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Scaling laws for consensus protocols subject to
noise

Ali Jadbabaie, Alex Olshevsky

Abstract—We study the performance of discrete-time con-
sensus protocols in the presence of additive noise. When the
consensus dynamic corresponds to a reversible Markov chain, we
give an exact expression for a weighted version of steady-state
disagreement in terms of the stationary distribution and hitting
times in an underlying graph. We then show how this result
can be used to characterize the noise robustness of a class of
protocols for formation control in terms of the Kemeny constant
of an underlying graph.

I. INTRODUCTION

The design of policies for control and signal processing
in networks of agents (such as UAVs, vehicles, or sensors)
has attracted considerable attention over the past decades. It
is commonly believed that such policies benefit from being
distributed, for example by relying only on local, nearest-
neighbor interactions in a network of nodes. Understanding
how simple, distributed updates can accomplish global objec-
tives and giving quantifiable bounds on their performance has
correspondingly been an active area of research recently.

An emerging understanding is that a key tool for such
systems is the so-called consensus iteration, namely the update

x(t+ 1) = Px(t),

where P is a stochastic matrix. This update has the property
that, subject to some technical assumptions on the matrix P ,
the vector x(t) converges to span{1}, the subspace spanned
by the all-ones vector. One usually thinks of each component
xi(t) as being controlled by a different “agent,” with the agents
asymptotically ”coming to consensus” as all the components
of x(t) approach the same value.

It turns out that many sophisticated network coordination
tasks can be either entirely reduced to consensus or have
decentralized solutions where the consensus iteration plays a
key role; we mention formation control [21], [30], [29], [23],
distributed optimization [37], [19], coverage control [9], [34],
distributed task assignment [5], [18], networked Kalman filter-
ing [3], [35], [1], [31], cooperative flocking/leader-following
[10], [20], among many others.

For example, it is wel-known (and we spell out later in this
paper) that the problem of maintaining a formation when every
agent can measure the relative positions of its neighbors can
be solved with a distributed update rule which turns out to be
the consensus update after a change of variable.
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As a consequence of the many applications of consensus, a
large literature has recently built up around it. In this paper, we
contribute to a strand of this literature which studies the effect
of noise; specifically, we study the noisy consensus iteration

x(t+ 1) = Px(t) + w(t), (1)

where the matrix P is stochastic as before and the vector w(t)
represents zero-mean i.i.d. noise. Our goal in the present paper
is to contribute to an understanding of how much the “coming
to consensus” property deteriorates due to the addition of the
noise term w(t) in Eq. (1). The main concern of this paper is
the notion of expected disagreement; namely we will consider
the average expected square deviation of the values xi(t) from
their (weighted) average as t→ +∞.

Intuitively, the action of multiplying a vector x(t) by a
stochastic matrix P has the effect of bringing the components
xi(t) “closer together,” while the addition of the noise w(t)
counteracts that; the two processes might be expected to
balance in some equilibrium level of expected disagreement
as t→∞. We are motivated by the observation (made in the
previous literature on the subject and discussed extensively
later) that the equilibrium level of disagreement often grows
with the dimension of the matrix P .

Thus even though Eq. (1) can be shown to be stable
(under some mild technical assumptions) in the sense that
expected disagreement between any pair of nodes is bounded
as t → ∞, this stability can be almost meaningless for
many classes of large systems in which expected disagreement
scales with dimension. This has implications for all distributed
protocols which rely on consensus, as it implies that in some
cases they may lack robustness under the addition of noise.
Building on previous work and contributing to the study of
this phenomenon is the goal of the present paper.

A. Literature review
The problem of analyzing the steady-state level of disagree-

ment in consensus with noise was initiated in [38] where,
for a symmetric matrix P and under the assumption that the
components of w(t) are uncorrelated, an explicit expression in
terms of the eigenvalues of P was given. Recently [17] gave
an alternative expression in terms of the average resistance
associated with a graph based on the symmetric matrix P ,
and further showed this expression can be used to bound the
steady-state disagreement from above and below in the more
general case when the stochastic matrix P is not necessarily
symmetric but rather corresponds to a reversible Markov chain.

Continuous analogues of Eq. (1) have also been studied.
When the underlying dynamics comes from a symmetric graph
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Laplacian, expressions for equilibrium disagreement in terms
of eigenvalues, resistances, and hitting times were presented
in [25]. When the underlying dynamics is not necessarily
symmetric but satisfies a normality property, expressions for
disagreement in terms of eigenvalues were given in [39].

The observation that Eq. (1) can have asymptotic disagree-
ment which grows with the size of the system was, to our
knowledge, first made in [2] (in continuous time). As observed
in [2] in the context of vehicular formation control, this means
that any protocol which relies on consensus iterations can
suffer from a considerable degradation of performance in large
networks. Furthermore, [2] showed that topology can have a
profound influence on performance by proving that while on
the ring graph the asymptotic disagreement grows linearly with
the number of nodes, it remains bounded on the 3D torus (and
grows only logarithmically in the number of nodes on the 2D
torus).

We next mention some other related strands of literature.
The paper [32] which investigated consensus-like protocols
with noise in continuous time, focusing on connections with
measures of sparsity such as number of spanning trees, number
of cut-edges, and the degree-sequence. The related paper
[33] investigated several measures of robustness related to
equilibrium disagreement in terms of their convexity. The
paper [25] characterized steady-state disagreement in a number
of fractal graphs. The recent papers [39], [40] considered
the effects of noise in a continuous-time version of Eq.
(1) over directed graphs. In [39], explicit expressions for a
measure of steady-state disagreement were computed for a
number of such graphs. The paper [40] investigated steady-
state disagreement on trees and derived a partial ordering
capturing which trees have smaller steady-state disagreements.
In [26], noisy consensus with a drift term was considered with
a focus on ranking nodes in terms of their variance growth. Our
earlier work [11] focused on connections between asymptotic
disagreement and the Cheeger constant and coefficients of
ergodicity of the corresponding Markov chain. Moreover, we
mention the recent paper [36] which considered approximation
algorithms for the problem of designing networks that mini-
mize equilibrium disagreement. Finally, there is considerable
work on the leader selection problem, where only some of the
nodes are performing consensus iteration, which has a similar
flavor and which we do not survey here.

B. Our contributions
Under the assumption that the matrix P is reversible,

we give an exact expression for a weighted version of the
equilibrium disagreement where the disagreement at each node
is weighted proportionally to its importance in the graph corre-
sponding to the matrix P . Our expression is combinatorial in
that it involves hitting times and the stationary distribution
of P . Furthermore, we allow the noise w(t) to have any
covariance matrix (though it must be i.i.d. in time). In the
previous literature such expressions were available only for
the special case when the matrix P was symmetric and all the
noises wi(t) were uncorrelated.

This expression is the main result of this paper and it has
three main consequences. First, our expression allows us to

compute the weighted steady-state disagreement correspond-
ing to simple averaging on undirected graphs, when each
node puts an equal weight on all its neighbors. Updates of
this form are the canonical example of distributed averaging
algorithms. As a consequence, we are able to compute the
weighted steady state disagreement for such updates on many
graphs, ranging from simple examples such as the line graph
and the star graph, to more sophisticated cases such as Erdos-
Renyi random graphs and dense regular graphs.

Secondly, our results lead to an explicit combinatorial
expression (again in terms of hitting times and the stationary
distribution of P ) which provides the best known approxi-
mation for the unweighted steady-state disagreement (where
the disagreement of each node is weighted equally). This
improves on the results of [17], which had the previously best
combinatorial approximation (in terms of graph resistances)
of unweighted disagreement.

Thirdly, this generalization allows us to apply our results to
the problem of formation control and characterize the noise
resilience of a natural class of first-order protocols for it.
It turns out that there is a very simple expression for the
noise resilience of a symmetric formation control protocol:
we show it is proportional to the so-called Kemeny constant
of an underlying graph. This observation is new and allows
for the easy computation of the scaling of noise resilience on
a variety of graphs.

Finally, we remark that our proof strategy is also of inde-
pendent interest on its own. Most previous papers relied on
explicit diagonalization of the system of Eq. (1). This can be
made to work when the eigenvalues of P are known and P is
symmetric (allowing us to change variables without affecting
the covariance of the noise w(t)). However, this approach runs
into obstacles when either of these assumptions is not satisfied.
Here we introduce a different idea: we relate the recursions
for steady-state covariance of Eq. (1) to recursions for hitting
times on certain graphs.

C. The organization of this paper
The main result of this paper, namely an exact expression

for weighted steady-state disagreement in noisy consensus, is
presented in Section II as Theorem 1. Section II gives a proof
of this result and then discusses simplifications in a number of
special cases. Additionally bounds on unweighted steady-state
disagreement are presented which improve on the current state
of the art from [17].

Section III then uses Theorem 1 to work out how disagree-
ment scales with the number of nodes for simple averaging
on a number of common graphs. Section IV introduces the
problem of understanding the performance of formation con-
trol from noisy measurements of relative position, and, using
Theorem 1, characterizes this in terms of the Kemeny constant
of an underlying graph. Finally, simulations are provided
in Section V and the paper finishes with some concluding
remarks in Section VI.

II. ASYMPTOTIC DISAGREEMENT IN NOISY CONSENSUS

In this section, we state and prove our main result, which is
an explicit expression for the weighted steady state disagree-
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ment in noisy consensus. Additionally, we work some simpli-
fications of our result for the case when the matrix P from
Eq. (1) is symmetric and discuss connections to resistance,
Kemeny constant, and unweighted steady-state disagreement.

We begin with a concise statement of our main result,
starting with a number of definitions. For the remainder of this
paper, we will assume P to be a stochastic, irreducible, and
aperiodic matrix, and we let π be the stationary distribution
vector of the Markov chain with transition matrix P , i.e.,

πTP = πT ,

n∑
i=1

πi = 1.

Alternatively, π is simply the unique normalized left-
eigenvector corresponding to the dominant eigenvalue of 1 of
the stochastic matrix P . We note that, for the remainder paper,
we will find it convenient to abuse notation by conflating the
matrix P and the Markov chain whose transition matrix is P
(for example, we will refer to π as the stationary distribution
of P ).

We will use Dπ to stand for the diagonal matrix whose
i’th diagonal entry is πi. Furthermore, we define the weighted
average vector,

x(t) :=

(
n∑
i=1

πixi(t)

)
1,

as well as the error vector

e(t) := x(t)− x(t).

Intuitively, e(t) measures how far away the vector x(t) is
from consensus. Indeed, it is easy to see that the noiseless
update x(t+ 1) = Px(t) has the property that x(t) converges
to (

∑
i πixi(0))1. The quantity e(t) thus measures the dif-

ference between the “current state” x(t) and the limit of the
noiseless version of Eq. (1) starting from x(t).

Our goal is to understand how big the error e(t) can get as
t goes to infinity. Due to the addition of noise w(t) in Eq. (1),
the error vectors e(t) are random variables. Recall that w(t) is
zero-mean i.i.d., and we now introduce the notation Σw for its
covariance. In order to measure deviation from consensus, we
will consider the following two linear combinations of squared
errors at each node,

δ(t) :=

n∑
i=1

πiE[e2
i (t)]

δuni(t) :=
1

n

n∑
i=1

E[e2
i (t)],

i.e., we weigh the squared error at each node either propor-
tionally to the stationary distribution of the node or uniformly.
Finally, our actual measures of performance will be the
asymptotic quantities

δss := lim sup
t→∞

δ(t)

δuni
ss := lim sup

t→∞
δuni(t),

which capture the limiting disagreement among the nodes. We
will refer to these quantities as weighted steady-state disagree-
ment and unweighted steady-state disagreement, respectively.

We will sometimes write δss(P,Σw) when the update matrix
P and the noise covariance Σw are not clear from context and
likewise for δuni

ss .
Before stating our main result, let us recall the notion of

hitting time from node i to node j in a Markov chain: this
is the expected time until the chain visits j for the first time
starting from node i. We use HM (i→ j) to denote this hitting
time in the Markov chain whose probability transition matrix
is M . By convention, HM (i → i) = 0 for all i. We will use
the notation HM to denote the matrix whose i, j’th element is
HM (i→ j). For a comprehensive treatement of hitting times,
the reader may consult the recent textbook [15].

With the above definitions in place, our next theorem
contains our main result on steady-state disagreement. We
remind the reader that, in addition to the stated assumptions
of the theorem, we are also assuming that P is a stochastic,
irreducible, and aperiodic matrix for the remainder of the
paper.

Theorem 1. (An Explicit Expression for Weighted Steady-
State Disagreement) If the Markov chain with transition matrix
P is reversible, then

δss(P,Σw) = πTHP 2DπΣwDπ1− Tr(HP 2DπΣwDπ).

The theorem characterizes δss in terms of combinatorial
quantities associated with an underlying Markov chain, namely
the stationary distribution and the hitting times. Inspecting
the theorem, we note that it expresses δss in terms of a
difference of two linear combinations of entries of the matrix
HP 2DπΣwDπ , both with nonnegative coefficients which add
up to n.

Furthermore, this theorem captures the intuition that not
all noises are created equal, in the sense that noise at key
locations should have a higher contribution to the limiting
disagreement. Indeed, in the event that noises at different
nodes are uncorrelated, the second term of Theorem 1 is easily
seen to be zero (since the matrix HP 2 has zero diagonal by
definition) and we obtain

δss
(
P,diag

(
σ2

1 , . . . , σ
2
n

))
=

n∑
i=1

n∑
j=1

σ2
i π

2
i πjHP 2(j → i).

(2)
We see that in this case δss is a linear combination of the
variances at each node, where the variance σ2

i multiplied
by π2

i

∑n
j=1 πjHP 2(j → i). Note that this multiplier is a

product of a measure of importance coming from the stationary
distribution (i.e., π2

i ) and a measure of the “mean accessibility”
of a node (i.e.,

∑n
j=1 πjHP 2(j → i)).

In the event that all noises have the same variance, we obtain
the simplified version

δss
(
P, σ2I

)
= σ2

n∑
i=1

n∑
j=1

π2
i πjHP 2(j → i). (3)

As we discuss later in this paper, for many classes of matrices
P the quantity

∑n
i=1

∑n
j=1 π

2
i πjHP 2(j → i) grows with the
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total dimension of the system n. In other words, although the
system is technically stable in the sense of having bounded
expected disagreement as t → ∞, this stability is almost
meaningless if n is large. Equations (2) and (3) allow us to
determine when this is the case by analyzing how stationary
distribution and hitting times grow on various kinds of graphs1.
Later in the paper (in Section III) we will use these equations
to work out how δss scales for a variety of matrices P which
come from graphs.

A. Proof of Theorem 1

We now turn to the proof of Theorem 1. We begin with an
informal sketch of the main idea.

First, the disagreement δuni
ss may be thought of as propor-

tional to the trace of a certain asymptotic covariance matrix
Σss (to be formally defined later), whereas the weighted
disagreement δss may be thought of as the trace of DπΣss

(since multiplication by the diagonal matrix Dπ scales the
i’th diagonal entry of covariance matrix Σss by πi). Now the
key observation is that we can write down a matrix Σ̂ with
the properties that (i) the trace of Σ̂ is the same as the trace
of DπΣss (ii) the difference between the matrix Σ̂ and the
matrix HDπΣwDπ is a matrix with constant columns. These
two properties allow us to relate δss to the matrix HDπΣwDπ

and very quickly lead to the proof of Theorem 1.
The existence of such a matrix Σ̂ is a technical observation

and we are not aware of any intuitive explanation or justifi-
cation for it. As a consequence, the proof given next is not
very intuitive and largely composed of the manipulation of
equations.

Specifically, we begin by deriving a recursion for the error
covariance matrix at time t and show that, after a large number
of equation manipulations, in the limit as t → ∞ it leads to
a certain representation of DπΣss as an infinite sum; we then
rearrange some parts of this sum to define the matrix Σ̂; finally,
we show that the matrix Σ̂ thus defined has the properties (i)
and (ii) above and immediately deduce Theorem 1.

We now begin the proof itself. The matrix J defined as

J := 1πT ,

will be of central importance to the proof; the following lemma
collects a number of its useful properties.

Lemma 2 (Properties of the Matrix J).

x(t) = Jx(t),

J1 = 1,

JP = J,

PJ = J,

J2 = J,

(I − J)2 = I − J,
(P l − J)k = P lk − J, l = 0, 1, 2, . . . , and k = 1, 2, . . .

ρ(P − J) < 1.

1In particular, an implication is that the the amount of noise amplification
in the network δss(P, σ2I) is not fully characterized by the spectral gap of
the underlying graph; see, for example, the table in Section III.

Proof. The first six equations are immediate consequences of
the definitions of J , P , and π. The seventh equation can be
established by induction. Indeed, the base case of k = 1 is
trivial. If the identity is established for some k, then

(P l − J)k+1 = (P l − J)(P l − J)k

= (P l − J)(P lk − J)

= P l(k+1) − P lJ − JP lk + J2

= P l(k+1) − J.

Note that some care is needed in applying the seventh equation
as it is obviously false when k = 0.

To prove the final inequality suppose that for some vector
v ∈ Cn and some λ ∈ C,

(P − J)v = λv.

If λ 6= 0, then

πT v = πTPv = πT (P−J)v+πTJv = λπT v+πT v = (1+λ)πT v

which implies that πT v = 0. In turn, this implies that Jv = 0
and consequently v is an eigenvector of P with eigenvalue λ.
By stochasticity of P , this implies |λ| ≤ 1.

To show the strict inequality, observe that since the matrix
P is irreducible and aperiodic, we have that it has only one
eigenvector with an eigenvalue that has absolute value 1 and
that is the all-ones vector 1. Thus if |λ| = 1 then the vector v
is a multiple of 1; however, 1 is an eigenvalue of P − J with
eigenvalue zero which contradicts |λ| = 1. We conclude that
if λ 6= 0 then |λ| < 1, which is what we needed to show.

Next, we define the matrix

Σ(t) := E[e(t)e(t)T ].

The following lemma derives a recursion satisfied by Σ(t).

Lemma 3 (Simplified Recursion for the Covariance Matrix).

Σ(t+ 1) = (P − J)Σ(t)(P − J)T + (I − J)Σw(I − J)T .

Proof. Indeed, using Lemma 2,

e(t+ 1) = x(t+ 1)− Jx(t+ 1)

= Px(t) + w(t)− JPx(t)− Jw(t)

= (P − J)x(t) + (I − J)w(t)

= (P − J)(x(t)− x(t)) + (I − J)w(t)

= (P − J)e(t) + (I − J)w(t),

and therefore,

Σ(t+ 1) = E[ e(t+ 1)e(t+ 1)T ]

= E [((P − J)e(t)

+(I − J)w(t))
(
e(t)T (P − J)T + w(t)T (I − J)T

) ]
,

and finally since E[e(t)w(t)T ] = E[w(t)e(t)T ] = 0, this
immediately implies the current lemma.

Observe that

δss = lim sup
t→∞

n∑
i=1

πi[Σ(t)]ii.
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As a consequence of Lemma 3, it is not hard to see that the
initial condition x(0) has no influence on δss. Indeed, using
Σ0(t) to denote what Σ(t) would be if x(0) = 0 we have that

Σ(t) = Σ0(t) + (P − J)te(0)e(0)T
(
(P − J)T

)t
.

Since ρ(P −J) < 1 by Lemma 2, we see that Σ(t)−Σ0(t)→
0. Using δ0

ss to denote what δss would be if x(0) = 0, we have
that

δss − δ0
ss = lim sup

t→∞

(
πi[Σ

0(t)]ii + πi[Σ(t)− Σ0(t)]ii
)

− lim sup
t→∞

πi[Σ
0(t)]ii

= 0.

Thus for the remainder of this paper, we will make the
assumption that x(0) = 0, i.e., that the initial condition is
the origin. This assumption will slightly simplify some of the
expressions which follow.

In our next corollary, we write down an explicit expression
for Σ(t) as an infinite sum.

Corollary 4 (Explicit Expression for the Covariance Matrix).
For t ≥ 1,

Σ(t) =

t−1∑
k=0

(P k − J)Σw((PT )k − JT ).

Proof. Indeed, as we are now assuming that x(0) = 0, Lemma
3 implies that for t ≥ 1,

Σ(t) =

t−1∑
k=0

(P − J)k(I − J)Σw(I − J)T (PT − JT )k

= (I − J)DΣw(I − JT )

+

t−1∑
k=1

(P k − J)(I − J)Σw(I − J)T ((PT )k − JT ) (4)

where the last line used Lemma 2 for the equality (P−J)k =
P k − J when k ≥ 1.

Next, observing that by Lemma 2, again if k ≥ 1,

(P k − J)J = (P − J)kJ = (P − J)k−1(P − J)J = 0

and therefore if k ≥ 1,

(Pk−J)(I−J)Σw(I−J)T ((PT )k−JT ) = (Pk−J)Σw((PT )k−JT ).

Plugging this into Eq. (4), we obtain the statement of the
corollary.

Appealing once again to Lemma 2, we may rewrite the
previous corollary as

Σ(t) = (I − J)Σw(I − J)T +

t−1∑
k=1

(P − J)kΣw((P − J)T )k.

Furthermore, by Lemma 2 the matrix P−J has spectral radius
strictly less than 1. It follows that we can define

Σss := (I−J)Σw(I−J)T+

∞∑
k=1

(P−J)kΣw((P−J)T )k, (5)

and this is a valid definition since the the sum on the right-
hand side converges. Moreover,

Σss = lim
t→∞

Σ(t).

Our next step is to observe that if we define Dπ :=
diag(π1, π2, . . . , πn), then the quantity δss we are seeking to
characterize can be written as

δss = Tr(ΣssDπ). (6)

We therefore now turn our attention to the matrix ΣssDπ .
Our next lemma derives an explicit expression for this matrix
as an infinite sum. The proof of this lemma is the only place
in the proof of Theorem 1 where we use the reversibility of
the matrix P .

Lemma 5 (Explicit Expression for the Weighted Covariance
Matrix).

ΣssDπ = (I − J)ΣwDπ(I − J) +
∞∑
k=1

(P − J)kΣwDπ(P − J)k.

Proof. Indeed, from Eq. (5),

ΣssDπ = (I−J)Σw(I−J)TDπ+

∞∑
k=1

(P−J)kΣw(PT−JT )kDπ

(7)
Now the reversibility of P means that for all i, j = 1, . . . , n,
we have that πiPij = πjPji. We can write this in matrix form
as

DπP = PTDπ.

One can also verify directly from the definitions of J and Dπ

that
DπJ = JTDπ.

Plugging the last two equations into Eq. (7), we obtain the
statement of the lemma.

Definition of the matrix Σ̂: we would now like to introduce
the matrix Σ̂ defined as

Σ̂ :=

∞∑
k=0

(P 2k − J)ΣwDπ. (8)

As before, by Lemma 2 we have that ρ(P − J) < 1, and
consequently the sum on the right hand side converges and
Σ̂ is well defined. Furthermore, since Tr(AB) = Tr(BA),
Lemma 5 immediately implies that

Tr(Σ̂) = Tr(ΣssDπ),

and putting this together with Eq. (6), we have

Tr(Σ̂) = δss. (9)

Furthermore, since by Lemma 2 we have that J(P k−J) = 0
for all k ≥ 0, we have that

JΣ̂ = 0. (10)
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Finally, using Eq. (10), followed by Eq. (8) and Lemma 2, we
have the following sequence of equations:

P 2Σ̂ = (P 2 − J)Σ̂

=

∞∑
k=0

(P 2 − J)(P 2k − J)ΣwDπ

= (P 2 − J)(I − J)ΣwDπ +

∞∑
k=1

(P 2 − J)(P 2 − J)kΣwDπ

= (P 2 − J)ΣwDπ +

∞∑
k=1

(P 2(k+1) − J)ΣwDπ

=

∞∑
k=0

(P 2(k+1) − J)ΣwDπ

=

∞∑
k=1

(P 2k − J)ΣwDπ

= Σ̂− (I − J)ΣwDπ

which we may rearrange as

Σ̂ = P 2Σ̂ + (I − J)ΣwDπ (11)

With these identities in place, we are finally ready to prove
Theorem 1.

Proof of Theorem 1. Let us stack up the hitting times in the
Markov chain which moves according to P 2 in the matrix H ,
i.e., Hij := HP 2(i → j). By conditioning on what happens
after a single step, we have the usual identity

Hij = 1 +

n∑
k=1

[P 2]ikHkj , i 6= j.

On the other hand, since a random walk spends an expected
1/πi steps in between visits to node i,

Hii = 0 = 1 +

n∑
i=1

[P 2]ikHki −
1

πi
.

We can the previous two equations in matrix form together as

H = 11T + P 2H −D−1
π ,

or
(I − P 2)H = 11T −D−1

π .

Multiplying both sides of this equation by DπΣwDπ on the
right, we obtain

(I − P 2)HD2
πDσ2 = (J − I)ΣwDπ. (12)

On the other hand, observe that we may rearrange Eq. (11) as

(I − P 2)Σ̂ = (I − J)ΣwDπ. (13)

Adding Eq. (12) and Eq. (13), we obtain(
I − P 2

) (
Σ̂ +HDπΣwDπ

)
= 0,

meaning that all the columns Σ̂ +HDπΣwDπ lie in the null
space of I − P 2. But because P is irreducible and aperiodic,
the null space of I−P 2 is span{1}. Thus Σ̂+HDπΣwDπ is

a matrix with constant columns. In other words, there exists a
vector v such that

Σ̂ = −HDπΣwDπ + 1vT . (14)

We can, in fact, compute 1vT exactly by utilizing Eq. (10),
which implies that

1πTHD2
πDσ2 = 1vT .

Plugging this this into Eq. (14), we obtain

Σ̂ = −HDπΣwDπ + 1πTHDπΣwDπ. (15)

Finally recalling that δss is the trace of Σ̂ (see Eq. (9)),

δss = −Tr(HDπΣwDπ) + πTHDπΣwπ.

Having proven Theorem 1, we conclude the section with
a discussion of its simplifications in the case when P is
symmetric, followed by an enumeration of some connections
it implies between the weighted steady-state disagreement
δss, the unweighted steady-state disagreement δuni

ss , and other
graph-theoretic quantities such as the electrical resistance and
the Kemeny constant.

B. Simplifications of Theorem 1 in the symmetric case

In this subsection we collect several simplifications and
observations that pertain to symmetric matrices P . Thus for
the remainder of this Section II-B, we will asume that P is a
symmetric matrix. Some of the identities we derive in this brief
subsection will be new, whereas others will be simple proofs
of already known results. The main reason these results are
collected here is that we will need to use some of them in
Sections III and IV.

Since the symmetry of P implies that π = (1/n)1, we
immediately obtain that

δss(P,Σw) =
1

n3
1THΣw1−

1

n2
Tr(HΣw). (16)

Using the notation Σw = [σij ] as well as the fact that Σw is
symmetric, we may expand this expression to obtain

δss(P,Σw) =
1

n3

n∑
i=1

n∑
k=1

n∑
l=1

HP 2(k → l)σli

− 1

n2

∑
i<j

σij (HP 2(i→ j) +HP 2(j → i)) (17)

It is also worthwhile to rewrite this as

δss(P,Σw) =
1

n3

(
Tr(HΣw11

T )− Tr(nHΣw)
)

= − 1

n3
Tr(HΣw(nI − 11T ))

= − 1

n2
Tr(HΣw(I − (1/n)11T ))

= − 1

n2
Tr(HΣwP1⊥) (18)

where P1⊥ = I − (1/n)11T is the orthogonal projection
matrix onto the subspace 1⊥.
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Equations (16), (17), and (18) are considerable simplifi-
cations of Theorem 1. However, it is possible to simplify
Theorem 1 still further if we additionally assume that Σw
is diagonal, i.e., Σw = Diag(σ2

1 , . . . , σ
2
n). In that case, the

second term on the right of Eq. (16) is zero and we obtain

δss(P,diag(σ2
1 , . . . , σ

2
n)) =

1

n

n∑
i=1

n∑
k=1

σ2
iHP 2(k → i)

n2
. (19)

Finally, let us assume that the the variances are all identical,
i.e., Σw = σ2I . In this case the answer can be written in a
particularly simple form in terms of the so-called Kemeny
constant.

Kemeny constant. A classic result of Kemeny sometimes
called the “random target lemma” shows that the quantity∑n
j=1 πjHM (i → j) is independent of i for any Markov

chain M . The quantity
∑n
j=1 πjHM (i → j) is thus called

the Kemeny constant of the Markov chain and we will denote
it by K(M).

With this in mind, from Eq. (19) we have that

δss(P, σ
2I) = σ2K(P 2)

n
. (20)

Arguably, this is the simplest possible characterization of
δss for symmetric matrices P and Σw = σ2I .

Moreover, we remark that this can be rewritten in terms of
the eigenvalues of the matrix P . Indeed, defining Λ(M) to be
the set of all non-principal eigenvalues of M , it is known [14],
[12] that

K(M) =
∑

λ∈Λ(M)

1

1− λ
. (21)

Putting the last two equations together, we have that for
symmetric P with constant variances,

δss(P, σ
2I) =

σ2

n

∑
λ∈Λ(P )

1

1− λ2
.

This last identity is not a new result; rather, it was first
observed in [38] where it was proved directly by diagonalizing
P .

Electrical resistance. We remark that it is possible to use
Theorem 1 obtain a characterization of δss(P, σ2I) in terms
of electric resistances as first shown in [17] (see also [25] for
the analogous observation in continuous time).

Given a reversible stochastic matrix M ∈ Rn×n with zero
diagonal, we define

qM (x, y) := πxM(x, y).

Note that reversibility of M implies that qM (x, y) = qM (y, x).
The quantity RM (a↔ b) is defined to be the resistance from a
to b in the electrical network where the edge (i, j) is replaced
with a resistor with resistance 1/qM (i, j).

There is a connection between resistances, thus defined, and
hitting times:

HM (i→ j) +HM (j → i) = RM (i↔ j). (22)

A proof may be found in Section 10.3 of [15].

Using this identity along with the symmetry of the matrix
P (which implies all πi equal 1/n)), we can group terms
together in Eq. (19) to obtain

δ(P, σ2I) =
σ2

n

∑
i<j RP 2(i↔ j)

n2
.

As mentioned above, this identity was first proved in [17].

C. Further connections to resistance, the Kemeny constant,
and unweighted steady-state disagreement.

We now turn our attention back to the case when P is
reversible (and not necessarily symmetric). In this subsection,
we derive a number of inequalities bounding δss in terms of the
largest resistance and the Kemeny constant. We also discuss
how we can bound δuni

ss in terms of δss. All the inequalities
derived within this subsection are new.

By putting Theorem 1 together with Eq. (26), we obtain

δss(P,diag(σ2
1 , . . . , σ

2
n)) =

n∑
i=1

n∑
j=1

σ2
i π

2
i πjHP2(i→ j)

=

(
max

i=1,...,n
σ2
i πi

)(
max
i,j

RP2(i↔ j)

)
.

In other words, δss may be quickly bounded in terms of the
largest variance, stationary distribution, and resistance. We can
also obtain a lower bound in terms of the smallest versions of
similar quantities. Indeed:

δss(P,diag(σ2
1 , . . . , σ

2
n)) =

n∑
i=1

n∑
j=1

σ2
i π

2
i πjHP2(i→ j)

≥
(

min
i=1,...,n

σ2
i πi

) n∑
i=1

n∑
j=1

πiπjHP2(j → i)

=

(
min

i=1,...,n
σ2
i πi

)
K(P 2).

These inequalities can be used to obtain quick bounds on δss
when either the resistance of the Kemeny constant are known.

Bounding δuni
ss . The problem of giving a combinatorial char-

acterization of δuni
ss (P,Σw) for reversible P is open, to the best

of our knowledge. Here we provide combinatorial lower and
upper bounds on δuni

ss which are tighter than the best previously
known bounds.

Indeed, observe that

δss(t) =

n∑
i=1

πiE[e2
i (t)] =

1

n

n∑
i=1

nπiE[e2
i (t)],

so that

nπminδ
uni
ss (t) ≤ δss(t) ≤ nπmaxδ

uni
ss (t),

which implies

δss
nπmax

≤ δuni
ss ≤

δss
nπmin

Thus as a consequence Eq. (2), we have

1

nπmax

n∑
i=1

n∑
j=1

σ2
i π

2
i πjHP2(j → i) ≤ δuni

ss (P,diag(σ2
1 , . . . , σ

2
n))
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and

1

nπmin

n∑
i=1

n∑
j=1

σ2
i π

2
i πjHP2(j → i) ≥ δuni

ss (P,diag(σ2
1 , . . . , σ

2
n)).

This pair of bounds may be viewed as an improvement on the
results of [17]. That paper provided upper and lower bounds
on δuni

ss in terms of the stationary distribution and the electrical
resistance; the ratio of the upper and lower bounds given was
(πmax/πmin)4. By contrast, the ratio of the upper and lower
bounds in the two equations above is πmax/πmin.

III. EXAMPLES

The goal of this section is to demonstrate that “back of the
envelope” calculations based on Theorem 1 can often be used
to give order-optimal estimates of δss. Indeed, we will obtain
estimates of how δss scales with the number of nodes on many
common graphs. The interested reader may skip ahead to the
table at the end of this section.

We begin by describing a natural way in which a stochastic
matrix can be chosen from a graph. Given an undirected
connected graph G = ({1, . . . , n}, E) without self-loops, let
d(i) denote the degree of node i, and let us define

P̃ij =

{
1/d(i) (i, j) ∈ E,
0 else.

(23)

Clearly, P̃ is a stochastic matrix. However, if the graph G is
bipartite the quantity δss(P̃ ,diag(σ2

1 , . . . , σ
2
n)) will be infinite

if at least one of σ2
i is strictly positive2. An easy fix for this

is to consider instead

P =
1

2
I +

1

2
P̃ . (24)

Intuitively, each agent will place half of its weight on itself and
distribute half uniformly among neighboring agents. It is tau-
tological that if G is connected then P is irreducible. Finally,
observe that P constructed this way is always reversible.

After attending to some preliminary remarks in the next
subsection, we proceed to give order-optimal estimates of the
quantity δss(P,diag(σ2

1 , . . . , σ
2
n)) for a number of matrices P

constructed from graphs in this way.

Preliminary observations.

• We note that it is quite easy to compute the stationary
distribution of a matrix defined from an undirected graph

2We relegate the justification of this assertion to a footnote. Indeed, suppose
that the graph G is bipartite and let V1 ∪ V2 = {1, . . . , n} be a bipartition.
Then the vector v defined as vi = d(i), i ∈ V1 and vi = −d(i), i ∈ V2 is a
left-eigenvector of P with eigenvalue −1. Observe that vT 1 = 0 since both∑
i∈V1

d(i) and
∑
i∈V2

d(i) count the number of edges going between V1

and V2. Thus

vT e(t+ 1) = vT x(t+ 1) = −vT x(t) + vTw(t) = −vT e(t) + vTw(t).

Letting y(t) = (−1)tvT e(t) this becomes

y(t+ 1) = y(t) + (−1)t+1vTw(t).

Since x(0) = 0 we have E[vT e(t)] = 0 and E[y(t)] = 0. Thus as long
as at least one σ2

i is strictly positive, we have that Var(y(t)) → +∞ and
consequently Var(vT e(t)) → +∞. Since all πi are strictly positive due to
the connectivity of G, it is not too hard to see that this implies that δss is
infinite.

according to Eq. (23, 24). Indeed, letting m be the number
of edges in the graph G which are not self loops, it is
easy to verify that πi = d(i)/(2m). Naturally, this is also
the stationary distribution of P 2 and P̃ .

• We remind the reader that for two functions f, g : X →
R, the notation f(x) = Θ(g(x)) means that there exist
positive numbers c, C such that cg(x) ≤ f(x) ≤ Cg(x).
We will sometimes write this as f(x) ' g(x).

• Observe that on conntected graphs where the total number
of edges is linear in n, we have that πi ' 1/n for all i
and consequently δuni

ss ' δss.

• Let us adopt the notation HM for the largest hitting time
in the chain which moves according to the stochastic
matrix M , i.e., HM = maxi,j HM (i → j). Then we
have the following lemma.
Lemma 6. If M is diagonally dominant, then

HM2 = O (HM ) .

Although this statement is elementary, we provide a proof
for completeness.

Proof. Consider any pair of nodes i, j and let TM (i→ j)
be the first time a random walk starting at i and moving
according to M hits j, i.e., TM (i → j) is the random
variable whose expectation is HM (i → j). Then, as a
consequence of the diagonal dominance of M , we have
that for any time t,

P (TM2(i→ j) ≤ t) ≥ P (TM (i→ j) ≤ 2t)

2
. (25)

This is true because:
– The probability of the event {TM2(i → j) ≤ t}

equals the probability that a random walk starting at
i and moving according to M hits j by time 2t at
an even time step.

– Consider a sample path in the chain moving accord-
ing to M which starts at i and ends when it hits
j, which happens by time 2t. Either (a) this sample
path hits j at an even time step (b) this sample path
can be extended with a self-loop to further hit j at
an even time step by time 2t (and the probability
of taking that self-loop is at least 1/2 by diagonal
dominance).

We next plug t = HM into Eq. (25) to obtain

P (TM2(i→ j) ≤ HM ) ≥ P (TM (i→ j) ≤ 2HM )

2
≥ 1

4
,

where the last step used Markov’s inequality. Since this
did not depend on the starting point i, we can iterate this
argument to obtain that E[TM2(i → j)] ≤ 4HM , which
is what we needed to show.

• As a consequence of the last bullet as well as the fact
that HP (i→ j) = 2HP̃ (i→ j) is that HP 2 ' HP̃ .

• A convenient tool to compute upper bounds on hitting
times in P̃ is their connection to electric resistances. We
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refer the reader back to Section II-B for the definition of
electric resistance RM (i↔ j) and here merely recall the
identity

HM (i→ j) +HM (j → i) = RM (i↔ j) (26)

For the matrix P̃ defined in Eq. (24) we have that for
every pair of neighbors x, y,

qP (x, y) =
1

d(x)

d(x)

2m
=

1

2m
,

where recall m is the number of edges in the graph G.
Consequently, the resistance RP̃ (i↔ j) can be obtained
as electrical resistance between i and j in a graph where
every edge has resistance 2m.

With these preliminary remarks in place, we now turn to
the problem of computing δss for matrices which come from
graphs according to Eq. (23, 24). We will be assuming that
Σw = diag(σ2

1 , . . . , σ
2
n) for the remainder of this section (and

in places we will even consider the case when all σ2
i are equal

to the same σ2). As we will see next, we can use Theorem
1 as well as the above preliminary observations to estimate
δss to within a constant multiplicative factor for a number of
common graphs.

The complete graph. By symmetry πi = 1/n for all nodes.
Moreover, for every pair i, j such that i 6= j, HP 2(j → i) ' n.
Thus by Eq. (2),

δss =

n∑
i=1

σ2
i

1

n2

∑
j 6=i

1

n
Θ(n) '

∑n
i=1 σ

2
i

n
.

This fact can also be obtained by an easy calculation directly
from the definition of δss.

The circle graph. Once again, by symmetry we have that πi =
1/n for all nodes. An additional consequence of symmetry is
that HP̃ (j → i) = HP̃ (i → j), and so by Eq. (26) both of
these quantities equal half of the resistance between nodes i
and j. That resistance can be computed by taking two parallel
paths, one with length |j − i| and the other with length n −
|j−i|; each edge of the path has resistance O(n). In the worst
case, the resitance is quadratic, meaning that we can bound
HP 2 = O(n2). Thus by Eq. (2),

δss =

n∑
i=1

σ2
i

1

n2

∑
j 6=i

1

n
O(n2)

= O

(
n∑
i=1

σ2
i

)
.

The line graph. On the line graph, we have that the corner
nodes have stationary distributions which are πi ' 1/n. By a
standard “gambler’s ruin” type argument, we have that HP̃ =
O(n2). Thus the calculation is the same as for the ring graph,
i.e.,

δss = O

(
n∑
i=1

σ2
i

)
We remark that δuni

ss has the same scaling, as a consequence
of the fact that πi ' 1/n for all i.

The star graph. Let us adopt the convention that node 1 is
the center of the star and nodes 2, . . . , n are the leafs. We then
have that π1 ' 1 and πi ' 1/n for i = 2, . . . , n. Furthermore,
HP 2(i → 1) ' 1 for i = 2, . . . , n while HP 2(1 → i) ' n
and HP 2(j → i) ' n for all i, j with i > 1, j > 1, i 6= j.
Consequently,

δss ' σ2
1

∑
j 6=i

1

n
1 +

n∑
i=2

σ2
i

1

n2

1 · n+
∑

k=2,...,n, k 6=i

1

n
n


' σ2

1 +
σ2

2 + · · ·+ σ2
n

n
.

As might be expected, noise at the center vertex contributes
an order-of-magnitude more to δss than noise at a leaf vertex
with the same variance. We also remark that δuni

ss is upper by
the above scaling since the total number of edges is linear.

The two-star graph. Consider two stars joined by a link
connecting their centers. It is not hard to see that all hitting
times in P 2 are Θ(n), with the exception of hitting times from
a leaf to its own center, which are Θ(1) as before. Adopting
the conventions of having node 1 and node n denote the two
centers, we have that

π1 = πn ' 1, πk '
1

n
, for all k 6= 1, n.

Thus

δss ' (σ2
1 + σ2

n)(1 · n+ n
1

n
· 1 + n

1

n
n)

+

n−1∑
i=2

σ2
i

1

n2

2 · 1 · n+
∑
j 6=i

n
1

n


' n(σ2

1 + σ2
n) +

σ2
2 + · · ·+ σ2

n−1

n
.

It is interesting to compare our results for the star graph
with our results for the two-star graph. While on the star graph,
noise at the center vertex contributes Θ(n) times more to the
limiting disagreement than noise at a leaf vertex, on the two-
star graph the corresponding factor is Θ

(
n2
)
. Furthermore, if

all σ2
i are positive and bounded away from zero independently

of n, the disagreement on the two-star graph is Θ(n) while
disagreement on the star graph is Θ(1). One implication of
these comparisons is that the diameter of the graph (which
is constant for both the star and the two-star graph) does not
determine the order of magnitude of δss.

Finally, we also remark that δuni
ss is upper by the above

scaling since the total number of edges is linear.

The starry line graph. We now describe a graph on which
δss scales quadratically in the number of nodes n when σ2

i =
σ2 for all i – an order of magnitude worse than on all the
examples we have considered hitherto. We have not seen this
graph described in the literature and we call it the starry line
graph.

The construction of the graph is simple. We take a line
graph on n/3 nodes and two star graphs on n/3 nodes (let
us assume n is divisible by 3). We join these three graphs
together as follows: we put an edge between the center of the
first star and the left-most vertex of the line and put an edge
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between the center of the second star and the right-most vertex
of the line.

We first argue that δss scales at least quadratically on this
graph. Indeed, let node 1 be the center of the first star and
let node n be the center of the second star. Considering
resistances and using Eq. (26), we immediately see that
HP̃ (1 → n) + HP̃ (n → 1) = Θ(n2). By symmetry, this
implies that both HP̃ (1 → n) and HP̃ (n → 1) are Ω(n2).
Since HM2(i → j) = Ω(HM (i → j)), this implies that
both HP 2(1 → n), HP 2(n → 1) are also Ω(n2). Since
the stationary distribution at both nodes 1 and n is lower
bounded independently of n, we immediately obtain that
δss ≥ σ2π2

1πnHP 2(n→ 1) = σ2Ω(n2).
To get that δss ' n2, we argue that the contributions from all

other pairs of nodes i, j in Eq. (3) is not more than σ2O(n2).
We will use the bound HP 2(j → i) = O(n2) for all i, j, which
follows from HP̃ = O(n2) from resistance analysis. Indeed,
if neither of i, j is 1 or n, the assertion we need follows since
there are O(n2) such pairs, all with π2

i πj = O(1/n3), so their
contribution is O(n2n3(1/n3)) = O(n2). For pairs i, j when
one of i, j is 1 or n, we have that there are O(n) such pairs
with π2

i πj = O(1/n), so their contribution is O(n(1/n)n2) =
O(n2). This concludes the argument.

The two-dimensional grid. Let us assume that n is a perfect
square. The two-dimensional grid is the graph with the vertex
set {(i, j) | i = 1, . . . ,

√
n, j = 1, . . . ,

√
n}, and the edge

set which is specified by the rule that (i1, j1) and (i2, j2) are
connected if and only if |i1−i2|+|j1−j2| = 1. In other words,
each node of the 2D grid is labeled by an integer point in the
plane, with edges running left, right, up, and down between
neighboring points.

By utilizing the formula πi = d(i)/m, we immediately
have that πi ' 1/n for all nodes. A standard argument
(see Theorem 6.1 of [4]) shows that, with unit resistances
on each edge, the largest resistance in the two-dimensional
grid is O(log n). This means that using Eq. (26) to bound
the commute time (which, recall, involves putting a resistor of
resistance 2m = O(n) on every edge) we obtain that,

HP̃ = O(n log n),

and consequently the same bound holds for HP 2 . This implies
that

δss =

n∑
i=1

σ2
i (n− 1)O

(
1

n3
n log n

)

=

(
n∑
i=1

σ2
i

)
O

(
log n

n

)
.

Finally, note that since the degrees on this graph are all O(1),
it follows that δss and δuni

ss are within a constant factor of each
other, and consequently δuni

ss satisfies the same scaling.

The d-dimensional grid with d ≥ 3. We may define the d-
dimensional grid analogously by associating the nodes with
integer points in Rd and connecting neighbors. According to
Theorem 6.1 of [4], the largest resistance between any two
nodes in a d-dimensional grid with unit resistors on edges
is Θ(1/d). This becomes Θ(n) when we put resistors of

resistance 2m = Θ(nd) on each each edge. An implication
is that HP̃ = O(n). Since all degrees are within a factor of 2
of each other, we also have that 1/(2n) ≤ πi ≤ 2/n for all
nodes i. Putting this together gives

δss = O

(∑n
i=1 σ

2
i

n

)
.

Finally, for the same reason as on the 2D grid, δuni
ss satisfies

the same scaling.

The complete binary tree. It is shown in Section 11.3.1 of
[15] that for the complete binary tree on n nodes, HP̃ =
O(n log n). Since all degrees are within a factor of 2 of each
other, we have πi ' 1/n for all nodes. We thus immediately
have the same estimate as for the 2D grid, namely

δss =

(
n∑
i=1

σ2
i

)
O

(
log n

n

)
.

Again since all degrees are within a factor of 2 of each other,
δuni
ss satisfies the same scaling.

Regular expander graphs. We first give (one of the) stan-
dard definitions of an expander graph. Given a graph G =
({1, . . . , n}, E) and a subset V ′ ⊂ {1, . . . , n} we introduce
the notation N(V ′) to denote the set of neighbors of nodes
in V ′, i.e., N(V ) = {j | (i, j) ∈ E for some i ∈ V ′}. The
graph G is called a α-expander if for every V ′ ⊂ {1, . . . , n}
with |V ′| ≤ n/2 we have |N(V ′)− V ′| ≥ α|V ′|.

It is Theorem 5.2 in [4] that a regular connected α-expander
with degree d has resistance at most O(1/(α2d)) with unit
resistors on edges. As a consequence, all commute times in P̃
are bounded by O((1/(α2d)) · dn) = O(n/α2) so that

δss =

n∑
i=1

σ2
i

∑
j 6=i

1

n3
O
( n
α2

)
=

∑n
i=1 σ

2
i

n
O

(
1

α2

)
.

Since the graph is regular, δss = δuni
ss in this case.

Dense Erdos-Renyi random graphs. We next argue that

δss = O

(∑n
i=1 σ

2
i

n

)
, (27)

on an Erdos-Renyi random graph with high probability3,
subject to assumptions we will spell out shortly. Note that
in order to obtain such a result, wewill use the fact that all
stationary distribution entries are ' 1/n in magnitude and all
hitting times are linear. The latter result is apparently available
in the literature in [16] only for dense Erdos-Renyi random
graphs.

More formally, we consider an undirected Erdos-Renyi
random graph on n nodes, meaning that each edge appears
independently with a probability of pn. Under the assumption
that (log n)Θ(log logn)/(npn) → 0 as n → ∞ (this means
that the total number of edges in the random graph has

3A statement is said to hold with high probability if the probability that it
does not hold approaches zero as n→∞.
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expectation that grows slightly faster than n, namely faster
than n(log n)log logn), it follows from the results of [16] that
there exists constants c, C such that with high probability we
have that for all i,

cn ≤
n∑
j=1

πjHP̃ (j → i) ≤ Cn.

Thus K(P̃ ) ' n, and therefore K(P ) ' n. Since diagonal
dominance of P implies its eigenvalues are nonnegative via
Gershgorin circles, we have that K(P 2) ≤ K(P ) by Eq.
(21), and we finally obtain that K(P 2) = O(n) with high
probability. Finally, since πi = d(i)/2m it is quite easy to
see that all π are on the order of 1/n with high probability;
formally, we refer the reader to Lemma 3.2 of of [16]. We
thus have

δss =
n∑
i=1

σ2
iO

(
1

n2

)
O(n) = O

(∑n
i=1 σ

2
i

n

)
.

Finally, δuni
ss follows the same scaling under these assumptions

since with high probability all πi are on the order of 1/n.

Regular dense graphs. Let G be a regular graph with degree
d ≥ bn/2c. Then it is Theorem 3.3 in [4] that the largest
resistance in such a graph graph with unit resistances on the
edges is O(1/n). It we put a resistor of size 2m = O(nd) on
each edge, the largest resistance becomes O(d). We thus have

δss =

n∑
i=1

σ2
i

n∑
j=1

1

n3
O(d) = O

(∑n
i=1 σ

2
i

n

)

Once again, because on a regular graph δss = δuni
ss , we have

that the same asymptotic holds for δuni
ss .

Regular graphs. We now argue that on any regular graph,
δss = O

(
σ2

1 + · · ·+ σ2
n

)
. In particular, this implies that the

ring graph achieves the worst possible scaling for any regular
graph. At first glance, this might not sound surprising since the
ring graph is the sparsest connected regular graph; however,
looking at the table at the end of this subsection, we see that
there is no clear connection between δss and sparsity.

This fact is an immediate consequence of the main result
of [6], which implies that in a regular graph HP̃ = O(n2).
Since πi = 1/n for all i due to regularity, we have that

δss =

n∑
i=1

σ2
i

n∑
j=1

1

n3
O(n2) = O

(
n∑
i=1

σ2
i

)
.

Moreover, on a regular graph we have that δss = δuni
ss , so that

δuni
ss satisfies the same upper bound.

Summary. We provide a table to summarize all the bounds for
δss on concrete graphs obtained in the preceeding subsections.

Graph δss
Complete ' (

∑n
i=1 σ

2
i )/n

Line O
(∑n

i=1 σ
2
i

)
Ring O

(∑n
i=1 σ

2
i

)
Star ' σ2

1 + (1/n)
∑n
i=2 σ

2
i

Two-star ' n(σ2
1 + σ2

n) + (1/n)
∑n−1
i=2 σ

2
i

Starry line graph ' σ2n2 when σ2
i = σ.

2D grid (
∑n
i=1 σ

2
i )O((log n)/n)

kD grid with k ≥ 3 O(
∑n
i=1 σ

2
i )/n

Complete binary
tree (

∑n
i=1 σ

2
i )O((log n)/n)

Regular α-expander
graphs O(1/α2) · (

∑n
i=1 σ

2
i )/n

Dense Erdos-Renyi
random graphs O(

∑n
i=1 σ

2
i )/n

Regular dense
graphs O(

∑n
i=1 σ

2
i )/n

Regular graphs O(
∑n
i=1 σ

2
i )

IV. FORMATION CONTROL FROM NOISY RELATIVE
POSITION MEASUREMENTS

In this section we consider the problem of formation control
from noisy relative position measurements, i.e., when each
node can measure the (noisy) position of neighboring nodes
relative to itself. We will show that, using Theorem 1, we can
characterize the long-term performance of a class of natural
protocols in this settings in terms of the Kemeny constant of
an underlying graph.

We begin with a formal statement of the problem. Our ex-
position here closely parallels our earlier works [23], [24]. We
consider n nodes which start at arbitrary positions pi(0) ∈ Rd.
As in the previous sections, there is a graph (V,E), and now
the goal of the nodes is to move into a formation which is
characterized by certain desired differences along the edges
of this graph.

Formally we associate with each edge (i, j) ∈ E a vector
rij ∈ Rd known to both nodes i and j. A collection of points
p1, . . . ,pn in Rd are said to be “in formation” if for all (i, j) ∈
E we have that pj − pi = rij . In the current section (i.e., in
Section IV), we will be assuming that G is a directed graph
with the “bidirectionality” property that (i, j) ∈ E implies
(j, i) ∈ E; we will do this so that we may refer to (i, j) and
(j, i) as distinct edges of the graph. Naturally, we will also
assume G is strongly connected.

Note that, given the vectors rij , there may not exist a
collection of points in formation; that is, some collections of
vectors {rij , (i, j) ∈ E} may be thought of as “inconsistent.”
For example, unless rij = −rji for all (i, j) ∈ E the collection
{rij , (i, j) ∈ E} will clearly be inconsistent. Moreover,
since the property of being in formation is defined through
differences of position, any translate of a collection of points
in formation is itself in formation.

We thus consider the following problem: a collection of
nodes would like to repeatedly update their positions so
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Fig. 1. The offsets shown on the left side of the figure define a “ring formation” with 4 nodes. On the right, we show the result of simulating Eq. (30) on
this graph with all the weights fij equal to 1/9 starting from random positions. We see that the nodes begin by moving close to the formation and spend the
remainder of the time doing essentially a random walk in a neighborhood of the formation.

that p1(t), . . . ,pn(t) approaches some collection of points in
formation. We assume that node i knows pj(t) − pi(t) for
all of its neighbors j at every time step t and furthermore we
assume a “first-order” model in which each node can update
its positions from step to step. The protocols we derive for
this problem will not assume the presence of a centralized
coordinate system common to all the nodes.

A considerable literature has emerged in the past decade
spanning many variants of the formation control problem. We
make no attempt to survey the vast number of papers that have
been published on the topic and refer the interested reader to
the surveys [27], [28], [21]. We stress that the problem setup
we have just described is only one possible way to approach
the formation control problem; a popular and complementary
approach is to consider formations defined by distances ||pj−
pi||2 rather than the relative positions pj − pi (see e.g., [7],
[22], [41], [13]). In terms of the existing literature, our problem
setup here is closest to some of the models considered in [13],
[28], [21], [8], [23].

A natural idea is for the nodes to do gradient descent on
the potential function

∑
(i,j)∈E ||pj − pi − rij ||22. This leads

to the update rule

pi(t+ 1) = pi(t) +
∑

j∈N(i)

fij(pj(t)− pi(t)− rij), (28)

where {fij} are positive numbers that, for technical reasons,
need to satisfy the step-size condition

∑
j∈N(i) fij < 1 for all

i.
Note that this update may be implemented in a completely

decentralized way as long as node i knows the differences
pj(t) − pi(t) and the desired relative positions rij . Indeed,
the above update allows node i to translate knowledge of the
differences pj(t)−pi(t), which can be measured directly, into
knowledge of the difference pi(t+ 1)− pi(t), which in turn
be used to update the current position. In other words, this
update may be executed without node i ever knowing what
the actual position pi(t) is.

It is easy to see that if there exists at least one collection
of points in formation, then this control law works in the
sense that all pi(t) converge and pj(t) − pi(t) → rij for

all (i, j) ∈ E (considerably stronger statements were proved
in [8], [27]). For completeness, let us sketch the proof of
this simple claim now. If p1(t), . . . ,pn(t) is any collection
of points in formation, then defining

ui(t) := pi(t)− pi(t),

we have that ui(t) follow the update

ui(t+ 1) = ui(t) +
∑

j∈N(i)

fij(uj(t)− ui(t)). (29)

Let P form be the unique stochastic matrix which satisfies
P form
ij = fij and let uj(k) be the vector which stacks up

the j’th entries of the vectors u1(t), . . . ,un(k). We thus have

uj(k + 1) = P formuj(k), for all j = 1, . . . , d,

and it is now immediate that all ui(t) approach the same vec-
tor. This implies that all pi(t) approach positions in formation.

We now turn to the case where the formation control
update of Eq. (28) is executed with noise; as we will see,
under appropriate assumptions the performance of the (noisy)
formation control protocol can be written as the δss of a certain
matrix. Specifically, we will consider the update

pi(t+ 1) = pi(t) +
∑

j∈N(i)

fij(pj(t)− pi(t)− rij) + ni(t)(30)

The random vector ni(t) can arise if each node executes the
motion that updates its position pi(t) imprecisely. Although
our methods are capable of handling quite general assumptions
on the noise vectors ni(t), for simplicity let us assume that
E[ni(t)] = 0, E[ni(t)ni(t)

T ] = λ2
i I for all i, t, and that

ni(t1) and nj(t2) are independent whenever t1 6= t2 or i 6= j.
Of course, once noise is added convergence to a multiple of

the formation will not be possible; rather, we will be measuring
performance by looking at the asymptotic distance to the
closest collection of points in formation. For an illustration,
we refer the reader to Figure 1 which shows a single run of
Eq. (30) with four nodes. As can be read off from the figure,
the nodes will move “towards the formation” when they are far
away from it, but when they are close the noise terms ni(t)
effectively preclude the nodes from moving closer and the
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nodes end up performing random motions in a neighborhood
of the formation.

We next formally define the way we will measure the perfor-
mance of the formation control protocol. Let p̂1(t), . . . , p̂n(t)
be a collection of points in formation whose centroid is the
same as the centroid of p1(t), . . . ,pn(t), i.e.,

1

n

n∑
i=1

pi(t) =
1

n

n∑
i=1

p̂i(t).

It is easy to see that, as long as there exists a single collection
of points in formation, such p̂1(t), . . . , p̂n(t) always exist,
and in fact p̂1(t), . . . , p̂n(t) is closest collection of points in
formation to p1(t), . . . ,pn(t). Therefore, we will measure the
performance of the formation control scheme via the quantity

Form(G, {fij}) := lim sup
t→∞

1

n

n∑
i=1

E
[
||pi(t)− p̂i(t)||2

]
.

In general, obtaining a combinatorial expression for
Form(G, {fij}) is an open problem. The next proposition
describes a solution once again under the additional condition
that the weights {fij} are symmetric, i.e., fij = fji.

Proposition 7 (Performance of Formation Control with Sym-
metric Weights as Steady-State Disagreement). Let Q be the
matrix defined by Qij = λ2

i + λ2
j . If

• There exists at least one collection of points in formation.
• The underlying graph G = (V,E) is bidirectional and

connected.
• The numbers {fij , (i, j) ∈ E} are positive and satisfy∑

j∈N(i) fij < 1 for all i and fij = fji for all (i, j) ∈ E.
then

Form(G, {fij}) = d · δss
(
P form,

1

n

(
nDiag(λ2

1, . . . , λ
2
n)−Q

+

(∑n
l=1 λ

2
l

n

)
11T

))
.

Proof. We proceed by changing variables to

ûi(t) = pi(t)− p̂i(t).

Observe that by definition

1

n

n∑
i=1

ûi(t) = 0. (31)

Naturally, we also have that

Form(G, {fij}) = lim sup
t→∞

1

n

n∑
i=1

E
[
||ûi(t)||22

]
. (32)

We now observe that the symmetry of the weights {fij} as
well as the fact that rij = −rji imply that

1

n

n∑
j=1

pj(t+ 1) =
1

n

n∑
j=1

pj(t) +
1

n

n∑
j=1

nj(t),

which allows us to conclude that for all i = 1, . . . , n,

p̂i(t+ 1) = p̂i(t) +
1

n

n∑
j=1

nj(t).

In turn, this implies that the quantities ûi(t) are updated as

ûi(t+ 1) = ûi(t) +
∑

j∈N(i)

fij(ûj(t)− ûi(t)) + ni(t)

−

(
1

n

n∑
j=1

nj(t)

)
. (33)

Now for each j = 1, . . . , d, define ûj(t) to stack up the j’th
components of the vectors û1(t), . . . , ûn(t). We then have that
Eq. (32) implies

Form(G, {fij}) = lim sup
t→∞

d∑
j=1

1

n
E
[
||ûj(t)||22

]
, (34)

while Eq. (31) implies that for all t and j = 1, . . . , d,

1

n
1T ûj(t) = 0, (35)

and finally Eq. (33) implies

ûj(t+ 1) = P formûj(t) + qj(t) (36)

where the noise vector qj(t) satisfies

E[qj(t)] = 0

E[qjk(t)qjm(t)] = −λ
2
k + λ2

m

n
+

∑n
l=1 λ

2
l

n2
for all k 6= m

E[(qjk)2(t)] = λ2
k − 2

λ2
k

n
+

∑n
l=1 λ

2
l

n2
for all k.

We may summarize these last three equations as

E
[
qj(t)(qj)T (t)

]
=

1

n

(
nDiag(λ2

1, . . . , λ
2
n)−Q

+
1

n

(
n∑
l=1

λ2
l

)
11T

)
. (37)

Equations (36), (35), (34), (37) now immediately imply the
proposition.

Summarizing, Proposition 7 characterizes the performance
of a formation control protocol in terms of the δss of an
appropriately defined matrix. We can now apply Theorem 1 to
obtain a characterization in terms of features of the underlying
matrix. For simplicity, let us focus on the case when the noise
covariances are the same at each node, i.e.,

E[ni(t)ni(t)
T ] = λ2I for all i = 1, . . . , n. (38)

In this case, our main result on formation control is as follows.

Theorem 8 (Long-term Performance of Noisy Formation
Control with Symmetric Weights). Assuming Eq. (38) holds
as well as all the assumptions of Proposition 7, we have that

Form(G, {fij}) = d · λ2K((P form)2)

n

Proof. Having already established Proposition 7 and Theorem
1, all that is left is to combine them. Indeed, if we define

Σform =
λ2

n

(
nI − 11T

)
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then Proposition 7 for the case of equal-covariances may be
succintly stated as

Form(G) = d · δss
(
P form,Σform

)
.

Since P form is symmetric, we may apply Eq. (16). However,
observe that the right-hand side of Eq. (16) is linear in Σw,
and plugging in Σw = 11T makes the right-hand side of that
equation zero. Consequently,

Form(G) = d · δss
(
P form, λ2I

)
.

We now appeal to Eq. (20) to complete the proof of this
proposition.

Thus the long-term performance of formation control is
proportional to the Kemeny constant of an underlying matrix.

We next focus on understanding how the performance
of formation control scales with the underlying graph. Of
course, there are many possible choices of symmetric {fij}
for any given undirected graph G. We consider the following
choice, which is perhaps the simplest: we set all fij where
(i, j) ∈ E to some fixed ε. In order to satisfy the condition
that

∑
j∈N(i) fij < 1 we need to choose ε strictly smaller than

the largest degree; to avoid trouble, we therefore choose

ε =
1

2 maxi d(i)
.

With this choice, Form(G, {fij}) becomes only a function of
the graph G, so that we will simply write Form(G) henceforth.

We can now use Theorem 8 to compute the performance
of the above-described formation control protocol on various
graphs. This requires the computation of hitting times, and
since this is something we have done in Section III, we
can simply reuse the calculation we have already done (the
present choice of coefficients fij is only a minor modification).
We therefore omit an extended discussion and conclude this
section with the following list.

• If G is the complete graph, Form(G) ' dλ2.

• If G is the line graph, Form(G) ' dnλ2.

• If G is the ring graph, Form(G) ' dnλ2.

• If G is the 2D grid, Form(G) = dλ2O(log n).

• If G is complete binary tree, Form(G) = dλ2O(log n).

• If G is the 3D grid, Form(G) ' dλ2.

• If G is the star graph, then Form(G) = O(dnλ2).

• If G is the two-star graph, then Form(G) = O(dnλ2).

• If G is a regular α-expander, then Form(G) =
O(dλ2/α2).

• If G is a regular dense graph (recall this means that the
degree of each node is at least bn/2c), then Form(G) '
dλ2.

• If G is a regular graph, then Form(G) = O(dnλ2).

V. SIMULATIONS

We now present some simulations intended to demonstrate
how some of the scalings we have derived manifest themselves
in some concrete formation control problems. Indeed, a central
consequence of our results is that some graphs are better
than others by orders of magnitude. We note that similar
observations have been made in the previous literature for a
number of concrete graphs; a notable reference is [2] which
considered grids with constant spacing and demonstrated a
dramatic difference between the line graph and the 2D and
3D grids.

We focus here on the star graph (where Form(G) =
O(dnλ2)) and on the complete binary tree where Form(G) =
O(dλ2 log n). Figures 2 and 3 demonstrate the difference
between the logarithmic and linear scaling with the number
of nodes. In Figure 2, we see a single run both protocols
with seven nodes; the noise here is rather tiny, λ2 = 1/2500,
whereas all the relative positions have magnitude 1 for the star
graph and at least one for the binary tree. It might be expected
that such a small noise would make relatively little difference,
and indeed both formation seem to do reasonably well.

We need a quantitative measure of performance in order to
make the last statement precise, which we define as follows.
Taking the final positions, pfinal

1 , . . . ,pfinal
n after a given run,

we define as in Section IV the positions p̂final
1 , . . . , p̂final

n

to be positions in formation with the same centroid as
pfinal

1 , . . . ,pfinal
n . We then define

Form(G,pfinal
1 , . . . ,pfinal

n ) :=

n∑
i=1

1

n

∣∣∣∣pfinal
i − p̂final

i

∣∣∣∣2
2
.

The quantity Form(G,pfinal
1 , . . . ,pfinal

n ) may be thought as
measure of performance: it is the per-node squared distance
to the closest optimal formation. Returning to Figure 2, we
see that Form(G,pfinal

1 , . . . ,pfinal
n ) is quite small for both

formations. However, as we scale up to n = 127 in Figure
3, we now see that Form(G,pfinal

1 , . . . ,pfinal
n ) grows much

faster on the star formation than on the tree formation, which
results in a dramatic difference in performance. In particular,
we see that even a tiny noise with λ2 = 1/2500 essentially
overwhelms the star formation.

VI. CONCLUSION

The main contributions of this paper are three-fold. First,
we have given an explicit expression for the weighted steady-
state disagreement in reversible stochastic linear systems in
terms of stationary distribution and hitting times of appropriate
Markov chains. Second, we have given the best currently
known bounds for unweighted steady-state disagreement in
terms of the same quantities. Finally, we have shown how
the Kemeny constant characterizes the performance of a class
of noisy formation control protocols. Additionally, we have
worked out weighted steady-state disagreement over a number
of common graphs.

An open question is whether similar results might be
obtained without the technical assumption of reversibility. Fur-
thermore, the question of obtaining an exact “combinatorial’
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Fig. 2. On the left we show a single run of Eq. (30) on a star formation on seven nodes, while on the right we show the same for the tree formation. Both
plots show positions from a single run with w(t) = (1/50)X(t) where X(t) are i.i.d. standard Gaussians; each plot shows 22 positions from about 2000
iterations. Although this is hard to tell with the naked eye, the protocol performs a little better on the star formation here; for the collection of final positions
pfinal

1 , . . . ,pfinal
n , we have that Form(G,pfinal

1 , . . . ,pfinal
n ) ≈ 5 · 10−4 on the star formation, while Form(G,pfinal

1 , . . . ,pfinal
n ) ≈ 0.001 on the tree

formation.

Fig. 3. On the left we show a single run of Eq. (30) on a star formation on 127 nodes, while on the right we show the same for the tree formation. Both plots
show positios from a single run with w(t) = (1/50)X(t) where X(t) are i.i.d. standard Gaussians; each plot shows 22 positions from about 2000 iterations.
We note that the superior appearance of the protocol on the tree formation is not merely due to the increased horizontal spread (see axis labels); in fact, we
have that Form(G,pfinal

1 , . . . ,pfinal
n ) ≈ 0.049 on the star formation, while Form(G,pfinal

1 , . . . ,pfinal
n ) ≈ 0.0049 (an order of magnitude smaller) on the

tree formation.

expression for the quantity δuni
ss is also open. Finally, it is also

interesting to wonder how the results we have presented here
might be extended to time-varying linear systems.

More broadly, we wonder whether one can find more
connections between probabilistic or combinatorial quantities
and the behavior of linear systems. Indeed, we would argue
that the past decade of research of distributed control has high-
lighted the importance of studying linear systems on graphs.
Relating classical quantities of interest in control theory, such
as stability and noise robustness, to the combinatorial features
of the graphs underlying the system could have a significant
repercussions in the control of multi-agent systems.
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