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An Adaptive Partial Sensitivity Updating Scheme

for Fast Nonlinear Model Predictive Control
Yutao Chen, Mattia Bruschetta, Davide Cuccato, and Alessandro Beghi

Abstract—In recent years, efficient optimization algorithms
for Nonlinear Model Predictive Control (NMPC) have been
proposed, that significantly reduce the on-line computational
time. In particular, direct multiple shooting and Sequential
Quadratic Programming (SQP) are used to efficiently solve Non-
linear Programming (NLP) problems arising from continuous-
time NMPC applications. One of the computationally demanding
steps for on-line optimization is the computation of sensitivities
of the nonlinear dynamics at every sampling instant, especially
for systems of large dimensions, strong stiffness, and when using
long prediction horizons. In this paper, within the algorithmic
framework of the Real-Time Iteration (RTI) scheme based on
multiple shooting, an inexact sensitivity updating scheme is
proposed, that performs a partial update of the Jacobian of
the constraints in the NLP. Such update is triggered by using
a Curvature-like Measure of Nonlinearity (CMoN), so that only
sensitivities exhibiting highly nonlinear behaviour are updated,
thus adapting to system operating conditions and possibly re-
ducing the computational burden. An advanced tuning strategy
for the updating scheme is provided to automatically determine
the number of sensitivities being updated, with a guaranteed
bounded error on the Quadratic Programming (QP) solution.
Numerical and control performance of the scheme is evaluated
by means of two simulation examples performed on a dedicated
implementation. Local convergence analysis is also presented and
a tunable convergence rate is proven, when applied to the SQP
method.

Index Terms—nonlinear model predictive control, RTI ,partial
sensitivity update optimization algorithms

I. INTRODUCTION

Nonlinear Model Predictive Control (NMPC) has been

studied and applied intensively in the last decades. In NMPC,

a nonlinear Optimal Control Problem (OCP) has to be solved

on-line at every sampling instant. The OCP can be converted to

a finite dimensional Nonlinear Programming (NLP) problem

by direct methods, such as direct multiple shooting [1] and

direct collocation [2]. The NLP problem can then be solved

by a number of optimization algorithms, e.g., Interior Point

Methods (IPM) [2] and Sequential Quadratic Programming

(SQP) [3]. Fast NMPC algorithms based on direct methods

have been proposed to speed up on-line optimization, see [4]–

[6].

Efficient SQP algorithms based on direct multiple shooting

for systems governed by Differential Algebraic Equations

(DAE) have been thoroughly studied (see e.g. [7]). One of

the computationally demanding steps of SQP methods when
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applied to NMPC is the computation of sensitivities at each

sampling instant, i.e. the Hessian of the Lagrangian and

the Jacobian of the constraints. There are several methods

for computing such sensitivities, e.g. finite difference [8],

complex-step differentiation [9], and automatic differentiation

[10].

Particularly, the Jacobian of constraints contains sensitivities

of integration operators that parameterize continuous-time

dynamics. Although efficient implementations of numerical

integration with sensitivity generation are available [11], [12],

sensitivity computation of this type still largely contributes

to the overall on-line computational burden, especially for

systems that are highly stiff or governed by implicit differential

equations and DAEs.

In this paper, on one most promising SQP-based NMPC

algorithms that is the Real-Time Iteration (RTI) [13], in which

only one SQP iteration is performed at each sampling instant,

is taken as the reference approach. The underlying idea is to

initialize the new NLP by using information from the previous

one, including states, controls, and multipliers making the

closed-loop trajectory converging as system dynamics evolve,

i.e. “on the fly” [14].

In the RTI framework with multiple shooting parameteriza-

tion, a number of tailored approaches are available that employ

suitable inexact sensitivities. In Multi-Level RTI (ML-RTI)

[15], sensitivities are updated every m > 1 sampling instants.

Hence, sensitivities are updated at a slower rate than other

QP components. However, the choice of m is not intuitive

and generally application dependent, thus requiring a long

and complex tuning procedure. In ADJoint sensitivity RTI

(ADJ-RTI) sensitivities computed off-line are used [16]–[19],

and an adjoint sensitivity on-line computation is performed

to identify the correct active-set and to ensure local conver-

gence. Although computational cost is considerably reduced,

thanks to the reduced number of sensitivity computations and

condensing operations [18], this approach is effective only

for systems exhibiting mild nonlinearities. Recently, partial

sensitivity updating schemes called CMoN-RTI and DOPUS,

that are tailored for multiple-shooting based NMPC, have

been proposed [20]–[22]. In such schemes, the multi-stage

feature of NLP problems arising in NMPC applications and the

iterative nature of the solver are exploited. As a result, sensitiv-

ities are partially updated between two consecutive sampling

instants. A so-called Curvature-like Measure of Nonlinearity

(CMoN) or norm-criterion is used in a monitoring strategy to

decide which and how many sensitivities should be updated.

However, these monitoring strategies rely on heuristics and are

strongly dependent on the application at hand.

http://arxiv.org/abs/1808.00877v1
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In this paper, the partial sensitivity scheme CMoN-RTI

of [21] is extended and improved. In particular, three main

features are provided, namely:

• a solution accuracy control strategy;

• a practical tuning procedure;

• convergence analysis.

From parametric optimization theory, the accuracy of the QP

solution is related to parameters in the monitoring strategy. An

advanced tuning strategy for CMoN-RTI is here developed

that provides an automatic way to select which and how

many sensitivities should be updated, while guaranteeing the

QP solution a bounded Distance to Optimum (DtO) (i.e. the

distance between the solution of the inexact sensitivity QP

and that of the exact sensitivity QP). The tuning parameter is

therefore the DtO tolerance, which has an important physical

meaning.

The proposed scheme can significantly reduce the compu-

tational load when the system nonlinear dynamics are excited

only on a small part of the prediction horizon (e.g., when

regulating a system around its steady state or tracking a

reference with look ahead). Moreover, since the additional

computational time required by CMoN-RTI with respect to

RTI is almost negligible, CMoN-RTI is a sensible alternative in

all the scenarios where RTI is effective, as it usually yields an

improvement in the average computational performance, hence

saving computational power, and possibly an increase of the

control frequency. In the worst case, CMoN-RTI degrades to

RTI. A practical implementation of the scheme is given and

its effectiveness is demonstrated by closed-loop simulations

on two classical examples. An application of CMoN-RTI

applied to the SQP framework with multiple iterations is also

introduced. A tunable local convergence rate is proven.

The paper is organized as follows. In Section II, RTI and

some inexact sensitivity schemes are briefly introduced to

define the algorithmic framework. In Section III, the CMoN-

RTI scheme is presented in detail. Section IV is devoted

to the derivation of the advanced tuning strategy and to

practical implementation aspects. In Section V, closed-loop

simulation results using CMoN-RTI are shown. The CMoN-

SQP is described in Section VI, and its convergence properties

are discussed and demonstrated by a numerical example.

II. ALGORITHMIC FRAMEWORK

In this section, the standard RTI scheme [13] is introduced

as the algorithmic framework of the paper. ML-RTI [15] and

ADJ-RTI schemes [17] are here presented as two variants of

RTI, with inexact sensitivity updating strategies.

A. Real-Time Iteration Scheme

In NMPC, a NLP problem can be formulated by applying
direct multiple shooting [1] to an OCP over the prediction

horizon T = [t0, tf ], which is divided into N shooting
intervals [t0, t1, . . . , tN ], as follows

min
sk,uk

N−1
∑

k=0

hk(sk, uk) + hN (sN ) (1a)

s.t. 0 = x0 − x̂0, (1b)

0 = xk+1 − φk(xk, uk), k = 0, 1, . . . , N − 1, (1c)

0 ≥ r(xk, uk), k = 0, 1, . . . , N − 1, (1d)

0 ≥ l(sN ), (1e)

where x̂0 is the measurement of the current state. System

states xk ∈ R
nx are defined at the discrete time point tk

for k = 0, . . . , N and the control inputs uk ∈ R
nu are

piece-wise constant. Here, (1d) is the inequality constraint

where r(xk , uk) : Rnx × R
nu → R

nr . Equation (1c) refers

to the continuity constraint where φk(xk, uk) is a numerical

integration operator that solves the following initial value

problem (IVP) 1 and return the solution at tk+1.

0 = f(ẋ, x(t), u(t), t), x(0) = xk.

The NLP problem (1) depends on the state and control

initialization w and the state measurement x̂0, where w =
(w⊤

0 , w
⊤
1 , . . . , w

⊤
N−1, x

⊤
N )⊤ and wk = (x⊤

k , u
⊤
k )

⊤ for k =
0, . . . , N − 1. By embedding (1b) into (1c), the NLP problem

can be written in a compact form as

min
w

A(w) (2a)

s.t.B(w) = 0, (2b)

C(w) ≤ 0. (2c)

In RTI, problem (2) is solved by a tailored SQP method,

where only one SQP iteration is performed at each sampling

instant. At sampling instant i, the QP subproblem initialized

at wi is defined as

min
∆w

1

2
∆w⊤Hi∆w +∇Ai∆w (3a)

s.t. bi = 0, (3b)

ci ≤ 0, (3c)

where ∆w = w − wi and ∇ is the gradient or Jacobian

operator over w if no subscript is provided. The equality and

inequality constraints are given by

bi = B(wi) +∇B(wi)∆w,

ci = C(wi) +∇C(wi)∆w.

Hi is the Hessian of the Lagrangian of (2), which is defined
by L(w, λ, µ) := A(w)+λ⊤B(w)+µ⊤C(w), where λ, µ are
Lagrangian multipliers associated with equality and inequality
constraints, respectively. For most QP problems arising from
NMPC, the Gauss-Newton Hessian approximation provides
a sufficiently accurate Hessian with reduced computational
burden [13]. Being independent of Lagrangian multipliers, the
Gauss-Newton Hessian is adopted in this paper. Given the
multi-stage nature of problem (1), matrices Hi and ∇C(wi)

1For simplicity we consider Ordinary Differential Equations (ODEs) only
but the extension to DAEs can be easily derived.
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are block diagonal. In particular, the Jacobian matrix ∇B(wi)
has the following form:

∇B(wi) =















Inx

∇φi
0 −Inx

∇φi
1 −Inx

. . .
. . .

∇φi
N−1 −Inx















, (4)

where ∇φi
k = ∇φk(x

i
k, u

i
k), k = 0, . . . , N − 1 and Ia is an

identity matrix of size a. The solution (∆wQP , λQP , µQP )
of (3) is used to update the solution of (2) by a single, full

Newton step as

wi+1 = wi +∆wQP ,

λi+1 = λQP , µi+1 = µQP .
(5)

Since only one QP problem is solved at each sampling instant,

the RTI scheme is a special case of the linear, time-varying

MPC strategy [14].

B. Inexact Sensitivity Schemes

When formulating problem (3), the Jacobian matrix∇B(w)
is computed at each sampling instant to obtain the current

linearization of system dynamics [17]. Such computation

involves sensitivity propagation of the numerical integration

operator φk in (1c) w.r.t. the initialization wk for each shooting

interval, which can be computationally expensive for systems

that are highly stiff or governed by implicit differential equa-

tions and DAEs. To avoid the repeated sensitivity computa-

tions, in ML-RTI, firstly proposed in [15], the computation of

∇B(w) is performed at a slower rate than other components,

e.g. ∇A and B(w). Therefore, problem (3) with currently

available but inexact sensitivities is solved at a faster rate

[23], [24]. To account for the inexact Jacobian, a so-called

optimality improvement step is employed by solving a slightly

modified QP problem as

min
∆w

1

2
∆w⊤Hi∆w +∇Ãi∆w (6a)

s.t. b̃i = 0, (6b)

ci ≤ 0, (6c)

where b̃i = B(wi) +∇B̃∆w and ∇B̃ is the Jacobian from
the previous sample. The QP gradient is modified as

∇Ã
i = ∇A

i + (∇B(wi)−∇B̃)⊤λi
,

where ∇Ã can be efficiently computed by applying adjoint

sensitivity propagation schemes for ∇B⊤(w)λ [17], [18],

which are much cheaper than the computation of the full

Jacobian matrix ∇B(w). The multi-level framework with

inexact sensitivities can be summarized in Algorithm 1 2.

2All QP components in (3) can be evaluated at different rates but the
constraints Jacobian only is here considered. Please refer to [15] for the
complete ML-RTI scheme.

Algorithm 1 Multi-Level inexact sensitivity RTI scheme

1: Initialize (2) at (w0, λ0, µ0). Choose a sensitivity update

interval m ∈ N+.

2: for i = 0, 1, . . . do

3: Compute Hi,∇Ãi, Bi, Ci,∇Ci,

4: if i mod m = 0 then

5: Update the sensitivity ∇Bi

6: Set ∇B̃ ← ∇Bi

7: end if

8: Solve (6) and obtain (∆wQP , λQP , µQP )
9: Update the solution of the NLP problem by (5)

10: end for

The ADJ-RTI scheme is a special variant of Algorithm 1

with m = ∞, in which the Jacobian matrix is computed

only once off-line at the pre-defined initialization trajectory

w0 [17]. When applied in the SQP framework with multiple

SQP iterations, such an inexact sensitivity scheme is proved

to be convergent to the local minimum of the exact sensitivity

NLP problem (2) [15]. The feasibility and stability of the

adjoint scheme in SQP framework, without the optimality

improvement, is analyzed in [19]. However, there remain some

open issues when applying Algorithm 1 in RTI:

• It is not trivial to choose an appropriate sensitivity update

interval m, or a pre-defined trajectory w0, such that the

inexact Jacobian∇B̃ is a good approximation of the exact

one for every sampling instant i > 0.

• The sensitivities over the prediction horizon, either up-

dated or not, are treated as a whole. Therefore, the

structure of the Jacobian matrix is not exploited.

In the following Sections, a new sensitivity updating scheme

is introduced that aims at overcoming the limitations described

above.

III. CMON-RTI

Several attempts to exploit the structure of the QP (3) are

present in the literature. A Mixed-Level scheme has been

proposed in [25], where only the first Nc blocks in (4)

are updated. However, choosing Nc from heuristics may not

be adequate for controlling highly nonlinear systems. Partial

updating schemes where a fixed number of Jacobian blocks

are updated have been independently proposed in [20] and

[22] by using either CMoN or a so-called “norm criterion”. In

[21], an inexact scheme has been proposed, where a varying

number of sensitivities are updated, namely, only the most

“nonlinear” ones. In this paper, the CMoN-RTI scheme is

extended by introducing adjoint CMoN on dual variables and

analyzing the QP problem by using parametric optimization

theory. In particular, an advanced tuning strategy is developed,

that automatically provides the number of Jacobian blocks to

be updated while granting that the DtO remains below a user-

defined tolerance. For the sake of clarity, in the following the

CMoN-RTI scheme proposed in [21] is summarized.

A. Curvature-like Measure of Nonlinearity

Studies on Measures of the Nonlinearity (MoNs) of non-

linear dynamic systems can be traced back to the 1980s. The

three main classes of MoNs are:
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1) the distance between a nonlinear system and its best

linear approximation [26];

2) the gap metric between two linear systems obtained

by linearizing a nonlinear system around two different

operating conditions [27];

3) the curvature MoN (CMoN) at a point in the parameter

space along a given direction. [28], [29].

Global and off-line metrics are developed in [26], [27]. CMoN

is a local metric originally introduced to measure the non-

linearity in an estimation setting [28], [30], [31] and then

extended to chemical processes control [29], [32]. It is defined

as the ratio of the quadratic term over the linear term of the

Taylor expansion of a nonlinear function z = g(s) along the

ǫ direction in the input space:

κo :=
‖z̈ǫ2‖
‖żǫ‖2 . (7)

As the scaling effect of ǫ is cancelled out by using a square

norm in the denominator of (7), this definition evaluates the

instantaneous “curvature” of the manifold of z. However, a

knowledge of up to second order derivatives of the function z,

which are computationally expensive, is required. Also, higher

order terms are not taken into account [33].

In [20], [21], a variant of CMoN has beeen proposed to mea-

sure the local nonlinearity of dynamic systems in the NMPC

framework. Assuming that φk in (1c) is twice differentiable

in wk , the sensitivities of φk w.r.t. the initialization at two

consecutive sampling instants i and i− 1 satisfy

‖(∇φi
k −∇φi−1

k )qi−1
k ‖

=‖qi−1⊤

k ∇2φi−1
k qi−1

k +O(‖qi−1
k ‖3)‖,

≈2‖φi
k − φi−1

k −∇φi−1
k qi−1

k ‖,
(8)

where ‖·‖ denotes the Euclidean norm 3 and qi−1
k = wi

k−wi−1
k

is the distance between the two initializations. The tensor

∇2φi−1
k in (8) is a vector of length nx with each element

a (nx + nu) by (nx + nu) matrix. The computation of

qi−1⊤

k ∇2φi−1
k qi−1

k involves a vector-tensor-vector product and

is defined in terms of nx vector-matrix-vector products [28].

The CMoN of φk is defined by

κi
k :=

‖φi
k − φi−1

k −∇φi−1
k qi−1

k ‖
‖∇φi−1

k qi−1
k ‖

, (9)

where higher order terms of φk are included in the numerator.

Observe that, knowledge of only the first order derivative

∇φi−1
k is required. According to (8), such CMoN measures

the relative change of the directional sensitivities between two

consecutive sampling instants. Observe that κi
k = 0 if φk is

linear.

Similarly, an adjoint CMoN can be defined as follows to

measure the relative change of the directional sensitivities over

dual variables:

κ̃i
k :=

‖∆λi−1⊤

k+1 (∇φi
k −∇φi−1

k )‖
‖∆λi−1⊤

k+1 ∇φi−1
k ‖

. (10)

3In the paper, all vector and matrix norms are Euclidean.

The term ∆λi−1⊤

k+1 ∇φi
k can be computed by efficient adjoint

sensitivity schemes. As will be shown in Sec. IV, (9) together

with (10) play important roles in controlling the accuracy of

QP solutions.

At each sampling instant, the nonlinearity of a dynamic

system over the entire prediction horizon can be estimated

by applying (9) and (10) to each shooting interval.

B. Updating Logic

Due to the multiple shooting discretization, each block∇φi
k

in (4), and the corresponding CMoN κi
k, uniquely depend on

the initialization wk. Hence, evaluation of CMoN, integration,

and sensitivity generation can be performed independently at

each shooting interval . Thus, the set of sensitivity blocks

{∇φi
k} can be divided into two parts:

1) an updating subset where the sensitivity blocks are

updated; and

2) the remaining subset where the sensitivity blocks are

kept unchanged.

If the first subset is much smaller than the second one,

a significant reduction of computational cost for sensitivity

evaluations can be achieved. To this end, CMoN can be

used to determine such an updating subset. Intuitively, when

κi
k is sufficiently small, the sensitivity ∇φi

k is close enough

to ∇φi−1
k , hence sensitivity update is not necessary for the

current sampling instant. The block k of the Jacobian matrix

∇B is updated according to the following strategy. Set the

values of thresholds ηipri and ηidual, where the subscript pri

denotes the primal variable and dual the dual variable. Then,

∇φi
k =

{
∇φi−1

k , if κi
k ≤ ηipri & κ̃i

k ≤ ηidual,
eval(∇φi

k), otherwise
(11)

The proposed strategy is effective in both of the following

cases:

1) Regulation: Given a sufficiently long prediction horizon,

the system nonlinearity is typically excited in a small

part of the predicted trajectory, that is, far from the

steady state. As the system is approaching its steady

state, less and less sensitivities are expected to be

updated.

2) Reference tracking: Assuming that future reference is

known in advance, a widely used choice is to pro-

gressively update the reference starting from the end

of the prediction horizon [14]. This approach has the

beneficial impact that the initial part of the predicted

trajectory is not affected by the reference change. As

a result, given a sufficiently high sampling frequency,

sensitivity update is necessary only in the final part of

the prediction horizon, whereas information from the

past can be effectively used elsewhere.

IV. AN ADVANCED TUNING STRATEGY

In (11), thresholds ηpri and ηdual regulate the trade-off

between the accuracy of the Jacobian approximation and the

computational cost, by determining the updating subset with

the largest CMoN values. An intuitive way of choosing the
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M(0) =

























∇2
∆wLQP (0) ∇∆wc⊤1 , . . . , ∇∆wc⊤nI

∇∆wb⊤1 (0), . . . , ∇∆wb⊤nE
(0)

−∆µ1∇∆wc1 −c1
..
.

. . . 0
−∆µnI

∇∆wcnI
−cnI

∇∆wb1(0)
..
. 0 0

∇∆wbnE
(0)

























, (12a)

N(0) =
[

−∇2
p∆wLQP ,∆µ1∇pc

⊤
1 , . . . ,∆µnI

∇pc
⊤
nI

,−∇pb
⊤
1 (0), . . . ,−∇pb

⊤
nE

(0)
]⊤

, (12b)

LQP (0) =
1

2
∆w

⊤
H∆w+∇L∆w + b

⊤(0)∆λ+ c
⊤∆µ. (12c)

thresholds is to set a constant value, i.e. ηipri = η0pri and

ηidual = η0dual, for all sampling instants. When η0pri = 0
and η0dual = 0, the proposed scheme becomes the standard

RTI scheme with Nf = N , i.e. all sensitivities are up-

dated at every sampling instant. When η0pri ≥ max(κi
k) and

η0dual ≥ max(κ̃i
k) for all i, Nf = 0 and no sensitivity is

updated on-line, hence CMoN-RTI coincides with ADJ-RTI

[15]. Thresholds η0pri and η0dual can take any value in the

sets [0,max(κi
k)] and [0,max(κ̃i

k)], respectively, to achieve

a flexible tuning. A tuning strategy suitable for real-time

implementation can be used: ηipri and ηidual can be chosen to

update, at each instant, a fixed number of sensitivities [20],

[22]. However, a pre-defined limited number of sensitivity

updates may not be suitable for controlling highly nonlinear

systems.

A satisfactory trade-off between the accuracy of the sensitiv-

ity approximation and computational cost can be achieved by

means of an advanced, time-varying tuning of the thresholds

ηpri and ηdual. The key observation is that using the inexact

Jacobian in (6) affects the accuracy of both primal and dual

solutions. A relation that reflects inaccuracy of the sensitivities

into inaccuracy of the solution of the QP problem can therefore

be used to choose, at each sampling instant, the values of

ηpri and ηdual, that guarantee a tunable, bounded error on

the QP solution. By adopting this strategy, CMoN-RTI can

adjust the number of updated Jacobian blocks according to

system operating conditions to achieve a numerical and control

performance as close as possible to the standard RTI scheme,

with improved computational performance.

First some facts from parametric programming theory are

reviewed, then the advanced tuning strategy is detailed and

some practical implementation aspects are finally considered.

A. Parametric Nonlinear Programming: stability of the solu-

tion

Two definitions concerning parametric QP are first in-

troduced. The Jacobian approximation error is taken as a

perturbation parameter. Three Lemmas describing the stability

of the QP solution w.r.t. to such parameter are then given.

Definition 1. Define a parametric QP(p) with parameter
vector p ∈ R

np in the equality constraint as

min
∆w

1

2
∆w

⊤
H∆w +∇L∆w (13a)

s.t. b(p) = 0, (13b)

c ≤ 0, (13c)

where ∇L is the gradient of the Lagrangian of (2), b(p) =
B(w) + (∇B + P )∆w, P := ∇B̃ − ∇B is the Jacobian

approximation error, and∇B̃ is the inexact Jacobian with par-

tially updated blocks. The perturbation vector p = vec(P ) ∈
R

np is the vectorization of P after eliminating zero elements.

According to Definition 1, the exact Jacobian QP problem
(6) is referred to as QP(0). Due to multiple shooting discretiza-
tion, P has the following banded block structure

P =













Onx

P0 Onx

P1 Onx

. . .
. . .

PN−1 Onx













,

where Oa is a zero matrix of dimension a and Pk ∈
R

nx×(nx+nu) is the k−th block of the Jacobian approximation,

and in general is a dense matrix.

Definition 2. Define

∆y(p) = (∆w⊤(p),∆µ⊤(p),∆λ⊤(p))⊤

the solution of (13), where ∆w(p),∆µ(p),∆λ(p) are the

increments of optimization variables, multipliers for inequality

and equality constraints, respectively.

Observe that QP (13) has a modified objective gradient with

respect to (6). However, it can be easily proved that these two

formulations are equivalent [34]. The additional computational

cost can be neglected since both formulation (13) and (6)

contain adjoint sensitivities in their objective. We adopt (13)

as the standard form hereafter.

The following Lemma shows that the distance between the

primal solutions of QP(0) and QP(p) is bounded, and the

bound is of the same order of the Jacobian approximation

error.

Lemma 1. [35]. Let ∆w(0) and ∆w(p) minimize QP(0)
and QP(p) over corresponding feasible sets, respectively.

Then there exists constants c and ǫ∗ > 0 such that ‖∆w(p)−
∆w(0)‖ ≤ cǫ whenever ǫ ≤ ǫ∗ and ǫ = ‖∇G̃−∇G‖ = ‖P‖.

The following Lemma shows that the solution ∆y(p) is a

unique minimizer of (13). Moreover, the active set is locally

stable.
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Lemma 2. [36] Under the assumption on differentiability,

second-order sufficient conditions, constraints linear inde-

pendence and the strict complementary slackness condition,

there exists a unique solution ∆y(p), which is continuously

differentiable w.r.t. p for p in a neighborhood of 0. Moreover,

the set of active inequality constraints is unchanged, strict

complementary slackness holds, and the active constraint

gradients are linearly independent at ∆w(p).

Finally, the following Lemma provides a linearly approxi-

mated relationship between the exact and inexact solutions.

Lemma 3. [36] A first order approximation of ∆y(p) in a

neighborhood of p = 0 is given by

∆y(p) = ∆y(0) +M−1(0)N(0)p+O(‖p‖2)

where M,N are given in (12), and bk and ck are the k−th

row of b(p) and c, respectively.

Remark 1. Lemma 2 is a sufficient but not necessary condition

for the results it holds. It is either not a necessary condition for

Lemma 3. Modern studies based on perturbation theory show

that the solution manifold ∆y(p) is nonsmooth but continuous.

Therefore, ∆y(p) can be close enough to ∆y(0) even in the

presence of active-set changes. The reader is referred to [37],

[38] and references therein for more details.

B. First Order Error Analysis

In the neighborhood of p = 0, (3) can be rewritten as

∆y(0) = ∆y(p)−M−1(p)N(p)p . (14)

As shown in Appendix A, it holds that

N(p)p =





P⊤∆λ(p)
O

−P∆w(p)



 ,

and, by pre-multiplying (14) by M(p), it follows that

M(p)∆y(0) = M(p)∆y(p) +N(p)p.

Therefore, the DtO at the sampling instant i satisfies

‖ei‖2 :=‖∆y(0i)−∆y(pi)‖2

≤‖M−1(pi)‖2 (‖P i⊤∆λ(pi)‖2

+ ‖P i∆w(pi)‖2).
(15)

Note that, given a finite dimensional and non-singular real

matrix M(pi), its Euclidean norm

ρi := ‖M−1(pi)‖ (16)

is bounded. Hence, the DtO ‖ei‖ is bounded only if

‖P i⊤∆λ(pi)‖ and ‖P i∆w(pi)‖ are bounded. The two

bounds are referred as the dual bound and primal bound

respectively, and are discussed in the following.

1) Primal Bound: By using the primal threshold ηpri in the

updating logic (11), one obtains

‖P iqi−1‖ ≤ 2ηipri‖V i−1
pri ‖, (17)

where qi−1 = [qi−1⊤

0 , . . . , qi−1⊤

N−1 ]
⊤ and V i−1

pri is a vector of

directional sensitivities given by

V i−1
pri = [(∇φi−1

0 qi−1
0 )⊤, . . . , (∇φi−1

N−1q
i−1
N−1)

⊤]⊤.

Derivation details are presented in Appendix B. Moreover,

there exists a αi ≥ 0 ∈ R such that

‖P i∆w(pi)‖ = αi‖P iqi−1‖ (18)

Hence, a bound in the direction of the primal variable is as

follows

‖P i∆w(pi)‖2 ≤ 4αi2ηi
2

pri‖V i−1
pri ‖2.

2) Dual Bound: Similarly, for adjoint CMoN it holds that

‖∆λ⊤(pi−1)P i‖ ≤ ηidual‖V i
dual‖.

where

V i−1
dual = [λi−1⊤

1 ∇φi−1
0 , . . . , λi−1⊤

N ∇φi−1
N−1].

There exists a βi ≥ 0 ∈ R such that

‖P i⊤∆λ(pi)‖ ≤ βi‖∆λ⊤(pi−1)P i‖. (19)

Hence, a bound in the direction of the dual variable is obtained

as follows

‖P i⊤∆λ(pi)‖2 ≤ βi2ηi
2

dual‖V i−1
dual‖2

C. Thresholds Estimation

Given a DtO tolerance ēi at the sampling instant i, let

βi2ηi
2

dual‖V i−1
dual‖2 ≤ (1− c1)ē

i2/ρi
2

,

4αi2ηi
2

pri‖V i
pri‖2 ≤ c1ē

i2/ρi
2

,
(20)

where 0 < c1 < 1 is a tuning parameter that trades off impact
of the primal and dual bounds on the DtO. By substituting (20)
into (15), one obtains ‖ei‖2 ≤ ‖ēi‖2. Therefore, the primal
and dual thresholds satisfy the following inequalities:

0 ≤ η
i
pri ≤

√
c1ē

i

2αiρi‖V i−1
pri ‖

:= U1

0 ≤ η
i
dual ≤

√
1− c1ē

i

βiρi‖V i−1
dual‖

:= U2.

(21)

Theorem 1. U1,U2 : R×R→ R are piecewise discontinuous

functions of (ηipri, η
i
dual) and their ranges are finite sets.

The proof of Theorem 1 is given in Appendix C. Given

Theorem 1, a formal solution to find the maximal (ηipri, η
i
dual)

is then to solve the following problem

max
ηi
pri

,ηi
dual

ηipri, η
i
dual (22a)

s.t. ηipri − U1(ηipri, ηidual) ≤ 0, (22b)

ηidual − U2(ηipri, ηidual) ≤ 0. (22c)

The solution of problem (22) provides the maximal values

of the thresholds, corresponding to the minimum number of

sensitivity updates while guaranteeing a bounded DtO. Note

that for a given ēi ≥ 0, there always exists at least one feasible

solution to (22), i.e. (ηipri, η
i
dual) = 0, that makes CMoN-RTI

coincide with the standard RTI scheme.
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D. Practical Implementation

Problem (22) can be solved via enumeration, which requires

to repeatedly solve problem (13). However, this is computa-

tionally prohibitive and undermining the advantage of CMoN-

RTI. A practical approach to avoid solving problem (22)

is setting the two thresholds at their upper bounds in (21),

by using approximated information from previous sampling

instants.

Firstly, the unknown ρi in (16) is replaced by ρ0. The

rationale for such choice is given by the fact that ρi is the

reciprocal of the smallest singular value of M(pi). According

to (12), M(pi) is a very sparse matrix and its smallest singular

value is close to 0 and does not vary much between sampling

instants. Hence, ρ0 cab be computed offline and used for all

on-line computations.

Secondly, as shown in (18) and (19), the values of (αi, βi)
cannot be computed in a real time implementation, since the

Jacobian approximation error P i cannot be computed from

approximate sensitivities, and the solution (∆w(pi),∆λ(pi))
is not known in advance. When the NMPC controller is

converging on the fly, it holds that ‖∆w(pi)‖ ≤ ‖qi−1‖. In

such case, αi and βi are usually less than one. Since larger

values of αi and βi give more conservative results (as they

lead to the computation of a larger number of sensitivities),

a sensible choice is setting (αi, βi) = (1, 1). This aspect is

also discussed in Section V and VI with reference to practical

implementation of the algorithm.

Thirdly, c1 is the parameter that allows to balance the impact

of the primal and dual thresholds on the DtO. In this paper, the

choice c1 = 0.1 is made since the magnitude of multipliers is

typically bigger than the primal solution. As shown in Section

V, this choice allows to achieve a satisfactory performance.

Fourthly, in (15), an upper bound for DtO is obtained

by means of norm inequality. Such inequality may lead to

conservative upper bounds of thresholds (21), hence updating

more sensitivities than necessary. To account for such issue, a

scaling parameter γi is introduced such that

γi2‖ei‖2 =‖M−1(pi)‖2 (‖P i⊤∆λ(pi)‖2

+ ‖P i∆w(pi)‖2).
(23)

The value of γi cannot be computed on-line by using (23)

for real time applications. However, an estimate of it can be

obtained by relying on the following theorem.

Theorem 2. For a real, linear system z = Xt where z ∈
Rm, t ∈ Rm, X ∈ Rm×m, it holds that ‖z‖ = ‖X‖ · ‖t‖
if and only if Σ = σ2I , where X = UΣV ⊤ is the Singular

Value Decomposition (SVD) of X .

Theorem 2 can be proved by applying the definitions of

SVD and spectral norm of matrices. According to Theorem 2,

if the singular values of M−1(pi) are all equal, (23) holds for

γi = 1. For general matrices whose singular values are not

identical, (23) holds for γi > 1. Hence, γi is estimated by

γi = std(σ(M−1(pi))) + 1, (24)

where std(Σ) is the standard deviation operation and

σ(M−1(pi)) is the set of singular values of M−1(pi). To

make on-line computation feasible, γ0 can be used, as it can

be computed off-line. Effectiveness of this choice is discussed

in Section V.

Finally, the approximated thresholds estimates are given by

ηipri =
γ0√c1ēi

2αiρ0‖V i−1
pri ‖

ηidual =
γ0
√
1− c1ē

i

βiρ0‖V i−1
dual‖

.

(25)

A summary of the practical implementation of CMoN-RTI
is given in Algorithm 2.

Algorithm 2 A practical implementation of CMoN-RTI

1: Choose an initial point (w0, λ0, µ0)
2: Choose 0 < c1 < 1
3: Compute ρ0 by (16)

4: Compute γ0 by (24)

5: Set q−1
k ← 0, φ−1

k ← 0,∇φ−1
k ← 0, w−1

k ← 0 for all k
6: for i = 0, 1, . . . do

7: Compute ∇Li, Hi, Bi, Ci,∇Ci

8: for k = 0, 1, . . .N − 1 do

9: Perform integration and obtain φi
k

10: Choose the DtO tolerance ēi by (27)

11: Compute κi
k, κ̃

i
k by (9) and (10)

12: Update ∇φi
k by (11)

13: end for

14: Solve QP (6) and obtain (∆wQP ,∆λQP ,∆µQP )
15: Update the initialization by wi+1 = wi +

∆wQP , λi+1 = λi +∆λQP , µi+1 = µi +∆µQP

16: Compute (ηi+1
pri , η

i+1
dual) by (25).

17: end for

V. NMPC SIMULATION CASE STUDY

In this section, Algorithm 2 is applied to two examples,

namely, the control of an inverted pendulum and of a chain

of masses. Numerical integration and sensitivity generation

are performed by a 4th order explicit Runge-Kutta integrator

with 4 steps per shooting interval, provided by the CasADi

toolbox [39] using automatic differentiation. The QP problem

is solved by using HPIPM, a structure-exploiting interior point

solver based on hardware tailored linear algebra libraries [40].

Algorithmic parameters are chosen as described in Section

IV.D for all examples. The computing environment is Ubuntu

16.04 on a PC with Intel core i7-4790 running at 3.60GHz, and

the implementation is coded in plain C with -O2 compilation

optimization flag.

A. Inverted Pendulum

An inverted pendulum is mounted on top of a cart and can
roll up to 360 degrees. The dynamic model is given by

p̈ =
−m1l sin(θ)θ̇

2 +m1g cos(θ) sin(θ) + F

m2 +m1 −m1(cos(θ))2
,

θ̈ =
1

l(m2 +m1 −m1(cos(θ))2)
(F cos(θ)

−m1l cos(θ) sin(θ)θ̇
2

+ (m2 +m1)g sin(θ)),

(26)
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Fig. 1. State and control trajectories of the inverted pendulum with N = 40. The reference signals change every 5 seconds. The constraints are ‖p‖∞ ≤ 1
and ‖F‖∞ ≤ 20. The DtO is chosen by (28). CMoN-RTI control performance is indistinguishable from that of Standard RTI. The trajectories obtained by
using N = 120 is not shown as they are identical to the ones shown in the figure.

where p, θ are the cart position and swinging angle, respec-

tively, and F is the control force acting on the cart. The model

and values of parameters m1,m2, l, g are taken from [41]. For

this example, a time-varying reference is given to the inverted

pendulum to track different horizontal displacements and

swing angles. A perfect initialization is chosen by optimally

solving the OCP for t = 0 off-line. A short (N = 40) and a

long (N = 120) prediction horizon are applied with a control

interval Ts = 0.05s. The tolerance on DtO in CMoN-RTI

follows the rule given by

ēi = ǫabs
√
n+ ǫrel‖∆yi‖, (27)

where (ǫabs, ǫrel) are the absolute and relative tolerances, n
is the number of optimization variables, and y = (x, λ, µ) is

the optimal triple. Such choice ensures that the DtO tolerance

scales with the size of the problem and the scale of the variable

values [42]. For this problem, we set

ǫabs = 10−1, ǫrel = 10−1. (28)

0 5 10 15 20 25
Time[s]

0

10

20

30

40

50

60

70

%

N=40
N=120

Fig. 2. Percentage of updated sensitivities per sampling instant. The percent-
age starts from 0% when N = 40 since there is no reference change within
the prediction horizon in the first 3 seconds. CMoN-RTI is able to adapt to
reference changes, as can be seen from the peaks at around t = 3, 8, 13, 18s.

In Figure 1, the closed-loop state and control trajectories

generated by the standard RTI and CMoN-RTI with the two

prediction horizons are shown. The control performance of

CMoN-RTI is indistinguishable from that of the standard

0 5 10 15 20 25

Time[s]

10 -15

10 -10

10 -5

10 0

DtO
Tol

0 5 10 15 20 25

Time[s]

10 -15

10 -10

10 -5

10 0

DtO
Tol

Fig. 3. DtO estimated on-line (colored dashed line) and the user-defined
tolerance (black dotted line) for N = 40, 120, with DtO chosen in (28).
The DtO increases when the system is subject to a large reference change (at
around t = 3, 8, 13, 18s). For N = 40, the DtO is zero in the first 3s since
there is no reference change within the prediction horizon. In all cases, the
DtO is lower than the tolerance.

RTI scheme, which demonstrates that CMoN-RTI is able to

maintain the closed-loop performance as the standard RTI

while using much less sensitivity computations.

In Figure 2, the percentage of exactly computed sensitivities

per sampling instant is given. The CMoN-RTI scheme can

adapt to operating conditions by evaluating more sensitivities

when the reference is about to change, as the peaks occur

at around t = 3, 8, 13, 18s. A significant reduction of the

percentage of updated sensitivities is observed when N = 120,

making CMoN-RTI adequate to deal with the case of long pre-

diction horizons. As explained in Section III-B , only the last

part of the reference is triggering sensitivity updates. Hence,

the longer the prediction horizon, the lower the percentage of

sensitivities to be updated. Figure 3 shows the DtO at each

sampling instant together with the user-defined tolerance. An

additional QP with exact Jacobian matrix is solved at each

sampling instant to compute the DtO. In both cases, the DtO

is lower than the tolerance.

To examine the effectiveness of using ρ0 and γ0 in (25),

the relative difference is defined as

r :=
|γi

ρi − γ0

ρ0 |
γi

ρi

For the inverted pendulum example, it is observed that the

maximum value of r is 24%, i.e. a sufficiently small difference
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Fig. 4. Initial and final positions of masses (Fig. 4a) and the control trajectories (Fig. 4b) in one of the simulations using the standard RTI scheme. One
end of the chain is fixed on a wall, while the other end is free and under control. The control interval is Tc = 0.2s. The control inputs are constrained by
‖u(t)‖∞ ≤ 1.
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Fig. 5. The time tst needed to stabilize the chain of masses using RTI, ML- and CMoN-RTI in the total 50 simulations. The chain of masses is considered
to be stabilized at time tst that is computed by (29). For all schemes, the stabilizing time is set to be tst = 50s if the chain is not stabilized within 50s.

that confirms the effectiveness of the approximation strategies

discussed in Section IV.

B. Chain of Masses with Nonlinear Springs

A chain of masses is a system with n masses connected by
springs on a chain [16]. The dynamic model is given by

ṗi(t) = vi(t), i = 1, . . . , n− 1,

v̇i(t) =
1

m
(Fi+1(t)− Fi(t))− g,

ṗn(t) = u(t),

where pi(t) ∈ R
3 and vi(t) ∈ R

3 are the positions and
velocities of the i−th mass, respectively, and

Fi(t) = D(xi(t)− xi−1(t))(1−
L

‖xi(t)− xi−1(t)‖2
) + FNL ,

is the spring force from mass i to i + 1 and FNL is its
nonlinear component. The velocities of the free mass ṗn(t)
are controlled by u(t). As demonstrated in [16], [18], ADJ-
RTI is able to stabilize the chain of masses if FNL = 0, i.e. the
chain is connected by linear springs. In this paper, nonlinear
springs [43] are considered with

FNL = D1(xi(t)− xi−1(t))
(‖xi(t)− xi−1(t)‖2 − L)3

‖xi(t)− xi−1(t)‖2
.

A total of 50 simulations are performed while using the

standard, ML-, ADJ- and CMoN-RTI, with randomly assigned

initial positions and velocities of the masses, see e.g. Fig 4,

for the positions and control trajectories generated in one of

the simulations. For ML-RTI, the entire constraint Jacobian

matrix is updated every m = 2 sampling instants; For ADJ-

RTI, the Jacobian matrix is computed off-line at the steady

state trajectory; For CMoN-RTI, the DtO tolerance is chosen as

in (28). To ensure that an accurate representation of the system

is always used in the controller, at least 10% sensitivities are

updated at each sampling instant. These sensitivities are those

having the largest values of CMoN, hence exhibiting the most

significant nonlinearities [20].

Control performance, numerical robustness, and efficiency

of CMoN-RTI are evaluated and compared with standard RTI,

ML-RTI, and ADJ-RTI. Firstly we collect statistics of the

stabilizing time tst, defined as

tst = argmin t (29a)

s.t.‖u(ti)‖∞ < 0.1, ∀ti ≥ t, (29b)

from the 50 simulations. In Fig. 5, the statistics of the

standard, ML-, ADJ- and CMoN-RTI with N = 40, 80, 160
are shown. Note that, if the chain is not stabilized within

50s, we set tst = 50s, which is a conservative choice since

the stabilization process may take far more than 50s. For all

simulations, RTI is able to stabilize the chain within 50s.
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Fig. 6. The average KKT value at every sampling instant of the successfully stabilized cases among 50 simulations using RTI, ML- and CMoN-RTI. The
KKT value is computed as the norm of the Lagrangian of the NLP (2) as an indicator of optimality.

TABLE I
THE AVARAGE AND MAXIMAL COMPUTATIONAL TIME PER SAMPLING INSTANT IN MILLISECONDS[MS] FOR CMON-RTI AND THE STANDARD RTI

SCHEME FOR THE CHAIN OF MASSES WITH PREDICTION LENGTH N = 40, 80, 160. Sens. STANDS FOR SENSITIVITY EVALUATION TIME AND QP. IS THE

QP SOLVING TIME.

N
Average Maximal

Speedup factor
CMoN-RTI RTI CMoN-RTI RTI

Total Sens. QP. Total Sens. QP. Total Sens. QP. Total. Sens. QP.

40 17.9 7.5 8.8 23.5 14.1 7.9 37.1 19.0 16.1 40.6 24.2 14.7 9.4%
80 29.7 9.6 17.8 43.5 24.4 16.2 61.4 25.5 34.4 70.1 37.4 31.3 14.2%
160 66.8 13.8 46.3 93.8 45.4 43.3 134.7 30.8 98.7 144.8 52.4 94.0 7.5%
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Fig. 7. The average percentage of exactly updated sensitivities at every
sampling instant of the stabilized cases among 50 simulations for chain of
masses using CMoN-RTI. At least 10% of sensitivities are updated at each
sampling instant.

The mean and interquartile range (IQR) of tst of CMoN-RTI

is very close to those of the standard RTI. This means that

CMoN-RTI has a similar control performance to the standard

RTI in most of the situations. On the other hand, ML-RTI has

a similar stabilizing time to RTI when N is short, whereas tst
grows significantly as N becomes larger. ADJ-RTI, initialized

at the steady state trajectory, is not able to provide acceptable

control performance, especially when N is large.

The control performance is also evaluated by assessing the

optimality of each controller. In Fig. 6, the average Karush-

Kuhn-Tucker (KKT) value, i.e. the norm of the gradient of

the Lagrangian of the NLP (2), at each sampling instant is

presented. It can be observed that

• ML-RTI KKT values exhibit strongly oscillatory behavior

since the Jacobian update is performed every m = 2
sampling instants only.

• As the system converges “on the fly”, the KKT of CMoN-

RTI decreases smoothly as that of the standard RTI.

TABLE II
THE NUMBER OF SIMULATIONS (AMONG 50) WHERE EACH CONTROLLER

cannot STABILIZE THE CHAIN.

❍
❍
❍
❍
❍

N
40 80 160

ML-RTI 4 5 7

ADJ-RTI 7 42 50

CMoN-RTI 0 0 0

As for numerical robustness, the number of simulations

where each controller fails to stabilize the system within 50s

is reported in Table II . Given that the initial condition of each

simulation is randomly assigned, the numerical robustness or

the sensitivity w.r.t. initialization of each controller can be

assessed. CMoN-RTI is able to stabilize the chain within 50s

in all situations, although the maximal stabilizing time is larger

than that of the standard RTI (see Fig. 5). ML-RTI has a

few failed cases if N = 40 and this number increases as the

prediction horizon grows. Not surprisingly, ADJ-RTI exhibits

the poorest robustness properties as it heavily depends on the

quality of the off-line Jacobian matrix.

To evaluate computational efficiency, the average percentage

of exactly updated sensitivities using CMoN-RTI at every

sampling instant is reported in Figure 7. In the first 20s,

the KKT values of CMoN-RTI and RTI are almost identical,

however, the number of updated sensitivities is at most 80%
and it reduces to 60% when N becomes larger. After t = 30s,



11

when the system is close to its steady state, updating only

10% of the blocks allows to still maintain small KKT values.

Table I shows the average and maximal computational time

of CMoN-RTI and the RTI scheme per sampling instant.

For this example, the speedup factor is computed by using

the maximal computational time. With different prediction

horizons, the computational time for evaluating sensitivities

varies from about 60% to 36% of the full RTI step, and the

one for the QP varies from about 36% to 65%. As a result,

the speed up factor is strongly related to the distribution of

computational time among the critical steps of the full RTI. In

the specific example, the speedup factor is always positive with

a maximum value of 14.2% when N = 80. Also, observe that

the computational performance obtained in the examples is

related to the use of the simple explicit Runge-Kutta integrator.

For systems that require the use of more complex integrators,

whose sensitivities are more computational expensive, CMoN-

RTI is expected to achieve a greater speedup factor.

VI. CONVERGENCE ANALYSIS

Algorithm 2 is a partial sensitivity updating scheme in

the framework of RTI between two consecutive sampling

instants. It can also be straightforwardly extended to the SQP

framework, where a sequence of QP problems is solved until

convergence is achieved. The resulting algorithm, denoted

hereafter as CMoN-SQP, partially updates sensitivities be-

tween two consecutive SQP iterations. In the SQP scenario, the

Two-side-Rank-One (TR1) updating SQP algorithm has been

proposed in [44] for equality constrained problems. Similar

to the famous Symmetric-Rank-One (SR1) updating scheme

[8], the TR1 scheme requires Hessian and Jacobian updates to

satisfy both direct and adjoint secant conditions. This method

is extended to linearly inequality constrained problems in [34]

and its local convergence is proved.

Differently from the TR1 scheme, which adopts a rank one

Jacobian matrix update, CMoN-SQP achieves a block update

by exploiting the structure of the problem. In addition, the

primal and dual bounds are satisfied, instead of enforcing

secant conditions. In the following, local convergence of

CMoN-SQP is proved and it is shown that the convergence

rate is tunable via the choice of the DtO tolerance.

A. Local Convergence of CMoN-SQP

Consider the parametric QP problem (13). Solving problem

(13) in a SQP algorithm is equivalent to solving the following

nonlinear system:

F (y) = 0,y :=

[
w

λ

]

, F (y) =





R⊤∇L(w, λ)
B(w)
Ca(w)



 ,

where λ denotes the multiplier for both equality and active

inequality constraints, Ca contains the active constraints, and

R is a matrix with orthonormal column vectors, such that

∇CaR = 0 [34]. The Jacobian matrix of the nonlinear system

is

∇F (yi) =
∂F

∂y
(yi) =





R⊤
i H

i R⊤
i ∇B⊤(wi)

∇B(wi)
∇Ca(w

i)



 ,

where Hi is an approximation of the exact Hessian, i.e. the

Gauss-Newton approximation which is independent of the

multiplier λ. Let Ji be an approximation of the exact Jacobian

∇F (yi) with

Ji =





R⊤
i H

i R⊤
i ∇B⊤(wi)

∇B̃(wi)
∇Ca(w

i)



 .

The following theorem indicates that the proposed scheme is

convergent in the neighborhood of p = 0.

Theorem 3. Let F : V → R
ny ,V ⊂ R

ny be continuously

differentiable. Consider the two sequences

{y∗} : yi+1
∗ = yi∗ +∆yi∗

{yp} : yi+1
p = yip +∆yip

where

∆yi∗ = −∇F−1(yi∗)F (yi∗) (30)

∆yip = −J−1(yip)F (yip)

Assume that

1) the Jacobian matrix is invertible, uniformly bounded,

and has uniformly bounded inverses,

2) there exists a κ0 < 1 such that ‖∆yi+1
∗ ‖ ≤ κ0‖∆yi∗‖

for all i > m1,m1 ∈ N. Hence, starting from y0 ∈ V ,

the sequence {y∗} converges to a local optimizer y+∗ ,

3) J(yip) is generated by Algorithm 2,

Then,

1) there always exists a set of scalars {i ∈ N
+|ēi ≥ 0}

such that the distance between the sequences {yp} and

{y∗} is sufficiently small at each iteration,

2) there always exists a set of scalars {i ∈ N
+|ēi ≥ 0}

and a κ2 satisfying κ0 ≤ κ2 < 1, such that ‖∆yi+1
p ‖ ≤

κ2‖∆yip‖ for all i > m2,m2 ∈ N, and the sequence

{yp} converges to y+p = y+∗ starting from y0.

Proof: Let the locally exact solution initialized at yip be

∆yi0 = −∇F−1(yip)F (yip) . (31)

Assume that at iteration i, the DtO is satisfied as

‖∆yip −∆yi0‖ = ‖ei‖ ≤ ēi .

Let ‖diy‖ = ‖yip − yi∗‖ be the distance between the two

sequences at the current iteration. Observe that

∇F (yip) = ∇F (yi∗) + di
⊤

y ∇2F (yi∗) +O(‖diy‖2),
F (yip) = F (yi∗) +∇F (yi∗)d

i
y +O(‖diy‖2).

Assume that ‖diy‖ is sufficiently small and O(‖diy‖2) can be

neglected, then by combining (30) and (31), it follows that

∆yi0 −∆yi∗ = −∇F−1(yi∗)(d
i⊤

y ∇2F (yi∗)∆yi0)− diy .

As a result,

‖∆yi0 −∆yi∗‖ ≤ gi‖diy‖ ,
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where gi = ‖∇F−1(yi∗)(∆yi
⊤

0 ∇2F (yi∗)) + I‖. The distance

between the two solutions at the current iteration is

‖∆yip −∆yi∗‖ ≤ ‖∆yip −∆yi0‖+ ‖∆yi0 −∆yi∗‖
≤ ēi + gi‖diy‖

︸ ︷︷ ︸

‖di
∆y

‖

,

and the distance between the two sequences at the next

iteration is

‖di+1
y ‖ := ‖yi+1

p − yi+1
∗ ‖

≤ ‖diy‖+ ‖∆yip −∆yi∗‖
≤ ēi + (1 + gi)‖diy‖.

Since Algorithm 2 always starts from ‖d0y‖ = 0, ‖diy‖, ∀i >
0 is a linear combination of (ē0, ē1, . . . , ēi). Therefore, it is

always possible to choose a set of scalars {i ∈ N
+|ēi ≥ 0},

such that ‖diy‖ ≈ 0. Equivalently, the sequence {yp} can be

sufficiently close to {y∗} at every iteration.

Consider now the convergence properties of {yp}. By

assumption 2, it follows that

‖yi+1
p ‖ ≤ ‖di+1

∆y ‖+ κ0‖∆yi∗‖
≤ ‖di+1

∆y ‖+ κ0‖di∆y‖+ κ0‖∆yip‖
= κ1 + κ0‖∆yip‖

where κ1 = ‖di+1
∆y ‖ + κ0‖di∆y‖. Since κ0 < 1 and

‖di+1
∆y ‖, ‖di∆y‖ can be arbitrarily small, there exists a κ2

satisfying κ0 ≤ κ2 < 1 such that

‖yi+1
p ‖ ≤ κ1 + κ0‖∆yip‖ ≤ κ2‖∆yip‖ .

Therefore, the sequence {yp} is convergent and its conver-

gence rate is at most identical to that of {y∗}. As proved in

[15], [34], when {yp} does converge, it converges to the exact

limit y+∗ of the sequence {y∗}.
Theorem 3 shows that the Jacobian approximation error

can be controlled by using user-defined DtO tolerances, hence

the convergence can be satisfied by using appropriate tuning

configurations. The convergence rate is also shown to be tun-

able, which increases the flexibility of the proposed algorithm.

If ēi = 0, ∀i ≥ 0, CMoN-SQP becomes the standard SQP

algorithm with the same convergence rate.

B. Numerical Examples

As an example, the CMoN-SQP scheme is applied to the

inverted pendulum (26). The control objective is to invert the

pendulum from bottom to top. CMoN-SQP is used to solve

the OCP in open-loop at time t = 0 with N = 40. Since

only local convergence is of interest, the initialization of the

OCP is in a neighborhood of the optimal solution and a full

Newton-step is adopted at each iteration.

Figure 8 shows the convergence behavior of two different

DtO choices of CMoN-SQP. The left y-axis reports the KKT

value, that indicates the optimality of the solution. The right

y-axis reports the percentage of sensitivities being updated at

each iteration. To show how the choice of DtO tolerance affect

the convergence rate, the following DtO tolerances are used:

s1 : (ǫabs = 10−2, ǫrel = 10−2)

s2 : (ǫabs = 10−1, ǫrel = 10−1)

A more aggressive setting (s2) leads to less sensitivity eval-

uations but slower convergence rate. Figure 9 shows the

convergence behavior of three choices of c1 for (25). The

convergence rate is not sensitive to the values of c1. In practice,

to solve a structured NLP problem by using CMoN-SQP, one

would achieve a satisfactory trade-off between the cost of

sensitivities and the number of iterations by properly tuning

the DtO tolerance.
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Fig. 8. Convergence behavior of CMoN-SQP when applied to the inverted
pendulum using c1 = 0.1 and two DtO tolerances. The left y-axis reports
the KKT value that indicates the optimality of the solution. The right y-axis
reports the percentage of sensitivities being updated at each iteration.
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Fig. 9. Convergence behavior of CMoN-SQP when applied to the inverted
pendulum using (s1) for DtO and three values of c1. The left y-axis reports
the KKT value that indicates the optimality of the solution. The right y-axis
reports the percentage of sensitivities being updated at each iteration.

VII. CONCLUSION

In this paper, the partial sensitivity updating scheme CMoN-

RTI of [21] is extended by proposing an advanced tuning strat-

egy with solution accuracy control and convergence analysis.

In CMoN-RTI, sensitivities are updated based on CMoN of the

dynamic system over the prediction horizon. The CMoN works

as a metric to evaluate the quality of sensitivity approximation,
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and an updating logic is designed with the use of primal

and dual thresholds. By using parametric optimization theory,

an advanced strategy for tuning such thresholds is proposed.

Such strategy automatically determines the number of updated

sensitivities and guarantees the DtO of QP solutions under a

user-defined tolerance.

Closed-loop simulations show that the CMoN-RTI scheme

exhibits good control performance when applied to highly

nonlinear control problems. The application to an inverted pen-

dulum shows that CMoN-RTI can adapt to reference changes

while satisfying the DtO tolerance. The results from a chain of

masses with nonlinear springs demonstrate the superior control

performance, numerical robustness, and efficiency of CMoN-

RTI.

The proposed scheme has also been extended to full SQP

algorithms, denoted as CMoN-SQP and its local convergence

is proved. Comparing to existing inexact sensitivity SQP meth-

ods, CMoN-SQP has two unique properties, namely, tunable

convergence rate and structure exploiting updating logic.

Future studies may focus on possible extensions of CMoN-

RTI. While ADJ-RTI and Mixed-Level schemes can benefit

from condensing steps with significantly reduced computa-

tional efforts [18], [25], CMoN-RTI usually requires to per-

form a full condensing step at every sampling instant. Further

improvements can be achieved by adopting partial condensing

methods [45].

APPENDIX A

In this Appendix, the computation of M,N in (12a) and
(12b) is detailed. For elements in M , it holds

∇2LQP = H,

∇ck = ∇Ck, k = 1, . . . , nI ,

∇bj(p) = ∇Bj + Pj,:, j = 1, . . . , nE ,

where Pj,: is the jth row of P . For elements in N , it holds

∇2
p∆wL =











































O1

.

.

.
O1

Λnx+1

.

.

.
Λ2nx

. . .

ΛNnx+1 O2

.

.

.
.
.
.

Λ(N+1)nx
O2











































,

∇pcj = O3 ∈ R
1×np , j = 0, . . . , nI ,

∇pb = blkdiag(−W0, . . . ,−WN−1),

where O1 ∈ R(nx+nu)×(nx+nu), O2 ∈ R(nx+nu)×nx ,Λj =
Inx+nu ⊗∆λj and Wk = Inx ⊗∆w⊤

k
with ∆w⊤

k
∈ R

1×(nx+nu).

APPENDIX B

In this Appendix, the expression for V i−1
pri in (17) is derived.

From the updating logic (11), it can be easily obtained that

‖P i
kq

i−1
k

‖ ≤ 2ηipri‖∇φi−1
k

qi−1
k

‖.

For the full Jacobian matrix, it holds

‖P i
q
i−1‖ =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥















O

P i
0 O

P i
1

. . . O

P i
N−1 O































qi−1
0

qi−1
1
.
.
.

qi−1
N−1

qi−1
N

















∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

∥











O

P i
0q

i−1
0
.
.
.

P i
N−1q

i−1
N−1











∥

∥

∥

∥

∥

∥

∥

∥

∥

=

√

√

√

√

N−1
∑

k=0

‖P i
k
qi−1
k

‖2

≤

√

√

√

√

N−1
∑

k=0

4(ηipri)
2‖∇φi−1

k
qi−1
k

‖2

= 2ηipri

√

√

√

√

N−1
∑

k=0

‖∇φi−1
k

qi−1
k

‖2

= 2ηipri

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥













∇φi−1
0 qi−1

0

∇φi−1
1 qi−1

1
.
.
.

∇φi−1
k

qi−1
N−1













∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

= 2ηipri‖V
i−1
pri ‖.

A similar derivation can be conducted for V i−1
dual. The details

are hence omitted.

APPENDIX C

A proof of Theorem 1 is given in this Appendix.

Proof: According to (11), given the primal and dual

thresholds, ∇φi
j are updated for

j ∈ {j|κi
j > ηipri, κ̃

i
j > ηidual, j = 0, 1, . . . , N − 1}.

It follows that sensitivities with larger CMoN values always

get updated first. As a consequence, there are finite number

of combinations (actually N + 1) of possible updated sensi-

tivities, resulting in a finite number of possible P i matrices.

Therefore, ρi, αi, βi which are defined in (16), (18) and (19),

are functions of P i and have at most N + 1 possible values.

Hence, the range of U1,U2 are finite.

In addition, for some k 6= j, ∀(ηipri, ηidual) satisfying

κi
k < ηipri < κi

j ,

κ̃i
k < ηidual < κ̃i

j ,
(32)

there exist (ǫpri, ǫdual) 6= 0 ∈ R such that

κi
k < ηipri + ǫpri < κi

j ,

κ̃i
k < ηidual + ǫdual < κ̃i

j .

Hence, P i remains constant under the perturbation of

(ǫpri, ǫdual). The values of U1,U2 are constant for

any (ηipri, η
i
dual) satisfying (32). Discontinuity exists at

(ηipri, η
i
dual) = (κi

j , κ̃
i
j), when the matrix P i has different

number of nonzero blocks resulting in different values of

U1,U2.
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