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A classification of nodes for structural
controllability

Christian Commault and Jacob van der Woude

Abstract— In this paper we consider (large and complex)
interconnected networks. We assume that each state/node, not
belonging to a set of forbidden nodes of the network, can be
selected to act as a steering node, meaning that such a node then
is influenced by its own individual control. We aim to achieve
structural controllability and we present a classification of the
associated steering nodes as being essential (always required to
be present), useful (present in certain configurations) and useless
(never necessary in whatever configuration). The classification is
based on two types of decomposition that naturally show up in
the context of the two conditions (connection condition and rank
condition) for structural controllability. The underlying methods
are related to well-known and efficient network algorithms.

Index Terms— Controllability, structured system theory, input
connection condition, rank condition, steering node.

I. INTRODUCTION

The controllability of complex networks has received a lot
of attention in the recent years. Especially, the question of
interest is where to put so-called driver nodes by which the
behaviour of the network can be controlled, see [7], [12], [15],
[16].

Here we call a state/node of the network a steering node if it
can be influenced from the outside of the network by a control.
We assume that not all nodes may be directly controlled, so
that the steering nodes must belong to a given set of effective
nodes, see [14].

We aim to achieve structural controllability and we present
a classification of the associated steering nodes as being
essential (always required to be present), useful (present in cer-
tain configurations) and useless (never necessary in whatever
configuration). In engineering, the classification of sensors in
terms of their importance for preserving some property (such
as observability) is an active research field, see [3].

It should be noted that, although we use here some concepts
and tools of [3], the present paper is much more than just a
dualisation of the results of [3]. The main difference is that
here the classification does not rely on a given set of inputs
and corresponding actuators. Indeed, in this paper the inputs
are not yet present and have to be chosen. Moreover, they
directly influence only one state.

The steering node classification in this paper resembles a
similar classification (in critical, redundant and intermittent
driver nodes) in [10]. However, opposite to [10], [12], we
suppose that a control can only influence one steering node
and that not all nodes can be chosen as steering nodes.
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An extended version of this paper, containing detailed
proofs and a lot of examples, is available in [6].

The outline of this paper is as follows. In section 2 we
formulate the problem of steering node selection for controlla-
bility and introduce the notions of useless, useful and essential
nodes for a specific property. We also introduce structured
systems together with their digraph representation and recall
the two well-known conditions for structural controllability.
In section 3 the two conditions are further analysed, using
connectivity aspects and the rank condition. The latter is
done by means of a DM-decomposition of the bipartite graph
associated to the structured systems. In section 4 we present
criteria for a node to be useless, useful or essential for each of
the two conditions separately, and for the two conditions si-
multaneously, yielding structural controllability. We conclude
by section 5 with a summary of the results of this paper and
with some topics for future research.

II. PROBLEM FORMULATION

A. The controllability problem

In this paper we consider a large scale system composed of
n states interacting together with linear dynamics. We assume
that we can represent the behaviour of the whole system by
the simple equation

ẋ(t) = Ax(t), (1)

where x(t) ∈ Rn is the state vector and A is a real constant
n× n matrix.

We will distinguish m states, called the steering nodes S =
{xi1 , . . . , xim}, with ij ∈ {1, . . . , n} and i1 < i2 < · · · < im.
To each steering node xij , we associate a control input uj that
acts only on this state node. In this way we obtain a system
that can be represented as

Σ : ẋ(t) = Ax(t) +Bu(t), (2)

where matrix B has m columns and its j-th column has all
its entries equal to 0 except for bij (6= 0), being the ij-th
component of column j of B. Hence, the node set S is in
1-1 correspondence with the (structure of) matrix B. In the
following we will be looking for a set of steering nodes such
that the pair (A,B), as introduced above, is controllable.

As in [14], we assume that there is a set of forbidden
nodes, which cannot be used as steering nodes. This situation
is frequently met in applications.

Let us denote by F ⊆ X , where X = {x1, x2, . . . , xn}, the
set of forbidden nodes, and the complementary set by E =
X\F . The nodes of E will be called effective nodes. These
effective nodes E = {xk1 , . . . , xkp}, with kj ∈ {1, . . . , n} and
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k1 < k2 < · · · < kp, can be associated with control inputs in
order to define a steering node set S ⊆ E .

As was done for the steering node set above, matrix BE has
p columns and its j-th column has all its entries equal to 0
except for bkj (6= 0), being the kj-th component of column j
of BE

Given the set of effective nodes E , it is clear that there exists
a steering node set for controllability of the system (1) if and
only if the pair (A,BE) is controllable.

When the pair (A,BE) is controllable, the node set E is
said to be c-effective, with c for controllable.

B. Node classification

When a steering node set S ⊆ E ⊆ X , defining matrix
B, and therefore also the pair (A,B), is such that a given
property P is true, we call S an admissible steering node set
for property P .

For a given property P , a node xi ∈ E can be classified as
follows, see for instance [3], [4].

1) Node xi is called a useless node if for any admissible
steering node set S for P containing xi, S\{xi} is still
an admissible steering node set for P , where S\{xi} is
the set S minus the node xi.

2) A node which is not useless is called a useful node.
Hence, node xi is useful if there is an admissible steering
node set S for P such that xi ∈ S, while S\{xi} is not
admissible for P .

3) Node xi is called an essential node if xi belongs to
any admissible steering node set S for P . Hence, xi
is an essential node if S\{xi} is not admissible for any
admissible steering node set S for P . The set of essential
nodes is a subset of the set of useful nodes.

In this paper we will focus our attention on the search and
classification of steering nodes for the controllability in the
context of structured systems.

C. Linear structured systems and structural controllability

In the remainder we assume that system (1) is structured,
meaning that we assume that only the zero/non-zero pattern
of (the entries in) matrix A is known.

A structured system of type (1) can be associated with a
directed graph G(A) = (X ,W) as follows:
• the node set is X , being the set of state nodes
{x1, x2, . . . , xn},

• the edge set is W = {(xi, xj)|aji 6= 0}, where aji 6= 0
means that the (j, i)-th entry of matrix A is a structural
non-zero, and (xi, xj) stands for an edge from node xi
to node xj .

In the graph G(A) we define a path from a node xi0 to
a node xiq to be a sequence of edges (xi0 , xi1), (xi1 , xi2)
, . . . , (xiq−1

, xiq ), such that xit ∈ X for t = 0, 1, . . . , q, and
(xit−1 , xit) ∈ W for t = 1, 2, . . . , q.

For a structured system we can study generic properties,
i.e., properties which are true for almost any value of the
matrix entries. One such property is, for instance, the generic
controllability of a structured system. Another such property

is the generic rank of a structured matrix. Given a structured
matrix Q, the rank of Q for almost all values of the non-zero
entries will be denoted by g-rankQ.

Example 1: Consider the system defined by a structured
matrix A given by

A =



0 0 ∗ 0 0 0 0 0
0 0 ∗ 0 0 0 0 0
∗ 0 0 0 0 0 0 0
0 ∗ 0 0 0 0 ∗ ∗
0 0 0 0 ∗ 0 0 0
∗ 0 0 ∗ 0 0 0 0
0 0 0 0 ∗ ∗ 0 0
0 0 0 0 0 0 0 0


,

with * representing a non-zero entry. It follows by a simple
inspection that g-rankA = 6. The associated digraph G(A) is
depicted in Figure 1. In the figure also the strongly connected
components are already indicated. These components will be
introduced and used later on.
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Fig. 1. Digraph of Example 1

As in Subsection II-A, we can select a set of m steering
nodes in X , to which we associate m control inputs. This
induces an n×m matrix B with only m non-zero entries, one
in each column and at most one in each row.

The graph G(Σ) can be obtained from G(A) by adding the
m input nodes through the set U = {u1, . . . , um}, and by
adding m edges, one from each input node to the correspond-
ing steering node. Hence, G(Σ) has node set given by X ∪U ,
and the edge set is updated as W := W ∪ {(uj , xij )|j =
1, 2, . . . ,m}.

In G(Σ), a path (vi0 , vi1), (vi1 , vi2), . . . , (viq−1
, viq ), where

vi0 ∈ U and viq ∈ X , is called an input-state path. The system
Σ is said to be input-connected if for any state node xi, i =
1, . . . , n, there exists an input-state path with end node xi.

The notion of structural controllability was introduced and
studied by Lin, who proved a necessary and sufficient condi-
tion for structural controllability in terms of graph theoretic
objects called cacti, see [11]. The following result can be
proved to be equivalent to Lin’s result (references are given
in [6]).

Theorem 1: Let Σ be the linear structured system defined
by (2) with associated graph G(Σ). The system is structurally
controllable if and only if

1) the system Σ is input-connected,
2) g-rank [A,B]=n.
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In the following, the conditions 1 and 2 of Theorem 1 will
be referred to as the input connection condition and the rank
condition, respectively.

Given a structured system of type (1) with associated graph
G(A), the steering node selection problem then amounts to
extending G(A) with input nodes and edges (input-steering
node) in such a way that the conditions of Theorem 1 are
fulfilled in the extended graph G(Σ).

III. STRUCTURAL CONTROLLABILITY VIA STEERING NODE
SELECTION

We will first revisit the two conditions for structural con-
trollability individually and refine Lin’s theorem in terms of
possible nodes to be impacted by inputs.

A. Input connection condition

Consider the linear structured system defined by (1) with
its associated graph G(A). A strongly connected component
C is defined to be a maximum set of nodes of G(A) such that
there exists a path, possibly of length zero, between any two
nodes of C. The graph can be partitioned into a set of strongly
connected components and this set can be endowed with a
partial order. A strongly connected component of G(A) with
no incoming edge from another strongly connected component
is called a Critical Connection Component (CCC). Now we
can deduce easily, see also [1], [5], that a steering node set S
is admissible for the input connection condition if and only if
there exists a node of S in any Critical Connection Component
of G(A).

Example 1 (cont.): The previous notions and results can be
illustrated on Example 1. The graph possesses five strongly
connected components, namely {x1, x3}, {x2}, {x5}, {x8}
and {x4, x6, x7}, where {x1, x3}, {x5} and {x8} are the
Critical Connection Components. It is clear from the graph,
that input connection is verified if and only if x5, x8, and
either x1 or x3 are steering nodes.

B. Rank condition

In order to check the rank condition we introduce a second
type of graph by which our structured system can be repre-
sented.

1) Generic rank and maximum matching: To a given struc-
tured µ × ν matrix L one can associate a bipartite graph
H(L) = (V+,V−;W ′), where the sets V+ and V− are two
disjoint node sets, and W ′ is the edge set.
• the node set V+ is described by {v+1 , . . . , v+ν } and the

node set V− is given by {v−1 , . . . , v−µ }.
• the edge set W ′ is given by W ′ = {(v+i , v

−
j )|Lji 6= 0}.

In the latter, (v+i , v
−
j ) denotes the edge between nodes v+i

and v−j , and, as before, Lji 6= 0 means that the (j, i)-th
entry of the matrix L is a structural non-zero.

A matching in the bipartite graph H(L) = (V+,V−;W ′)
is a set of edges M ⊆ W ′ such that the edges in M
have no common node. A node is covered by a matching if
there exists an edge in the matching that is incident to the
node. A matching M is called maximum if its cardinality is

maximum. The maximum matching problem consists of finding
a matching of maximum cardinality. It can be solved by using
efficient combinatorial algorithms, see for example [9].

It is a well-known result of combinatorics that the generic
rank of a structured matrix L is the cardinality of a maximum
matching in the corresponding bipartite graph H(L), see [13].

The previous analysis can be applied to the A matrix, with
bipartite graph H(A), node sets V+ = X+ = {x+1 , . . . , x+n },
V− = X− = {x−1 , . . . , x−n }, and edges corresponding to the
non-zero entries in A. The same can be done for [A,B], with
bipartite graph H([A,B]), nodes sets V+ = X+ ∪ U , V− =
X− and U = {u1, . . . , um}, and edges corresponding to the
non-zero entries in [A,B]. The latter can be applied to check
the rank condition of Theorem 1, by looking for a maximum
matching in the bipartite graph H([A,B]), see [5].

On the other hand, starting with a structured system as in
(1), with the generic rank of A being the size of a maximum
matching in H(A), the rank defect, defined as dr(A) := n−
g-rankA, is the minimal number of steering nodes needed to
make the rank condition of Theorem 1 become true, see [12].

2) Dulmage-Mendelsohn decomposition: We present now
the Dulmage-Mendelsohn decomposition, see [8], abbreviated
as DM-decomposition. The DM-decomposition is a useful tool
to parameterize all maximum matchings in a bipartite graph.
The DM-decomposition of the bipartite graph H(L) =
(V+,V−;W ′) is the uniquely defined family of bipartite
subgraphs Hi = (V+

i ,V
−
i ;W ′i), called the DM-components,

where the collection of subsets {V+
0 ,V

+
1 , · · · ,V+

r ,V+
∞} is a

partition of V+, and likewise for V−. The set W ′i is the set
of edges in W ′ incident with nodes from V+

i as well V−i ,
for i = 0, 1, . . . , r,∞. In the decomposition, the bipartite
subgraph H0 is called minimal inconsistent part, the bipartite
subgraph H∞ is called maximal inconsistent part, and the
other subgraphs Hi, i = 1, . . . , r, are called consistent parts.

The DM-decomposition and the above components have
the following properties, for details see [13] and in particular
Proposition 3.1.

Proposition 1: Let H(L) = (V+,V−;W ′) be a bipar-
tite graph with its DM-decomposition, and with Hi =
(V+
i ,V

−
i ;W ′i), i = 0, 1, . . . , r,∞, as its DM-components.

Then we have the following properties, where |V+
i | denotes

the cardinality of V+
i , and likewise for |V−j |.

1) A maximum matching on H(L) is a union of max-
imum matchings on the DM-components Hi, i =
0, 1, . . . , r,∞.

2) Every node of V−0 (or V+
∞, or V+

i , V−i , i = 1, . . . , r) is
covered by any maximum matching on H(L).

3) A node v+ ∈ V+ belongs to the minimal inconsistent
part H0, i.e., v+ ∈ V+

0 , if and only if there exists a
maximum matching on H(L) that does not cover node
v+, implying that |V+

0 | > |V
−
0 |.

4) A node v− ∈ V− belongs to the maximal inconsistent
part H∞, i.e., v− ∈ V−∞, if and only if there exists a
maximum matching on H(L) that does not cover node
v−, implying that |V−∞| > |V+

∞|.
The DM-decomposition is useful in reordering matrices to

get a more insightful form. Indeed, it can be shown, see [13],
that after a permutation of the rows and columns based on
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the partitions of V+ and V−, matrix L is brought into the
following upper block triangular form

L00 L01 . . . L0r L0∞
0 L11 . . . L1r L1∞

0 0
. . .

...
...

... Lrr Lr∞
0 0 . . . 0 L∞∞

 ,

where matrix Lij has dimensions |V−i | × |V
+
j |, for i, j =

0, 1, 2, . . . , r,∞, with i ≤ j.
It can be shown from the properties of Proposition 1 that

g-rank Lii = |V−i | = |V
+
i |, for i = 1, 2, . . . , r, g-rank L00 =

|V−0 | < |V
+
0 |, and g-rank L∞∞ = |V+

∞| < |V−∞|. Moreover, it
follows from property 3 that leaving out a column of L00 does
not decrease its rank. Similarly, from property 4 it follows that
leaving out a row from L∞∞ also does not give a rank drop.
Hence, leaving out a column of L with index in V+

0 does not
give a rank drop, and likewise for leaving out a row of L with
index in V−∞. Note that the latter also implies that adding a unit
column ei, a column with the only nonzero entry at the i-th
place, with x−i ∈ V−∞ does give an increase in rank. The latter
observations are insightful/useful in the proofs given later in
this paper.

The rank condition for controllability can be expressed
using only the maximal inconsistent part of the DM-
decomposition of H(A), see [2], which is indeed the maximal
dilation in the sense of Lin [11].

Proposition 2: Consider the linear structured system de-
fined by (1) with associated bipartite graph H(A) and the
corresponding DM-decomposition.

A steering node set S is admissible for the rank condition if
and only if there exists a maximum matching in the bipartite
subgraph H∞ such that for every node x−i in V−∞ that is not
covered by the matching, there holds xi ∈ S.

Example 1 (cont.): The DM-decomposition corresponding
to the bipartite graph associated with Example 1 is given in
Figure 2. The maximum size of a matching in H(A) is 6.
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Fig. 2. DM-decomposition of Example 1

Hence, the generic rank of A is equal to 6 and dr(A) = 2.
From Proposition 2 it follows that a maximum matching of
H∞ can be (x+3 , x

−
1 ), which implies that a possible admissible

steering node set for the rank condition is {x2, x8}. However,
also {x1, x8} can act as an admissible steering node set when
(x+3 , x

−
2 ) is chosen as maximum matching of H∞.

IV. NODE CLASSIFICATION FOR STRUCTURAL
CONTROLLABILITY

We start with a structured system of type (1), hence only
defined by the matrix A. As before, we denote the associated
directed graph by G(A) and the associated bipartite graph by
H(A).

Using refinements of the two conditions of Theorem 1,
obtained in Section III, the controllability condition for the
pair (A,BE) can be reformulated as follows.

Lemma 1: Given the set of effective nodes E , the corre-
sponding structured system (A,BE) is structurally control-
lable, and therefore there exists an admissible steering node
set for controllability, if and only if

1) for any Critical Connection Component Cj of G(A) we
have Cj ∩ E 6= ∅,

2) the size of a maximum matching in H([A,BE ]) is n.
In this section we will give a classification of nodes

according to the definitions of Section II. We will provide
this classification first for each condition (input connection
condition and rank condition) and then for controllability.

A. Classification of nodes for input connection

Proposition 3: Consider a linear structured system of type
(1) with associated graph G(A) and c-effective node set E .
The node xi in E is

1) useless for input connection if and only if it does not
belong to a Critical Connection Component,

2) useful for input connection if and only if it belongs to
a Critical Connection Component,

3) essential for input connection if and only if it is the
unique effective node in a Critical Connection Compo-
nent.

Proof
The proof directly follows from the definition of useless,

useful and essential nodes, and from the fact that each CCC
must contain an effective steering node for insuring input
connection, see Subsection III-A.

B. Classification of nodes for the rank condition

For the rank condition we have the following proposition.
Proposition 4: Consider a linear structured system of type

(1) with associated graph G(A), associated bipartite graph
H(A) and the corresponding DM-decomposition. Consider a
c-effective node set E , with BE the corresponding input matrix
and H([A,BE ]) the associated bipartite graph with its DM-
decomposition. The node xi in E is

1) useless for the rank condition if and only if x−i does
not belong to the set V−∞ of the DM-decomposition of
H(A),

2) useful for the rank condition if and only if x−i belongs
to the set V−∞ of the DM-decomposition of H(A),

3) essential for the rank condition if and only if the
corresponding input node uki does not belong to the
set V+

0 in H([A,BE ]).

Proof
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1) ⇒ From [1] Proposition 9, it follows that for a unit
vector ei, g-rank[A, ei]=g-rank(A) + 1 if and only if
for the corresponding state vertex xi, we have x−i ∈
V−∞, otherwise g-rank[A, ei]= g-rank(A). The proof can
then be based on linear algebra arguments as fol-
lows. The effective set E = {xk1 , . . . , xkp}, being
such that (A,BE) is structurally controllable, implies
that g-rank[A, ek1 , . . . , ekp ]=n for the corresponding unit
vectors. If xi ∈ E is such that x−i ∈ V−∞, we
have g-rank[A, ei]=g-rank(A)+1. Then, from the incom-
plete basis theorem, there exists a steering node set
D = {xl1 , . . . , xlp1} ⊂ E containing xi, of cardinality
n−g-rank(A), such that g-rank[A, el1 , . . . , elp1 ] = n.
With D being of minimal cardinality, taking off ei,
and then xi from D, would violate the rank condition,
therefore xi is not useless.
⇐ Take D ⊂ E admissible, xi ∈ D, and assume that
x−i 6∈ V−∞. Then x−i ∈ V−\V−∞. Since D is admissible,
by Proposition 2, there exists a maximum matching on
the bipartite subgraph H∞ such that for every x−j ∈ V−∞
not covered by this matching, there holds that xj ∈ D.
Now fix this matching. Recall that xi ∈ D and leave xi
out of D. Then still for every x−j ∈ V−∞ not covered by
the matching there holds that xj ∈ D\{xi}. Hence, by
Proposition 2, it follows that D\{xi} is also admissible
and therefore xi is useless.

2) Obvious from point 1.
3) ⇒ Notice first that, since the size of a maximum

matching in H([A,BE ]) is n, from Proposition 1, the
H∞ part of H([A,BE ]) is empty. Suppose now that uki
belongs to the set V+

0 in H([A,BE ]). Then there exists a
maximum matching in H([A,BE ]) which does not cover
uki . Therefore one can build an admissible steering node
set which does not contain xi, so xi is not essential.
⇐ Assume that uki does not belong to the set
V+
0 in H([A,BE ]). Then, any maximum matching in
H([A,BE ]) contains uki and discarding uki (which is
equivalent to discard the corresponding effective node xi
from the admissible set S), would decrease the size of
a maximum matching. Then S\{xi} is not admissible,
and xi is essential.

C. Classification of nodes for controllability
Next we combine the previous results to obtain a classifi-

cation of steering nodes for structural controllability.
Theorem 2: Consider a linear structured system of type (1)

with associated graph G(A), associated bipartite graph H(A)
and the corresponding DM-decomposition. Consider a of c-
effective node set E , with BE the corresponding input matrix
and H([A,BE ]) the associated bipartite graph with its DM-
decomposition. The node xi in E is

1) essential for structural controllability if and only if xi
is the unique effective node in a Critical Connection
Component or the corresponding input node uki does
not belong to the set V+

0 in H([A,BE ]).
2) useless for structural controllability if xi belongs to no

Critical Connection Component and x−i does not belong
to the set V−∞ of the DM-decomposition of H(A).

Proof
1) For controllability, being equivalent to input connection

and the rank condition, if a node is essential for one
of the properties, it is also essential for controllability.
Conversely, if a node is essential for controllability, this
means that when it is taken away from an admissible
steering node set, the controllability is lost. Then at
least one of the properties is lost. Therefore, this node is
essential for at least one of the properties. The result then
follows by combining the characterizations of essential
nodes in Propositions 3 and 4.

2) If a node is useless for both properties, this means
that when it is taken off from any admissible steering
node set, the two properties remain verified. Therefore,
controllability remains verified, and this node is also
useless for controllability.

Remark 1: In Theorem 2, we characterize only a subset of
the useless steering nodes for controllability (namely those
which are useless for both sub-properties). Indeed, as can be
seen on examples [6], some steering nodes may be useless
for controllability, while being useful for one of the sub-
properties.

Example 1 (cont.): The previous results can be illustrated on
the eight node example whose graph is depicted in Figure 1.
We assume that the set of forbidden nodes is F = {x1, x4, x7}
and that then E = {x2, x3, x5, x6, x8}. As seen in Subsection
III-A, the Critical Connection Components are {x1, x3}, {x5}
and {x8}. From Proposition 3, it follows that being the unique
effective node in their CCC, the nodes x3, x5 and x8 are
essential for input connection, while other nodes are useless
for this property.

Concerning the rank condition, nodes x3, x5 and x6 in E
are useless since x−3 , x

−
5 and x−6 do not belong to the set V−∞

of the DM-decomposition of H(A), see Figure 2. The DM-
decomposition of the graph H([A,BE ]), see Figure 3, shows
that the input nodes u1 and u5 do not belong to the set V+

0

in H([A,BE ]), so x2 and x8 are essential nodes for the rank
condition.

In summary, for controllability, nodes x2, x3, x5 and x8 of
E are essential, and node x6 of E is useless.

D. Classification of nodes when there are no forbidden nodes

It is of interest to examine how Theorem 2 simplifies when
there are no forbidden nodes, i.e. when F = ∅.

Theorem 3: Consider a linear structured system of type (1)
with associated graph G(A), associated bipartite graph H(A)
and the corresponding DM-decomposition. The node xi is

1) essential for structural controllability if and only if xi is
the unique node in a Critical Connection Component or
there exists no edge (xj , xi) in G(A).

2) useless for structural controllability if xi belongs to no
Critical Connection Component and x−i does not belong
to the set V−∞ of the DM-decomposition.

Proof
For input connection, it is clear that points 1 and 2 of

Proposition 3 are unchanged, while in point 3 the word
effective has just to be removed.
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Fig. 3. DM-decomposition of H([A,BE ])

For the rank condition, again points 1 and 2 of Proposition
4 are unchanged, while point 3 needs a particular attention. In
this case, all the nodes are effective and in the bipartite graph
H([A,BE ]) any vertex x−i is connected with the corresponding
input node ui. Assume that there is no edge (x+j , x

−
i ) in

H([A,BE ]), or equivalently that there is no edge (xj , xi)
in G(A). In this case, any size n matching in H([A,BE ])
contains the edge (ui, x

−
i ), therefore the node xi is essential

for the rank condition. Conversely, if there exists an edge
(x+j , x

−
i ) in H([A,BE ]), the matching composed of all edges

(uk, x
−
k ) for k 6= i and of edge (x+j , x

−
i ) is a size n matching

in H([A,BE ]) not containing ui. Then ui belongs to the set
V+
0 in H([A,BE ]), therefore xi is not essential for the rank

condition from point 3 of Proposition 4. In summary, a node
xi is essential for the rank condition if and only if there is no
edge (xj , xi) in G(A).

By gathering the results concerning input connection and the
rank condition, we obtain a complete proof of the Theorem.

Example 1 (cont.): We illustrate Theorem 3 on Example 1.
Its graph G(A) is depicted in Figure 1, and its bipartite graph
H(A) with DM-decomposition are shown in Figure 2.

From Proposition 3, with F = ∅, it follows that nodes
x2, x4, x6, x7 are useless for input connection, while nodes
x1, x3, x5, x8 are useful, with nodes x5, x8 being essential,
because they correspond to Critical Connection Components
of cardinality one. Note that all nodes are effective.

From Proposition 4, it follows that nodes x3, x4, x5, x6, x7
are useless for the rank condition, nodes x1, x2, x8 are useful,
with node x8 being essential, because it has no incoming edge.

From Theorem 3, it follows that nodes x5, x8 are essential
steering nodes for controllability, while nodes x4, x6, x7 are
useless for controllability. It can be checked by inspection that
besides nodes x5, x8, also the nodes x1, x2, x3 are useful for
controllability. For example, node x2 cannot be discarded from
the admissible steering node set {x2, x3, x5, x8} because of
the rank condition.

Note the role of forbidden/effective nodes by comparing
the latter results, where F = ∅, to the node characterisations
obtained previously in case F 6= ∅.

V. CONCLUSIONS AND OUTLOOK

In this paper we studied steering nodes in order, for a large
complex system, to become structurally controllable when the
nodes of the system can be divided into forbidden and effective
(=non-forbidden) nodes. We then provided a classification
of steering nodes into useless, useful or essential ones. For
the individual conditions for structural controllability, being
the input connection condition and the rank condition, this
classification could be given completely. However, for their
combination, culminating in a classification of nodes for
structural controllability, this still is not settled completely as
far as useless steering nodes are concerned. This will remain
a topic for further research. The methods underlying the ob-
tained classifications are based on well-understood algorithms
coming from the theory of flows in networks.

Of course, by duality, the results of this paper provide with
a classification of nodes for structural observability.
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