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Strict Lyapunov functions for model reference adaptive control:
application to Lagrangian systems

Antonio Lorı́a Elena Panteley Mohamed Maghenem

Abstract—Model reference adaptive control is a well-
understood and popular method used in the case when the plant’s
constant parameters are unknown and must be identified. The
related literature is very rich and there exist many proofs of
stability and convergence. Lyapunov functions for such systems,
having the property that the total derivative is negative definite,
are, however, very scarce. In this note we use the Mazenc
construction to design a simple strict Lyapunov function in a
rather intuitive manner, based on a first-choice function whose
derivative is negative semidefinite. Furthermore, we provide, for
the first time in the literature, a Lyapunov function for a popular
passivity-based adaptive controller for Lagrangian systems.

I. INTRODUCTION

Driven by concrete control problems of physical systems
(specifically, mechanical, electrical and electromechanical)
analysis and design of adaptive control systems has been, in
turn, a steering force in control theory and practice for decades
now. An early significant breakthrough was the certainty-
equivalence principle, which states that in the case of para-
metric uncertainty, one can use the same controller that would
be used in the case that all the parameters of the system
were known, replacing their values with estimates. Then, an
adaptation law is designed to update such estimates. In view of
its simplicity, model-reference adaptive control [1] is among
the most popular control and estimation techniques, but it also
poses significant challenges to stability analysis, due to its
inherent nonlinear and time-varying nature; even in the case
when the plant to be controlled is linear and autonomous [2].

Two distinct problems of convergence analysis naturally
appear: of the tracking errors and of the parameter estimation
errors. For the former, a commonly-used method is based on
properties of signals in Lp spaces and the popular Barbălat’s
lemma [3]. Establishing convergence of the parameter esti-
mation errors, however, is a much more challenging task of
analysis. The one condition that is invoked under various con-
trol schemes is known as persistency of excitation and it was
introduced in [4] in the context of identification of discrete-
time linear systems. While conserving its conceptual sub-
stance, this condition has taken different mathematical forms
in the literature, depending on the context: for continuous-time
linear systems necessary and sufficient conditions for uniform
convergence are presented in [5], [6], [7]; for non-uniform
convergence, in [6]; for nonlinear time-varying systems, in [8]
and [9] —see also [10]; for linear parameterized systems in
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[11]. Its equivalence to uniform complete observability is dis-
cussed in detail in [12] and its equivalence to detectability, in
the realm of nonlinear time-varying systems, was established
in [13]. In the specific context of adaptive control, [10] and
[14] provide a thorough study.

Now, because adaptive control systems are inherently non-
linear, a crucial question beyond that of convergence is
whether the origin is uniformly asymptotically, or exponen-
tially, stable. For linear systems the latter may be established
upon the scrutiny of the state transition matrix [15], or using
the concept of uniform complete observability and output
injection techniques [12]; see also [16] where an explicit
stability bound is computed. For nonlinear systems, however,
exponential stability is impossible [17]; one can “only” achieve
uniform global asymptotic stability [18].

Certainly, the most direct method of stability analysis is
Lyapunov’s second. Yet, constructing a strict Lyapunov func-
tion for adaptive control systems has eluded the research
community, at least until [19] where, to the best of our
knowledge, the first strict Lyapunov function for nonlinear
systems reminiscent of model-reference-adaptive control was
proposed. Ref. [19] relies on the neat Mazenc construction,
which was introduced in [20] and is described in great detail
in [21]. Roughly speaking, the starting point is a Lyapunov
function whose derivative is negative in part of the state
variables only; then, a function of this non-strict Lyapunov
function is constructed. See also [22], [23].

In this paper we employ the Mazenc construction on a
narrower class of systems than the one considered in [19], [22].
The systems that we study here appear in model-reference-
adaptive control of nonlinear systems and other passivity-
based control techniques. For the purpose of illustration we
also propose, as far as we know for the first time, a strict
Lyapunov function for the popular tracking adaptive Slotine
& Li controller for Lagrangian systems originally proposed
in [24], and which continues to inspire solutions to more
contemporary problems such as mutual synchronization of
Lagrangian systems —see e.g. [25], [26], [27], [28].

The rest of this paper is organized as follows. In the next
section we describe the class of systems that we consider. In
Section II-C we present our main results, the utility of which is
illustrated through a concrete example in Section III. Finally,
we conclude with some remarks in Section IV.

II. PROBLEM SETTING AND ITS SOLUTION

A. Motivating example

We start by emphasizing the well-known fact that, even
when the plant is linear autonomous, model-reference-
adaptive-control systems are nonlinear. To that end, let us
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consider a feedback-linearizable system, in normal form, i.e.,

ẋi = xi+1 i ∈ [1, n− 1] (1a)
ẋn = Φ(x)>θ + g(x)u (1b)

where x := [x1 · · · xn]>, Φ : Rn → Rm is a regressor
function and θ ∈ Rm is a vector of unknown lumped
parameters. The control goal is to design u such that this
system behaves as the reference model

ẋ∗i = x∗i+1 i ∈ [1, n− 1] (2a)
ẋ∗n = f(x∗) (2b)

or, in other words, to steer x(t) → x∗(t) where x∗(t) is
solution of (2). The feedback-linearizing control input that
achieves this goal is u := g(x)−1

[
f(x∗) − Φ(x)>θ − Ke

]
with e := x− x∗ and K :=

[
κ1 · · · κn

]
. In the case that the

parameters θ are unknown, we use the certainty-equivalence
adaptive controller

u = g(x)−1
[
f(x∗)− Φ(x)>θ̂ −Ke

]
(3a)

˙̂
θ = γΦ(x)B>Pe (3b)

where B is part of the controllable pair (A,B), A is Hurwitz
by design, and P = P> > 0 satisfies A>P + PA = −Q,
given an arbitrary positive-definite symmetric matrix Q. Then,
defining the parameter-estimation errors θ̃ := θ̂−θ we see that
the closed-loop system takes the form

ė = Ae+B(t, e)θ̃ (4a)
˙̃
θ = −γB(t, e)>Pe (4b)

with B(t, e) := −BΦ(e+ x∗(t))>.
Clearly, the equation ė = Ae corresponds to that of the

tracking errors under the assumption that the parameters are
known, which is the starting point in certainty-equivalence-
based adaptive control. If B depended only on time, we would
recover a well-studied system in textbooks on adaptive control,
e.g., [15]. However, even in the simplest case in which (1)
is linear, that is, if Φ(x)>θ := x>θ and g(x) ≡ const.,
the resulting closed-loop system is nonlinear time-varying;
this is a well-documented fact [10], [2] that is some times
obliterated in the literature. Thus, we see that the benefits
of feedback linearization are lost in the case of uncertainties,
while the use of other nonlinear control techniques, such as
passivity-based, do not necessarily render the stability analysis
problem significantly more complex. In either case, we are
often confronted to analyze systems of the form

ẋ1 = F (t, x1) + Φ(t, x1)x2 (5a)

ẋ2 = −σΦ(t, x1)>
∂V1
∂x1

>
, σ > 0, (5b)

with states x1 ∈ Rn and x2 ∈ Rm, V1 : R≥0 × Rn → R≥0
is a function that is (at least) one continuously differentiable
and, for the purpose of existence and uniqueness of solutions,
the functions F and Φ : R≥0×Rn → Rn, and ∂V1

∂x1
are locally

Lipschitz continuous in x, uniformly in t.
Systems (5), under the following standing hypotheses that

we describe in detail below, are our subject of study.

B. Main assumptions

Assumption 1: There exist K∞ functions β1, β2 : R≥0 →
R≥0, positive definite functions ρ1, γ1 : R≥0 → R≥0, and a
positive-definite and radially-unbounded function V1 : R≥0 ×
Rn → R≥0 such that

β1(|x1|) ≤ V1(t, x1) ≤ β2(|x1|) (6a)

∂V1
∂t

+
∂V1
∂x1

F (t, x1) ≤ −γ1(|x1|) (6b)

max

{ ∣∣∣∣∂V1∂x1

∣∣∣∣ , |F (t, x1)|
}
≤ ρ1(|x1|). (6c)

The condition (6c) simply imposes that F (t, 0) ≡ 0 and
F (t, x1) ≡ 0 is uniformly bounded in t; similarly for
∂V1/∂x1.

More importantly, the class of systems for which Inequali-
ties (6a) and (6b) hold, includes marginally stable systems.
This follows, by a direct computation, observing that the
function

V2(t, x) := V1(t, x1) +
1

2σ
|x2|2, (7)

where x := [x>1 x>2 ]>, is positive definite and radially
unbounded and, moreover, its total derivative along the tra-
jectories of (5) yields

V̇2(t, x) ≤ −γ1(|x1|) (8)

which is negative semi-definite. Hence, a key feature of the
systems (5) under Assumption 1 is the property (8) from
which, together with (6a), one can conclude uniform global
stability and even infer that x1 → 0. For instance, if γ1(s) ∝
s2 we see that x1 ∈ L2 ∩ L∞, and x2 ∈ L∞. In this case,
standard arguments that appeal to Barbălat’s lemma may be
used to conclude that x1 → 0.

In the following we construct a strict Lyapunov function
for (5) by regarding this system as if composed of a nominal
(simpler) part and some vanishing output-injection terms that
depend on x1. That is, let

K(t, x1) := [Φ(t, x1)− Φ◦(t)] and Φ◦(t) := Φ(t, 0). (9)

Then, the equations (5) are equivalent to

ẋ1 = F (t, x1) + Φ◦(t)x2 +K(t, x1)x2 (10a)

ẋ2 = −σΦ◦(t)
> ∂V1
∂x1

>
− σK(t, x1)>

∂V1
∂x1

>
. (10b)

As previously discussed, in view of Assumption 1, we have
x1(t)→ 0 which, in view of (9), implies that K(t, x1(t))→ 0.
Furthermore, since by assumption Φ(t, x1) is locally Lipschitz
in x1, uniformly in t and it is uniformly bounded in t, there
exist a continuous non-decreasing function ρ2 : R≥0 → R≥0,
such that

|K(t, x1)| ≤ ρ2(|x1|). (11)

On the other hand, as we shall see through an example in
Section III, Φ◦ is reminiscent of a function of the system’s dy-
namics, evaluated along exogenous signals, such as reference
trajectories. This is all the more significant since our second
main hypothesis is inspired by the fact that persistency of
excitation of Φ◦, and not of Φ(t, x) as it might be supposed, is
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sufficient and necessary for uniform global asymptotic stability
[18]. This brings us to our second main hypothesis.

Assumption 2: There exist real positive numbers µ, T , and
φM such that

max
{
|Φ◦(t)|∞, |Φ̇◦(t)|∞

}
≤ φM (12a)∫ t+T

t

Φ◦(s)
>Φ◦(s)ds ≥ µI ∀ t ≥ 0. (12b)

C. Main result

Theorem 1: Consider the system (5) under Assumptions 1–
2. Then, the origin is uniformly globally asymptotically stable
and it admits a strict Lyapunov function V : R≥0 ×Rn+m →
R≥0 defined as follows:

V(t, x) := 2cσV2(t, x)+V3(t, x)+
1

4
V4(t, x2)+W (t, x) (13)

where c := φM +
φ2
M

2 ,

V3(t, x) :=

3∑
i=1

αi
(
V2(t, x)

)
, i ∈ {1, 2, 3} (14a)

V4(t, x2) := −
∫ ∞
t

∣∣Φ◦(τ)x2
∣∣2et−τdτ (14b)

W (t, x) := −x>1 Φ◦(t)x2, (14c)

and αi : R≥0 → R≥0 are positive definite non-decreasing
functions such that, for any λ1 and λ2 > 0, it holds that

∂α1

∂V2
(V2(t, x))γ1(|x1|) ≥ φM

[
ρ2(|x1|)− ρ2(0)

]
|x2|2 (15)

∂α2

∂V2

(
β1(|x1|)

)
γ1(|x1|) ≥

λ2
2
φ2M |x1|2 +

λ1
2
ρ1(|x1|)2

+ γ′2(|x1|) + ρ3(|x1|)|x1| (16)
α3(β1(|x1|)) ≥ c|x1|2 (17)

where ρ1 is defined in Assumption 1, ρ2 is introduced in (11)
and, if necessary, it is redefined to satisfy

8 ρ2(0)φM ≤ µe−T . (18)

In addition, the function ρ3 : R≥0 → R≥0 is defined as

ρ3(|x1|) := σφM
[
ρ2(|x1|) + φM

]
ρ1(|x1|) (19)

and, for any positive-definite function γ2 : R≥0 → R≥0,

γ′2(|x1|) := γ2(|x1|) + 2λ2φ
2
Mρ3(|x1|)2. (20)

�
The Inequalities (15)–(17) are all met by construction while

K(t, 0) ≡ 0 so ρ2 may be chosen such that ρ2(0) = 0; this
obviates the condition (18). Nonetheless, defining ρ2 so that
ρ2(0) > 0 be arbitrarily small may result convenient to verify
Inequality (15) locally, in cases in which the growth of ρ2(s)
is higher than that of γ1(s) near the origin —see Section
III farther. Furthermore, we stress that, through V2, α1 is a
function of |x2|2 and since it is smooth by design, |x2|2 may
be factored out of ∂α1/∂V2 using the relation

ϕ(v) = v

∫ 1

0

∂ϕ

∂v
(sv)ds+ ϕ(0)

which holds for any smooth function v 7→ ϕ. For instance, if
α1 is constructed as a polynomial of degree p, that is,

α1(V2) := k1V2 + k2V
2
2 + · · ·+ kqV

p
2 , (21)

Inequality (15) holds if there exist reals ki ≥ 0 such that

γ1(|x1|)
p∑
i=2

iki
i− 1

2σ
β1(|x1|)i−2 ≥ φM

[
ρ2(|x1|)− ρ2(0)

]
(22)

where β1 is introduced in Assumption 1.
Proof of Theorem 1: First, we prove that V is positive

definite on Rn+m and radially unbounded. Then, we show
that its total derivative satisfies

V̇ ≤ −1

4
|Φ◦(t)x2|2 −

µe−T

8
|x2|2 − γ2(|x1|), (23)

which is negative definite.
To establish the positivity and the radial-unboundedness of

V we first observe that
φM
2

[
|x1|2 + |x2|2

]
≥W (t, x) ≥ −φM

2

[
|x1|2 + |x2|2

]
while the function V4 defined in (14b) satisfies

−φ2M |x2|2 ≤ V4(t, x2) ≤ −µe−T |x2|2. (24)

Thus, after (17), we obtain

2σcV2(t, x) + α3(V2(t, x)) +
1

4
V4(t, x2) +W (t, x) ≥ c

2
|x|2.

Furthermore, V(t, x) is decrescent because it is bounded from
above by[
α1 + α2 + α3 + 2σc Id

]
◦
(
β2(|x1|) +

1

2σ
|x2|2

)
+ φM |x|2

where Id(s) = s.
We proceed now to evaluate the total derivative of V along

the trajectories of (5). To that end, let us define ξ := Φ◦(t)x2.
Then, the total derivative of W along the trajectories of (5)
yields

Ẇ (t, x) = − F (t, x1)>ξ − |ξ|2 − x>2 K(t, x1)Φ◦(t)x2

− x>1 Φ̇◦(t)x2 − σx>1 Φ◦(t)Φ(t, x1)>
∂V1
∂x1

>

and, for any λ1, λ2 > 0, we have

Ẇ (t, x) ≤ λ1
2
ρ1(|x1|)2 +

|ξ|2

2λ1
− |ξ|2 + φM |x2|2ρ2(|x1|)

+
|x2|2

2λ2
+
λ2φ

2
M

2
|x1|2

+ σφM |x1|
[
ρ2(|x1|) + φM

]
ρ1(|x1|). (25)

In the computation of the latter we used Young’s inequality to
bound cross-terms as well as (6c), (11), and (12a).

The total derivative of V3(t, x) satisfies

V̇3(t, x) ≤ −
[
∂α1

∂V2
+
∂α2

∂V2

]
γ1(|x1|) ≤ 0, (26)

where we used
[
∂α3/∂V2

]
V̇2 ≤ 0, which holds since α3(V2)

is non-decreasing and V̇2 ≤ 0. Putting together (25), (26), and
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using (16), we see that the total derivative of V3 + W along
the trajectories of (10) yields

V̇3(t, x) + Ẇ (t, x) ≤ −
[ ∂α1

∂V2
γ1(|x1|)− φMρ2(|x1|)|x2|2

]
−
[

1− 1

2λ1

]
|ξ|2 − γ′2(|x1|) +

1

2λ2
|x2|2,

so fixing λ1 > 1, we obtain, in view of (15),

V̇3(t, x) + Ẇ (t, x) ≤ −1

2
|ξ|2 − γ′2(|x1|)

+
[ 1

2λ2
+ φMρ2(0)

]
|x2|2.

Finally, we evaluate the total derivative of V4 in (13) and
add it to the previous expression. We have

V̇4(t, x2) = |ξ|2 + V4(t, x2)

+ 2σx>2

[∫ ∞
t

Φ◦(τ)>Φ◦(τ)Φ(t, x)et−τdτ
]
∂V1
∂x1

>

so, using (12a), we obtain

V̇4(t, x2) ≤ −µe−T |x2|2 + |ξ|2 +
1

2λ2
|x2|2

+ 2λ2σ
2φ4M

[
φM + ρ2(|x1|)

]2
ρ1(|x1|)2.

Thus, setting λ2 to satisfy

1

λ2
<

1

8
µe−T − φMρ2(0)

and in view of (20), we obtain Inequality (23). �

III. ADAPTIVE CONTROL OF LAGRANGIAN SYSTEMS

We illustrate the utility of Theorem 1 by presenting, as
far as we know for the first time, a proof via Lyapunov’s
direct method of uniform global asymptotic stability for a well-
known adaptive controller for Euler-Lagrange systems. These
are defined by the equations

Dθ(q)q̈ + Cθ(q, q̇)q̇ + gθ(q) = u, q ∈ Rn, (27)

where Dθ : Rn → Rn×n defines the inertia matrix which is
positive definite symmetric, Cθ : Rn × Rn → Rn×n defines
the Coriolis-and-centrifugal-forces matrix, which satisfies

Ḋθ(q) = Cθ(q, q̇) + Cθ(q, q̇)
>. (28)

The function gθ : Rn → Rn defines the gravity forces vector.
All these functions depend, in addition to the generalized
positions q and generalized velocities q̇, on lumped constant
parameters θ ∈ Rm. It is assumed, moreover, that Dθ,
Cθ and gθ are linear in θ that is, there exists a function
Υ : R3n → Rm×n such that the right hand side of (27) equals
to Υ(q, q̇, q̇)>θ. Furthermore, in view of (28), Cθ is linear in
q̇ and, as it is customary, it is assumed that Dθ and Cθ is
uniformly bounded for all q ∈ Rn. More precisely, there exist
dm, dM , and kc > 0, such that, for all q, q̇ ∈ Rn, and θ ∈ Rm,

dm ≤ |Dθ(q)| ≤ dM , (29a)
|Cθ(q, q̇)| ≤ kc|q̇|. (29b)

The adaptive state-feedback tracking control problem for
(27) consists in the following. Given a sufficiently smooth

reference trajectory t 7→ qd, bounded and with bounded
derivatives, find an adaptive controller so that q̃ := q− qd and
˙̃q := q̇−q̇d tend to zero asymptotically. This problem is solved,
at least, since the seminal paper [24] where the (non-uniform)
convergence of the tracking errors is established and, under
a condition of persistency of excitation, in [29], it is showed
that the parameter estimation errors also converge to zero. In
[30] a strict Lyapunov function, with which global asymptotic
stability is established, is given for the non-adaptive case; see
also [31] for a statement on global exponential stability. To
the best of our knowledge, the first proof of uniform global
asymptotic stability in the adaptive case (hence, including
uniform convergence of the parameter estimation errors) under
the action of the controller proposed in [24] was established in
[32], under a condition on persistency of excitation along the
reference trajectories. Here, we present, as far as we know for
the first time, a proof of uniform global asymptotic stability for
the adaptive controller of [24], via Lyapunov’s direct method.

We recall that the adaptive controller of [24] is given by

u = Dθ̂ q̈r + Cθ̂(q, q̇)qr + gθ̂(q)− kds (30a)
˙̂
θ = −σΨ(t, q̃, s)s, σ > 0 (30b)

where s := q̇r − q̇, q̇r := q̇d(t) − λq̃, and λ, kd are positive
constants. Furthermore, θ̂ is an estimate of the unknown
lumped parameters θ and Ψ is the so-called regressor function
which is defined by the identity

Dθ̃(q)q̈r + Cθ̃(q, q̇)q̇r + gθ̃(q) =: Ψ(t, q̃, s)>θ̃ (31)

which holds in view of the linearity of Dθ, Cθ and gθ with
respect to θ. For the purpose of analysis, we stress that the
regressor Ψ is a function of (t, q̃, s); indeed, we observe that
even though the terms on left-hand side of (31) are written as
functions of q, q̇, q̈r, and q̇r, the latter are, in turn, functions
of the closed-loop variables q̃ and s, as well as time, through
the reference trajectories q̇d(t) and its derivatives. That is,

q = q̃ + q̇d(t), q̇ = q̇d(t)− λq̃ − s,
q̇r = q̇d(t)− λq̃, q̈r = q̈d(t)− λs+ λ2q̃.

Thus, with an abuse of notation, we write the closed-loop
dynamics of (27) with (30) as

Dθ(q)ṡ+ Cθ(q, q̇)s+ kds = Ψ(t, q̃, s)>θ̃ (32a)
˙̃q = −λq̃ + s (32b)
˙̃
θ = −σΨ(t, q̃, s)s. (32c)

Now, as it was established in [30], a direct computation
shows that the total derivative of the function

V (t, q̃, s) :=
1

2
s>Dθ(q)s+

λkd
2
|q̃|2 +

1

2σ
|θ̃|2 (33)

along the trajectories of (32) yields

V̇ (t, q̃, s) ≤ −1

2

[
kd|s|2 + λkd|q̃|2

]
.

Remark 1: Once more, in the previous expressions we used
the familiar notation Dθ(q) instead of the more appropriate,
but cumbersome one, Dθ

(
q̃ + qd(t)

)
. •

This is the starting point to establish a direct proof of the
following statement, using Lyapunov’s first method —cf. [32].
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Proposition 1: Consider the system (27) and assume that
the inequalities in (29) hold. For the reference trajectories t 7→
qd assume that there exists βd > 0 such that

max
{
|q̈d|∞, |q̇d|∞, |qd|∞

}
≤ βd (34)

and there exist T and µ > 0 such that∫ t+T

t

Ψ(τ, 0, 0)Ψ(τ, 0, 0)>dτ ≥ µI ∀ t ≥ 0. (35)

Then, the origin in the state space of the closed-loop system
(32), that is {(q̃, s, θ̃) = (0, 0, 0)}, is uniformly globally
asymptotically stable. �

Remark 2: We stress that Ψ(t, 0, 0) is a matrix that depends
only on the reference trajectories and its derivatives and solves
the identity

Dθ̃(qd)q̈d + Cθ̃(qd, q̇d)q̇d + gθ̃(qd) =: Ψ(t, 0, 0)>θ̃ (36)

in which we dropped the argument (t) from qd(t) and its
derivatives. Moreover, the condition (35) is also necessary for
uniform global asymptotic stability [32]. •
The statement of Proposition 1 is a consequence of the
following original result.

Proposition 2: The closed-loop system (32), under the con-
ditions of Proposition 1, admits the strict Lyapunov function

V(t, q̃, s, θ̃) :=

3∑
j=1

δj

[1

2
s>Dθ(q(t))s+

λkd
2
|q̃|2 +

1

2σ
|θ̃|2
]j

−
∫ ∞
t

∣∣Dθ(qd(τ))−1Ψ(τ, 0, 0)>θ̃
∣∣2et−τdτ

− s>Dθ(qd(t))
−1Ψ(t, 0, 0)>θ̃ (37)

which is positive-definite, radially-unbounded, and its deriva-
tive satisfies

V̇(t, q̃, s, θ̃) ≤ −1

2
γ′1
[
|s|2 + |q̃|2

]
− 1

8
µe−T |θ̃|2, (38)

where γ′1 := (kd/2) min
{

1, λ
}

, for sufficiently large values
of the constant parameters δj > 0. �

Proof: The construction of V follows by verifying the
conditions of Theorem 1. The first step is to write the closed-
loop equations in the form (5). To that end, let

x1 := [q̃ s]>, x2 := θ̃.

Then, since Dθ(q) is invertible for all q ∈ Rn we may define

F (t, x1) :=

[
−λI I

0
[
D−1θ Cθ + kdI

]] [q̃
s

]
(39)

Φ(t, x1) =

[
0

D−1θ Ψ(t, q̃, s)>

]
(40)

in which, to simplify the notation, we dropped the arguments
of Dθ(q̃ + qd(t))

−1 and Cθ(q̃ + qd(t), q̇d(t)− λq̃ − s).
The function V1 in Assumption 1 corresponds to the first

two terms of the function V in (33) and corresponds to
the function proposed in [30], which we repeat here for
convenience:

V1(t, x1) :=
1

2
s>Dθ(q(t))s+

λkd
2
|q̃|2. (41)

That is,
∂V1
∂x1

>
=

[
λkdq̃

Dθ(q(t))s

]
,

so (32c) has exactly the form (5b) and, actually, the system
(32) has the form of (5).

Now we verify Assumption 1. On one hand, the inequalities
in (6a) follow from (29) with

β1(|x1|) := β′1|x1|2, β2(|x1|) := β′2|x1|2 (42)

where

β′1 :=
1

2
min

{
dm, λkd

}
β′2 :=

1

2
max

{
dM , λkd

}
.

On the other hand, a direct computation using (28) shows that
(6b) holds with γ1(|x1|) := γ′1|x1|2 and, after (29a),∣∣∣∣∂V1∂x1

∣∣∣∣ ≤ ρ′1|x1|, ρ′1 := max
{
dM , λkd

}
.

In addition, a simple inspection of (39) and the inequalities in
(29) shows that F (t, x1) is of order |x1|2 for large |x1| and
of order |x1| locally. Hence, (6c) holds with

ρ1(|x1|) := ρ11|x1|+ ρ12|x1|2, (43)

where ρ11 ≥ ρ′1 and ρ12 depend on βd in (34) as well as on
dm and kc in (29).

Next, we verify Assumption 2. Inequality (12a) holds be-
cause Φ◦ and Φ̇◦ are continuous functionals of qd, q̇d, and q̈d,
which are bounded —see (34), while (12b) is equivalent to
(35) since Dθ(·)−1 is full rank.

Now we proceed to construct three functions α1, α2, and
α3, satisfying (15)–(17). The fact that β1, β2, ρ1, and γ1 are
polynomials motivates a similar choice for the functions αi.
To determine their respective orders (so that (15)–(17) hold) it
is left to find an appropriate function ρ2 which, in turn, shall
determine ρ3. For this, we see that all the functions on the
left-hand side of (27) are at most of quadratic growth hence,
in view of (29) and (34), there exist ρ21 and ρ22 > 0 such
that ∣∣Ψ(t, q̃, s)−Ψ(t, 0, 0)

∣∣ ≤ ρ21|x1|+ ρ22|x1|2. (44)

This implies that (11) holds with ρ2(|x1|) = ρ21|x1| +
ρ22|x1|2. Nonetheless, another simple inspection shows that
with this choice of ρ2, the condition (15) may not hold locally
because the left-hand side of this inequality is at least of
2nd order in |x1| (due to the factor γ1) while the right-hand
side contains a first-order term of |x1|. Therefore, we use the
inequality |x1| ≤ 1 + |x1|2 to redefine ρ2 as

ρ2(|x1|) :=
ερ21

2
+
[ρ21

2ε
+ ρ22

]
|x1|2, ε > 0. (45)

With this new choice of ρ2 (11) still holds and, moreover,
Inequality (22) holds with p = 2, for sufficiently large k2; in
turn, this implies (15). It is to be noted that the choice of ε > 0
is determined by (18); this lifts any possible restriction on the
parameters µ and T , which are given. Thus, we conclude that
defining α1(V2) as a second-order polynomial of V2 will do.

Next, we construct α2 so that Inequality (16) hold. Let
γ2(|x1|) := (1/2)γ′1|x1|2. A simple inspection, using (43) and
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(45), shows that ρ3 in (19) is a polynomial of 4th order, hence
the right-hand side of (16) is bounded from above by

5∑
j=2

%j |x1|j , %j > 0.

Therefore, using the triangle inequality

%j |x1|j ≤
1

2

[
%j |x1|j−1 + %j |x1|j+1

]
for j = 3 and j = 5, we see that (16) holds if α2(V2) is a
polynomial of 3rd order that is, if

α2(V2) :=

3∑
j=1

kjV
j
2 .

Indeed, if such is the case,

∂α2

∂V2

(
β′1|x1|2

)
γ′1|x1|2 ≥ γ′1

3∑
j=1

jkjβ
′j−1
1 |x1|2j .

so (16) holds provided that kj are sufficiently large.
The term α3(V2) is designed to make V positive definite

and radially unbounded. Inequality (17) trivially holds with
α3(β1) := (c/β′1)β1. Finally, from (40) we see that V4 and
W correspond to the last two terms on the right-hand side of
(37) respectively.

Thus, all the conditions of Theorem 1 hold with the function
V in (37), which is of the form (13), α1, α2, and α3 being
polynomials in V2 of second, third, and first order respectively,
and the inequality (23) corresponds in this case to (38).

IV. CONCLUSIONS

We have provided a relatively simple and intuitive strict
Lyapunov function for nonlinear time-varying systems that
appear in the context of passivity-based adaptive control. We
believe that the construction provided here may serve as a
building block in the solution of other complex problems such
as adaptive observer-based tracking control. In that regard,
we provided a strict Lyapunov function for a well-known
controller that is recurrently used in its original or in modified
forms, in a variety of more modern control problems such as
formation control and synchronization.
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Roumaine (in French).
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