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Abstract—Much recent research has dealt with the identifi-
ability of a dynamical network in which the node signals are
connected by causal linear transfer functions and are excited by
known external excitation signals and/or unknown noise signals.
A major research question concerns the identifiability of the
whole network - topology and all transfer functions - from the
measured node signals and external excitation signals. So far
all results on this topic have assumed that all node signals are
measured. This paper presents the first results for the situation
where not all node signals are measurable, under the assumptions
that (1) the topology of the network is known, and (2) each node
is excited by a known external excitation. Using graph theoretical
properties, we show that the transfer functions that can be
identified depend essentially on the topology of the paths linking
the corresponding vertices to the measured nodes. A practical
outcome is that, under those assumptions, a network can often
be identified using only a small subset of node measurements.

Index Terms—Network Analysis and Control; System identifi-
cation.

I. INTRODUCTION

This paper examines the identifiability of dynamical net-
works in which the node signals are connected by causal linear
time-invariant transfer functions and are excited by known
external excitation signals. Such networks can be looked upon
as connected directed graphs in which the edges between the
nodes (or vertices) are scalar transfer functions, and in which
known external excitation signals enter into the nodes.

The identification of networks of linear time-invariant dy-
namical systems based on the measurement of all its node
signals and of all known external excitation signals acting on
the nodes has been the subject of much recent research [1]–
[7]. It has been shown in [1], [5], [7] that identifiability can
only be obtained provided prior knowledge is available about
the structure of the network, and in particular the structure of
the excitation. It is often the case that the excitation structure
is known, i.e. one often knows at which nodes external
excitation signals are applied. A number of conditions for the
identifiability of the whole network have been derived under
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prior assumptions on the structure of the network, involving
either its external excitation structure, or possibly also its
internal structure [1], [5]–[7].

In all the results accumulated so far on the identifiability
of a network of dynamical systems, it is assumed that all
node signals are measured. In this paper we examine the
situation where not all node signals are measured, but where
the topology of the network is known; this means that the
user knows a priori which nodes are connected by nonzero
transfer functions. We also make the simplifying assumption
that at each node a known external excitation is applied. In
this context, a number of questions can be raised, such as

1) Can one identify the whole network with a restricted
number of node measurements?

2) If so, are there a minimal number of nodes that need to
be measured?

3) Are some nodes indispensable, in the sense that it is
impossible to identify the network without measuring
these nodes?

4) If one wants to identify a specific transfer function, can
the topology tell us which node or nodes need to be
measured?

5) Which transfer functions can be identified from the
measure of a specific subset of nodes?

To answer these questions we shall heavily rely on prop-
erties from graph theory, using the connected directed graph
corresponding to our network as our major tool.

To the best of our knowledge, the only other contributions
that consider identification in networks using only a subset
of measured nodes are [8], [9], [10]. However, the problem
treated in these papers consists of the identification of a subset
of the network’s transfer functions - typically a single one -
and hence is only one of the subproblems presented in this
paper. In [8] networks driven only by a vector of white noises
are considered, i.e. no known external excitation is available.
Using the notion of d-separation of graphs, the authors de-
rive sufficient conditions on which node signals need to be
observed in order to guarantee the identifiability of a desired
transfer function link. In [9] the objective is also to identify a
specific transfer function link (or module), in a network that
does have both known external excitation signals and/or noise
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signals on the nodes. The authors present sufficient conditions
for the selection of a set of measured node signals that will
lead to the consistent identification of the desired module.
The approach taken in [10] is quite different. It consists of
estimating the desired but unobservable nodes from nodes that
are measurable and contain information about them. Sparse
measurements have also been considered in a different context
in [11]; the goal there was to recover the network structure
under the assumptions that the local dynamics are known,
as opposed to re-identifying the dynamics and/or the whole
network structure.

Our main contribution is to provide necessary and sufficient
conditions under which all transfer functions of the network,
or a subset of transfer functions, or a single transfer function
can be identified from a given set of measured nodes, under
the standing assumptions that the topology of the network is
known and that there is a known external excitation on each
node. Our results are existence results about identifiability;
they are not algorithms for the estimation of the transfer
functions. They all take the form of conditions on the topology
of the graph associated to the network. We also present
the computational complexity that is required to check these
necessary and sufficient conditions.

In Section II we first describe the standard network matrix
identifiability problem where all nodes are measured but where
the topology is unknown and needs to be identified from data.
We explain that without any knowledge of the topology the
identification of the network’s transfer functions from partial
node measurements has no solution. We then show that, in
order to relate the identifiability of a set of transfer functions
to the selection of a set of measured nodes on the basis of the
network topolgy, one needs to introduce the notion of generic
identifiability. This notion is described intuitively in Section II
together with a motivating example.

We then motivate the reason for addressing the problem
of network identifiability with partial node measurements in
Section III by analyzing three different 3-node networks. We
show that the nodes that need to be measured to identify all
transfer functions depend on the topology of the network and
that, in some cases, a unique measurement suffices to identify
the whole network. This already yields a positive answer to
question 1 above. Our brief analysis of 3-node networks then
leads us, in Section IV, to formulate a number of basic results
pertaining to questions 2, 3 and 4 above. We also provide
identifiability results for networks that have a special structure,
such as a tree or a loop.

In Section V we focus on the identifiability of the transfer
functions leaving a specific node i, i.e. the transfer functions
Gji that connect node i to its outgoing nodes. Our main result
in that Section is a necessary and sufficient condition for the
identifiability of a set of transfer functions leaving node i.
This set of transfer functions is shown to be identifiable from
a given set of measured nodes if and only if there are disjoint
paths going from these outgoing nodes of i to the set of
measured nodes.

In Section VI we address question 5 above. Instead of

looking at a specific node within the network and examining
its paths to a measured node or a set of measured nodes, as
was done in Section V, we consider the converse approach.
We consider a specific set of measured nodes and we ask
which transfer functions can be identified from it. Our main
result is a necessary and sufficient condition under which the
whole network can be identified from a given set of node
measurements.

In Section VII we examine the computational complexity of
the algorithm to check the identifiability of the whole network
or parts of it from a given set of measurements. We show for
example that checking the identifiability of the whole network
can be achieved at a computational cost of the order of L2×n
where L is the number of nodes and n the number of unknown
transfer functions in the network.

In Section VIII we will conclude and describe some
challenging open problems that remain to be solved.

II. STATEMENT OF THE PROBLEM

The problem studied in this paper is part of the recent
research on the question of identifiability of networks of
dynamical systems. We first present the network structure and
explain the network identifiability problem as it has so far
been posed, i.e. with all nodes measured. We then pose a new
network identifiability problem for the case when not all nodes
are measured.

We adopt the standard network structure of [5], [7] for
networks whose edges are labeled with scalar proper transfer
functions. Thus, we consider that the network is made up of
L nodes, with node signals denoted {w1(t), . . . , wL(t)}, and
that these node signals are related to each other and to external
excitation signals rj(t), j = 1, . . . , L by the following network
equations, which we call the network model and in which the
matrix G0(q) is called the network matrix:

w(t) = G0(q)w(t) + r(t) + v(t). (1)

In (1) q−1 is the delay operator, w(t) = [w1(t), . . . , wL(t)]T

is the vector of node signals, r(t) = [r1(t), . . . , rL(t)]T

is a vector of known external excitation signals, v(t) =
[v1(t), . . . , vL(t)]T is a vector of stochastic processes, and the
dynamic network matrix is of the form

G0(q) =


0 G0

12(q) . . . G0
1L(q)

G0
21(q) 0

. . . G0
2L(q)

...
. . . . . .

...
G0
L1(q) G0

L2(q) . . . 0


The network (1) is assumed to have the following properties.
• G0

ij(q) are proper rational transfer functions
• the network is well-posed, that is (I−G0(q))−1 is proper

and stable [12]
• there is a known external excitation signal ri(t) on each

node; these are available to the user in order to produce
informative experiments for identification



• the network is weakly connected1

In most papers on identifiability of networks based on mea-
surements of all the nodes, the vector r(t) of external excita-
tion signals traditionally enters the nodes via a transfer func-
tion matrix K0(q), i.e. the driving term is r(t) = K0(q)r̃(t)
where r̃(t) is the vector of external excitations. In this paper
on network identifiability using partial node measurements, we
adopt the simplified network model (1) where K0(q) = I . Ob-
serve that, by a simple change of variables, this is equivalent
to assuming that in the traditional model the excitation matrix
K0(q) is known and of full rank. The reason for making this
simplifying assumption is that, as we shall see, the problem
treated in this paper, even with this assumption, is complex
enough and reveals significant new insights. We expect to be
able to relax this assumption in future work.

The network model (1) can be rewritten in a more traditional
input-output (I/O) form as follows:

w(t) = T 0(q)r(t) + v̄(t) (2)

where

T 0(q)
∆
= (I −G0(q))−1 (3)

v̄(t) = (I −G0(q))−1v(t). (4)

In this paper we address the question of the identifiability of
the network matrix G0(q) for the case where not all nodes are
measured, but where the topology of the network is known.
The reason for the assumption on known topology is that,
as we shall show in Theorem 5.3, when not all nodes are
measured, some knowledge of the topology is required in order
to identify the whole network (in the absence thus of any prior
knowledge on the specific transfer functions Gij(q)).

Thus we assume that we know that certain transfer functions
Gij(q) are zero, and we say that a network matrix G(q) is
consistent with the topology if it satisfies these constraints.
Moreover, we consider that, together with the network (1),
there is a measurement equation

y(t) = Cw(t) (5)

where C is a p × L matrix that reflects the selection of
measured nodes. That is, each row of C contains one element 1
and L−1 elements 0. We shall denote by C the corresponding
subset of nodes selected by C.

In this setting, the network under study is given by

w(t) = G0(q)w(t) + r(t) + v(t) (6)
y(t) = Cw(t) (7)

which, in the input-output form, becomes

y(t) = CT 0(q)r(t) + Cv̄(t) (8)

with T (q) and v̄(t) defined by (3) and (4).
We now describe the network matrix identifiability prob-

lem for such networks; we start by summarizing the assump-
tions that are made throughout this paper.

1A precise definition will be given in Section IV.

Standing assumptions.
• The networks we examine are described by (6)-(7).
• The network matrix G0(q) has the properties defined

above and its topology is known, i.e. one knows a priori
that some of the G0

ij(q) are zero.
• The excitation vector r(t) is sufficiently rich such that
CT 0(q) can be consistently estimated by standard iden-
tification of the open loop MIMO I/O model (8).

Since, for a given C, the matrix CT 0(q) can be consistently
identified from {y(t), r(t)} data, it will be assumed to be
known exactly. The network matrix identifiability problem
is whether or not, under the standing assumptions, one can
uniquely recover G0(q) from CT 0(q). Specific questions
related to network identifiability that are addressed in this
paper are then:
• for a given C, which transfer functions G0

ij(q) can be
uniquely recovered from CT 0(q)?

• under what conditions can we identify the whole network
matrix G0(q) from CT 0(q)?

The identification of the transfer functions Gij(q) from
CT 0(q) rests on the following relationship

CT 0(q) = CT (q) = C(I −G(q))−1 (9)

or, equivalently,

CT 0(q)(I −G(q)) = C (10)

Since CT 0(q) is assumed known, the question is whether
the desired Gij(q) can be uniquely obtained by solving (10)
for these unknowns, using the knowledge of the network
topology. More precisely, we say that the network matrix
G0 is identifiable from the measurements C if it is the
unique solution of (10) consistent with the topology. Similarly,
a specific transfer function in G0 is identifiable from the
measurements C if Gij = G0

ij for any solution G of (10)
consistent with the topology.

Deciding whether G0(q) is uniquely recoverable from the
identified and exact CT 0(q) can thus be done by checking
whether the solution G(q) of (10) is unique. However, this
is of limited interest because it does not take account of
the information we have about the known topology of the
network. Our ambition in this paper is to make statements
about the identifiability of G0(q) for a given selection C of
node measures before we actually compute CT 0(q) from data
or even collect the data, i.e. statements that are based not
on the actual numbers that appear in the transfer functions of
CT 0(q), but on the topology of the network that is assumed to
be known, and which can be represented by a graph associated
to G0(q).

As a consequence, we will introduce the notion of generic
identifiability of G0(q) because the topology tells us which of
the Gij(q) can be nonzero, which impacts on the generic rank
of CT 0(q) and of its submatrices2, but one cannot exclude the

2By the generic rank of a submatrix of CT 0(q) we mean its rank for almost
all G0(q) that are consistent with its associated graph.



possible situation where a given G0(q), that is consistent with
the topology, happens to cause a drop in rank of CT 0(q) or of
its submatrices. Thus, a statement like: “The network matrix
G0(q) that is consistent with a given topology is generically
identifiable from a given choice C of measurements” will mean
that G0(q) is identifiable for almost all choices of the elements
G0
ij(q) of G0(q) that are not known to be zero.
We shall define this new notion of generic identifiability of

the network in precise terms in Section V. In order to give the
reader an intuitive feeling for this notion, we illustrate it with
the following example.3

Example 1: Consider a network whose topology is defined by
the following network matrix:

G0 =


0 0 0 0 0
G0

21 0 0 0 0
G0

31 0 0 0 0
0 G0

42 G0
43 0 0

0 G0
52 G0

53 0 0


and suppose we measure nodes 4 and 5 only. Simple calcula-
tions show that

CT 0 =

(
G0

42G
0
21 +G0

43G
0
31 G0

42 G0
43 1 0

G0
52G

0
21 +G0

53G
0
31 G0

52 G0
53 0 1

)
Clearly, from CT 0 we can uniquely identify
G0

42, G
0
43, G

0
52, G

0
53. The remaining elements, G21 and

G31 are then recovered from CT 0 by solving(
G0

42 G0
43

G0
52 G0

53

)(
G21

G31

)
=

(
T 0

41

T 0
51

)
We conclude that G0 is generically identifiable from measure-
ments of nodes 4 and 5 only, because it is identifiable for
almost all network matrices G consistent with the topology,
namely all except those for which G0

42G
0
53 = G0

52G
0
43, which

is a subset of measure zero.

III. MOTIVATING EXAMPLES

In order to motivate the reader, we now analyze a few 3-
node networks and show that the nodes that allow identifica-
tion of the whole network depend entirely on the topology of
the network, and that the whole network can often be identified
from the measurements of a small subset of nodes.

Consider first a network with 3 unknown transfer functions
represented in Figure 1 and its corresponding true G0 and true
T 0. Calculations based on (10) show that identification of all 3
transfer functions requires the measurement of nodes 2 AND
3, and that measuring node 1 yields no information.

By contrast, the identification of the 3 unknown transfer
functions in the network represented in Figure 2 is possible
by measuring just one node: node 1 OR node 3.

Finally, in the network of Figure 3, all 5 transfer functions
can be identified by measuring just two nodes: either nodes 1
AND 2, OR nodes 1 AND 3.

3Starting in this example and for the remaining of the paper, we omit the
dependence on q whenever it creates no confusion.
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G0 =

 0 0 0
G0

21 0 G0
23

G0
31 0 0

 ,

T 0 =

 1 0 0
G0

21 +G0
23G

0
31 1 G0

23

G0
31 0 1


Fig. 1. Example of network with three transfer functions where two nodes
(2 and 3) need to be measured.
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G0 =

 0 G0
12 G0

13

0 0 0
G0

31 0 0

 ,

T 0 = 1
∆

 1 G0
12 G0

13

0 1−G0
13G

0
31 0

G0
31 G0

31G
0
12 1


Fig. 2. Example of network with three transfer functions where measuring
one node (1 or 3) is sufficient. We use ∆

∆
= det(I −G0) = 1−G0
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G0 =

 0 G0
12 G0

13

G0
21 0 G0

23

0 G0
32 0

 ,

T 0= 1
∆

 1−G0
23G

0
32 G0

12 +G0
13G

0
32 G0

13 +G0
12G

0
23

G0
21 1 G0

23 +G0
21G

0
13

G0
32G

0
21 G0

32 1−G0
12G

0
21


Fig. 3. Example of network with five transfer functions where measuring
two nodes (1 and 2 or 1 and 3) is sufficient. We use ∆

∆
= 1 − G0

12G
0
21 −

G0
23G

0
32 −G0

13G
0
21G

0
32.

These examples show that the number and the choice
of measurements that are necessary to identify the network
depends not only on the number of unknown transfer functions
to be determined (the number of nonzero Gij) but also on the
topology of the network.

IV. BASIC RESULTS

Inspired by our analysis of 3-node networks, we now
establish a number of basic results regarding the identifiability
of general L-node networks from a reduced set of node mea-
surements. In particular we show that measurements of some
nodes is indispensable, and we establish the minimum number
of nodes that need to be measured for the identifiability of G0.

We first introduce some notations and we define some
concepts from graph theory (see e.g. [13], [14] ). Observe that
the graph associated with the network model is a graph with
directed edges, i.e. if G0

ij is nonzero, it means that there is a
directed edge from node j to node i. Conversely, we say that a
transfer matrix G (or any matrix) is consistent with a directed
graph if Gij 6= 0 only if there is an edge (j, i). Observe that



the presence of an edge does not require the corresponding
entry Gij to be different from zero.
Notations and definitions:
• L = number of nodes;
• p = number of measured nodes;
• s = number of sinks, i.e. number of nodes with only

incoming edges;
• n = number of unknown transfer functions;
• C = the p×L matrix that reflects the selection of nodes

via y(t) = Cw(t): thus each row of C contains one
element 1 and L− 1 elements 0;

• C = the subset of nodes selected by C;
• G0

TS = the restriction of the network matrix G0 to the
rows contained in a set T and the columns contained in
a set S;

• |A| = cardinality of a set A;
• N+

i = set of out-neighbors of node i, i.e. the set of nodes
j for which G0

ji 6= 0;
• d+

i = |N+
i | = number of outgoing edges of node i;

• a walk denotes a series of adjacent directed edges (includ-
ing trivial walks consisting of one node with no edge);

• a loop is a walk whose terminal node coincides with the
initial node;4

• a path is a walk that never passes twice through the same
node, i.e. a walk without loops.

• a directed graph is weakly connected if, for any partition
of its vertices in two sets, there is at least one edge
starting in one of the sets and ending in the other one.

• a tree is a graph that is weakly connected and has no
loops even if one were to change the edges directions.

We can now establish the following basic results.
Theorem 4.1: 1) If wi is a source, then G0

ij = 0 ∀j, T 0
ii = 1

and T 0
ij = 0 ∀j 6= i. The measurement of a source does not add

any linearly independent equation to the system of equations
(10). The identification of a transfer function on an outgoing
edge from a source i requires that an external signal ri is
applied at the source.
2) If wi is a sink, then G0

ji = 0 ∀j, T 0
ii = 1 and

T 0
ji = 0 ∀j 6= i. Identifiability of the network requires that

all sinks be measured. The application of an external signal ri
at a sink i yields no information.
Proof: 1) The first part follows from the definition of a source
and from the calculation of T 0 from such G0 using (3). It
then follows that if C selects a source, say wi, then the
corresponding equation of (3) yields T 0

ii = 1, which does not
contribute any information for the identifiability of G0. Finally,
let i be a source with an outgoing edge G0

ki. It follows that
wi = ri+vi and thus wk = G0

ki(ri+vi)+x, where x contains
only terms that do not involve G0

ki. Hence the identification
of G0

ki requires that ri 6= 0.
2) The first part follows from the definition of a sink and from
the calculation of T 0 using (3). Let node i be a sink and let
node k be connected to i by a nonzero transfer function G0

ik.
Since node i is a terminal node of the path from k to i, no

4Note that a loop is typically called cycle in graph theory.

node signal other than wi can give any information about G0
ik.

On the other hand, applying an excitation signal ri to sink i
yields no information, since no path leaves node i.

We now make some observations concerning the number
of useful equations that result from (10) for the computation
of the Gij . Each measured node contributes L equations, but
some of these may not yield any information, because they
result in 1=1 or 0=0.

First we note that L−1 ≤ n ≤ L(L−1), the first inequality
being a consequence of the connectedness of the graph. The
number of equations is p × L, so it is obvious that we need
p ≥ n

L . It now follows from (10) and Theorem 4.1 that each
sink causes the appearance of one trivial equation 1 = 1 in
the sink’s measurement, and also of one trivial equation 0 =
0 at every other measurement. Hence the number of trivial
equations caused by each sink equals p, and thus the total
number of trivial equations due to the existence of sinks is
ps. Therefore the number of useful equations is at most ne =
pL− ps = p(L− s). We then have the following result.

Theorem 4.2: Identifiability of the whole network requires
measurement of all sinks plus at least m more nodes such that

m+ s ≥ n

L− s
(11)

Proof: Given that the number of useful equations resulting
from p measurements is at most p(L− s), identifiability of a
network with n unknowns and s sinks requires that p(L−s) ≥
n, where p = m+ s. This implies (11).

The next theorem yields a simple result for networks that
have the structure of a tree.

Theorem 4.3: For a tree it is necessary and sufficient to
measure all the sinks, assuming that none of the Gij that make
up the tree are zero.
Proof: By Theorem 4.1 it is necessary to measure all the sinks
for any graph, so it remains to prove sufficiency. In a tree every
sink will be the terminal node of a path. Given that all transfer
functions T 0

ji from any input ri to any sink is identifiable, in
order to determine all the G0

kl in that path one can proceed
backwards from the sink up to the root, since the transfer
function from any given ri to the sink is just the product of
the G0

kl of each edge in the path from ri to the sink, none of
which is zero by our assumption.
After a result for networks having a tree structure, the next
result covers the case of loops.

Theorem 4.4: Let the nodes wi, i ∈ I form one loop
and assume that no other loop in the graph contains any of
these nodes. Suppose moreover that all the transfer functions
involved in the loop are nonzero. Then measuring any one of
these nodes is sufficient to identify all transfer functions in the
loop.
Proof: Let η be the cardinality of I and consider, without loss
of generality, that the nodes in the loop are labeled i = 1, . . . , η
sequentially, that is there is a link from each node i to node
i + 1, so that the η transfer functions to be identified in



the loop are G0
i+1,i, i = 1, . . . , η − 1 and G0

1,η . Since an
external excitation signal is assumed to enter each node, input-
output identification provides all closed-loop transfer functions
T 0
i,j , i, j ∈ I, none of which are zero. Indeed,

T 0
i,j =

1

∆
Gi,i−1Gi−1,i−2 . . . G1,ηGη,η−1 . . . Gj+1,j , i < j

T 0
i,i =

1

∆

T 0
i,j =

1

∆
Gi,i−1Gi−1,i−2 . . . Gj+1,j , i > j

where
∆ = 1−G1,ηΠi=1,...,η−1Gi+1,i. (12)

Now, suppose we measure only the “last” node i = η. Then
we have identified all the transfer functions T 0

η,j :

T 0
η,j =

1

∆
Gη,η−1Gη−1,η−2 . . . Gj+1,j , j = 1, . . . , η − 1

T 0
η,η =

1

∆
(13)

Now, notice that

Gj+1,j =
T 0
η,j

T 0
η,j+1

, j = 1, . . . , η − 1

which gives each one of the transfer functions in the path from
node 1 to node η, that is all transfer functions in the loop
except G1,η . Then this last transfer function can be obtained,
from (12) and (13), as

G1,η =
1

Πi=1,...,η−1Gi+1,i

(
1− 1

T 0
η,η

)
.

The same reasoning holds if we measure any other node, since
it is just a question of relabeling the nodes.

V. PATH-BASED RESULTS

In this section, we consider a specific node i within the
network and its out-going edges, i.e. the edges corresponding
to the nonzero elements G0

ji within the network matrix. Recall
that we denote by N+

i the corresponding set of out-neighbors
of node i. We show that the generic identifiability of an edge5

or a group of edges leaving this node i can be related to the
structure of the paths from the corresponding out-neigbors to
the measured nodes.

Section V-A presents a linear algebraic reformulation of
the identifiability problem, which involves submatrices of T 0.
In Section V-B we formally define the notion of generic
identifiability, needed because of the risk of exceptional rank
drops in the submatrices of T 0. Section V-C establishes the
link between the structure of paths in the network and the
generic rank of certain submatrices of T 0. These relations are
then used in Section V-D to obtain necessary and sufficient
conditions for identifiability of out-going edges of a specific
node, and some corollaries are derived in Section V-E.

5For reasons of brevity, we shall in future often refer to the identifiability
of an edge, where this in fact means the identifiability of the transfer function
corresponding to this edge.

A. A linear algebraic reformulation

Remember that CT 0 can be perfectly identified from {y, r}
data, and that therefore the transfer function G0

ji of an edge
(i, j) is identifiable if (10) implies Gji = G0

ji for any
G consistent with the graph, i.e. with the topology. Define
∆

∆
= G−G0, which is consistent with the graph if and only

if G is. The next Lemma shows how the identifiability of G0
ji

depends on the kernel of a submatrix of the known CT 0, and
hence on the rank of certain submatrices of CT 0.

Lemma 5.1: Let N+
i be the set of out-neighbors of node i.

Let T 0
C,N+

i

denote the restriction of T 0 to the rows selected by

C and to the columns corresponding to N+
i , and let ∆N+

i ,i

denote the restriction of the i-th column of ∆ to the rows
corresponding to N+

i . Then G0
ji is identifiable from CT 0 if

and only if

T 0
C,N+

i

∆N+
i ,i

= 0⇒ ∆ji = 0. (14)

Proof: Substituting G = G0 + ∆ in (10) and remembering
T 0(I −G0) = I shows that Gji is identifiable if and only if

CT 0∆ = 0⇒ ∆ji = 0 (15)

for any ∆ consistent with the graph. The left hand side of (15)
actually consists of L independent linear systems of the form

CT 0∆:` = 0, ` = 1, . . . L.

The function ∆ji only appears in one system, with ` = i, and
none of the functions appearing in that system appear in any
other one. Hence Gji is identifiable if and only if

CT 0∆:i = 0⇒ ∆ji = 0 (16)

for any ∆:i consistent with the graph i.e. ∆ki = 0 if there
is no edge (i, k) ∈ G0. Remember that Gki, and hence ∆ki,
may be nonzero only if k ∈ N+

i . We use the notation l ∈ C to
say that l is a measured node. Condition (16) can be rewritten
as ∑

k∈N+
i

T 0
lk∆ki = 0,∀l ∈ C ⇒ ∆ji = 0, (17)

which is equivalent to (14).

The identifiability of G0
ji is thus related to the rank of T 0

C,N+
i

and, as will be seen, that of certain of its submatrices. We will
see in Section V-C how these are related to the topology.

B. Generic properties

As seen in Example 1, identifiability essentially depends on
the known graph associated to G0, except for network matrices
G0 that lie in subsets of measure 0. We now formalize this
notion, using an approach similar to that in [15]. A rational
transfer matrix parametrization consistent with a given graph
is defined in the following way. For every edge (j, i), set
constants pij , nij ∈ Z+

0 , and parametrize Gij(z) by

Gij(z) = κijz
−pij

znij + β
(nij−1)
ij znij−1 + · · ·+ β

(1)
ij z + β

(0)
ij

znij + α
(nij−1)
ij znij−1 + · · ·+ α

(1)
ij z + α

(0)
ij

(18)



for real parameters κij , αmij and βmij , (1 ≤ m < nij). For pairs
(j, i) not connected by an edge, let Gij(z) = 0. We collect all
parameters κij , αmij , β

m
ij in a vector P , and denote by G(P, z)

the transfer matrix obtained by a specific parameter.
We say that a property generically6 holds for a network

matrix G0 if, for any rational transfer matrix parametrization
G(P, z) consistent with the graph associated to G0, the
property holds for G(P, z) for all parameters P except
possibly those lying on a zero measure set in <N , where N
is the total number of parameters.

notational remark.
In the remainder of this paper, and in order to simplify
notations, we will say that a property generically holds
for T 0 = (I − G0)−1 if for every parametrization G(P, z)
consistent with the graph associated to G0, the property holds
for T (P, z) := (I − G(P, z))−1 for all P except possibly
those lying on a zero measure set. We will use the same
convention for properties holding for submatrices of T 0.

We have seen in Section V-A that identifiability is linked to
the rank of certain matrices. Hence generic identifiability will
be linked to the generic rank of certain submatrices of T 0,
i.e. the size of their largest generically nonsingular submatrix.
This implies checking if the determinant of a matrix related to
G is generically nonzero. The following Lemma, when applied
to Q being the determinant of a matrix related to G, provides
a convenient way of establishing this. See proof in Appendix
A.

Lemma 5.2: Let Q(.) : CL×L → C be an analytic function
and consider a network matrix G0(z). If there exists a matrix
A ∈ CL×L consistent with the graph associated to G0(z) such
that Q(A) 6= 0, then Q(G0(z)) is generically not identically
zero as a function of z (for polynomial or rational Q(.), it then
has finitely many roots). Otherwise, Q(G(z)) ≡ 0 for every
G(z) consistent with the graph.

This leads to the following definition of a generically
identifiable network matrix.

Definition 1: A network matrix G0(z) is generically identi-
fiable from a set of measured nodes defined by C in (5) if, for
any rational transfer matrix parametrization G(P, z) consistent
with the directed graph associated to G0(z), there holds

C(I −G(P, z))−1 = C(I − G̃(z))−1 ⇒ G(P, z) = G̃(z) (19)

for all parameters P except possibly those lying on a zero
measure set in <N , where G̃(z) is any network matrix
consistent with the graph.

This definition naturally extends to the generic identifiability
of a specific transfer function in G (or edge), or of a group
of these. We note that (19) is exactly parallel to the definition

6The word “structurally” is also sometimes used, see e.g. [16].
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Fig. 4. Illustration of the notions of vertex-disjoint paths, disconnecting sets,
and Lemma 5.3. The highlighted paths (2, 5, 8) and (3, 6, 9) are vertex-
disjoint paths from A = {1, 2, 3} to C = {7, 8, 9}, and their existence
implies bA→C ≥ 2. An alternative set of such paths is (1, 4, 5, 7) and
(3, 6, 9). On the other hand, every path starting from A and arriving in C goes
through B = {5, 6}, which is thus an A − C disconnecting set. It follows
then from Lemma 5.3 that bA→C ≤ 2 and thus that (i) B is a minimal A−C
disconnecting set, and (ii) there is no set of more than two vertex-disjoint
paths from A to C.

of identifiability of a given transfer matrix, since (9) can be
rewritten C(I −G0)−1 = C(I −G)−1.

C. Disconnecting sets, vertex-disjoint paths and matrix rank

We say that a group of paths are mutually vertex disjoint if
no two paths of this group contain the same vertex. Consider
two subsets of nodes A and C. We let bA→C be the maximum
number of mutually vertex disjoint paths starting in A and
ending in C. We say that a set of nodes B is an A − C
disconnecting set if every path starting in A and ending in C
contains at least one node in B, which implies that there would
be no path from A to C if B were removed. These notions are
illustrated in Figure 4. Note that B can intersect A and/or C.
In particular, A and C are always A− C disconnecting sets.

The following Lemma, also illustrated in Figure 4, links the
notions of disconnecting sets and vertex disjoint paths.

Lemma 5.3: Consider two subsets of nodes A and C.
The maximum number bA→C of mutually vertex disjoint
paths from A to C, is also the size of the smallest A − C
disconnecting set. Moreover, under the standing assumption
that the network is weakly connected, it can be computed in
O(Ln) operations.
Proof: The equality between bA→C and the size of the smallest
A−C disconnecting set is the directed vertex disjoint version
of Menger’s theorem, see e.g. [17]. Computing bA→C can be
recast as solving a max-flow problem, see for example Section
24.2 of [18]. There exist many efficient ways of solving
max-flow problems. Since the maximum flow is bounded
by L, the classical Ford-Fulkerson Algorithm (see e.g. [14,
Section 10.5.1]), for example, terminates in O(Ln) operations
provided there are at least L − 1 edges, which is the case if
the network is weakly connected.



The next lemma will be useful to use the bounds derived
in terms of bA→C .

Lemma 5.4: For any sets of nodes A,A′ and C there holds

bA∪A′→C ≤ bA→C + bA′→C

Proof: Consider a set of bA∪A′→C vertex disjoint paths from
A∪A′ to C. Let b be the number among those starting from a
node in A. There must thus be at least bA∪A′→C − b starting
from A′ (there can be more). By definition, bA→C ≥ b because
we have already found b vertex disjoint paths from A to C.
Similarly, bA′→C ≥ bA∪A′→C − b. Hence there holds

bA→C + bA′→C ≥ b+ bA∪A′→C − b = bA∪A′→C .

Our main result in this subsection is the establishment
of the link between the generic rank of submatrices of T 0

and the number of vertex-disjoint paths between the sets
corresponding to the selected columns and rows of T 0. A link
between generic rank and vertex-disjoint paths was obtained
in the pioneering paper [19], where the rank of the matrix
C(sI − A)−1B of a system ẋ = Ax + Bu, y = Cx was
related with paths from inputs to outputs in a graph defined
by A,B and C.

Our next Proposition differs from the main result of [19]
in several ways. First the paths defined in the graph associ-
ated to the matrix C(sI − A)−1B in [19] are those of the
whole network that connects the inputs of C(sI − A)−1B
to its outputs, whereas we consider the paths connecting a
subset of these inputs to a subset of the outputs. Secondly,
the matrices A,B,C appearing in C(sI − A)−1B are real
matrices, while we examine the generic rank of a submatrix
of (I − G(P, z))−1 where G(P, z) is a matrix of transfer
functions. Finally, the definition of the nodes in the graph
associated to C(sI − A)−1B differs from that used in this
paper, because our nodes are linked by transfer functions; this
means that if we were to represent T 0(z) = (I−G0(z)))−1 as
a state space representation as is done in [19], then the nodes
of the graph associated to our G(z) would be a small subset
of those associated to this state space representation. For all
these reasons, the next Proposition is not just an application
of the main theorem of [19] and requires a specific proof.

Proposition 5.1: 7 Let A, C be two sets of nodes of a
directed graph associated to a network matrix G0(z). Let
T 0
C,A(z) be the restriction of T 0(z) = (I − G0(z))−1 to the

rows corresponding to C and columns corresponding to A.
Then the generic rank of T 0

C,A(z) is bA→C .
Proof: The proof will consist of two parts. The first one
establishes that the rank is generically at least bA→C , and uses
the interpretation of bA→C in terms of the number of vertex-
disjoint paths.
Part 1: Generically Rank(T 0

C,A) ≥ bA→C

7Remember the important notational convention adopted for T 0 and
T 0
C,A(z).

Select bA→C vertex-disjoint (directed) paths from A to C, and
let A be the adjacency matrix of the directed graph consisting
only of these paths, i.e. Aij = 1 if the edge (j, i) is on one
of the paths and Aij = 0 otherwise. It is then a standard
result in graph-theory (see e.g. [14, Section 6.10]) that [Ak]ji
is the number of walks of length exactly k from j to i in that
graph. Since the graph consists of disjoint directed paths, this
implies that (i) Ak = 0 if k is larger than the longest of the
vertex-disjoint paths, and hence (ii) (I − A)−1 =

∑∞
k=0A

k.
As a result (iii) [(1 − A)−1]ji =

∑∞
k=0[Ak]ji is the total

number of walks of any length from i to j in the graph
containing only the vertex disjoint paths. In particular, let
now Ã ⊆ A be the set of starting points of the paths,
and C̃ ⊆ C the set of their arrival points, with obviously
|Ã| = |C̃| = bA→C . Therefore if i ∈ Ã and j ∈ C̃ and if
they are on the same path, then [(1−A)−1]ji = 1. Otherwise
[(1−A)−1]ji = 0 (as there is no walk from the origin of one
path to the end of another one). The restriction [(1−A)−1]C̃,Ã
of [(1 − A)−1] is thus a permutation matrix of size bA→C ,
whose determinant is nonzero. By Lemma 5.2 this implies
that det(T 0

C̃,Ã
) is generically nonzero, implying that the rank

of T 0
C̃,Ã

is generically bA→C , and hence the generic rank of
T 0
C,A is at least bA→C , since T 0

C̃,Ã
is a submatrix of T 0

C,A.
The proof of the second part relies on the equivalent

interpretation of bA→C in terms of the size of the minimal
A− C disconnecting set.
Part 2: Generically Rank(T 0

C,A) ≤ bA→C
Let B be an A− C disconnecting set of minimal size bA→C ,
the existence of which is guaranteed by Lemma 5.3. Let
S ⊂ {1, . . . , L} be the set of nodes that can be reached by a
path from a node in A without intersecting any node of the
disconnecting set B, and let P = {1, . . . , L} \ (S ∪ B). We
have thus partitioned the L nodes into 3 disjoint sets: P,S and
B. There holds A ⊆ S ∪ B (nodes in A are all in S except
if they belong to B). There also holds C ⊆ P ∪ B. Indeed,
there would otherwise be a node of C in S, meaning that it
could be reached from a node in A without going through B,
in contradiction with B being an A− C disconnecting set.

After re-ordering of the indices, the matrices G0 and T 0

can be rewritten as

G0 =

 GPP GPB 0
GBP GBB GBS
GSP GSB GSS

 and (20)

T 0 ∆
= (I −G0)−1 =

 TPP TPB TPS
TBP TBB TBS
TSP TSB TSS

 (21)

We focus on the rows P and columns S and B, keeping in
mind that T 0 = I +G0T 0. There holds

TPS = IPS + [GT ]PS = 0 +GPPTPS +GPBTBS + 0TSS

TPB = IPB + [GT ]PB = 0 +GPPTPB +GPBTBB + 0TSB ,

from which follows(
I −GPP 0

0 I

)(
TPB TPS
TBB TBS

)
=

(
GPB
I

)(
TBB TBS

)
.

(22)



The right hand side of the equality has a rank at most bA→C
because (TBB TBS) has bA→C rows. The same holds thus
true for the left-hand side. Observe now that the left-hand side
is square and generically invertible; it is indeed invertible if we
replace GPP by 0, and the generic invertibility then follows
from Lemma 5.2. As a consequence, the rank of TP∪B,B∪S ,
the second matrix of the left hand side, is also at most bA→C .
The claim of part 2 follows then from the fact that T 0

C,A is a
submatrix of TP∪B,B∪S , because we have seen that A ⊆ B∪S
and C ⊆ P ∪ B.

The result of Proposition 5.1 can intuitively be understood
as follows. In the system represented by T 0, an edge can
carry a one-dimensional information about the effect of a given
external excitation, and a vertex can only let a one-dimensional
information about a given external excitation transit through
it. Suppose first that the graph only consists of two paths
starting in A and ending in C. If the paths are vertex-disjoint,
then nodes in A can transmit a two-dimensional information
about a given external signal to those in C, one dimension
per path. On the other hand, if the two paths intersect in one
vertex, only a one-dimensional information can transit through
this vertex and reach C. Proposition 5.1 extends this intuitive
idea to graphs with more edges than just those on the paths
and to larger number of paths. Since we know by Lemma
5.3 that the largest number of vertex-disjoint paths between
two sets is the size of the smallest disconnecting set, this
allows characterizing exactly the dimension of the information
transmitted, i.e. the rank of T 0

C,A.

D. Necessary and sufficient conditions for generic identifia-
bility

With the help of Proposition 5.1 we can now derive one of
the main results of this paper, namely necessary and sufficient
conditions for the generic identifiability of transfer functions
leaving a given node i. The reformulation of the identifiability
of a transfer function leaving node i by (14) naturally leads
one to consider conditions for the generic identifiability of a
group of edges leaving the same node i, as these are all related
to the same matrix T 0

C,N+
i

.

Theorem 5.1: Let N∗i be a subset of N+
i and denote N̄∗i

∆
=

N+
i \N∗i . The transfer functions corresponding to edges from i

to N∗i can generically all be identified when measuring nodes
C using the identified CT 0 if and only if the following two
conditions hold:

bN∗i→C = |N∗i | (23)
bN+

i →C
= bN∗i→C + bN̄∗i→C = |N∗i |+ bN̄∗i→C (24)

Proof: Let us fix a G consistent with the graph defined by G0

and the corresponding T = (I − G)−1. It follows from (16)
that we can recover the transfer functions of all edges from i to
N∗i if and only if the equality CT∆:,i = 0 implies ∆N∗i ,i

= 0
for every ∆:,i for which ∆ki = 0 for every k 6∈ N+

i . This can
be rewritten as

TC,N∗i ∆N∗i ,i
+ TC,N̄∗i ∆N̄∗i ,i

= 0→ ∆N∗i ,i
= 0 (25)

Observe first that TC,N∗i must have rank |N∗i | for this condition
to hold; otherwise one could find a ∆N∗i ,i

6= 0 for which
TC,N∗i ∆N∗i ,i

= 0, which, with ∆N̄∗i ,i
= 0, would contradict

the condition. We can rewrite (25) as

TC,N∗i ∆N∗i ,i
= −TC,N̄∗i ∆N̄∗i ,i

→ ∆N∗i ,i
= 0

If the image sets of TC,N∗i and TC,N̄∗i have a nontrivial
intersection, then we could find ∆̃N∗i ,i

6= 0 and ∆̃N̄∗i ,i
6= 0

such that TC,N∗i ∆̃N∗i ,i
= −TC,N̄∗i ∆̃N̄∗i ,i

6= 0, and the
condition is not satisfied. On the other hand, if the image
sets of TC,N∗i and TC,N̄∗i have no nontrivial intersection, then
TC,N∗i ∆N∗i ,i

= −TC,N̄∗i ∆N̄∗i ,i
implies both TC,N∗i ∆N∗i ,i

= 0
and TC,N̄∗i ∆N̄∗i ,i

= 0. When TC,N∗i has rank |N∗i |, the former
equality implies ∆N∗i ,i

= 0.
We have thus shown that the transfer functions of edges

from i to N∗i can all be identified from CT if and only
if (i) Rank(TC,N∗i ) = |N∗i | and (ii) the image sets of
TC,N∗i and TC,N̄∗i have no nontrivial intersection, i.e. are
linearly independent. The latter condition is equivalent to
Rank(TC,(N∗i ∪N̄∗i )) = Rank(TC,N∗i )+Rank(TC,N̄∗i ). For any
G (and corresponding T ) consistent with the graph associated
to G0, this equality, together with Rank(TC,N∗i ) = |N∗i |,
are thus necessary and sufficient for the identifiability of
the transfer functions corresponding to the edges from i to
N̄∗i . This is in particular the case for any matrix G(P, z)
in any parametrization of the transfer matrices consistent
with that graph. Generic identifiability of the edges from
i to N̄∗i is thus equivalent to Rank(T 0

C,N∗i
) = |N∗i | and

Rank(T 0
C,(N∗i ∪N̄∗i )

) = Rank(T 0
C,N∗i

) + Rank(T 0
C,N̄∗i

) holding
generically, and the equivalence with (23) and (24) then
follows from Proposition 5.1.

Comment: Condition (24) can also be formulated as

bN+
i →C

≥ bN∗i→C + bN̄∗i→C = |N∗i |+ bN̄∗i→C , (26)

because it follows from the sub-additivity Lemma 5.4 and
N+
i = N∗i ∪ N̄∗i that

bN+
i →C

≤ bN∗i→C + bN̄∗i→C .

This formulation will be used in the proof of Corollary 5.3.
An immediate corollary of Theorem 5.1 is obtained when

one considers all out-neighbors of node i.
Corollary 5.1: The transfer functions from node i to its

out-neighbors N+
i can generically all be identified from CT 0

if and only if bN+
i →C

= d+
i

∆
= |N+

i |.
Proof: The result follows from Theorem 5.1 applied to N∗i =
N+
i , in which case N̄∗i is an empty set.

Corollary 5.1 can be intuitively understood in the following
way. We want to recover d+

i transfer functions of edges
leaving i, so we need a d+

i -dimensional information about
the effect of ri. Moreover, the information we have comes
from the out-neighbors of i and arrives at our measured
nodes C. Hence the recovery will be possible if and only if



a d+
i -dimensional information is transmitted from these out-

neighbors to C, which requires bN+
i →C

= d+
i by Proposition

5.1. In case we only want to recover the transfer function
of the edges arriving at a subset N∗i of the out-neighbors
of i as in Theorem 5.1, then the situation is more complex
because the information received at C from N∗i is mixed with
information about other edges leaving i. One then has to check
if the specific information about N∗i can be isolated in all the
information arriving at C from the out-neighbors of i, which
is what condition (24) is about. It can indeed be interpreted
as requiring all the loss of information-dimension from N+

i to
C to concern exclusively information about N+

i \N∗i , leaving
that about N∗i intact.

Given the definition of bA→C , an alternative formulation of
the previous result is as follows.

Corollary 5.2: The transfer functions from node i to its
out-neighbors N+

i can generically all be identified from CT 0

if and only if there exist vertex-disjoint directed paths8 leaving
all out-neighbors of i and arriving at the measured nodes
defined by C.

Corollary 5.2 is illustrated by the example in Figure 5.
Remember that known external signals ri are applied to each
node, which we have not added on the figure for visibility
reasons. Node i has three outgoing nodes, each of which has
a vertex-disjoint directed path to the measured nodes 7, 8 and
9, namely the paths (1, 5, 7), (2, 4, 8) and (3, 6, 9); they are
represented by dashed green arrows. As a result, the dotted
red transfer functions G0

1i, G
0
2i and G0

3i can all be identified
from these three measured nodes.

Fig. 5. Example illustrating Corollary 5.2: 3 vertex-disjoint dashed green
paths to the 3 measured nodes; the 3 dotted red edges are identifiable.

We stress that the sufficient condition in Corollary 5.2 does
not require all paths from the nodes N+

i to the measured nodes
to be disjoint, but only the existence of a set of mutually
disjoint paths. In other words, there may very well exist many
other paths than those used in the condition, and there is no
requirement on those, nor on their intersections with those
used in the condition. For example, Figure 5 illustrates that
the conditions of Corollary 5.2 apply even though node 2 has
another path to node 8, namely (2, 6, 8) which has a common
node with the path (3, 6, 9).

8The vertex-disjoint condition applies also for the departure and arrival
nodes.

Particularizing Theorem 5.1 to a set N∗i consisting of a
single node immediately leads to a necessary and sufficient
condition for identifying a single transfer function.

Theorem 5.2: Consider an edge (i, j) and its corresponding
transfer function G0

ji, and let N+
i be the set of out-neighbors

of i. The transfer function G0
ji can be generically uniquely

identified by measuring the nodes C if and only if

bN+
i →C

= bN+
i \{j}→C

+ 1 (27)

Proof: The result follows directly from Theorem 5.1 applied
to N∗i = {j}, taking into account the fact that bj→C is 1 if
there is a path from j to C and 0 otherwise.

E. Additional results

In this Subsection we present several results that apply
to specific cases and that can be directly derived from the
previous results. We start by giving conditions for identifying
a group of edges that are only sufficient (not necessary) but
that are simpler than the ones given in Theorem 5.1.

Corollary 5.3: Consider a node i, and let N∗i ⊆ N+
i be

a subset of its out-neighbors with |N∗i | = d∗i . Suppose in
addition that the two following conditions hold

(i) There exist d∗i vertex disjoint directed paths joining the
nodes of N∗i to the measured nodes C,

(ii) There is no path from any node of N+
i \N∗i to any node

of C.
Then all transfer functions from node i to nodes in N∗i can
be generically identified from the measured nodes.
Proof: Since |N∗i | = d∗i , there holds bN∗i→C ≤ d∗i . Hence it
follows from condition (i) that bN∗i→C = d∗i . Condition (ii)
implies that bN+

i \N∗i→C
= 0. Now bN+

i →C
is by definition

always larger than or equal to bN∗i→C because N∗i ⊆ N+
i . It

also follows from Lemma 5.4 that

bN+
i →C

≤ bN∗i→C + bN+
i \N∗i→C

= bN∗i→C (28)

where the last equality follows from bN+
i \N∗i→C

= 0. Com-
bining this with bN+

i →C
≥ bN∗i→C yields the desired result by

Theorem 5.1. This implies that

bN+
i →C

≥ bN∗i→C = bN∗i→C + bN+
i \N

+
i →C

. (29)

The result then follows from Theorem 5.1 and Lemma 5.4.

The next two results concern the generic identification of
the whole network, starting with a rather simple but very
telling necessary condition. It is related again to the need of
obtaining information of sufficiently high dimension for the
out-neighbors of every node.

Corollary 5.4: The network can be generically identified
from CT 0 only if C contains at least as many nodes as the
highest out-degree present in the network.
Proof: This follows from a direct application of the condition
of Corollary 5.2 to a node i with the highest out-degree.



Our next (and final) result in this subsection deals with
the number of nodes that are necessary and sufficient for
identification of the whole network: it shows that we never
need to measure all L nodes to secure network identifiability. It
also confirms that, without any knowledge of the topology, we
need to measure at least all but one of the nodes, as we cannot
exclude the possibility of the graph being fully connected. To
prove it, we first need the following Lemma.

Lemma 5.5: Suppose we measure the set Ck defined as
containing all nodes except k. If the network cannot be
generically fully identified from CkT

0, then there exists a node
k′ with N+

k′ ⊇ N
+
k ∪ {k}, and thus d+

k′ > d+
k .

Proof: If a node i does not have k as out-neighbor, then all
its outgoing edges are generically identifiable. Indeed, all out-
neighbors belong to Ck and are thus all connected to Ck by
trivial zero-length vertex disjoint paths. Suppose now that node
i has k as out-neighbor. If k has an out-neighbor j that is
not an out-neighbor of i, then there exists d+

i vertex disjoint
paths from N+

i to Ck: the path (k, j), and d+
i − 1 zero-length

trivial paths from the other out-neighbors of i to themselves
(since they belong to Ck). Hence the network is generically
fully identifiable. So if the network is not generically fully
identifiable, then k and all its out-neighbors must be out-
neighbors of i, which proves the claim with k′ = i.

Theorem 5.3: p = L− 1 is sufficient for identifiability, in
the sense that there always exists a set of L − 1 measured
nodes allowing to generically fully identify the network. In
particular, measuring all nodes except one of those with the
highest out-degree is always sufficient. In a fully connected
network (that is, n = L(L− 1)), p = L− 1 is also necessary.
Proof: Necessity for the fully connected case is obvious, since
to identify n = L(L − 1) unknowns we need at least p =
n
L = L − 1 measurements. To prove sufficiency, consider the
set Ck defined in Lemma 5.5, where k is a node with the
maximal out-degree. It then follows from Lemma 5.5 that this
Ck allows generically full identification of the network, for
otherwise there would be a node k′ with a higher out-degree,
which is a contradiction.

In this Section, we have started our identifiability analysis by
looking at a given node and its outgoing edges. We have given
necessary and sufficient conditions for the identifiability of one
specific outgoing edge, or a subset of outgoing edges, or all of
them. These conditions are based on the existence of disjoint
paths from these outgoing edges to the measured nodes. In
particular, our results are useful to decide which nodes need
to be measured if one wants to identify a particular transfer
function: see Theorem 5.2. In addition, we have shown that it
is never necessary to measure all L nodes of a network, but
that L− 1 measures are sufficient. Several of our results and
examples have actually shown that special structures within
the network often allow one to identify the network using a

much smaller number of measurements than L − 1: see e.g.
Theorem 4.4 and Example 5.

VI. MEASUREMENT-BASED RESULTS

In this section, instead of starting from a given node and its
outgoing edges, we look at the converse approach. We consider
a measured node, or a set of measured nodes, and we examine
which transfer functions are identifiable from that measured
node or from this set of measured nodes. In the first result we
consider a single measured node.

Theorem 6.1: Let j be a measured node, and consider a
node i that has a path to node j. Then all transfer functions
along that path can generically be identified if there is no other
walk that connects i to j.
Proof: Let N∗i of Theorem 5.1 contain only the out-neighbor
of node i that is on the path to j mentioned in the theorem, and
let C contain only j. By the assumption in the statement, there
is no path from any node in N+

i \ N∗i to j since this would
constitute another path from i to j. The result then follows by
applying Theorem 5.1 to the successive nodes along the path
from i to j.

Theorem 6.1 is illustrated by the example in Figure 6;
remember again that known signals ri are added to each
node, which are not shown on the figure. It follows from
this theorem that the 7 transfer functions on the dashed
green-colored paths can all be generically identified from
the measurement of node 9. If in addition node 7 is also
measured, then the 10 transfer functions of the network can
all be generically identified from the two measured nodes 7
and 9. The intuition behind Theorem 6.1 is that for each edge
of the path we need to recover a specific one-dimensional
information about the effect of the input at its starting node.
The presence of the path from i to j guarantees that this
one-dimensional information reaches j, and the absence of
another walk to j guarantees that it is not mixed with other
information about the same input, i.e. about other edges
leaving the node.

Fig. 6. Example illustrating Theorem 6.1: all transfer functions on the dashed
green edges can be generically identified from the measurement of node 9.

The following result extends Theorem 6.1 by providing a
necessary and sufficient condition for the generic identifiability
of all transfer functions on a path to a single measured node.

Theorem 6.2: Let j be the only measured node and consider
a node i that has a path to node j - let’s call it path P . All



transfer functions along P can be (generically) identified if and
only if any other walk from i to j contains P as a prefix.9

Proof: Necessity: Suppose there is a walk W from i to j
that does not contain P as prefix. Since they both start from
i, P and W begin by a common part, possibly reduced to
node i without any edge. Let k be the last node of this initial
common part, that is, P and W are identical until k and
different afterwards. This last common node k cannot be j for
otherwise P would be a prefix of W . Hence there is a node
after k along P , which we call `P , and a node after k alongW ,
which we call we call `W . We apply Theorem 5.2 to the edge
(k, `P). Clearly bN+

k →C
= 1 because C = {j} contains only

one node. Moreover, there is by definition a walk from `W to
j and, since `W ∈ N+

k , there is a path from `W ∈ N+
k \ {`P}

to j, so that bN+
k \{`P}→C

= 1. It follows then from Theorem
5.2 that (k, `P) cannot be generically identified.

Sufficiency: Suppose now there exists a node k 6= j on
P and its successor `P is such that the edge (k, `P) is not
generically identifiable. Clearly, b`P→C = 1. Hence it follows
from Theorem 5.2 that bN+

k \{`P}→C
= 1, which means there

exists another neighbor, that we call `W , from which there is
a path P ′ to C = {j}. We can then build a walk W from i to
j by aggregating (i) the restriction of P to its first nodes until
it arrives at k, (ii) the edge (k, `W) and (iii) the path P ′ from
`W to j, and this walk does not contain P as a prefix.

Finally, the results of Section V allow us to produce a
necessary and sufficient condition for the generic identifiability
of all edges of the network from a given set of measured nodes,
i.e. a given choice of C. This is another main result of this
paper.

Theorem 6.3: All edges of a network can generically be
identified if and only if bN+

i →C
= d+

i for every i.
Proof: The result follows immediately from Corollary 5.1, or
the equivalent Corollary 5.2, applied to all nodes.

Theorem 6.3 can be put in other (more intuitive) words as
follows: all edges can be identified if and only if for every
node i there exist d+

i vertex-disjoint paths from the set of
neighbors of i to the nodes of C.

VII. ALGORITHMIC COMPLEXITY

Our results allow determining whether a given set C of
measured node allows recovering a specific edge (i, j), a
specific set of edges, or all edges in the network. Let us now
analyze the algorithmic complexity of these issues. We have
seen in Lemma 5.3 that bA→C can be computed in O(Ln)
for any sets A, C using, for example, the Ford-Fulkerson
algorithm.

It follows from Theorem 6.3 that checking if all edges can
be identified can be achieved by computing bN+

i →C
for the

L nodes i, at a cost L.O(Ln) = O(L2n). If we only want
to determine if a specific edge (i, j) can be identified, then
by Theorem 5.2 we can achieve this by comparing bN+

i →C

9A path P1 is a prefix to another path P2 if the initial nodes of P2 are
those of P1.

with bN+
i \{j}→C

, the computation of which has a cost O(Ln).
Finally, suppose we are given a C and we want to determine
the exact set of edges that can be identified. We then need to
compute bN+

i →C
for each of the L nodes i and bN+

i \{j}→C
for

each of the n edges (i, j), at a total cost of (L+ n)O(nL) =
O((L + n)nL = O(n2L) if we assume that the network is
weakly connected, so that L ≤ n+ 1.

VIII. CONCLUSIONS

The results so far on the global identifiability of a network
of dynamical systems have been built on the assumption that
all nodes are measured. In this paper, we have addressed
the network identifiability problem in the situation where
not all nodes are measured, but where they are all excited
by a known external excitation signal. We have first shown
that network identifiability with partial node measurements is
impossible without knowledge about the topology. We have
then developed an identifiability theory for a network matrix
that is based on the topology of its associated graph, and not
on the particular numbers that appear in the unknown network
matrix. This has led us to define and exploit the notion of
generic identifiability of a network matrix.

We have first shown that the node measurements needed for
network identifiability depend entirely on the topology of the
network. In doing so, we have observed that the measurement
of all sinks are indispensable.

We have then provided a series of results on identifiability.
Some of these are based on looking at a particular node and
its out-neighbours, and their paths to measured nodes; others
have addressed the question of which transfer functions can
be identified from the measurement of a particular node or a
subset of nodes.

Our first main result, based on the first approach, is a
necessary and sufficient condition for identifiability of one
edge, a set of edges, or all edges leaving a particular node.
Our second main result is a necessary and sufficient condition
for identifiability of all transfer functions of the network from
a selected set of measured nodes. We have also shown that
these necessary and sufficient conditions can be checked by
algorithms that run in polynomial time, an important feature
for large networks.

An interesting outcome of our work is that networks can
often be identified by measuring only a small subset of nodes.

Future research questions will include the search for a
reduced set of measured nodes that allow identification of
the whole network, as well as the search for informative
experiment designs.
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APPENDIX

Proof of Lemma 5.2
We first show that the absence of A such that Q(A) 6= 0

implies Q(G(z)) ≡ 0 for any G consistent with the graph
associated to G0(z). Indeed, if there is a G(z) such that
Q(G(z)) 6≡ 0, then there is a z∗ such that Q(G(z∗)) 6= 0
and we obtain the desired A by taking G(z∗).

We now show that the existence of A such that Q(A) 6= 0
implies Q(G0(z)) 6= 0 generically. Consider a parametrization
G(P, z) of rational transfer functions consistent with the graph
associated to G0, and let Q̃ : (P, z)→ Q̃(P, z) = Q(G(P, z))
as a function of both z and the parameters collected in
P . Suppose, to obtain a contradiction, that the implication
does not hold, that is there exists a nonzero-measure set
P0 of parameters P such that Q(G(P, z)), as a function of
z, is identically zero. This implies that Q̃(P, z) = 0 for
every couple (P, z) ∈ P0 × C, a set whose measure is also
nonzero. Now, it follows from the assumption on Q and the
parametrization by rational functions that Q̃ is analytic. And
it is a classical result that analytic functions that are not
identically zero vanish only on a zero-measure set [20]. In

particular, the fact that Q̃ vanishes on P0 × C implies that it
is identically 0.

We now show that this contradicts the existence of A
consistent with the graph for which Q(A) 6= 0. Observe indeed
that A = G(P ∗, 1) for a parametrization P ∗ defined by letting
k∗ij = Aij , and βt∗ij = αt∗ij = 0 for every i, j and t. Hence
Q̃(P ∗, 1) = Q(G(P ∗, 1)) = Q(A) 6= 0, in contradiction with
Q̃ ≡ 0. Therefore, the existence of A implies that Q(G(P, z))
is identically zero (as a function of z) only on a zero-measure
set of parameters P . The last part of the result follows from
the fact that single-variable polynomials have a finite number
of roots when they are not identically zero, and the same holds
for rational functions.
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http://arxiv.org/abs/1512.07276


Julien M. Hendrickx Julien M. Hendrickx received
an engineering degree in applied mathematics and a
PhD in mathematical engineering from the Univer-
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