x1 − x2 − 2x3
2

−x2 − sinx2 + x3


with N = (2, 2, 2, 1). It can be seen that each Φi transforms
the system into a uniformly observable subsystem with respect
to yi, and the stack of all observable parts z remains in the
set Z := {z ∈ R7 : ‖z‖∞ ≤ 2}. One can also ensure that the
above system is 2-redundant observable by verifying that ΦJ
is an injective immersion for every J ∈

(
[4]
2

)
.

As the system is 2-redundant observable, resilient state
estimation is possible under up to 1-sparse attack. Therefore,
let us suppose the attack scenario depicted in Fig. 1(a); a
square wave a3 is injected into the third sensor on time interval
t ∈ [6, 8]; then, the second sensor is attacked by a similar
square wave a2 on t ∈ [17, 20]. a1 and a4 remain zero. This
scenario satisfies Assumption 3 with ∆ = 8.37; it is 1-sparse
for each time t and the change in attacked sensor occurs
intermittently.

Partial observers for individual uniformly observable sub-
systems are designed with θi = 32 for i ∈ [4], which yields
δ(t) = max{671× exp(−4t), 4.74× 10−4}.

For the recovery of state x, we choose four left inverse
functions Φ−1

Λ(i) for each i = 1, · · · , 4, where Λ(i) = [4]−{i},

TABLE I
LEFT INVERSE FUNCTIONS OF ΦΛ(i) , i = 1, 2, 3, 4

Λ(1) = {2, 3, 4}
Φ−1
{2,3,4}(z) : R5 → R3

 z3 + z4 + (2z3 + z4)3

2z3 + z4

−2z1 − z2 + sin(2z3 + z4)


Λ(2) = {1, 3, 4}

Φ−1
{1,3,4}(z) : R5 → R3

 −z1 − z2 + (2z3 + z4)3

2z3 + z4
1
2
(2z1 + z2 + z5) + sin(2z3 + z4)


Λ(3) = {1, 2, 4}

Φ−1
{1,2,4}(z) : R5 → R3

 −z1 − z2 − (2z3 + z4 + z5)3

−2z3 − z4 − z5

−2z3 − z4 +− sin(2z3 + z4 + z5)


Λ(4) = {1, 2, 3}

Φ−1
{1,2,3}(z) : R6 → R3

 −z1 − z2 + (2z5 + z6)3

2z5 + z6

−2z3 − z4 + sin(2z5 + z6)



as in Table I. With these functions, as in (10) and (11), the
Lipschitz-extended left inverse of ΦΛ(i) is obtained by

ΨΛ(i) : RNΛ(i) → X
zΛ(i) 7→ sat(Φ−1

Λ(i)(sat(zΛ(i), 2)), 0.5)

for each i. It is noted that the Lipschitz constant of ΨΛ(i)(·)
on RNΛ(i) is less than or equal to the Lipschitz constant of
Φ−1

Λ(i)(·) on ZΛ(i) = {zΛ(i) ∈ RNΛ(i) : ‖zΛ(i)‖∞ ≤ 2} owing
to the two saturation functions, and the Lipschitz constant of
Φ is greater than or equal to the Lipschitz constant of ΦΛ(i).
Hence, for simplicity, we take a conservative bound for the
right hand side of the condition (21) as

Lip(idRNΛ(σ) − ΦΛ(σ) ◦ΨΛ(σ))

≤ 1 + Lip(Φ)×max
i∈[4]

{
Lip(Φ−1

Λ(i)|ZΛ(i))
}
≤ 1 + 7× 770.

By this simplification, the upper bound of the estimation error
in Theorem 2 is increased (as the numerator in the upper bound
is replaced by 1 + 7 × 770); however, the simulations show
that this is not a large sacrifice.

The detection algorithm and estimator are simulated in
discrete-time with a sampling time of 0.02s. Fig. 1 summarizes
the outcome. Fig. 1(b) shows that as σ(t) begins from 1, it
jumps to 2 and to 3 consecutively, immediately after the attack
signal is injected in the measurement. Note that σ(t) = 3 is
the correct index because Λ(3) = {1, 2, 4} does not contain
the index of compromised output y3. As the jumps of σ(t) to
2 and 3 take slightly more time in practice, the estimation
errors become large during these short periods as seen in
Fig. 1(c). Similar behavior is observed when the attack is
injected into the output y2 at t = 17. It is seen that σ(t)
jumps as 3→ 4→ 1→ 2 around this time, and the estimate
x̂(t) correctly recovers the state x(t) owing to the switching of
σ(t). Without this switching, an accurate estimation for x(t) is
not obtained, which can be seen, for example, by looking at the
signal ΨΛ(3)(ẑΛ(3)(t))− x(t) for all time frames in Fig. 1(d).
During the sensor attack on y2, the estimate ΨΛ(3)(ẑΛ(3)(t))
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(a) Injected sensor attack signal a2(t)
(solid) and a3(t) (dash-dot)
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(b) Index function σ(t)
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(c) Estimation error x̂(t) − x(t) =
ΨΛ(σ(t))(ẑΛ(σ(t))(t))− x(t)
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0

0.5

(d) Estimation error
ΨΛ(3)(ẑΛ(3)(t))− x(t)

Fig. 1. Simulation results

cannot recover the state although it can for the attack on y3.

V. CONCLUSION

In this paper, we proposed a solution to a resilient state es-
timation problem for uniformly observable nonlinear systems
with redundant sensors. A switching algorithm that makes use
of the detection algorithm of sensor attacks is designed to
search for a combination of uncompromised sensors success-
fully and generate accurate estimates that are insensitive to
sparse malicious attacks. Lastly, an illustrative example and
its simulation results, which demonstrate the effectiveness of
the proposed estimator, are provided.

APPENDIX

Proof of Lemma 1: It is a slight modification of the proof of
[21, Lemma 3.2.2]. Let ξi := diag(1, 1/θi, · · · , 1/θni−1

i )(ẑi−
zi) and P̃i ∈ Rni×ni be the unique positive definite solution
of 0 = −P̃i−P̃iAi−ATi P̃i+CTi Ci. Then, as in [21], it yields

d

dt
(ξTi P̃iξi) ≤ −

θi
2
ξTi P̃iξi + 2θiviCiξi

≤ −θi
2
ξTi P̃iξi +

2θiMv,i√
λ1,i

√
ξTi P̃iξi

≤ −θi
4
ξTi P̃iξi + 4θi

M2
v,i

λ1,i
,

where λ1,i is the smallest eigenvalue of P̃i, and it follows that

‖ξi(t)‖2∞ ≤
ξTi (t)P̃iξi(t)

λ1,i
≤ e−

θi
4 tξTi (0)P̃iξi(0)

λ1,i
+

16M2
v,i

λ2
1,i

≤ 2 max

{
λ2,inie

− θi4 t‖ξi(0)‖2∞
λ1,i

,
16M2

v,i

λ2
1,i

}
,

in which λ2,i is the largest eigenvalue of P̃i. Finally, we obtain
(6) with

ηi(θi) :=

√
2niλ2,i

λ1,i
θni−1
i , εi(θi) :=

4
√

2Mv,i

λ1,i
θni−1
i

from the fact that ‖ξi‖∞ ≤ ‖ẑi − zi‖∞ ≤ θni−1
i ‖ξi‖∞.

Proof of Proposition 1: Note that φ is Lipschitz on X because
it is continuously differentiable. Thus, it is sufficient to show

inf
x 6=x′
x,x′∈X

‖φ(x)− φ(x′)‖∞
‖x− x′‖∞

> 0.

Suppose, for the sake of contradiction, there exist sequences
{xi}∞i=1 and {x′i}∞i=1 in X such that xi 6= x′i and

lim
i→∞

‖φ(xi)− φ(x′i)‖∞
‖xi − x′i‖∞

= 0. (24)

By the Bolzano-Weierstrass theorem, without loss of general-
ity (by taking any convergent subsequence if necessary), we
may assume that {xi}∞i=1 and {x′i}∞i=1 converge to points x∞
and x′∞ in X , respectively. If x∞ 6= x′∞, then φ(x∞) =
φ(x′∞), which contradicts the injectivity of φ. If x∞ = x′∞,
by continuous differentiability of φ, it is derived that

lim
i→∞

‖φ(xi)− φ(x′i)−Dφ(x∞) · (xi − x′i)‖∞
‖xi − x′i‖∞

= 0, (25)

where Dφ(x∞) denotes the Jacobian matrix of φ at x∞.
Hence, it follows from the combination of (25) and (24) that

lim
i→∞

‖Dφ(x∞) · (xi − x′i)‖∞
‖xi − x′i‖∞

= 0,

which contradicts the fact that Dφ(x∞) has full column rank.
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