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Newton-type Alternating Minimization Algorithm
for Convex Optimization

Lorenzo Stella, Andreas Themelis and Panagiotis Patrinos

Abstract—We propose NAMA (Newton-type Alternating Min-
imization Algorithm) for solving structured nonsmooth convex
optimization problems where the sum of two functions is to be
minimized, one being strongly convex and the other composed
with a linear mapping. The proposed algorithm is a line-search
method over a continuous, real-valued, exact penalty function for
the corresponding dual problem, which is computed by evaluat-
ing the augmented Lagrangian at the primal points obtained by
alternating minimizations. As a consequence, NAMA relies on
exactly the same computations as the classical alternating min-
imization algorithm (AMA), also known as the dual proximal
gradient method. Under standard assumptions the proposed al-
gorithm converges with global sublinear and local linear rates,
while under mild additional assumptions the asymptotic con-
vergence is superlinear, provided that the search directions are
chosen according to quasi-Newton formulas. Due to its simplic-
ity, the proposed method is well suited for embedded applications
and large-scale problems. Experiments show that using limited-
memory directions in NAMA greatly improves the convergence
speed over AMA and its accelerated variant.

I. INTRODUCTION

We consider convex optimization problems of the form
minimize

x∈Rn
f(x) + g(Ax), (P)

where f is strongly convex, g is convex and A is a linear
mapping. Problems of this form are quite general and appear
in various areas of applications, including optimal control [1],
system identification [2] and machine learning [3], [4]. For
example, whenever g is the indicator function of a convex set
C, then (P) models a constrained convex problem: if C is a
box, then in particular (P) amounts to minimizing a strongly
convex function subject to polyhedral constraints.

A general approach to the solution of (P) is based on the
dual proximal gradient method, or forward-backward splitting,
also known as alternating minimization algorithm (AMA) [5].
This is the dual application of an algorithm introduced by Li-
ons and Mercier [6] for finding the zero of the sum of two
maximal monotone operators, one of which is assumed to be
co-coercive. The alternating minimization algorithm is inti-
mately tied to the framework of augmented Lagrangian meth-
ods, and its global convergence and complexity bounds are
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well covered in the literature, see [5]: a global convergence
rate of order O(1/

√
k) holds for the primal iterates of AMA

under very general assumptions, and can be improved to the
optimal rate O(1/k) using a simple acceleration technique due
to Nesterov, see [7]–[9].

As with all first order methods, the performance of (fast)
AMA is severely affected by ill-conditioning of the problem
[1]. One way to deal with this issue, which is extensively
used in classical smooth, unconstrained optimization, is to pre-
condition the problem using (approximate) second-order infor-
mation on the cost function, as in (quasi-) Newton methods.
However, both (P) and its dual are nonsmooth in general. This
motivates considering the concept of alternating minimization
envelope (AME): this is a real-valued (as opposed to extended
real-valued) exact merit function for the dual problem, and is
precisely the augmented Lagrangian associated with (P) eval-
uated at the primal points computed by AMA. Under mild
assumptions on (P), the AME is continuously differentiable
around the set of dual solutions and even strictly twice dif-
ferentiable there. As a consequence, the AME allows to ex-
tend classical, smooth unconstrained optimization algorithms
to the solution of the dual problem to (P), which is nons-
mooth in general. In this work we propose a dual line-search
method, which uses the AME as merit function to compute
the stepsizes. The convergence properties of the proposed al-
gorithm greatly improve over AMA when fast-converging di-
rections, computed by means of quasi-Newton formulas, are
followed. Furthermore, we show that the AME is equivalent
to the forward-backward envelope (FBE, see [10]–[12]) asso-
ciated with the dual problem.

A. Related works
The FBE, as a tool for extending smooth unconstrained al-

gorithms to nonsmooth problems, has first been introduced in
[10]: there, two semismooth Newton methods are proposed for
minimizing the sum of two convex functions, one of which is
smooth and the other having an efficiently computable proxi-
mal mapping. This is the classical setting in which the prox-
imal gradient method (and its accelerated variant) can be ap-
plied. In [11] the convexity assumption on the smooth term
is relaxed, and the authors propose a line-search method with
global sublinear rate (in the convex case) and asymptotic su-
perlinear rate when quasi-Newton directions are used: the
algorithm relies on descent directions over the FBE which
is required to be everywhere differentiable. In [13] classical
gradient-based line-search methods are considered for mini-
mizing the FBE, see also [14]. In [12] the most general frame-
work, where both summands are allowed to be nonconvex, is
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taken into account. In this case differentiability of the FBE
cannot be assumed: a new algorithm is proposed which com-
putes fast convergent directions with no need for gradient in-
formation on the FBE.

A similar approach was used in [15], [16] to analyze and
accelerate other splitting algorithms, namely the Douglas-
Rachford splitting and its dual counterpart ADMM.

B. Contributions and organization of the paper
In the present paper we deal with the case where g in (P)

is composed with a linear mapping. In this case, even though
g may possess an efficiently computable proximal mapping,
g ◦A in general does not. This motivates addressing the dual
problem of (P) instead. The contributions and organization of
the present work can be summarized as follows.
• We propose the Newton-type Alternating Minimization Al-
gorithm (NAMA, Section II, Algorithm 1), a generalization of
the alternating minimization algorithm that performs a line-
search step over the AME: the proposed algorithm relies on
the very same alternating minimization operations of AMA.
• We show that the AME is equivalent to the FBE of the
dual problem (Section III). This observation extends a clas-
sical result by Rockafellar, relating the Moreau envelope and
the augmented Lagrangian, to our setting where an additional
strongly convex term is present.
• We show that the proposed method enjoys global sublin-
ear convergence under standard assumptions, and local linear
convergence assuming calmness of the subdifferentials of the
problem terms (Section IV).
• We analyze the first- and second-order properties of the
AME, by linking them to generalized second-order properties
of the primal functions f and g (Section V).
• We show that the proposed method converges asymptot-
ically superlinearly when the dual problem has a (unique)
strong minimum, and the line-search directions are selected
so as to satisfy the Dennis-Moré condition, as it is the case
when quasi-Newton update formulas are adopted (Section VI).
The effectiveness of our approach is demonstrated by numer-
ical simulations on linear MPC problems (Section VII).

Differently from the approaches in [11], [13], [14], NAMA
does not require the gradient of the envelope function, there-
fore no second-order information on the smooth term is
needed: this would severely limit its applicability in the present
setting where the dual problem is solved. Furthermore, with
respect to the approaches of [13], [14], the algorithm presented
here possesses strong global convergence properties which are
not typical of classical line-search methods. Differently from
[12], despite the fact that the selected directions may not be
descent directions and the line search is performed on the en-
velope function, NAMA is a descent method for the dual ob-
jective: this allows to simplify the convergence analysis of the
method, and to show the global sublinear convergence rate for
the dual cost and the primal iterates.

C. Notation
In what follows 〈 · , · 〉 denotes an inner product over a

Euclidean space (whose nature will be clear from the context)

and ‖ · ‖ =
√
〈 · , · 〉 is the associated norm. For a linear

mapping A : Rn → Rm, ‖A‖ is the operator norm induced
by the inner products over Rn and Rm.

For a set C, we denote by ri(C) its relative interior, and
by ΠC(x) = argminy∈C ‖y − x‖ the projection onto C
in the considered norm. We denote the extended real line
by R = R ∪ {∞}, and by Γ0(Rn) the set of proper,
closed, convex functions defined over Rn with values in R.
For h ∈ Γ0(Rn), its effective domain is the set domh =
{x ∈ Rn | h(x) <∞}, and its Fenchel conjugate h∗(y) =
supx∈Rn{〈x, y〉 − h(x)} is also proper, closed and convex.
Properties of conjugate functions are well described for exam-
ple in [17]–[20]. Among these we recall the Fenchel-Young
inequality [19, Prop. 13.13]

〈x, y〉 ≤ h(x) + h∗(y) ∀x, y, (1)

with

y ∈ ∂h(x)⇔ 〈x, y〉 = h(x) + h∗(y)⇔ x ∈ ∂h∗(y), (2)

see [17, Thm. 23.5]. For any γ > 0, the proximal mapping
associated with h, with stepsize γ, is denoted as

proxγh(x) = argminz
{
h(z) + (1/2γ)‖z − x‖2

}
.

This satisfies the Moreau identity [19, Thm. 14.3(ii)]

y = proxγh(y) + γ proxγ−1h∗(γ
−1y) ∀y. (3)

The value function of the problem defining proxγh is the
Moreau envelope

hγ(x) = minz
{
h(z) + (1/2γ)‖z − x‖2

}
.

An alternative formulation for (P) is

minimize
x∈Rn,z∈Rm

f(x) + g(z) subject to Ax = z. (P′)

Therefore we can define the augmented Lagrangian associated
with (P), denoted as

Lγ(x, z, y) = f(x) + g(z) + 〈y,Ax− z〉+ γ
2 ‖Ax− z‖2,

where γ ≥ 0. We indicate by L ≡ L0 the ordinary Lagrangian
function.

We follow the terminology of [20] when referring to the
concepts of strict continuity and strict differentiability. We say
that a mapping F : Rn → Rm is strictly continuous at x̄ if
[20, Def. 9.1(b)]

lim sup
(x,y)→(x̄,x̄)

x 6=y

‖F (y)− F (x)‖
‖y − x‖ <∞.

If F is (Frechét) differentiable, we let JF : Rn → Rm×n

denote the Jacobian of F . When m = 1 we indicate with
∇F = JF> the gradient of F and with ∇2F = J∇F> its
Hessian, whenever it makes sense. We say that F is strictly
differentiable at x̄ if it satisfies the stronger limit [20, Eq. 9(7)]

lim
(x,y)→(x̄,x̄)

x 6=y

‖F (y)− F (x)− JF (x̄)[y − x]‖
‖y − x‖ = 0.

Some results in the paper are based on generalized second-
order properties of extended-real-valued functions.

Definition I.1 ([20, Def. 13.6]). Function h : Rn → R is said
to be twice epi-differentiable at x for v, if the second-order
difference quotient

∆2
τh(x|v)[d] =

h(x+ τd)− h(x)− τ〈v, d〉
τ2
/2
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epi-converges as τ ↘ 0 (i.e., its epigraph converges in the
sense of Painlevé-Kuratowksi, see [20, Def. 7.1]), the limit
being the function d2h(x|v) given by

d2h(x|v)[d] = lim inf
τ↘0
d′→d

∆2
τh(x|v)[d′].

In this case d2h(x|v)[d], as a function of d, is said to be the
second-order epi-derivative of h at x for v. If ∆2

τh(x̄|v̄) epi-
converges as τ ↘ 0, x̄→ x and v̄ → v, then h is said to be
strictly twice epi-differentiable.

Twice epi-differentiability is a mild requirement, and func-
tions with this property are abundant. Refer to [21]–[25] and
to [20, §7, §13] for examples and an in-depth account on epi-
derivatives, epi-differentiability, and their connections with or-
dinary differentiability.

II. BACKGROUND AND PROPOSED ALGORITHM

Throughout the paper we will work under the following
basic assumption.

Assumption 1. The following hold for (P):

(i) (P) is feasible, i.e., Adom f ∩ dom g 6= ∅;
(ii) f ∈ Γ0(Rn) is strongly convex with modulus µf > 0;1

(iii) g ∈ Γ0(Rm).

Remark II.1. Assumption 1 guarantees, by strong convexity
of f , that a solution to (P) exists and is unique, be it x?.
Assumption 1(ii) also implies that f∗ is Lipschitz continuously
differentiable with constant µ−1

f [20, Th. 12.60]. Assumption
1(iii) ensures that g∗ is also proper, closed, convex [19, Cor.
13.33], and its Moreau envelope (g∗)γ is strictly continuous
[20, Ex. 10.32] with γ−1-Lipschitz gradient

∇(g∗)γ(y) = γ−1
(
y − proxγg∗(y)

)
, (4)

as shown in [19, Prop. 12.29].

The Fenchel dual problem associated with (P) is

minimize
y∈Rm

ψ(y) = f∗(−A>y) + g∗(y). (D)

Under Assumption 1 strong duality holds, see [26, Thm.
5.2.1(b)-(c)] and primal-dual solutions (x?, y?) to (P)-(D) are
characterized by the first-order optimality conditions

−A>y? ∈ ∂f(x?) (⇔ x? = ∇f∗(−A>y?)) (5a)
y? ∈ ∂g(Ax?) (⇔ Ax? ∈ ∂g∗(y?)). (5b)

A natural way to tackle (P) is to solve (D) by means
of forward-backward splitting (or proximal gradient method):
starting from an initial dual point y0 ∈ Rm, iterate

yk+1 = Tγ(yk) := proxγg∗(y
k + γA∇f∗(−A>yk)) (6)

for some positive stepsize parameter γ. If we define the asso-
ciated fixed-point residual

Rγ(y) := γ−1(y − Tγ(y)),

then dual optimality can be characterized as follows:

y? ∈ Y? ⇔ y? ∈ fixTγ ⇔ y? ∈ zerRγ ∀γ > 0. (7)

1Function h has convexity modulus c ≥ 0 if h− c
2
‖ · ‖2 is convex.

Algorithm 1 Newton-type AMA (NAMA)

REQUIRE y0 ∈ Rm, γ ∈ (0, µf/‖A‖2), β ∈ (0, 1)
INITIALIZE k = 0

1: xk = argminx
{
f(x) + 〈yk, Ax〉

}
zk = argminz Lγ(xk, z, yk)

2: Choose a direction dk ∈ Rm

3: Find the largest τk = βik , ik ∈ N, such that
Lγ(x̃k, z̃k, ỹk) ≥ Lγ(xk, zk, yk), (10)

where
ỹk = yk + τkd

k + γ(1− τk)(Axk − zk)

x̃k = argminx
{
f(x) + 〈ỹk, Ax〉

}
z̃k = argminzLγ(x̃k, z, ỹk)

4: yk+1 = ỹk + γ(Ax̃k − z̃k), k = k + 1, go to step 1

Iterations (6) are easily shown to be equivalent to the follow-
ing scheme, the alternating minimization algorithm (AMA)

xk = x(yk) = argmin
x∈Rn

{
f(x) + 〈yk, Ax〉

}
, (8a)

zk = zγ(yk) = argmin
z∈Rm

Lγ(xk, z, yk), (8b)

yk+1 = yk + γ(Axk − zk). (8c)

Note that step (8b) can be equivalently formulated as

zk = proxγ−1g(γ
−1yk +Ax(yk)).

Using the notation of (8), Tγ and Rγ can be expressed as

Tγ(y) = y + γ(Ax(y)− zγ(y)) (9a)
Rγ(y) = zγ(y)−Ax(y). (9b)

It can be shown that xk → x? in iterations (8), provided that
γ ∈ (0, 2µf/‖A‖2), see [5, Prop. 3]. Moreover, the dual cost
in this case converges sublinearly to the optimum with global
rate O(1/k), and the extrapolation techniques introduced by
Nesterov [8], [27], [28] allow to obtain accelerated versions of
AMA with an optimal global rate O(1/k2), see [9]: we will
here refer to this variant as fast AMA.

A. Newton-type alternating minimization algorithm

The convergence speed of (fast) AMA is affected by ill-
conditioning of the problem, as it is the case for all first-order
methods. To accelerate convergence, we propose Algorithm 1.
An overview of the algorithm is as follows:
• Algorithm 1 is composed by the very same operations as
AMA: in fact, only alternating minimization steps with respect
to x and z are performed.
• Step 3 computes a new dual iterate ỹk, by performing a
line search over the augmented Lagrangian associated with
(P) evaluated at the alternating minimization primal points:
we will see that this is equivalent to the forward-backward
envelope function associated with the dual problem (D).
• The line search is performed using a convex combination
of the “nominal” residual direction γ(Axk−zk) and an “arbi-
trary” direction dk, to be selected so as to ensure fast asymp-
totic convergence. This novel choice of direction ensures that
the line search is feasible at every iteration (i.e., condition (10)
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holds for a sufficiently small stepsize) despite the fact that dk

may not be a direction of descent, as we will see.
• Step 4 will allow us to obtain global convergence rates, and
it comes at no cost since vectors ỹk, x̃k, z̃k have already been
computed in the line-search. In a sense, this step robustifies
the algorithmic scheme.

By appropriately choosing dk, the algorithm is able to
greatly improve the convergence of AMA: we will prove that
the algorithm converges with superlinear asymptotic rate when
Newton-type directions are selected. For this reason we refer
to Algorithm 1 as Newton-type Alternating Minimization Al-
gorithm (NAMA).

Remark II.2 (AMA as special case). If in Algorithm 1 one
sets dk = 0 for all k, then one can trivially select τk = 1. In
this case, (ỹk, x̃k, z̃k) = (yk, xk, zk) and Algorithm 1 reduces
to AMA, cf. (8).

Remark II.3 (General equality constrained problems). For
any proper, closed, convex h : Rr → R, b ∈ Rm and linear
mapping B : Rr → Rm, a problem of the form

minimize
x∈Rn,w∈Rr

f(x)+h(w) subject to Ax+Bw = b (P′′)

can be rewritten as (P) by letting

g(z) = (Bh)(b− z) = inf
w∈Rr

{h(w) | Bw = b− z}. (11)

Function (Bh) is the image of h under B, see [17, Thm. 5.7]
and discussion thereafter. If we further assume ri(domh∗)∩
range(B>) 6= ∅, then (Bh) is proper, closed, convex, see [17,
Thm. 16.3], therefore g in (11) satisfies Assumption 1(iii) (if
h is piecewise linear-quadratic then it is sufficient to assume
domh∗ ∩ range(B>) 6= ∅, see [20, Cor. 11.33(b)]). In this
case steps (8b) and (8c) of AMA become

wk = argmin
w∈Rr

{
g(w) + 〈yk, Bw〉+ γ

2 ‖Axk +Bw − b‖2
}

yk+1 = yk + γ(Axk +Bwk − b).
Similar modifications allow to adapt NAMA to this more gen-
eral setting: in light of these observations, what follows readily
applies to problems of the form (P′′).

B. Quasi-Newton directions

There is freedom in selecting dk in Algorithm 1. To ac-
celerate convergence of the iterates, one possible choice is to
employ Newton-type directions for the system of nonlinear
equations Rγ(y) = 0 characterizing dual optimal points, cf.
(7). Specifically, in Algorithm 1 one can set

dk = B−1
k (Axk − zk), (12)

for a sequence of nonsingular matrices (Bk)k∈N approximat-
ing in some sense the Jacobian JRγ at the limit point of the
dual iterates (yk)k∈N. In quasi-Newton methods, starting from
an initial nonsingular matrix B0, the sequence of matrices
(Bk)k∈N is determined by low-rank updates that satisfy the
secant condition: in Algorithm 1 fast asymptotic convergence
can be proved if

Bk+1p
k = qk with

{
pk = ỹk − yk,
qk = (z̃k −Ax̃k)− (zk −Axk),

as will be discussed in Section VI. Note that all quantities
required to compute the vectors pk, qk are available as by-
product of the iterations.

In [29] the modified Broyden update is proposed, that pre-
scribes rank-one updates of the form

Broyden Bk+1 = Bk + θk
(qk −Bkpk)(pk)>

‖pk‖2 . (13)

Here, (θk)k∈N ⊂ [0, 2] is a sequence used to ensure that all
terms in (Bk)k∈N are nonsingular, so that (12) is well defined.
The original Broyden method [30] is obtained with θk ≡ 1.

Probably the most popular quasi-Newton scheme is BFGS,
which prescribes the following rank-two updates

BFGS Bk+1 = Bk +
qk(qk)>

〈qk, pk〉 −
Bkp

k(Bkp
k)>

〈pk, Bkpk〉
. (14)

Note that in this case matrices Bk are symmetric, and in fact
the fast asymptotic properties of BFGS are guaranteed only
if the Jacobian JRγ is symmetric [31] at the problem solu-
tion. This is not the case in our setting (cf. Example V.3)
although we have observed that (14) often outperforms other
non-symmetric updates such as (13) in practice.

Using the Sherman-Morrison-Woodbury identity in (13) and
(14) allows to directly store and update Hk = B−1

k , so that dk

can be computed without inverting matrices or solving linear
systems.

Ultimately, instead of storing and operating on dense m×m
matrices, limited-memory variants of quasi-Newton schemes
keep in memory only a few (usually 3 to 30) most recent
pairs (pk, qk) implicitly representing the approximate inverse
Jacobian. Their employment considerably reduces storage and
computations over the full-memory counterparts, and as such
they are the methods of choice for large-scale problems. The
most popular limited-memory method is probably L-BFGS,
which is based on the update (14), but efficiently computes
matrix-vector products with the approximate inverse Jacobian
using a two-loop recursion procedure [32]–[34].

III. ALTERNATING MINIMIZATION ENVELOPE

The fundamental tool enabling fast convergence of Algo-
rithm 1 is the alternating minimization envelope function as-
sociated with (P). This is precisely the (negative) augmented
Lagrangian function, evaluated at the primal points given by
the alternating minimization steps.

Definition III.1 (Alternating minimization envelope). The al-
ternating minimization envelope (AME) for (P), with parame-
ter γ > 0, is the function (cf. (8a)-(8b))

ψγ(y) = −Lγ(x(y), zγ(y), y).

The first observation that we make relates the alternating
minimization envelope in Definition III.1 with the concept of
forward-backward envelope.

Theorem III.2. Function ψγ is the forward-backward enve-
lope (cf. [11, Def. 2.1]) associated with the dual problem (D):

ψγ(y) = f∗(−A>y) + g∗(Tγ(y)) + γ
2 ‖Ax(y)− zγ(y)‖2

+ γ〈Ax(y), zγ(y)−Ax(y)〉. (15)
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Proof. The optimality conditions for x(y) and zγ(y) are
∂f(x(y)) 3 −A>y, (16a)
∂g(zγ(y)) 3 Tγ(y) = y + γ(Ax(y)− zγ(y)). (16b)

From these, using (2), we obtain
f(x(y)) + f∗(−A>y) = − 〈Ax(y), y〉 (17a)
g(zγ(y)) + g∗(Tγ(y)) = 〈zγ(y), Tγ(y)〉 (17b)

Summing (17) and rearranging the terms we get (15).

An alternative expression for ψγ in terms of the Moreau
envelope of g∗ is as follows, see [10]:
ψγ(y) = f∗(−A>y)−γ2 ‖Ax(y)‖2+(g∗)γ(y+γAx(y)). (18)

The AME enjoys several favorable properties, some of
which we now summarize. For any γ > 0, ψγ is (strictly)
continuous over Rm, whereas if γ is small enough then the
problem of minimizing ψγ is equivalent to solving (D). These
properties are listed in the next result.

Theorem III.3. For any γ > 0, ψγ is a strictly continuous
function on Rm satisfying

(i) ψγ(y) ≤ ψ(y) + γ
2 ‖Ax(y)− zγ(y)‖2,

(ii) ψγ(y) ≥ ψ(Tγ(y)) + γ
2

(
1− γ‖A‖2

µf

)
‖Ax(y)− zγ(y)‖2,

for any y ∈ Rm. In particular, if γ < µf/‖A‖2, then the fol-
lowing also holds
(iii) inf ψγ = inf ψ and argminψγ = argminψ.

Proof. Strict continuity of ψγ follows immediately by the ex-
pression (18).
♠ III.3(i): Follows by Lem. A.1 using w = y.
♠ III.3(ii): Due to strong convexity of f , f∗ has 1/µf -
Lipschitz gradient, and consequently
f∗(−A>Tγ(y)) ≤ f∗(−A>y)− 〈Ax(y), Tγ(y)− y〉

+ 1
2µf
‖A>(Tγ(y)− y)‖2

= f∗(−A>y)− γ〈Ax(y), Ax(y)− zγ(y)〉
+ γ2

2µf
‖A>(Ax(y)− zγ(y))‖2. (19)

Combining (15) with (19):

ψγ(y) ≥ ψ(Tγ(y))− γ2

2µf
‖A>(Ax(y)− zγ(y))‖2

+ γ
2 ‖Ax(y)− zγ(y)‖2

≥ ψ(Tγ(y)) + γ
2

(
1− γ‖A‖2

µf

)
‖Ax(y)− zγ(y)‖2.

♠ III.3(iii): Easily follows combining III.3(i) and III.3(ii) with
y = y? ∈ Y?, in light of the dual optimality condition (7).

A. Analogy with the dual Moreau envelope

Theorem III.2 highlights a clear connection between the
augmented Lagrangian, the forward-backward envelope and
the alternating minimization algorithm. This closely resembles
the one, first noticed by Rockafellar [35], [36], relating the
augmented Lagrangian, the Moreau envelope and the method
of multipliers (also known as augmented Lagrangian method)
by Hestenes and Powell [37], [38]. Consider the general linear
equality constrained convex problem

minimize
z∈Rk

g(z)

subject to Bz = b,
(20)

where g : Rm → R is proper, closed, convex, B ∈ Rm×k

and b ∈ Rm. When applied to the dual of (20), namely

minimize
y∈Rm

ω(y) = g∗(−B>y) + 〈b, y〉,
the proximal minimization algorithm [39, §5.2] is equivalent
to the following augmented Lagrangian method

zk = argmin
z∈Rn

{
g(z) + 〈yk, Bz − b〉+ γ

2 ‖Bz − b‖2
}

yk+1 = yk + γ(Bzk − b).
If range(B>)∩ri(dom g∗) 6= ∅ one can show, with a similar
proof to that of Theorem III.2, that the Moreau envelope of ω
satisfies

ωγ(yk) = − g(zk)− 〈yk, Bzk − b〉 − γ
2 ‖Bzk − b‖2

= − Lγ(zk, yk).

Therefore the forward-backward and Moreau envelope func-
tions have the same nice interpretation in terms of augmented
Lagrangian, when they are applied to the dual of equality con-
strained convex problems: in a sense, Theorem III.2 extends
and generalizes the classical result on the dual Moreau enve-
lope, by allowing for an additional variable x and a strongly
convex term f in the problem.

IV. CONVERGENCE

We now turn our attention to the global convergence prop-
erties of Algorithm 1. In light of Remark II.2, the results in
this section directly apply to AMA, which is a special case of
NAMA.

Remark IV.1 (Termination of line search). The line-search
step 3 is well defined regardless of the choice of dk: at any
iteration k, condition (10) holds for ik sufficiently large. To
see this, suppose that ‖Axk − zk‖ > 0 (otherwise (xk, yk)
is a primal-dual solution). Then, since γ < µf/‖A‖2, Theorem
III.3 implies that

ψγ(Tγ(yk)) < ψγ(yk). (21)

Since ỹk → Tγ(yk) as τk → 0 and ψγ is continuous, then
necessarily ψγ(ỹk) ≤ ψγ(yk) for τk sufficiently small.

Remark IV.2 (Bounded iteration complexity). In the best case
where τk = 1 is accepted in step 3, exactly two alternating
minimizations are performed at iteration k. In practice, one can
also impose a lower bound τmin > 0 for τk: when τk < τmin

then the ordinary AMA update yk+1 = yk + γ(Axk − zk) is
executed and the algorithm proceeds to the next iteration. This
strategy results in a bounded iteration complexity for NAMA,
and does not affect the convergence results of this and later
sections.

Theorem III.3 ensures that the following chain of inequali-
ties, which will be fundamental for convergence results, holds
in Algorithm 1:

ψ(yk+1) ≤ ψγ(ỹk) (22a)

≤ ψγ(yk) (22b)

≤ ψ(yk)− γ
2 ‖Axk − zk‖2. (22c)

In particular, Algorithm 1 is a descent method for ψ.
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We now prove that the iterates of (1) converge to the dual
optimal cost and to the primal solution. Moreover, global con-
vergence rates are provided.

Theorem IV.3 (Global convergence). In Algorithm 1:
(i) xk → x?, zk → Ax?, and all cluster points of (yk)k∈N

are dual optimal, i.e., they belong to Y?;

(ii) if 0 ∈ int(dom g − Adom f) then ψ(yk) ↘ inf ψ
with global rate O(1/k), and xk → x? with global rate
O(1/

√
k);

(iii) if f and g are piecewise linear-quadratic then ψ(yk)↘
inf ψ with global Q-linear rate, and xk → x? with
global R-linear rate.

Proof.
♠ IV.3(i): By (22c), for all i ≥ 0 we have

ψ(yi+1) ≤ ψ(yi)− γ
2 ‖Axi − zi‖2.

By summing up the inequality for i = 1, . . . , k we obtain

inf ψ ≤ ψ(yk+1) ≤ ψ(y1)− γ

2

k∑
i=1

‖Axi − zi‖2

(the sum starts from i = 1 since y0 may be dual infeasible).
In particular (cf. (9)) Rγ(yk) = zk − Axk → 0, and since
Rγ is continuous, necessarily all cluster points of (yk)k∈N

are optimal. Moreover, it follows from Lem. A.2 that the se-
quence (xk)k∈N is bounded. Let K ⊆ N and x̄ be such
that (xk)k∈K → x̄; then, since Axk − zk → 0 we also
have that (zk)k∈K → Ax̄. By multiplying (16b) on the left
by A> and summing (16a) we obtain γA>(Axk − zk) ∈
∂f(xk) + A>∂g(zk). By letting K 3 k → ∞, from outer
semicontinuity of the subdifferential we obtain that

0 ∈ ∂f(x̄) +A>∂g(Ax̄) ⊆ ∂(f + g ◦A)(x̄)

where the last inclusion follows from [17, Thm.s 23.8 and
23.9]. Thus, x̄ is optimal, and being x? the unique primal
optimal (due to strong convexity), necessarily x̄ = x?. From
the arbitrarity of the cluster point we conclude that xk → x?
and zk → Ax?.
♠ IV.3(ii): The assumed condition is equivalent to Y? be-
ing nonempty and compact, see [26, Thm. 5.2.1], which
implies that ψ has bounded level sets [20, Prop. 3.23].
The proof proceeds similarly to that of [8, Thm. 4]. Let
D > 0 be such that dist(y, Y?) < D for all points y ∈{
y ∈ Rm | ψ(y) ≤ ψ(y0)

}
. From [11, Prop. 2.5] we know

that ψγ ≤ ψγ (the Moreau envelope of ψ). Therefore,

ψ(yk+1)
(22b)
≤ ψγ(yk)≤ ψγ(yk) = min

w∈Rm

{
ψ(w)+ 1

2γ ‖w−yk‖2
}

and in particular, for y? ∈ argminψ,

ψ(yk+1)≤ min
α∈[0,1]

{
ψ(αy?+(1−α)yk)+ α2

2γ ‖yk−y?‖2
}

≤ min
α∈[0,1]

{
ψ(yk)−α(ψ(yk)− infψ)+ D2

2γ α
2
}

where in last inequality we used convexity of ψ. In case
ψ(y0) − inf ψ ≥ D2/γ, then the optimal solution of the lat-
ter problem for k = 0 is α = 1, and ψ(y1)− inf ψ ≤ D2

/2γ.
Otherwise, the optimal solution is

α = γ
D2 (ψ(yk)− inf ψ) ≤ γ

D2 (ψ(y0)− inf ψ) ≤ 1

and we obtain
ψ(yk+1) ≤ ψ(yk)− γ

2D2 (ψ(yk)− inf ψ)2.

By letting λk = 1
ψ(yk)−inf ψ the last inequality becomes

λ−1
k+1 ≤ λ−1

k − γ
2D2λ

−2
k+1.

By multiplying both sides by λkλk+1 and rearranging,

λk+1 ≥ λk + γ
2D2

λk+1

λk
≥ λk + γ

2D2 ,

where the latter inequality follows from the fact that the se-
quence (ψ(yk))k∈N is nonincreasing, as shown in (22). By
telescoping the inequality we obtain

λk ≥ λ0 + k γ
2D2 ≥ k γ

2D2 ,

and therefore ψ(yk) − inf ψ ≤ 2D2
/kγ. This, together with

Lem. A.2, proves IV.3(ii).
♠ IV.3(iii): Since the primal optimum is finite (see Rem. II.1),
if f and g are piecewise linear-quadratic then Y? is nonempty,
see [20, Thm. 11.42, Ex. 11.43]. Using (22) we have that

ψ(yk)− ψ(yk+1) ≥ γ
2 ‖Axk − zk‖2. (23)

Furthermore, using Lem. A.1 with w = yk? = ΠY?
yk and

y = yk, we obtain
ψ(yk+1)− inf ψ ≤ ψγ(yk)− inf ψ

≤ 〈Axk − zk, yk? − yk〉 − γ
2 ‖Axk − zk‖2,

where first inequality is due to (22c). This implies

ψ(yk+1)− inf ψ ≤ ‖Axk − zk‖2
(

dist(yk,Y?)
‖Axk−zk‖ −

γ
2

)
which, by using (23), yields

ψ(yk+1)−inf ψ ≤
(

1− γ
2
‖Axk−zk‖
dist(yk,Y?)

)
(ψ(yk)−inf ψ). (24)

It follows from [20, Thm. 11.14] that f∗ and g∗ are convex
piecewise linear-quadratic in this case, and so is ψ. Therefore
by [40, Thm. 2.7] ψ enjoys the following quadratic growth
condition: for any ν > 0 there is α > 0 such that
α
2 dist2(y, Y?) ≤ ψ(yk)− inf ψ ∀y : ψ(y)− inf ψ ≤ ν,

which by [41, Cor. 3.6] is equivalent to the following error
bound condition for some β > 0

dist(y, Y?) ≤ β‖Ax(y)− zγ(y)‖ (25)
holding for all y such that ψ(y)− inf ψ ≤ ν. By using (25) in
(24) we obtain global Q-linear convergence of (ψ(yk))k∈N,
and from Lem. A.2 global R-linear convergence of (xk)k∈N

also follows.

In general we can prove local linear convergence of Algo-
rithm 1 provided that ∂f and ∂g are calm, according to the
following definition (see [42, Sec. 3H, Ex. 3H.4]).

Definition IV.4 (Calmness of a mapping). A multi-valued
mapping F : Rm ⇒ Rn is said to be calm at ȳ ∈ Rm

for x̄ ∈ F (ȳ) if there is a neighborhood U of x̄ such that
F (y) ∩ U ⊆ F (ȳ) +O(‖y − ȳ‖), ∀y ∈ Rm.

We simply say that F is calm at ȳ ∈ Rm (with no mention of
x̄) if it is calm at ȳ ∈ Rm for all x̄ ∈ F (ȳ).

Calmness is a very common property of the subdifferential
mapping. The subdifferential of all piecewise linear-quadratic
functions is calm everywhere, as follows from [42, Prop.
3H.1]. Other examples include the nuclear and spectral norms
[43]. Smooth functions, i.e., with Lipschitz gradient, clearly
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have calm subdifferential: this includes Moreau envelopes of
closed, convex functions, such as the Huber loss for robust
estimation, and commonly used loss functions such as the
squared Euclidean norm and the logistic loss.

Calmness is equivalent to metric subregularity of the inverse
mapping [42, Thm. 3H.3]: from [44, Prop. 6, Prop. 8] we then
deduce that the indicator functions of `1, `∞ and Euclidean
norm balls all have calm subdifferentials.

The following result holds. Its proof is analogous to the
one of [41, Thm. 4.2], although our assumption of calmness
is equivalent to metric subregularity of ∂f∗ and ∂g∗, which
is implied by the firm convexity assumed in [41].

Theorem IV.5 (Local linear convergence). Suppose that the
following hold for (P):

(i) 0 ∈ int(dom g −Adom f) (nonempty, compact Y?);

(ii) 0 ∈ ri ∂(f + g ◦A)(x?) (strict complementarity).
Suppose also that ∂f is calm at x? and ∂g is calm at Ax?.
Then in Algorithm 1 eventually ψ(yk)→ inf ψ with Q-linear
rate and xk → x? with R-linear rate.

Proof. As discussed in the proof of Thm. IV.3(iii), it suffices
to show that an error bound of the form (25) holds for some
β, ν > 0.

The assumed calmness properties of ∂f and ∂g are equiv-
alent to metric subregularity of ∂f∗ at −A>y? for x?, and
of ∂g∗ at y? for Ax?, see [42, Thm. 3H.3], for all y? ∈ Y?.
This can be seen, using [45, Thm. 3.3], to be equivalent to the
following: there exist cy? > 0 and a neighborhood Uy? of y?
such that for all y ∈ Uy?

f∗(−A>y) ≥ f∗(−A>y?) + 〈x?, A>(y? − y)〉
+

cy?
2 dist2(−A>y, (∇f∗)−1(x?)),

g∗(y) ≥ g∗(y?) + 〈Ax?, y − y?〉
+

cy?
2 dist2(y, (∂g∗)−1(Ax?)).

Since Y? ⊂
⋃
y?∈Y?

Uy? and Y? is nonempty and compact
(due to IV.5(i), see [26, Thm. 5.2.1]), we may select a finite
subset W ⊂ Y? such that Y? ⊂ UY?

=
⋃
y?∈W Uy? . Sum-

ming the above inequalities for all y? ∈ W , and denoting
c = min {cy? | y? ∈W} > 0, we obtain

ψ(y) ≥ inf ψ

+ c
2

[
dist2(−A>y, ∂f(x?)) + dist2(y, ∂g(Ax?))

]
(26)

for all y ∈ UY? , where we have also used (∇f∗)−1 = ∂f
and (∂g∗)−1 = ∂g. Note that IV.5(i) implies strict feasibility,
therefore from Lem. A.3, and the fact that for any a, b ∈ R,
a2 + b2 ≥ 2ab, we obtain that (26) implies

ψ(y) ≥ inf ψ + κ
2 dist2(y, Y?), ∀y ∈ UY? ,

for some κ > 0, i.e., ψ satisfies the quadratic growth condi-
tion, which by [41, Cor. 3.6] is equivalent to the error bound
condition (25). This completes the proof.

Remark IV.6 (Backtracking on γ). In practice, no prior
knowledge of the global Lipschitz constant ‖A‖2/µf is required
for Algorithm 1: instead of a fixed parameter γ, one can adap-
tively determine a sequence (γk)k∈N essentially ensuring that
inequalities (21) (which guarantees termination of the line-
search step 3) and (22a) (which guarantees descent) hold at

every iteration. This is done as follows. Select α ∈ (0, 1) and
initialize γ0 > 0. At iteration k, let ȳk = yk + γk(Axk − zk)
and x̄k = x(ȳk), and if

f(xk) > f(x̄k)− 〈A>ȳk, xk − x̄k〉+ αγ
2 ‖Axk − zk‖2,

then γk ← γk/2 and restart the iteration. Similarly if

f(x̃k) > f(xk+1)−〈A>yk+1, x̃k−xk+1〉+ αγ
2 ‖Ax̃k− z̃k‖2.

As soon as γk ≤ αµf/‖A‖2, the two inequalities above will
never hold. As a consequence, γk will be decreased only a fi-
nite number of times and will be constant starting from some
iteration k̄. The inequalities above are obtained by imposing
the usual quadratic upper bound on f∗◦(−A>), due to smooth-
ness, and applying the conjugate subgradient theorem (2) in
light of (16a). This procedure of adaptively adjusting γk is
analogous to what is done in practice in (fast) AMA, see [9,
Rem. 3.4] and [7, §3, §4], and does not affect the validity of
Thm.s IV.3 and IV.5.

V. FIRST- AND SECOND-ORDER PROPERTIES

Algorithm 1 is a line-search method for the unconstrained
minimization of ψγ which, by Theorem III.3(iii), is equiva-
lent to solving (D). To enable fast convergence of the iterates,
we can apply ideas from smooth unconstrained optimization
in selecting the sequence (dk)k∈N of directions. To this end,
differentiability of ψγ around dual solutions y? is a desirable
property. We will now see that this is implied by generalized
second-order properties of f around x?, which are introduced
in the following assumption. Analogous assumptions on g fur-
ther ensure that ψγ is (strictly) twice differentiable at y?. The
interested reader is referred to [20] for an extensive discussion
on (second-order) epi-differentiability.

Assumption 2. The following hold with respect to a primal-
dual solution (x?, y?) to (P)-(D):

(i) f is strictly twice epi-differentiable at all x ∈ dom f
close enough to x?, and in particular the second-order
epi-derivative at x? for −A>y? is, for w ∈ Rn,

d2f(x?|−A>y?)[w] = 〈Hfw,w〉+ δSf
(w), (27)

where Sf is a linear subspace of Rn and Hf ∈ Rn×n;

(ii) g is (strictly) twice epi-differentiable at Ax? for y?, with

d2g(Ax?|y?)[w] = 〈Hgw,w〉+ δSg
(w), (28)

for all w ∈ Rm, where Sg is a linear subspace of Rm

and Hg ∈ Rm×m.

When the stronger condition in parenthesis holds we will say
that the assumptions are strictly satisfied.

Without loss of generality, we consider Hf and Hg sym-
metric and positive semidefinite, satisfying range(Hf ) = Sf ,
null(Hf ) = S⊥f , range(Hg) ⊆ Sg and null(Hg) ⊇ S⊥g .

The requirements on Hf and Hg can indeed be made with-
out loss of generality: matrix H ′f = 1

2 ΠSf
(Hf + H>f ) ΠSf

has the desired properties and satisfies (27) provided Hf does,
and similarly for Hg . In particular, it holds that

Hf = ΠSf
Hf ΠSf

and Hg = ΠSg
Hg ΠSg

. (29)
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Theorem V.1 (Differentiability of ψγ). Suppose that Assump-
tion 2(i) holds for a primal-dual solution (x?, y?). Then ψγ is
of class C1 around y?, with

∇ψγ(y) = Qγ(y)Rγ(y)

where Qγ(y) = I − γA∇2f∗(−A>y)A>.

Proof. From Lem. A.4 it follows that f̂ = f∗ ◦ (−A>) is of
class C2 around y?. The claim now easily follows from the
chain rule of differentiation applied to (18), by using (4).

Twice differentiability of ψγ at a dual solution y? is very
important: when Newton-type directions are used, this implies
that eventually unit stepsize will be accepted and fast asymp-
totic convergence will take place. In other words, unlike stan-
dard nonsmooth merit functions for constrained optimization,
ψγ does not prevent the acceptance of unit stepsize.

Theorem V.2 (Twice differentiability of ψγ). Suppose that
Assumption 2 (strictly) holds with respect to a primal-dual
solution (x?, y?). Then,

(i) Rγ is (strictly) differentiable at y? with Jacobian

JRγ(y?) = γ−1[I − Pγ(y?)Qγ(y?)]; (30)

here, Qγ is as in Theorem V.1 and

Pγ(y?) = J proxγg∗
(
y? + γA∇f∗(−A>y?)

)
= ΠS̄

(
I + γH†g

)−1
ΠS̄ (31)

with S̄ = Sg
⊥ + range(Hg);

(ii) ψγ is (strictly) twice differentiable at y? with symmetric
Hessian

∇2ψγ(y?) = γ−1Qγ(y?)
[
I − Pγ(y?)Qγ(y?)

]
. (32)

Proof. Let f̂ = f∗ ◦ (−A>) and Lf̂ = µf/‖A‖2. We know
from [25, Thms. 3.8, 4.1] and [20, Thm. 13.21] that proxγg∗
is (strictly) differentiable at y? − γ∇f̂(y?) if and only if g
(strictly) satisfies Assumption 2(ii); in fact, by (5) we know
that Ax? = −∇f̂(y?). Moreover, due to Lem. A.4, f̂ ∈ C2 in
a neighborhood of y? and in particular ∇f̂ is strictly differen-
tiable at y?. The formula for JRγ(y?) follows from (4) and
the chain rule of differentiation.

We now prove the claimed expression for Pγ(y?). We may
invoke Lem. A.5 and apply [20, Ex. 13.45] to the tilted func-
tion g + 〈∇f̂(y?), · 〉 which tells us that for all d ∈ Rm

Pγ(y?)d

= prox(γ/2)d2g∗(y?|Ax?)(d)

= argmin
d′∈S̄

{
1
2 〈d′, H†gd′〉+ 1

2γ ‖d′ − d‖2
}

= ΠS̄ argmin
d′∈Rn

{
1
2 〈ΠS̄ d

′, H†g ΠS̄ d
′〉+ 1

2γ ‖ΠS̄ d
′ − d‖2

}
= ΠS̄

(
ΠS̄ [I + γH†g ] ΠS̄

)†
ΠS̄ d

where † indicates the pseudo-inverse. Observe now that, since
rangeH†g = rangeHg ⊆ S̄, we have

ΠS̄ [I+γH†g ] ΠS̄ = AB for A = I+γH†g and B = ΠS̄ .

Moreover,

range(A>AB) ⊆ rangeB,

range(B>BA) ⊆ Rn = range(A),

therefore we can apply [46, Facts 6.4.12 (i)-(ii) and 6.1.6
(xxxii)] to see that

(
ΠS̄ [I + γH†g ] ΠS̄

)†
= ΠS̄ [I + γH†g ]−1,

yielding (31).
Since Rγ(y?) = 0, from [11, Lem. 6.2] it follows that
∇ψγ = QγRγ is (strictly) differentiable at y? provided that
Qγ is (strictly) continuous at y? and Rγ is (strictly) differen-
tiable at y?. A simple application of the chain rule of differ-
entiation concludes the proof of V.2(ii).

To better understand the requirements of Assumption 2, let
us consider the following simple but significant example: when
f is C2 and g◦A models linear inequality constraints, Assump-
tion 2 is implied by strict complementarity.

Example V.3 (C2 functions subject to polyhedral constraints).
Consider problems of the form

minimize
x∈Rn

f(x) + δC(Ax),

where g = δC is the indicator of C = {z ∈ Rm | z ≤ b},
b ∈ Rm, and f ∈ C2. In this case Assumption 2(i) holds
with Hf = ∇2f(x?), Sf = Rn (therefore ΠSf

is the identity
mapping), see [20, Ex. 13.8]. Regarding Assumption 2(ii), one
can use [20, Ex. 13.17] to see that

d2g(Ax?|y?)[w] = δK(Ax?,y?)(w),

where K is the critical cone. Denoting by TC(y) the tangent
cone of set C at y ∈ C, and by J = {i | (Ax?)i = bi} the
set of active constraints at the solution x?, the critical cone is
given by

K(Ax?, y?) = {w ∈ TC(Ax?) | 〈y?, w〉 = 0}
= {w | 〈y?, w〉 = 0, wi ≤ 0 ∀i ∈ J}.

For K(Ax?, y?) to be a subspace, necessarily (y?)i > 0 for
all i ∈ J , i.e., strict complementarity must hold at the primal-
dual solution (x?, y?). In this case, Assumption 2(ii) holds
with Hg = 0 and

Sg = K(Ax?, y?) = {w | wi = 0 ∀i ∈ J}.
We may assume that J = {1, . . . , k} without loss of gener-
ality, i.e., the first k constraints are the active ones, and let
J̄ = {1, . . . ,m} \ J . Note that ∇2f∗(−A>y?) = ∇2f(x?)

−1

due to strong convexity of f , see [20, Ex. 11.9]. By partition-
ing the inverse Hessian and constraint matrix as

∇2f(x?)
−1 =

[
HJJ HJJ̄

HJ̄J HJ̄J̄

]
, A =

[
AJ
AJ̄

]
,

and using the notation of Theorem V.2(i) we obtain

Pγ(y?) =

[
Ik 0
0 0

]
, JRγ(y?) =

[
AJHJJA

>
J AJHJJ̄A

>
J̄

0 1
γ Im−k

]
,

as it follows by elementary computations.

Finally, we can relate strong minimality of ψ and ψγ to
nonsingularity of the Jacobian of Rγ and to the generalized
second-order properties of f and g as follows.

Theorem V.4 (Conditions for strong minimality). If Assump-
tion 2 holds for a primal-dual solution (x?, y?), then for all
γ < µf/‖A‖2 the following are equivalent:

(a) y? is a strong minimum for ψ;2

2We say that y? is a strong local minimum for h if for some α > 0,
α‖y − y?‖2 ≤ h(y)− h(y?) for all y sufficiently close to y?.
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(b) ∇2ψγ(y?) is nonsingular (in fact, positive definite);

(c) JRγ(y?) is nonsingular (in fact, similar to a symmetric
and positive definite matrix);

(d) y? is a strong minimum for ψγ .

Proof.
♠ V.4(b) ⇔ V.4(c): Let P = Pγ(y?) and Q = Qγ(y?) for
brevity. Notice first that, due to Thm. III.3(iii), y? minimizes
ψγ and therefore ∇2ψγ(y?) � 0. Moreover, since Q is sym-
metric and positive definite,

JRγ(y?) = γ−1(I − PQ) ∼ Q−1/2∇2ψγ(y?)Q
−1/2

the latter matrix being symmetric and positive semidefinite,
where ∼ denotes the similitude relation.
♠ V.4(b) ⇔ V.4(d): Trivial since ∇2ψγ(y?) exists.
♠ V.4(d) ⇔ V.4(a): The right implication is trivial since
ψγ ≤ ψ and ψγ(y?) = ψ(y?) as it follows from Thm. III.3.
Suppose now that there exist c, ε > 0 such that ψ(y)−ψ(y?) ≥
c
2‖y − y?‖2 for all y ∈ B(y?; ε). Since g∗ is convex, it fol-
lows that proxγg∗ is 1-Lipschitz continuous; combined with
the fact that∇f∗ is 1

µf
-Lipschitz continuous, we obtain that the

alternating minimization operator Tγ is Lipschitz continuous
with modulus ‖A‖2/µf . Let ε′ = µf/‖A‖2ε; since Tγ(y?) = y?,
for all y ∈ B(y?; ε

′) necessarily Tγ(y) ∈ B(y?; ε). Therefore,
letting c′ = min

{
c, γ

(
1− γ‖A‖2

µf

)}
> 0, it follows from

Thm. III.3(ii) that for all y ∈ B(y?; ε
′)

ψγ(y)− ψ? ≥ ψ(Tγ(y))− ψ? − γ
2

(
1− γ‖A‖2

µf

)
‖y − Tγ(y)‖2

≥ c′

2

(
‖Tγ(y)− y?‖2 + ‖y − Tγ(y)‖2

)
≥ c′

4 ‖y − y?‖2.
This shows that y? is a strong local minimum for ψγ .

In the context of Example V.3, notice that

JRγ(y?) is nonsingular ⇔ AJHJJA
>
J is nonsingular.

Since ∇2f(x?) � 0 by assumption, then HJJ � 0 and non-
singularity of the Jacobian is equivalent to AJ being full row
rank, i.e., linear independence of the active constraints at x?
(the LICQ assumption).

VI. SUPERLINEAR CONVERGENCE

The following definition (cf. [47, Eq. (7.5.2)]) gives the fun-
damental condition, on the sequence (dk)k∈N of directions,
ensuring superlinear asymptotic convergence of Algorithm 1.

Definition VI.1 (Superlinear directions). For (yk)k∈N con-
verging to y?, we say that (dk)k∈N is superlinearly convergent
w.r.t. (yk)k∈N if

lim
k→∞

‖yk + dk − y?‖
‖yk − y?‖

= 0. (33)

When y? is a strong minimizer, by [41, Cor. 3.6] the error
bound (25) holds for some β, ν > 0 and Y? = {y?}. This,
by Thm. IV.3(i), implies yk → y?. Therefore we have the
following result.

Theorem VI.2. Suppose that f and g satisfy Assumption 2,
and that (D) has a (unique) strong minimizer y?. If (33) holds
in Algorithm 1, then

(i) the stepsize τk = 1 for all k sufficiently large,

(ii) the cost ψ(yk)→ inf ψ Q-superlinearly,

(iii) the dual iterates yk → y? Q-superlinearly,

(iv) the primal iterates xk → x? R-superlinearly.

Proof. We know from Thm.s V.2(ii) and V.4(b) that ψγ is
twice differentiable with symmetric and positive definite Hes-
sian H? = ∇2ψγ(y?). We can expand ψγ around y? and obtain

ψγ(yk + dk)− inf ψ

ψγ(yk)− inf ψ

=
〈H?(y

k + dk − y?), yk + dk − y?〉+ o(‖yk + dk − y?‖2)

〈H?(yk − y?), yk − y?〉+ o(‖yk − y?‖2)

≤
‖H?‖

(
‖yk+dk−y?‖
‖yk−y?‖

)2

+
(
o(‖yk+dk−y?‖)
‖yk−y?‖

)2

λmin(H?) +
(
o(‖yk−y?‖)
‖yk−y?‖

)2

which vanishes for k →∞. In particular, eventually ψγ(yk +
dk) ≤ ψγ(yk) will always hold, proving VI.2(i). In turn, since
eventually ỹk = yk + τkd

k = yk + dk, using Thm. III.3(ii)
and (22b) we have

ψ(yk+1)− inf ψ

ψ(yk)− inf ψ
≤ ψγ(ỹk)− inf ψ

ψγ(yk)− inf ψ
→ 0,

which proves VI.2(ii). Moreover, (33) reads

‖ỹk − y?‖/‖yk − y?‖ → 0. (34)

Now, using nonexpansiveness of Tγ (cf. the proof of [19, Thm.
25.8]) one has

‖yk+1−y?‖ = ‖Tγ(ỹk)− Tγ(y?)‖ ≤ ‖ỹk − y?‖
which, with (34), proves VI.2(iii). VI.2(iv) follows from
VI.2(ii) and Lem. A.2.

When quasi-Newton directions are computed as in (12), su-
perlinear convergence holds provided that the sequence of ma-
trices (Bk)k∈N satisfies the Dennis-Moré condition given in
the following result. Such condition is satisfied for example
by the modified Broyden method (13) under an assumption
of calm semidifferentiability of Rγ at the solution, see [48,
Thm. 6.8]. Notice that when Rγ is piecewise affine (PWA), un-
der Assumption 2 this requirement is satisfied (combine Thm.
V.2(i) with the fact that wherever a piecewise affine function
is differentiable it is also locally Lipschitz-continuously dif-
ferentiable). This is for instance the case of QPs, a frequent
formulation in control applications, see §VII-A.

Theorem VI.3 (Dennis-Moré condition). Suppose that f and
g strictly satisfy Assumption 2, and that (D) has a (unique)
strong minimizer y?. If (dk)k∈N is selected according to (12),
with

lim
k→∞

‖(Bk − JRγ(y?))d
k‖

‖dk‖ = 0, (35)

then (dk)k∈N is superlinearly convergent with respect to
(yk)k∈N. In particular, the conclusions of Theorem VI.2 hold.

Proof. From Thm.s V.2(i) and V.4(c) we know that Rγ
is strictly differentiable, with nonsingular Jacobian J? =
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JRγ(y?). Let us denote rk = zk − Axk = Rγ(yk) for sim-
plicity. By using (12) and (35), and by applying the reverse
triangle inequality we obtain

0← ‖r
k − J?dk‖
‖dk‖ ≥ ‖J?B

−1
k rk‖
‖dk‖ − ‖r

k‖
‖dk‖ ≥ α−

‖rk‖
‖dk‖ ,

where α =
√
λmin(J>? J?) > 0 since J? is nonsingular.

Therefore,
lim inf
k→∞

‖rk‖/‖dk‖ ≥ α

and as a consequence ‖dk‖ ≤ (2/α)‖rk‖ for all k sufficiently
large. Since rk → 0 by Thm. IV.3(i), then dk → 0. We have

0← rk−J?dk
‖dk‖ =

rk+J?d
k−Rγ(yk+dk)

‖dk‖ +
Rγ(yk+dk)

‖dk‖ .

The first summand in the above equation tends to zero because
of strict differentiability of Rγ at y?, therefore

Rγ(yk + dk)/‖dk‖ → 0.

By nonsingularity of J? then ‖Rγ(y)‖ ≥ α‖y − y?‖ for all y
sufficiently close to y?, and since yk + dk → y? we have

0← Rγ(yk + dk)

‖dk‖ ≥ α‖yk + dk − y?‖
‖dk‖

≥ α‖yk + dk − y?‖
‖y + dk − y?‖+ ‖yk − y?‖

.

This implies ‖yk + dk − y?‖/‖yk − y?‖ → 0, i.e., (dk)k∈N is
superlinearly convergent with respect to (yk)k∈N.

VII. SIMULATIONS: LINEAR MPC
We now present numerical results obtained with the pro-

posed algorithm. The code reproducing the results in this sec-
tion is available online.3 In NAMA we used β = 0.5 and
τmin = 10−3 (see Remark IV.2). Furthermore, in all experi-
ments we computed directions (dk)k∈N according to the L-
BFGS method, with memory 20, which is able to scale with
the problem dimension much better then full quasi-Newton
update formulas. All experiments were performed using MAT-
LAB 2016b (v9.1.0) on a MacBook Pro running macOS 10.12,
with an Intel Core i5 CPU (2.7 GHz) and 8 GB of memory.

We consider finite horizon, discrete time, linear optimal con-
trol problems of the form

minimize
x0,...,xN
u0,...,uN−1

N−1∑
i=0

`i(xi, ui) + `N (xN ) (36a)

subject to x0 = xinit, (36b)
xi+1 = Φixi + Γiui + ci, i = 0, . . . , N − 1,

(36c)
where x0, . . . , xN ∈ Rnx and u0, . . . , uN−1 ∈ Rnu , and

`i(x, u) = qi(x, u) + gi(Li(x, u)), (36d)
`N (x) = qN (x) + gN (LNx). (36e)

Here functions qi are strongly convex (typically quadratic),
gi are proper, closed, convex functions, while Li are linear
mappings, for i = 0, . . . , N . For example, for a convex set C,
one can set

gi(·) = δC(·) (hard constraints)
gi(·) = αdistC(·), α > 0, (soft constraints)

3https://github.com/kul-forbes/NAMA-experiments

Set C here is typically the nonpositive orthant or a box, but
can be any other convex set onto which one can efficiently
project. When C = [a1, b1]× . . .× [ad, bd] is a d-dimensional
box, then one can alternatively model soft constraints as

gi(z) =
∑d
j=1 αj

∣∣zj −max {aj ,min {bj , zj}}
∣∣. (37)

Problem (36) takes the form (P) by reformulating it as fol-
lows (see also [1], [49], [50]). Denote the full sequence of
states and inputs as x̄ = (x0, u0, x1, u1, . . . , xN ), and let

S(p) = {x̄ | xi = Φixi + Γiui, x0 = p}
be the affine subspace of feasible trajectories of the system
having initial state p. Then in (P)

f(x̄) =
∑N−1
i=0 qi(xi, ui) + qN (xN ) + δS(xinit)(x̄),

g(z̄) =
∑N
i=0 gi(zi), A = diag(L0, . . . , LN ).

Let us further denote by ȳ = (y0, . . . , yN ) the dual vari-
able associated with the above problem. In this case, in the
alternating minimization step 1 of NAMA, the iterate x̄k is
obtained by solving

minimize
∑N−1
i=0 qi(xi, ui) + 〈yki , Li(xi, ui)〉

+ qN (xN ) + 〈ykN , LNxN 〉.
subject to xi+1 = Φixi + Γiui + ci, i = 0, . . . , N − 1.

This is an unconstrained LQR problem whose solution can
be efficiently computed with a Riccati-like recursion proce-
dure, in the typical case where q0, . . . , qN are quadratic, see
[49, Alg.s 3, 4]. The expensive “factor” step only needs to
be performed once, before the main loop of the algorithm
takes place. At every iteration one needs to perform merely
a forward-backward sweep and no matrix inversions are re-
quired. Furthermore

z̄ki = proxγ−1gi(γ
−1yki + Li(x

k
i , u

k
i )), i = 0, . . . , N − 1,

z̄kN = proxγ−1gN (γ−1ykN + LN (xkN )),

which in the case of hard/soft constraints essentially consist
of projections onto the constrained sets.

A. Aircraft control

We applied the proposed method to the AFTI-16 aircraft
control problem [50], [51] with nx = 4 states and nu = 2
inputs, for a sampling time Ts = 0.05 seconds. The objective
is to drive the pitch angle from 0◦ to 10◦, and then back to
0◦. We simulated the system for 4 seconds, at the sampling
time Ts = 0.05, using N = 50 and quadratic costs

qi(x, u) = 1
2‖x− xref‖2Q + 1

2‖u‖2R, i = 0, . . . , N − 1,

qN (x) = 1
2‖x− xref‖2QN

,

where Q = diag(10−4, 102, 10−3, 102), QN = 100 · Q
and R = diag(10−2, 10−2). The reference was set xref =
(0, 0, 0, 10) for the first 2 seconds, and xref = (0, 0, 0, 0) for
the remaining 2 seconds. Furthermore, we imposed hard box
constraints on the inputs, and soft box constraints (37) on the
states, with weights 106. Since soft constraints can be formu-
lated into a QP, by adding linearly penalized nonnegative slack
variables, we also compared against standard QP solvers.

The dual problem has a condition number of 108. To im-
prove the convergence of the algorithms we therefore consid-
ered scaling the dual variables according to the Jacobi scaling,

https://github.com/kul-forbes/NAMA-experiments
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which consists of a diagonal change of variable (in the dual
space) enforcing the (dual) Hessian to have diagonal elements
equal to one (see also [50], [52] on the problem of precondi-
tioning fast dual proximal gradient methods). Note that a diag-
onal change of variable in the dual space simply corresponds
to a scaling of the equality constraints, when the problem is
equivalently formulated as (P′).

We compared NAMA against GPAD [49], which is equiv-
alent to fast AMA [53] in this context, qpOASES v3.2.0 [54]
and the commercial QP solver MOSEK v7.1. We also com-
pared against the cone solvers ECOS v2.0.4 [55], SDPT3
v4.0 [56] and SeDuMi v1.34 [57], all accessed through CVX
v2.1 in MATLAB: note that the CPU time for these meth-
ods does not include the problem parsing and preprocessing
by CVX, but only considers the actual running time of the
solvers. The results of the simulations are reported in Table
I. As termination criterion for NAMA and GPAD we used
‖Rγ(yk)‖∞ ≤ εtol = 10−4. We also report the (average and
maximum) number of x- and z-minimization steps performed
by NAMA: due to the structure of f , the x-update is a linear
mapping, and consequently we can save its computation dur-
ing the backtracking line-search. GPAD, in contrast, performs
one alternating minimization per iteration.

Apparently, NAMA greatly improves the convergence per-
formance with respect to GPAD. When the problem is
prescaled, our method performs favorably also with respect
to the other QP and cone solvers considered. One must keep
in mind that NAMA was executed using a generic, high-
level MATLAB implementation. As computation times be-
come smaller and smaller, overheads due to the runtime en-
vironment get more and more relevant in the total CPU time.
A tailored, low-level implementation of the same algorithm
could significantly decrease the CPU times shown in Table I:
this is also reported in [50], where a speedup of more than a
factor 20 is observed using C code generation.

B. Oscillating masses

Next, we consider a chain of oscillating masses connected
by springs, with both ends attached to walls. The chain is com-
posed of 2K bodies of unit mass, the springs have constant 1
and no damping, and the system is controlled through K actu-
ators, each being a force acting on a pair of masses, as depicted
in Figure 1. Therefore nx = 4K (the states are the displace-
ment from the rest position and velocity of each mass) and
nu = K. The inputs are constrained in [−0.5,+0.5], while the
position and velocity of each mass is constrained in [−4,+4].

The continuous-time system was discretized with a sam-
pling time Ts = 0.5. Like in the previous example, we con-
sidered quadratic costs with Q = QN = Inx

, R = Inu
and

hard constraints on state and input. Furthermore, we imposed
a quadratic terminal constraint

1
2 〈PxN , xN 〉 ≤ δ, (38)

where P solves the Riccati equation related to the discrete-
time LQR problem. Constraint (38) can be enforced by taking
LN in (36) as the Cholesky factor of P , so that L>NLN = P ,
and gN as the indicator of the Euclidean ball of radius

√
δ.

u1

u2

· · ·

uK−1

uK

Figure 1. Oscillating masses, schematic representation of the simulated sys-
tem.

Parameter δ is selected so as to ensure that no constraints are
violated in such ellipsoidal set.

We simulated different scenarios, each with a different pre-
diction horizon N ∈ {10, 20, . . . , 50}, with K = 8, 16. For
each scenario we selected 50 random initial states xinit by solv-
ing random feasibility problems (e.g., with a cone solver) so
as to ensure that a feasible trajectory starting from xinit exists.
Every algorithm was executed with the same set of initial con-
ditions. The results of this experiment are shown in Figure 2.
In addition to fast AMA, we compared NAMA against ECOS,
SDPT3 and SeDuMi, all accessed through CVX in MATLAB.
NAMA compares favorably with all the other methods in this
example, and in particular outperforms fast AMA, both on av-
erage and in the worst case.

VIII. CONCLUSIONS

In this work we presented NAMA, a line-search method for
minimizing the sum of two convex functions, one of which
is assumed to be strongly convex, while the other is com-
posed with a linear transformation. The method is an extension
of the classical alternating minimization algorithm (AMA),
performing an additional line-search step over the alternat-
ing minimization envelope associated with the problem. By
appropriately selecting the line-search directions, for exam-
ple according to quasi-Newton methods for solving the opti-
mality conditions Rγ(y) = 0, we have shown that the algo-
rithm converges superlinearly provided that ordinary second-
order sufficiency conditions hold for the envelope function at
the (unique) dual solution. At the same time, the algorithm
possesses the same global sublinear and local linear conver-
gence rates as AMA. Numerical experiments with the pro-
posed method on linear MPC problems suggest that NAMA
is able to significantly speed up the convergence of AMA,
comparing favorably against its accelerated variant and other
state-of-the-art solvers even when limited-memory methods,
such as L-BFGS, are used to compute the search directions.

APPENDIX

Lemma A.1. Let y, w ∈ Rm and γ > 0. Then,
ψ(w) ≥ ψγ(y) + γ

2 ‖Ax(y)− zγ(y)‖2
+ 〈zγ(y)−Ax(y), w − y〉. (39)

Proof. By (1) we have

f(x(y)) + f∗(−A>w) ≥ − 〈Ax(y), w〉,
g(zγ(y)) + g∗(w) ≥ 〈zγ(y), w〉.

By summing the two inequalities and using the definition of
ψγ , after manipulations one obtains the result.
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Iterations x-updates z-updates CPU time (ms)
avg. max. avg. max. avg. max. avg. max.

GPAD (no scaling) 6408.2 118.3 k - - - - 1645.7 23331.9
NAMA (L-BFGS, mem = 20) (no scaling) 66.0 748 134.2 1527 139.7 1565 36.5 464.6
GPAD (Jacobi scaling) 104.8 491 - - - - 21.0 96.7
NAMA (L-BFGS, mem = 20) (Jacobi scaling) 9.7 42 18.7 85 18.8 88 4.9 21.3
qpOASES 2362.7 2573.3
qpOASES (warm-started) 14.6 286.9
MOSEK 207.4 539.4
ECOS 23.6 37.6
SDPT3 607.7 890.6
SeDuMi 137.2 266.2

Table I
AIRCRAFT CONTROL, PERFORMANCE OF THE ALGORITHMS IN THE CASE OF THE AFTI-16 PROBLEM, FOR Ts = 50 MS AND N = 50. GPAD AND

NAMA WERE STOPPED AS SOON AS ‖Rγ(yk)‖∞ ≤ εTOL = 10−4 . SINCE THE PROBLEM IS ILL-CONDITIONED, WE ALSO APPLIED THE METHODS BY
PRESCALING THE DUAL PROBLEM. THE NUMBER OF x- AND z- UPDATES OF GPAD EQUALS THE NUMBER OF ITERATIONS. NAMA WAS EXECUTED
USING A GENERIC IMPLEMENTATION IN MATLAB, WHILE THE OTHERS QP AND CONE SOLVERS CONSIDERED ARE ALL IMPLEMENTED IN C/C++.
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Fast AMA NAMA (L-BFGS) ECOS (via CVX) SDPT3 (via CVX) SeDuMi (via CVX)

Figure 2. Oscillating masses, average and maximum CPU time (in seconds) for increasing prediction horizon and 50 randomly selected initial states. First
column: K = 8 actuators. Second column: K = 16 actuators. Fast AMA and NAMA were stopped as soon as ‖Rγ(yk)‖∞ ≤ εtol = 10−4.

Lemma A.2. For all y ∈ Rm it holds
µf

2 ‖x(y)− x?‖2 ≤ ψ(y)− inf ψ.

Proof. From the optimality condition of the problem defin-
ing x(y), one obtains −A>y ∈ ∂f(x(y)). Then, by strong
convexity of f one gets
f(x(y))− 〈A>y, x? − x(y)〉+

µf

2 ‖x(y)− x?‖2 ≤ f(x?).

By using (17a) in the above inequality we obtain
µf

2 ‖x(y)− x?‖2 − 〈Ax?, y〉 ≤ f(x?) + f∗(−A>y),

By using (1) on g we have instead
〈Ax?, y〉 ≤ g(Ax?) + g∗(y).

By summing the last two inequalities one obtains
µf

2 ‖x(y)− x?‖2 ≤ f(x?) + g(Ax?) + ψ(y),

and the claimed bound follows by strong duality.

Lemma A.3. Suppose that the following hold for (P):
(i) A ri(dom f) ∩ ri(dom g) 6= ∅ (strict feasibility);

(ii) 0 ∈ ri ∂(f + g ◦A)(x?) (strict complementarity).
Then for any compact set U there is κ > 0 such that

dist(y, Y?) ≤ κ
[
dist(−A>y, ∂f(x?)) + dist(y, ∂g(Ax?))

]
holds for all y ∈ U .



13

Proof. From Lem. A.3(ii) it follows that

0 ∈ ri
[
∂f(x?) +A>∂g(Ax?)

]
= ri ∂f(x?) +A> ri ∂g(Ax?). (40)

In fact, the first inclusion is due to [17, Thm 23.9] in light
of Lem. A.3(i), and the equality is due to [17, Thm. 6.6].
Consider W =

{
w | −A>w ∈ ∂f(x?)

}
⊆ Rm. From (5),

Y? = W ∩ ∂g(Ax?).

Furthermore, using (40) we obtain

∅ 6=
{
w | −A>w ∈ ri ∂f(x?)

}
= riW,

where the equality is due to [17, Thm. 6.7], and the fact that
riW ∩ ri ∂g(Ax?) 6= ∅. By [58, Cor. 5] then, we conclude
that W and ∂g(Ax?) are boundedly linearly regular: for any
compact set U there is α > 0 such that for all y ∈ U

dist(y, Y?) ≤ α
[
dist(y,W ) + dist(y, ∂g(Ax?))

]
. (41)

Similarly, (40) implies with [58, Cor. 5] that the sets
L =

{
(w,−A>w) | w ∈ Rm

}
and M = Rm × ∂f(x?) are

boundedly linearly regular. Observe that

L ∩M =
{

(w,−A>w) | −A>w ∈ ∂f(x?)
}
.

Therefore, there is β > 0 such that for all y ∈ U
dist(y,W ) ≤ dist((y,−A>y), L ∩M)

≤ β[dist((y,−A>y), L)+ dist((y,−A>y),M)]

= β dist(−A>y, ∂f(x?)),

where the second inequality is due to bounded linear regularity
of L and M , while the equality holds since (y,−A>y) ∈ L
and dist((y,−A>y),M) = dist(−A>y, ∂f(x?)) for any y.
Using the above inequality in (41) yields the result.

Lemma A.4 (Twice differentiability of f∗). Suppose that f
satisfies Assumption 2(i) for the primal-dual solution (x?, y?).
Then f∗ is of class C2 around y?, with

∇2f∗(y?) = H†f .

Proof. From [20, Thm. 13.21] we know that f∗ is twice
epi-differentiable at v for x ∈ ∂f∗(v) iff f is twice epi-
differentiable at x for v, with the relation

d2f∗(v|x) =
[
d2f(x|v)

]∗
. (42)

The cited proof trivially extends to strict twice differentiability,
and in fact f∗ turns out to be strictly twice epi-differentiable
at x?. Since range(Hf ) + S⊥f = Rn, by applying (42) to
(27) and conjugating d2f(x?|−A>y?) by means of [18, Prop.
E.3.2.1] we obtain that function f∗ has purely quadratic sec-
ond epi-derivative (as opposed to generalized quadratic)

d2f∗(−A>y?|x?)[w] = 〈(ΠSf
Hf ΠSf

)†w,w〉
(29)
= 〈H†fw,w〉

which is everywhere finite in particular. The proof now follows
from [25, Cor. 4.7].

With similar reasonings, the following result easily follows.

Lemma A.5 (Twice epi-differentiability of g∗). Suppose that
g (strictly) satisfies Assumption 2(ii) for a primal-dual solution
(x?, y?). Then g∗ is (strictly) twice epi-differentiable at y? for
Ax?. More precisely, letting S̄ = S⊥g + range(Hg),

d2g∗(y?|Ax?) =
[
d2g(Ax?|y?)

]∗
= 〈H†g · , · 〉+ δS̄ . (43)
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