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DISCRETE TIME PONTRYAGIN MAXIMUM PRINCIPLE FOR OPTIMAL

CONTROL PROBLEMS UNDER STATE-ACTION-FREQUENCY

CONSTRAINTS

PRADYUMNA PARUCHURI AND DEBASISH CHATTERJEE

Abstract. We establish a Pontryagin maximum principle for discrete time optimal control

problems under the following three types of constraints: a) constraints on the states point-

wise in time, b) constraints on the control actions pointwise in time, and c) constraints on

the frequency spectrum of the optimal control trajectories. While the first two types of con-

straints are already included in the existing versions of the Pontryagin maximum principle,

it turns out that the third type of constraints cannot be recast in any of the standard forms of

the existing results for the original control system. We provide two different proofs of our

Pontryagin maximum principle in this article, and include several special cases fine-tuned

to control-affine nonlinear and linear system models. In particular, for minimization of

quadratic cost functions and linear time invariant control systems, we provide tight con-

ditions under which the optimal controls under frequency constraints are either normal or

abnormal.

§1. Introduction

As control engineers we encounter various types of constraints in control systems for

a plethora of reasons: limitations on the magnitude of actuator outputs are almost omni-

present; bounds on the state variables of, e.g., robotic arms and chemical plants, should be

ensured for safety considerations; satellites that image particular geographical areas of the

earth must orient themselves and point at precise coordinates at pre-specified instants of

time, etc. While constrained control problems are difficult in general, and this is evidenced

by the fact that the literature on unconstrained control problems by far outweighs that on

constrained problems, control synthesis techniques that account for all possible constraints

are bootstrapped to result in greater accuracy due to increased awareness of the actuator

limitations and foresight. The burgeoning demand for execution of precise control tasks

necessitates the development of tools that permit the inclusion of such constraints at the

synthesis stage, and in this respect, inclusion of control frequency constraints is a natural

direction to pursue.

Optimal control theory provides us with a set of sophisticated and powerful tools to design

controllers under an array of constraints, and also to boost performance by taking account

of such constraints on the states and the control actions in time domain. These techniques

typically rely on the assumption that the values attained by the candidate control functions
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can be changed arbitrarily quickly over time, but such an assumption rarely holds true in

practice. In particular, inertial actuators such as robotic arms, rotating machines, etc., cannot

faithfully execute control commands that demand very quick transitions between different

control values. Such issues naturally lead to lacunae between the control commands

received at the actuators and those that are faithfully executed, thereby contributing to loss

of precision and the emergence of differences between desired and observed outputs.

This article addresses a class of optimal control problems that includes constraints on

the frequency of admissible control functions in addition to state and control constraints.

More specifically, we address optimal control problems for discrete-time nonlinear smooth

control systems with the following three important classes of constraints:

(I) constraints on the states at each time instant,

(II) constraints on the control magnitudes at each time instant, and

(III) constraints on the frequency of the control functions.

Constraints on the states (as in (I)) are desirable and/or necessary in most applications; the

class of constraints treated here are capable of describing a general class of path-planning

objectives, and subsumes both ballistic and servomechanism reachability problems. Con-

straints on the control magnitudes (as in (II)) are typically simpler to deal with compared to

state constraints; in particular, the two general techniques for synthesis of optimal controls,

namely, dynamic programming and the maximum principle [Lib12], are capable of dealing

with these constraints with relative ease.

Constraints on the control frequencies (as in (III)), in contrast to the other two types of

constraints, are rarely encountered in the theory despite the fact that control theory started

off with the so-called frequency-domain techniques. A well-known and widely employed

control strategy that treats frequency-domainproperties of control functions is the so-called

H∞ control [ZDG95], but these techniques can neither treat pre-specified hard bounds on

the frequency components in the control signals, nor are they capable of admitting state or

control constraints at the synthesis stage. Frequency constraints can be indirectly addressed

in H∞ control through penalization of appropriate H∞ norms, but such designs rely on

heuristics and many trial-and-error steps. To the best of our knowledge, except for a US

patent [SB95] where frequency constraints were imposed specifically to avoid a resonance

mode in the arm of the read head positioner in a disk drive, there has been no systematic

investigation into control with mixed frequency and time-domain constraints.

The celebrated Pontryagin maximum principle [Bol78], a central tool in optimal control

theory, provides first order necessary conditions for optimal controls. These necessary

conditions, or equivalently, characterizations of optimal controls, serve to narrow the

search space over which algorithms can play and extract optimal controls. The discrete time

Pontryaginmaximum principle was developed primarily by Boltyanskii (see [Bol75, Bol78]

and the references therein), with several early refinements reported in [DM65, DP75,

Dub78], and perhaps the most recent extensions appearing in [BT16]; see [Psh71] for a

careful discussion about the differences between continuous and discrete time versions of

the Pontryagin maximum principle. While these versions of the Pontryagin maximum

principle are capable of handling constraints of the form (I) and (II), the new ingredient

in this article is the set of frequency constraints (III). We formulate frequency constraints

on the control functions in terms of the active support set — the set on which the Fourier

transform of the control function is allowed to take non-zero values. We engineer band-

limited controls via appropriately defining the active sets; the constraints may be selected
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based on specific features or physics of the actuators, thereby ensuring faithful execution of

the control commands. Our main result — Theorem 3.1 in §3 — is a Pontryagin maximum

principle for discrete-time nonlinear control systems with smooth data under all the three

types of constraints (I), (II), and (III).

This maximum principle yields a well-defined two-point boundaryvalue problem, which

may serve as a starting point for algorithms such as shooting techniques that typically employ

variants of Newton methods, to arrive at optimal control functions. If a solution of the two-

point boundary value problem is found, feasibility of the original optimal control problem

is automatically established. However, since the maximum principle provides (local)

necessary conditions for optimality, not all solutions may achieve the minimum cost, and

further analysis may be needed to select the cost-minimizing controls. A number of special

cases of the main result, dealing with control-affine nonlinear systems, time-varying linear

systems, etc., are provided in §3, and the important special case of optimal control of linear

time-invariant control systems under quadratic costs and frequency constraints is treated

in §4. Two different proofs of Theorem 3.1 are provided in Appendix C, and Appendix D

contains the proofs of the various special cases. The necessary prerequisites for the proofs

are reviewed in Appendices A-B.

Notation. We employ standard notation: N denotes the non-negative integers, N
∗ the

positive integers, R the real numbers, and C the complex numbers. We denote by � the

standard partial order on the set Rn induced by the non-negative orthant: for a, b ∈ R
n,

a � b iff ai 6 bi for every i = 1, . . . , n; we sometimes write b � a to express the same

statement. For us i ≔
√
−1 is the unit complex number, In is the n × n identity matrix.

The vector space R
n is always assumed to be equipped with the standard inner product

〈v, v ′〉 ≔ v⊤v ′ for every v, v ′ ∈ R
n. In the theorem statements we use

(
R

n
)⋆

to denote the

dual space of Rn for the sake of precision; of course,
(
R

n
)⋆

is isomorphic to R
n in view of

the Riesz representation theorem.

§2. Problem Setup

Consider a discrete time control system described by

(2.1) xt+1 = ft (xt, ut ) for t = 0, . . . ,T − 1,

where xt ∈ R
d and ut ∈ R

m and ( ft )T−1
t=0

is a family of maps such thatRd ×R
m ∋ (ξ, µ) 7−→

fs(ξ, µ) ∈ R
d is continuously differentiable for each s = 0, . . . ,T − 1.

Let u(k) ≔ (u(k)t )T−1
t=0

denote the k th control sequence, and û(k) denote its discrete Fourier

transform (DFT). The relationship between û(k) and u(k) is given by [SS03, Chapter 7]:

(2.2)
û(k) ≔ (û(k)ξ )T−1

ξ=0 =

(T−1∑
t=0

u
(k)
t e−i2πξt/T

)T−1

ξ=0

for ξ = 0, . . . ,T − 1

and k = 1, . . . ,m.
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In the context of (2.1), the objective of this article is to characterize solutions of the

finite horizon constrained optimal control problem:

(2.3)

minimize
(ut )T−1

t=0

T−1∑
t=0

ct (xt, ut )

subject to




dynamics (2.1),

state constraints at each stage t = 0, . . . ,T,

control constraints at each stage t = 0, . . . ,T − 1,

constraints on frequency components of the control sequence.

where T ∈ N
∗ is fixed, and R

d ×R
m ∋ (ξ, µ) 7−→ ct (ξ, µ) ∈ R is a continuously differenti-

able function representing the stage cost at time t, and t = 0, . . . ,T − 1.

The three classes of constraints considered in the optimal control problem (2.3) are as

follows:

(i) Control constraints: Ut ⊂ R
m is a given non-empty set for each t = 0, . . . ,T . We

impose the constraints that the control action ut at stage t must lie in Ut :

(2.4) ut ∈ Ut for t = 0, . . . ,T − 1.

(ii) State constraints: Let St ⊂ R
d be a given non-empty set for each t = 0, . . . ,T . We

shall restrict the trajectory of the states (xt )Tt=0
to the tubeS0×S1×· · ·×ST ⊂ (Rd)T+1;

(2.5) xt ∈ St for t = 0, . . . ,T .

(iii) Frequency constraints: For a control sequence u(k) we define F
(k) ⊂ C

T to be the set

of permissible frequency components û(k) = (û(k)ξ )T−1
ξ=0

. The set F (k) is constructed

such that it allows non-zero components only in the selected frequencies. For a vector

v ∈ C
T we define its support as

supp(v) ≔
{
i ∈ {1, . . . ,T }

�� vi , 0
}
.

We stipulate that

(2.6) û(k) ∈ F
(k)
≔

{
v ∈ C

T
�� supp(v) ⊂ W (k)},

where W (k) ⊂ {1, . . . ,T } represents the support for the selected frequencies in the k th

control sequence. The sets
(
W (k))m

k=1
are assumed to be given as part of the problem

specification.

The standard DFT relation in (2.2) can be written in a compact form as:

(2.7) û(k) = Fu(k) for k = 1, . . . ,m,

where

u(k) ≔
©
«

u
(k)
0
...

u
(k)
T−1

ª®®®
¬
∈ R

T, û(k) ≔
©
«

û(k)0
...

û(k)T−1

ª®®®
¬
∈ C

T, and

F ≔
1
√

T

©
«

1 1 . . . 1

1 ω . . . ωT−1

...
...

. . .
...

1 ωT−1 . . . ω(T−1)(T−1)

ª®®®®¬
∈ C

T×T,
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and ω ≔ e−i2π/T is a primitive T -th root of unity. In order to visualize the frequency

components in all the control inputs, we represent the combined control profile in the

following (stacked) fashion:

(2.8) U ≔
©
«

u(1)

...

u(m)

ª®®¬
∈ R

mT and Û ≔

©
«

û(1)

...

û(m)

ª®®®¬
∈ C

mT .

In terms of the representations (2.8), the relation (2.7) can be written in a compact way as:

(2.9) Û = FU, with F ≔ blkdiag(F, . . . , F) ∈ C
mT×mT .

Since U is a vector with real entries, the real and imaginary parts of the frequency

components can be separated by considering the real and imaginary parts in the matrix F
individually. To impose the given frequency constraints and yet work with real numbers

only, we separate out the real and imaginary parts. We define a band-stop filter BS ≔ SÛ,

where S ≔ blkdiag(S(1), . . . ,S(m)), with each of the S(k) formed by the rows eξ of IT for

ξ < W (k). The constraints (2.6) on the frequency components of the control now translate

to:

(2.10) SÛ = 0 ⇔
(
SFreal

SFimag

)
U = 0.

Define F ≔

(
SFreal

SFimag

)
and let D ∈ R

mT×mT denote the matrix that maps the vector U

to
(
u0 . . . uT−1

)⊤
:

(2.11) D
©
«

u(1)

...

u(m)

ª®®
¬
=

©
«

u0

...

uT−1

ª®®
¬

Observe that D is non-singular since the transformation representing D is a permutation

matrix, and in particular is a bijection. Then we can write the frequency constraints in (2.6)

as

F D−1
©«

u0

...

uT−1

ª®®
¬
= 0.

Eliminating, if necessary, the zero rows of the matrix F , our constraint takes the form

(2.12)

T−1∑
t=0

F̃tut = 0.

where F̃t ∈ R
ℓ×m represents the corresponding columns of F D−1 that multiply ut . In

other words, there exists a linear map F : mT −→ mT that describes the constraints on the

frequency spectrum of the control trajectory (ut )T−1
t=0

as the following equality constraint:

(2.13) F(u0, . . . , uT−1) =
T−1∑
t=0

F̃tut = 0 for
(
F̃t

)T−1

t=0
⊂ R

ℓ×mT as in (2.12).

We shall refer to F as our frequency constraint map.
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The abstract optimal control problem (2.3) can now be formally written as:

(2.14)

minimize
(ut )T−1

t=0

T−1∑
t=0

ct (xt, ut )

subject to




dynamics (2.1),

xt ∈ St for t = 0, . . . ,T,

ut ∈ Ut for t = 0, . . . ,T − 1,

F(u0, . . . , uT−1) = 0,

with the following data:

(2.14-a) T ∈ N
∗ is fixed;

(2.14-b) R
d × R

m ∋ (ξ, µ) 7−→ ct (ξ, µ) ∈ R is a continuosly differentiable function for

each t = 0, . . . ,T − 1;

(2.14-c) St is a subset of Rd for each t;

(2.14-d) Ut is a subset of Rm for each t;

(2.14-e) F : RmT −→ R
ℓ is a given linear map on the control trajectory u0, . . . , uT−1 for

some ℓ ∈ N
∗.

An optimal solution (u∗t )T−1
t=0

of (2.14) is a sequence in
∏T−1

i=0 Ui , and it generates its

correspondingoptimal state trajectory (x∗t )Tt=0
according to (2.1). The pair

(
(x∗t )Tt=0

, (u∗t )T−1
t=0

)
is called an optimal state-action trajectory.

Remark 2.1. Constraints on the control frequencies cannot in general be translated into

equivalent constraints on the control actions and/or the states of the original system. Had

that been possible, the standard PMP would have sufficed. To see this negative assertion,

consider the simple case that the system (2.1) is linear and time-invariant, i.e., ft (ξ, µ) =
Aξ + Bµ for all t and for some fixed A ∈ R

d×d and B ∈ R
d×m. Assume further that

the frequency constraint map F is a bijection. Even then the constraint on the control

actions F(u0, . . . , uT−1) = 0 cannot in general be transformed into equivalent constraints

on the states of the form (xt )Tt=1
∈ S ⊂ R

dT . Indeed, when T > d, constraints on the

control actions can only be contained in constraints of the form (xt )Tt=1
∈ S ⊂ R

dT since

the transformation from the control trajectory (ut)T−1
t=0

to state trajectory (xt )Tt=1
is not a

bijection. A fresh investigation is, therefore, needed. The standard PMP [Bol75, Theorem

20] deals with constraints on the states and control actions that are expressed pointwise in

time. Since constraints on the frequency components of the control, by definition, bring in

dependence among the control actions at each time, the standard Hamiltonian maximization

condition [Bol75, Theorem 20 (C)] cannot be used as is.

§3. Main Result

The following theorem provides first order necessary conditions for optimal solutions of

(2.14); it is the main result of this article.

Theorem 3.1 (Pontryagin maximum principle under state-action-frequency constraints).

Let
(
(x∗t )Tt=0

, (u∗t )T−1
t=0

)
be an optimal state-action trajectory for (2.14) with F as defined in

(2.13). Define the Hamiltonian

(3.1)
R ×

(
R

ℓ
)⋆ ×

(
R

d
)⋆ × N ×R

d ×R
m ∋ (ν, ϑ, ζ, s, ξ, µ) 7−→

Hν,ϑ(ζ, s, ξ, µ) ≔ 〈ζ, fs(ξ, µ)〉 − νcs(ξ, µ) −
〈
ϑ, F̃sµ

〉
∈ R.
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Then there exist

◦ a trajectory
(
ηf
t

)T−1

t=0
⊂

(
R

d
)⋆

,

◦ a sequence
(
ηx
t

)T
t=0

⊂
(
R

d
)⋆

, and

◦ a pair
(
ηC, η̂u

)
∈ R ×

(
R

ℓ
)⋆

,

satisfying the following conditions:

(PMP-i) non-negativity condition

ηC
> 0;

(PMP-ii) non-triviality condition

the adjoint trajectory
(
ηf
t

)T−1

t=0
and the pair

(
ηC, η̂u

)
do not simultan-

eously vanish;

(PMP-iii) state and adjoint system dynamics

x∗t+1 =
∂

∂ζ
HηC,η̂u (

ηf
t, t, x∗t , u

∗
t

)
for t = 0, . . . ,T − 1,

ηf
t−1 =

∂

∂ξ
HηC,η̂u (

ηf
t, t, x∗t , u

∗
t

)
− ηx

t for t = 1, . . . ,T − 1,

where ηx
t lies in the dual cone of a tent qx

t (x∗t ) of St at x∗t ;

(PMP-iv) transversality conditions

∂

∂ξ
HηC,η̂u (

ηf
0, 0, x∗0, u

∗
0

)
− ηx

0 = 0 and ηf
T−1 = −ηx

T ,

where ηx
0

lies in the dual cone of a tent qx
0
(x∗

0
) of S0 at x∗

0
and ηx

T
lies in the dual

cone of a tent qx
T
(x∗

T
) of ST at x∗

T
;

(PMP-v) Hamiltonian maximization condition, pointwise in time,〈
∂

∂µ
HηC,η̂u (

ηf
t, t, x∗t , u

∗
t

)
, ũt

〉
6 0 whenever u∗t + ũt ∈ qu

t (u∗t ),

where qu
t (u∗t ) is a local tent at u∗t of the set Ut of admissible actions;

(PMP-vi) frequency constraints

F
(
u∗0, . . . , u

∗
T−1

)
= 0.

We present a complete proof of Theorem 3.1 in Appendix §C. The rest of this section

is devoted to a scrutiny of various facets of Theorem 3.1 over a sequence of remarks, and

providing a set of corollaries catering to various special cases.

Remark 3.1. It is readily observed that since the scalar ηC and the vectors ηf
t, η

x
t , η̂

u enter lin-

early in the Hamiltonian function HηC,η̂u
, the non-negativity condition (PMP-i) on ηC can be

equivalently posed as the condition thatηC ∈ {0, 1}. A quintuple
(
ηC, η̂u,

(
ηf
t

)T−1

t=0
, (x∗t )Tt=0

, (u∗t )T−1
t=0

)
that satisfies the PMP is called an extremal lift of the optimal state-action trajectory(
(x∗t )Tt=0

, (u∗t )T−1
t=0

)
. Extremal lifts with ηC

= 1 are called normal extremals and the ones

with ηC
= 0 are caled abnormal extremals

Remark 3.2. The term
〈
η̂u, F̃t µ

〉
in the Hamiltonian HηC,η̂u

is an additional term compared

to the usual Hamiltonian formulation and corresponds to the constraints on the frequency

components of the control sequence. Observe that since this term does not enter the

conditions (PMP-i), (PMP-iii) and (PMP-iv), the state and adjoint dynamics are unaffected.

The element η̂u is a new entity in Theorem 3.1 compared toth e classical PMP in [Bol78].
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Remark 3.3. From the definition of the Hamiltonian function HηC,η̂u
we see that

∂

∂ζ
HηC,η̂u (

ηf
t, t, x∗t , u

∗
t

)
= ft (x∗t , u∗t ).

In other words, the state dynamics prescribed in (PMP-iii) simply states that the optimal

state-action trajectory
(
(x∗t )Tt=0

, (u∗t )T−1
t=0

)
satisfies the system dynamics (2.1).

Remark 3.4. The tents qx
t (x∗t ) and qu

t (u∗t ) mentioned in (PMP-iii) and (PMP-v) are linear

approximations of the sets St and Ut locally at x∗t and u∗t respectively. Precise definitions of

these tents will be given in Appendix §B. Intuitively, a tent (to a set at a point) consists of a

set of directions along which it is possible to enter the set from that point. By construction

a tent to a set at a point is a convex cone. The dual cone of a cone C is the convex cone

that consists of all the directions along which one can most efficiently exit/leave the cone

C. The vectors ηx
t lying in dual cones of a tent qx

t (x∗t ) of St at x∗t represent the directions

along which one can leave the set St most efficiently from x∗t . A detailed exposition of dual

cones and tents is given in Appendix §A and Appendix §B respectively.

Remark 3.5. In simple terms, the condition (PMP-v) means that along the directions

entering the setUt from u∗t , the Hamiltonian HηC,η̂u
does not increase locally. We have used

the name "Hamiltonian maximization condition" for this condition; although not entirely

apt, it is borrowed from the continuous time counterpart of the Pontryagin maximum

principle where the optimal control at time t maximizes the Hamiltonian at that instant

t over the admissible action set. At the level of generality of Theorem 3.1, an actual

Hamiltonian maximization does not hold. However, such a maximization condition does

indeed materialize under additional structural assumptions on the sets of admissible actions,

as described in Corollary 3.2.

Remark 3.6. The conditions (PMP-i) - (PMP-vi) together constitute a well-defined two

point boundary value problem with (PMP-iv) giving the entire set of boundary conditions.

Newton-lie methods may be employed to solve this (algebraic) two point boundary value

problem; see, eg., [Tré12, §2.4] for an illuminating discussion in the context of continuous-

time problems. Solution techniques for two point boundary value problems is an active

active field of research.

Remark 3.7. Uncertainty principles in time-frequency analysis impose fundamental re-

strictions on the classes of control magnitude and frequency constraints. For instance, the

Donoho-Stark uncertainty principle [DS89] shows that every non-zero C-valued function

g :
{
0, 1, . . . , N − 1

}
7−→ C must satisfy supp(g) + supp(ĝ) > 2

√
|N |.1 Applied to the

control trajectories
(
u(k)

)m
k=1

, one immediately finds that imposing certain types of control

magnitude and frequency constraints simultaneously may lead to empty feasible sets of

controls irrespective of the dynamics and other constraints. In other words, sufficient care

needs to be excercised to ensure a well-posed optimal control problem.

We now describe a few special cases of Theorem 3.1 that are fine-tuned to specific

classes of control systems.

Consider a discrete-time control-affine system described by:

(3.2) xt+1 = ft (xt ) + gt (xt ) ut for t = 0, . . . ,T − 1,

1Further refinements due to Biro-Meshulam-Tao may be found in [Tao05]; see also [MW12] for a recent

generalization.
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where xt ∈ R
d and ut ∈ R

m, and ( ft )T−1
t=0

and (gt )T−1
t=0

are two families of maps such that

R
d ∋ ξ 7−→ fs(ξ) ∈ R

d and R
d ∋ ξ 7−→ gs(ξ) ∈ R

d×m are continuously differentiable

for each s = 0, . . . ,T − 1. Consider the optimal control problem (2.14) with the dynamics

given by (3.2):

(3.3)

minimize
(ut )T−1

t=0

T−1∑
t=0

ct (xt, ut )

subject to




dynamics (3.2),

xt ∈ St for t = 0, . . . ,T,

ut ∈ Ut for t = 0, . . . ,T − 1,

F(u0, . . . , uT−1) = 0,

ct (ξ, ·) : Ut −→ R is convex whenever ξ ∈ R
d, t = 0, . . . ,T − 1,

Ut convex, compact, and non-empty for each t = 0, . . . ,T − 1.

Corollary 3.2 (PMP for control-affine systems). Let
(
(x∗t )Tt=0

, (u∗t )T−1
t=0

)
be an optimal state-

action trajectory for (3.3) with F as defined in (2.13). Define the Hamiltonian

(3.4)
R ×

(
R

ℓ
)⋆ ×

(
R

d
)⋆ × N ×R

d × R
m ∋ (ν, ϑ, ζ, s, ξ, µ) 7−→

Hν,ϑ(ζ, s, ξ, µ) ≔ 〈ζ, fs(ξ) + gs(ξ) µ〉 − νcs(ξ, µ) −
〈
ϑ, F̃sµ

〉
∈ R.

Then there exist

◦ a trajectory
(
ηf
t

)T−1

t=0
⊂

(
R

d
)⋆

,

◦ a sequence
(
ηx
t

)T
t=0

⊂
(
R

d
)⋆

, and

◦ a pair
(
ηC, η̂u

)
∈ R ×

(
R

ℓ
)⋆

,

satisfying the following conditions:

(AFF-i) non-negativity condition

ηC
> 0;

(AFF-ii) non-triviality condition

the adjoint trajectory
(
ηf
t

)T−1

t=0
and the pair

(
ηC, η̂u

)
do not simultan-

eously vanish;

(AFF-iii) state and adjoint system dynamics

x∗t+1 =
∂

∂ζ
HηC,η̂u (

ηf
t, t, x∗t , u

∗
t

)
for t = 0, . . . ,T − 1,

ηf
t−1 =

∂

∂ξ
HηC,η̂u (

ηf
t, t, x∗t , u

∗
t

)
− ηx

t for t = 1, . . . ,T − 1,

where ηx
t ∈

(
R

d
)⋆

lies in the dual cone of a tent qx
t (x∗t ) of St at x∗t ;

(AFF-iv) transversality conditions

∂

∂ξ
HηC,η̂u (

ηf
0, 0, x∗0, u

∗
0

)
− ηx

0 = 0 and ηf
T−1 = −ηx

T ,

where ηx
0

lies in the dual cone of a tent qx
0
(x∗

0
) of S0 at x∗

0
and ηx

T
lies in the dual

cone of a tent qx
T
(x∗

T
) of ST at x∗

T
;

(AFF-v) Hamiltonian maximization condition, pointwise in time,

HηC,η̂u (
ηf
t, t, x∗t , u

∗
t

)
= max

µ∈Ut

HηC,η̂u (
ηf
t, t, x∗t , µ

)
for t = 0, . . . ,T − 1;
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(AFF-vi) frequency constraints

F
(
u∗0, . . . , u

∗
T−1

)
= 0.

Corollary 3.3. Let
(
(x∗t )Tt=0

, (u∗t )T−1
t=0

)
be an optimal state-action trajectory for (3.3) with

F as defined in (2.13). Moreover, suppose that in the optimal control problem (3.3), the

underlying system is linear, state constraints are absent and the end points x0 and xT are

fixed; i.e.,

(3.5) ft (ξ, µ) = Atξ + Bt µ,

and

S0 ≔
{

xini

}
, ST ≔

{
xfin

}
,

St ≔ R
d for t = 1, . . . ,T − 1.

With the Hamiltonian as defined in (3.4), the conditions (AFF-i), (AFF-ii), (AFF-v) and

(AFF-vi) hold, the condition (AFF-iv) is trivially satisfied, and the adjoint dynamics in

(AFF-iii) is given by

(3.6) ηf
t−1 = A⊤

t η
f
t − ηC ∂

∂ξ
ct (x∗t , u∗t ) for t = 1, . . . ,T − 1.

§4. Linear quadratic optimal control problems

In this section we discuss three special cases of linear quadratic (LQ) optimal control

problems, all under unconstrained control actions. In §4.1 we address the LQ problem

with initial and final state constraints and demonstrate that all extremals are normal; this

material is standard, but we include it only for the sake of easy reference. §4.2 deals with

a variation of the LQ state-transfer problem where frequency components of the control

sequence are constrained, and we provide conditions for normality of LQ extremals under

frequency constraints.

§4.1. Classical LQ problem. Consider a linear time-invariant incarnation of (2.1):

(4.1) xt+1 = Axt + But, t = 0, . . . ,T − 1,

where xt ∈ R
d is the state, ut ∈ R

m is the control input at time t, and the system matrix

A ∈ R
d×d and the control matrix B ∈ R

m×m are known. Consider the following finite

horizon LQ problem with unconstrained control actions for the system (4.1) given an initial

state x0 = x:

(4.2)

minimize
(u)T−1

t=0

T−1∑
t=0

(
1

2
〈xt,Qxt 〉 +

1

2
〈ut, Rut〉

)

subject to

{
controlled dynamics (4.1),

x0 = x,

where R ∈ R
m×m is a given positive definite matrix and Q ∈ R

d×d is a given positive

semi-definite matrix.

The solution of the LQ problem (4.2) can be obtained by using Bellman dynamic

programming (DP) principle and algorithm [Ber95, Chapter 1]. This is sketched below in

(4.3), and it gives sufficient conditions for optimality of a control sequence (u∗t )T−1
t=0

: The
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DP algorithm gives us, with R
d ∋ x 7−→ Jt (x) ∈ R denoting the optimal cost-to-go at stage

t,

(4.3)

JT (x) ≔ 0 for x ∈ R
d and

Jt (x) =
1

2
〈x,Qx〉 + min

u∈Rm

(
1

2
〈u, Ru〉 + Jt+1(Ax + Bu)

)
for t = 0, . . . ,T − 1

The fact that the minimum in (4.3) is attained follows from the assumption that R is positive

definite. The following solution of (4.3) can be derived readily: for t = T − 1, . . . , 0,

(4.4)




PT = 0 ∈ R
d×d,

Kt = −(R + B⊤Pt+1B)−1B⊤Pt+1A,

Pt = (A + BKt )⊤Pt+1(A + BKt ) + K⊤
t RKt +Q,

u∗t = Kt xt .

It is worth noting that the feedback matrix Kt in (4.4) is independent of any state information,

and depends only on how much longer it takes to reach the final stage and the cost-per-stage

matrices Q and R.

We employ the classical PMP [Bol75, Theorem 16] to (4.2): The Hamiltonian function

for (4.2) is

R
d⋆ × N ×R

d ×R
m ∋ (ζ, s, ξ, µ) 7−→

Hν(ζ, s, ξ, µ) ≔ 〈ζ, Aξ + Bµ〉 − ν
(
1

2
〈ξ,Qξ〉 + 1

2
〈µ, Rµ〉

)
for ν ∈

{
0, 1

}
.

If
(
(x∗t )Tt=0

, (u∗t )T−1
t=0

)
is an optimal state-action trajectory, then there exist adjoint sequence(

ηf
t

)T−1

t=0
and ηC ∈

{
0, 1

}
, such that ηC and

(
ηf
t

)T−1

t=0
are not simultaneously zero, and the

necessary conditions of optimality of the trajectory
(
(x∗t )Tt=0

, (u∗t )T−1
t=0

)
given by the PMP can

be written as

(i) the adjoint and state dynamics (PMP-iii):

(4.5)
x∗t+1 = Ax∗t + Bu∗t , for t = 0, . . . ,T − 1,

ηf
t−1 = A⊤ηf

t − ηCQx∗t , for t = 1, . . . ,T − 1;

(ii) the Hamiltonian maximization condition (PMP-v): At each stage t,

(4.6)
∂

∂µ
HηC (ηf

t, t, x∗t , u
∗
t ) = 0 ⇒ ηCRu∗t = B⊤ηf

t ;

(iii) boundary conditions for the recursive equations are given by the transversality condi-

tions (PMP-iv):

x∗0 = x and ηf
T−1 = 0.

If ηC
= 0, the adjoint dynamics in (4.5) reduces to

ηf
t−1 = A⊤ηf

t for t = 1, . . . ,T − 1.

Since ηf
T−1
= 0, this would imply that ηf

t = 0 for all t = 0, . . . ,T −1. In other words, ηC and(
ηf
t

)T−1

t=0
would simultaneously vanish, contradicting the non-triviality condition. Hence,

there are no abnormal solutions to the PMP in this case. Substituting ηC
= 1, we get the
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following set of equations characterising the optimal state-action trajectory.

(4.7)




x∗
t+1
= Ax∗t + Bu∗t for t = 0, . . . ,T − 1,

ηf
t−1
= A⊤ηf

t − Qx∗t for t = 1, . . . ,T − 1,

u∗t = R−1B⊤ηf
t for t = 0, . . . ,T − 1,

x∗
0
= x, ηf

T−1
= 0.

Observe that (4.7) also characterises the optimal control sequence (u∗t )T−1
t=0

as a linear

feedback of the states, which matches with the solution obtained by solving by dynamic

programming as exposed in [Ber95, Chapter 4].

For a certain class of LQ optimal control problems in the absence of state and control

constraints, all the candidates for optimality are characterised by the PMP with ηC
= 1, i.e.,

normal extremals.2 One such example is presented next. Recall that a linear time-invariant

system (4.1) is controllable if rank
(
B . . . Ad−1B

)
= d.

Consider a variation of the LQ problem (4.2) where the goal is to reach a specified final

state x̂ ∈ R
d at time T :

(4.8)

minimize
(u)T−1

t=0

T−1∑
t=0

(
1

2
〈xt,Qxt 〉 +

1

2
〈ut, Rut〉

)

subject to

{
controlled dynamics (4.1),

x0 = x, xT = x̂.

Proposition 4.1. If the underlying system (A, B) in (4.8) is controllable and T > d, then

all the optimal state-action trajectories are normal.

§4.2. Normality of LQ state transfer under frequency constraints. Let us consider a

third variation of the LQ optimal control problem (4.2) with constraints on the frequency

components of the control sequence but no state and control constraints. We assume that

our frequency constraints stipulate that certain frequency components are set to 0. We

know (cf. §2, (2.2)) that there are T frequency components in a control sequence of length

T , and let us select p of these to be zero. Recall from (2.12) that such constraints can be

written as
T−1∑
t=0

F̃tut = 0,

where F̃t are defined appropriately corresponding to the p frequencies chosen to be elim-

inated as discussed in §2.

Consider

(4.9)

minimize
(u)T−1

t=0

T−1∑
t=0

(
1

2
〈xt,Qxt 〉 +

1

2
〈ut, Rut〉

)

subject to




controlled dynamics (4.1),∑T−1
t=0 F̃tut = 0,

x0 = x, xT = x̂.

2See Remark 3.1.
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Applying the PMP (cf. Theorem 3.1) to get the necessary conditions of optimality of(
(x∗t )Tt=0

, (u∗t )T−1
t=0

)
, we arrive at the following conditions:

There exist ηC ∈
{
0, 1

}
, η̂u ∈ R

ℓ , a sequence of adjoint variables
(
ηf
t

)T−1

t=0
, such that

ηC, η̂u, and
(
ηf
t

)T−1

t=0
are not simultaneously zero, and

(4.10)




x∗
t+1
= Ax∗t + Bu∗t for t = 0, . . . ,T − 1,

ηf
t−1
= A⊤ηf

t − ηCQx∗t for t = 1, . . . ,T − 1,

ηCRu∗t = B⊤ηf
t − F̃⊤

t η̂
u for t = 0, . . . ,T − 1,∑T−1

t=0 F̃tu
∗
t = 0,

x∗
0
= x, and x∗

T
= x̂.

The adjoint variables are free at the boundary, i.e., ηf
0

and ηf
T−1

are arbitrary.

Proposition 4.2. If the underlying system (A, B) in (4.9) is controllable, T > d, and the

number of frequency constraints ℓ satisfies ℓ + d > mT , then all the optimal state-action

trajectories are abnormal. Conversely, all the optimal state-action trajectories are normal

when the reachability matrix
(
B . . . AT−1B

)
and the frequency constraints matrix F D−1

have independent rows.

Appendix A. Convex Cones and Separability

This section deals with defining the basic concepts regarding convex sets used later in

developing the necessary conditions for optimality.

◦ Let n be a positive integer. Recall that a non-empty subset K ⊂ R
n is a cone if for every

y ∈ K and α > 0 we have αy ∈ K . In particular, 0 ∈ R
n belongs to K . A non-empty

subset C ⊂ R
n is convex if for every y, y ′ ∈ C and θ ∈ [0, 1] we have (1− θ)y+ θy ′ ∈ C.

◦ A hyperplane Γ in R
n is an (n − 1)-dimensional affine subset of Rn. It can be viewed as

the level set of a nontrivial linear function p : Rn −→ R. If p is given by p(x) = 〈a, x〉
for some a(, 0) ∈ R

n, then

Γ ≔
{
x ∈ R

n
�� 〈a, x〉 = α

}
.

◦ We say that a family {K0,K1, . . . ,Ks} of convex cones in R
n is separable if there

exists a hyperplane Γ and some i ∈ {0, . . . , s} such that the cones Ki and
⋂

j,i Kj

are on two sides of Γ; formally, there exists c ∈ R
n and i ∈ {0, 1, . . . , s} such that

Ki ⊂ {y ∈ R
n | 〈c, y〉 6 0} and

⋂
j,i Kj ⊂ {y ∈ R

n | 〈c, y〉 > 0}. 3
◦ Let y ∈ R

n. A set K ⊂ R
n is a cone with vertex y if it is expressible as y + K ′ for some

cone K ′ ⊂ R
n. In particular, any cone is a cone with vertex 0 ∈ R

n.

◦ Let Ω be a nonempty set in R
n. By affΩ we denote the set of all affine combinations of

points in Ω. That is,

affΩ =

{ k∑
i=1

θi xi

����
k∑
i=1

θi = 1, xi ∈ Ω for i = 1, . . . , k, and k ∈ N
∗
}

In other words, affΩ is also the smallest affine set containing Ω. The relative interior

riΩ of Ω denotes the interior of Ω relative to the affine space affΩ.

3 More information on separability can be obtained in [Gül10]
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◦ Let M be a convex set and x0 ∈ M. The union of all the rays emanating from x0 and

passing through points of M other than x0 is a convex cone with vertex at x0. The closure

of this cone is called the supporting cone of M at x0.

◦ Let K ⊂ R
n be a convex cone with vertex at x0. By K◦ we denote its polar (or dual)

cone defined by

(A.1) K◦
≔

{
y ∈

(
R

n
)⋆ �� 〈y, x − x0〉 6 0 for all x ∈ K

}
.

It is clear that K◦ is a closed convex cone with vertex at x0 in view of the fact that it is

an intersection of closed half-spaces:

K◦
=

⋂
y∈K

{
z ∈

(
R

n
)⋆ �� 〈z, y − x0〉 6 0

}
.

We adopt the contemporary convention of polarity as given in [Cla13, p. 21]. Our

polars are, therefore, negatives of the polars defined in [Bol75, p. 8]; consequently and

in particular, ψ0 in our Theorem B.6 is non-negative while ψ0 in [Bol75, Theorem 16] is

non-positive.

We need a few results from convex analysis, which we quote from various sources below

and for the sake of completeness we provide most of their proofs.

Theorem A.1 ([Bol75, Theorem 4 on p. 8]). Let K1, . . . Ks be closed convex cones in R
n

with vertex at x0. Then ( s⋂
i=1

Ki

)◦
= conv

( s⋃
i=1

Ki
◦
)
.

Here S denotes the closure of the set S.

Proof. Let K ≔
⋂s

i=1 Ki . If η ∈ K◦, then for every x ∈ K we have

(A.2) 〈η, x − x0〉 6 0.

In particular, the relation (A.2) holds for x ∈ Ki for each i = 1, . . . , s. This implies that

η ∈ Ki
◦ for i = 1, . . . , s. Thus,

η ∈
s⋂

i=1

Ki
◦ ⊂ conv

( s⋃
i=1

Ki
◦
)
⊂ conv

( s⋃
i=1

Ki
◦
)
.

This shows that
(⋂s

i=1 Ki

)◦ ⊂ conv
(⋃s

i=1 Ki
◦) .

Now let us prove the converse inclusion. Let η ∈ conv
(⋃s

i=1 Ki
◦). Then there exist

vectors η1, . . . , ηk ∈ ⋃s
i=1 Ki

◦ such that

η = η1 + · · · + ηk .
Since ηi ∈

⋃s
i=1 Ki

◦, for every x ∈ K we have 〈ηi, x − x0〉 6 0 for i = 1, . . . , s. Thus,

〈η, x − x0〉 = 〈η1, x − x0〉 + · · · + 〈ηs, x − x0〉 6 0.

Therefore, conv
(⋃s

i=1 Ki
◦) ⊂ (⋂s

i=1 Ki

)◦
. Since the dual cone

(⋂s
i=1 Ki

)◦
is a closed convex

cone, the closure conv
(⋃s

i=1 Ki
◦) is also a subset of

(⋂s
i=1 Ki

)◦
. �

Theorem A.2 ([Bol75, Theorem 5 on p. 8]). Let Ω1, . . . ,Ωs be convex sets in R
n such that⋂s

i=1 riΩi , �. Then

(i)
⋂s

i=1 Ωi =
⋂s

i=1Ωi ,

(ii) aff
(⋂s

i=1 Ωi

)
=

⋂s
i=1 affΩi ,
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(iii) ri
(⋂s

i=1 Ωi

)
=

⋂s
i=1 riΩi .

Proof. Let Ω ≔
⋂s

i=1 Ωi .

(i) If x ∈ Ω, then there exists a sequence xk ∈ Ω such that xk −→ x. But,

xk ∈ Ω⇔ xk ∈ Ωi for i = 1, . . . , s.

This means that for each i = 1, . . . , s, there exists a sequence xk ∈ Ωi with xk −→ x,

implying that x ∈ Ωi . This proves the condition (i).

(ii) If x ∈ aff
(⋂s

i=1 Ωi

)
, then there exist vectors x1, . . . , xk ∈ ⋂s

i=1 Ωi such that

k∑
j=1

θ j xj = x with

k∑
j=1

θ j = 1.

Since xj ∈
⋂s

i=1 Ωi if and only if xj ∈ Ωi for each i = 1, . . . , s, we have x ∈ affΩi for

each i = 1, . . . , s.

(iii) If x ∈ ri
(⋂s

i=1 Ωi

)
, then there exists an ǫ > 0 such that

Bǫ (x) ∩ aff

( s⋂
i=1

Ωi

)
⊂

s⋂
i=1

Ωi .

In view of condition (ii), we have the following.

Bǫ (x) ∩
( s⋂
i=1

affΩi

)
⊂

s⋂
i=1

Ωi

⇔ Bǫ (x) ∩ affΩi ⊂
s⋂

i=1

Ωi ⊂ Ωi for each i = 1, . . . , s

⇔ x ∈ riΩi for each i = 1, . . . , s

⇔ x ∈
s⋂

i=1

riΩi .

�

Theorem A.3 ([Bol75, Theorem 3 on p. 7]). Let K1, . . . ,Ks be closed convex cones in

R
n with vertex at 0. If the cone K = conv

(⋃s
i=1 Ks

)
is not closed, then there are vectors

λ1 ∈ K1, . . . , λs ∈ Ks , not all of them zero, such that λ1 + · · · + λs = 0.

Proof. Let x ∈ K \ K . Then there exists a sequence of vectors xk ∈ K such that xk −→ x.

Since xk ∈ K , we can write

xk = x
(1)
k
+ · · · + x

(s)
k

with x
(i)
k

∈ Ki

Define αk ≔ maxi

x
(i)
k

. We may assume that αk > 0 for all k. It can be seen that

αk −→ ∞ since it would mean that x ∈ K otherwise. Let y
(i)
k
≔

1
αk

x
(i)
k

.

Without loss of generality, we may assume that the limits y(i) = limk→∞ y
(i)
k

exist for

i = 1, . . . , s. Since maxi

y(i)
k

 = 1 for each k, at least one of the vectors y(1), . . . , y(s) is not

zero. Moreover since Ki is closed, we have y(i) ∈ Ki .
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Since limk→∞ xk = x and limk→∞ αk = ∞, we have

y(1) + · · · + y(s) = lim
k→∞

(
y
(1)
k
+ · · · + y(s)

k

)

= lim
k→∞

1

αk

(
x
(1)
k
+ · · · + x

(s)
k

)

= lim
k→∞

1

αk
xk = 0. �

Theorem A.4 ([Bol75, Theorem 6 on p. 9]). If a family K1, . . . ,Ks of convex cones with a

common vertex at x0 is not separable, then
⋂s

i=1 ri Ki , �.

Proof. Suppose that
⋂s

i=1 ri Ki = � and let m < s be a positive number such that

m⋂
i=1

ri Ki , � and

m+1⋂
i=1

ri Ki = �.

By Theorem A.2 (condition (iii)),
⋂m

i=1 ri Ki = ri
(⋂m

i=1 Ki

)
. This implies that

m+1⋂
i=1

ri Ki =

( m⋂
i=1

ri Ki

)
∩ ri Km+1 = ri

( m⋂
i=1

Ki

)
∩ ri Km+1 = �.

Therefore the convex cones Km+1 and
⋂m

i=1 Ki have non-empty interior and hence are

separable. This implies that the convex cones Km+1 and
⋂

i,m Ki are also separable, which

contradicts the assumption that the family of cones
{
K1, . . . ,Ks

}
is not separable. �

Theorem A.5 ([Bol75, Theorem 2 on p. 6]). Let s ∈ N
∗ and

{
K0,K1, . . . ,Ks

}
be a family

of convex cones in R
n with a common vertex x0. This family is separable if and only if

there exist λi ∈ Ki
◦ for each i = 0, . . . , s, not all zero, that satisfy the condition

(A.3) λ0 + · · · + λs = 0.

Proof. Let m (6 s) be the least number such that the family of cones
{
K0, . . . ,Km

}
is

separable. Renumbering the cones if necessary, let us assume that the cones K0 and

K1 ∩ . . . ∩ Km are separable. This implies that there exists a hyperplane Γ characterised by

a non-zero vector η such that the cones lie in half-spaces given by

H = {x | 〈η, x − x0〉 6 0}, H ′
= {x | 〈η, x − x0〉 > 0}.

If m = 1, then K0 ⊂ H and K1 ⊂ H ′. This implies η ∈ K0
◦ and −η ∈ K1

◦. Thus, choosing

the vectors as

λ0 = η, λ1 = −η, λ2 = · · · = λs = 0,

the required condition (A.3) is satisfied. If m > 1, the family of cones
{
K1, . . . ,Km

}
is not

separable. By Theorem A.4 we have
⋂m

i=1 ri Ki , �. By Theorem A.2-(i),

m⋂
i=1

Ki =

m⋂
i=1

K i .

Since
⋂m

i=1 Ki lies in the closed half-space H ′, its closure
⋂m

i=1 Ki ⊂ H ′. Therefore,⋂m
i=1 K i ⊂ H ′, which implies that −η ∈

(⋂m
i=1 K i

)◦
. By Theorem A.1,

−η ∈ conv

( m⋃
i=1

K i
◦
)
= conv

( m⋃
i=1

Ki
◦
)
.
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If, on the one hand, conv
(⋃m

i=1 Ki
◦) is closed, then −η ∈ conv

(⋃m
i=1 Ki

◦) , implying that

there exist vectors λi ∈ Ki
◦ for i = 1, . . . ,m such that

−η = λ1 + · · · + λm.
Choosing λ0 = η (, 0) ∈ K0

◦ and λj = 0 for j = m + 1, . . . , s, the required condition (A.3)

is satisfied. If, on the other hand, conv
(⋃m

i=1 Ki
◦) is not closed, then by Theorem A.3, there

exist vectors λi ∈ Ki
◦ for i = 1, . . . ,m, not all zero, such that

λ1 + · · · + λm = 0.

Selecting λ0 = λm+1 = · · · = λs = 0 we verify that the condition (A.3) is satisfied.

Conversely, assume that there exist λi ∈ Ki
◦ for i = 0, . . . , s satisfying (A.3) and not all

of them equal to zero (say λ0 , 0). Since λ0 ∈ K0
◦, we have 〈λ0, x − x0〉 6 0 for x ∈ K0.

This means that K0 is contained in the half-space H =
{

x
�� 〈λ0, x − x0〉 6 0

}
. By (A.3),

λ0 = −λ1 − · · · − λs
⇒ 〈λ0, x − x0〉 = − 〈λ1, x − x0〉 − · · · − 〈λs, x − x0〉 .

For x ∈ ⋂s
i=1 Ki , we have x ∈ Ki for i = 1, . . . , s. Since λi ∈ Ki

◦, 〈λi, x − x0〉 6 0 for each

i = 1, . . . , s. Hence, 〈λ0, x − x0〉 > 0. This implies that the intersection
⋂s

i=1 Ki lies in the

half-space H ′
=

{
x
�� 〈λ0, x − x0〉 > 0

}
. In other words, the family of cones

{
K0, . . . ,Ks

}
is separable. �

Theorem A.6 ([Bol75, Theorem 7 on p. 10]). Let s ∈ N
∗, and for each i = 1, . . . , s let

Li ⊂ R
n be a subspace satisfying L1 + · · · + Ls = R

n. For each i = 1, . . . , s let L∆
i

denote

the direct sum of all subspaces L1, . . . , Ls except Li, and Ki be a convex cone in Li with a

common vertex x0 ∈ R
n. If Ni ≔ conv

(
Ki ∪ L∆

i

)
for each i, then Ni is a convex cone, and

the family {Ni | i = 1, . . . s} is inseparable in R
n.

Proof. Suppose that the family {Ni | i = 1, . . . , s} is separable and let (after renumbering

if necessary) N1 is separated in R
n from the intersection Π ≔

⋂s
i=2 Ni by the hyperplane

Γ characterised by
{

x
�� 〈a, x − x0〉 = 0

}
. That is,

N1 ⊂ H =
{

x
�� 〈a, x − x0〉 6 0

}
, Π ⊂ H ′

=

{
x
�� 〈a, x − x0〉 > 0

}
Since L1 ⊂ L∆

j
⊂ Nj for all j , 1, L1 ⊂ Π ⊂ H ′. Since K1 ⊂ N1 ⊂ H, we have L1 ⊂ Γ.

For j = 2, . . . , s, Lj ⊂ L∆
1
⊂ N

∗
1
⊂ H and Kj ⊂ Π ⊂ H ′ and this implies that Lj ⊂ Γ.

We see that Li ⊂ Γ for all i = 1, . . . , s. This leads to an obvious contradiction as the span

of subspaces contained in a hyperplane Γ is required to be the full space R
n. Hence, the

family
{
Ni

�� i = 1, . . . , s
}

is not separable in R
n. �

Appendix B. Facts about Tents

In this section an outline of the method of tents is provided.

Definition B.1. LetΩ be a subset of Rn and let x0 ∈ Ω. A convex cone Q ⊂ R
n with vertex

x0 is a tent ofΩ at x0 if there exists a smooth map ρ defined in a neighbourhood of x0 such

that:4

(1) ρ(x) = x + o(x − x0),5 and

4The theory also works for ρ continuous.

5 Recall the Landau notation ϕ(x) = o(x) that stands for a function ϕ(0) = 0 and limx→0
|ϕ(x)|
|x | = 0.
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(2) there exists ǫ > 0 such that ρ(x) ∈ Ω for x ∈ Q ∩ Bǫ (x0).

We say that a convex cone K ⊂ R
n with vertex at x0 is a local tent ofΩ at x0 if, for every

x ∈ ri K , there is a convex cone Q ⊂ K with vertex at x0 such that Q is a tent of Ω at x0,

x ∈ ri Q, and aff Q = aff K . Observe that if K is a tent of Ω at x0, then K is a local tent of

Ω at x0.

We need the following theorems on tents in the formulation of our PMP in the sequel.

Theorem B.1 ([Bol75, Theorem 8 on p. 11]). Let Ω be a smooth manifold in R
n and K

the tangent plane to Ω at x0 ∈ Ω. Then K is a tent of Ω at x0.

Theorem B.2 ([Bol75, Theorem 9 on p. 12]). Given a smooth function ϕ : Rn −→ R, let

x0 be such that ∂
∂x
ϕ(x0) , 0. Define sets Ω,Ω0 ∈ R

n as

Ω ≔
{
x ∈ R

n
�� ϕ(x) 6 ϕ(x0)

}
, Ω0 ≔

{
x0

}
∪
{

x ∈ R
n
�� ϕ(x) < ϕ(x0)

}
.

Then the half-space K given by the inequality
〈

∂
∂x
ϕ(x0), x − x0

〉
6 0 is a tent of both Ω

and Ω0 at x0.

Theorem B.3 ([Bol75, Theorem 10 on p. 12]). Let Ω ∈ R
n be a convex set and let K be

its supporting cone at x0 ∈ Ω. Then K is a local tent of Ω at x0.

Proof. Let x ∈ ri K , x , x0. By definition of supporting cone, there exists x′ ∈ Ω such

that x lies on the ray emanating from x0 and passing through x′. Since x ∈ ri K , we also

have that x′ ∈ riΩ. Consider a small ball Bδ(x′) choosing around x′ choosing δ such that

x0 < Bδ(x′) and Bδ(x′) ∩ aff K ⊂ Ω. Consider a cone Q consisting of rays emanating from

x0 and passing through points in Bδ(x′) ∩ K . Since Ω is a convex set and the points in

Bδ(x′) ∩ K lie in Ω, there exists an ǫ > 0 such that Bǫ (x0) ∩ Q ⊂ Ω. It can be seen that

Q is a tent of Ω at x0 (the tent map can be considered to be the identity map). It is clear

that x ∈ ri Q and aff Q = aff K . Therefore, for every x ∈ ri K , there is a tent Q of Ω with

vertex at x0 containing x in its interior and satisfying aff Q = aff K , indicating that K is a

local tent of Ω at x0. �

Theorem B.4 ([Bol75, Theorem 12 on p. 14]). Let Ω0,Ω1, . . . ,Ωs be subsets of R
n with

a common point x0, and K0,K1, . . . ,Ks local tents of these sets at x0. If the family of cones{
K0,K1, . . . ,Ks

}
is inseparable and at least one of the cones is not a plane, then there exists

x′ ∈ Ω0 ∩ Ω1 ∩ . . . ∩ Ωs and x′ , x0.

Proposition B.5. A function ϕ(x) considered on the set Σ = Ω1 ∩ . . . ∩ Ωs, attains its

minimum at x0 if and only if

Ω0 ∩ Ω1 ∩ . . . ∩ Ωs =
{
x0

}
,

where Ω0 ≔
{

x0

}
∪
{
x ∈ R

n
�� ϕ(x) < ϕ(x0)

}
.

Proof. Suppose that there exists a point x′ ∈ Ω0∩Σ, x′ , x0. Since x′ ∈ Ω0, ϕ(x′) < ϕ(x0).
But since x′ ∈ Σ, x0 is not a minimum point of ϕ(x) on Σ. If x0 is not a minimum of ϕ(x)
on Σ, then there exists a point x′ ∈ Σ satisfying ϕ(x′) < ϕ(x0). This implies that x′ ∈ Ω0

and the intersection Ω0 ∩ Σ ,
{

x0

}
. �

Theorem B.6 ([Bol75, Theorem 16 on p. 20]). Let Ω1, . . . ,Ωs be subsets of R
n and let⋂s

k=1Ωk ∋ x 7−→ ϕ(x) ∈ R be a smooth function. Let Σ =
⋂s

k=1Ωk , let x0 ∈ Σ, and let Ki
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be a local tent of Ωi at x0 for i = 1, . . . , s. If ϕ attains its minimum relative to Σ at x0, then

there exist vectors λi ∈ Ki
◦ for i = 1, . . . , s and ψ0 ∈ R satisfying

ψ0
∂

∂x
ϕ(x0) + λ1 + · · · + λs = 0

such that ψ0 > 0, and if ψ0 = 0, then at least one of the vectors λ1, . . . , λs is not zero.

Proof. If ∂
∂x
ϕ(x0) = 0, choosing ψ0 = 1 and λ1 = · · · = λs = 0 will satisfy the given. We

assume, therefore, that ∂
∂x
ϕ(x0) , 0. Consider the set Ω0 ≔

{
x0

}
∪
{

x ∈ R
n
�� ϕ(x) <

ϕ(x0)
}
, and let K0 be the half-space in R

n defined by the inequality
〈

∂
∂x
ϕ(x0), x − x0

〉
6 0.

By Theorem B.2 the set K0 is a tent of Ω0 at x0. Since at least one of the tents K0, . . . ,Ks

is not a plane by assumption, Proposition B.5 asserts that if x0 is a minimum of ϕ relative

to Σ, then Ω0 ∩ . . . ∩ Ωs is the singleton set
{
x0

}
. By Theorem B.4 the tents K0, . . . ,Ks

are separable, since otherwise the intersectionΩ0 ∩ . . .∩Ωs would consist a point x′ , x0.

Theorem A.5 now asserts that there exist vectors λ0 ∈ K0
◦, . . . , λs ∈ Ks

◦, not all zero, such

that

λ0 + · · · + λs = 0.

The condition follows by noting that λ0 = ψ0
∂
∂x
ϕ(x0) and ψ0 > 0. �

Appendix C. Proof of Main Result

§C.1. Version 1. We convert the optimal control problem (2.14) into a relative extremum

problem in a suitable higher-dimensional space. To that end, we define a generic variable

(C.1) y ≔ (ξ0, . . . , ξT , µ0, . . . , µT−1) ∈

T+1 factors︷            ︸︸            ︷
R

d × . . . ×R
d ×R

m × . . . ×R
m︸             ︷︷             ︸

T factors

,

and let n ≔ d(T + 1) + mT for the rest of this section. We further compress the vector

on the right hand side of (C.1) by writing y ≔
(
Ξ,M

)
for Ξ ≔ (ξ0, . . . , ξT ) and M ≔

(µ0, . . . , µT−1). First, we define the standard projection maps from y ∈ R
n to the individual

factors ξt ∈ R
d and µt ∈ R

m in the following way:

(C.2)

{
πx
t (y) ≔ ξt for t = 0, . . . ,T,

πu
t (y) ≔ µt for t = 0, . . . ,T − 1.

In terms of the notations in (C.1) and (C.2), we lift the objective function in (2.14) to a

performance index of the joint variables

(C.3)

R
n ∋ (ξ0, . . . , ξT , µ0, . . . , µT−1) ≕ z 7−→

C(z) ≔
T∑
t=0

ct (ξt, µt ) =
T−1∑
t=0

ct
(
πx
t (z), πu

t (z)
)
.

Second, we define constraint sets Ωx
t ,Ω

u
t ⊂ R

n such that if y =
(
Ξ,M

)
∈ Ωx

t ∩Ωu
t in the

notation of (C.1), then the t-th factor ξt of Ξ is constrained to the set St and the t-th factor

µt of M is constrained to the set Ut ; to wit,

(C.4)
Ω

x
t ≔

{
y ∈ R

n
�� πx

t (y) ∈ St

}
for t = 0, . . . ,T,

Ω
u
t ≔

{
y ∈ R

n
�� πu

t (y) ∈ Ut

}
for t = 0, . . . ,T − 1.
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Observe that for y ∈ Ωx
s, the coordinates πx

t (y) for t , s and all the πu
τ(y) are arbitrary.

Similarly, for y ∈ Ωu
s, all the coordinates πx

t (y) and πu
τ(y) for τ , s are arbitrary. We say

that Ωx
t and Ωu

t are lifts of St and Ut , respectively.

Third, we define maps gt : Rn −→ R
d for t = 0, . . . ,T − 1, to lift the dynamics of the

system (2.1) to R
n in the following way:

(C.5)

T+1 factors︷            ︸︸            ︷
R

d × . . . ×R
d ×R

m × . . . ×R
m︸             ︷︷             ︸

T factors

∋ (ξ0, . . . ξT , µ0, . . . µT−1) ≕ y 7−→

gt (y) ≔ ft (ξt, µt ) − ξt+1 = ft
(
πx
t (y), πu

t (y)
)
− πx

t+1(y) ∈ R
d .

By definition, therefore, a vector y = (ξ0, . . . , ξT , µ0, . . . , µT−1) ∈ R
n satisfies gt (y) = 0

for all t = 0, . . . ,T − 1, if and only if ξt+1 = ft (ξt, µt ) for all t = 0, . . . ,T − 1. We define a

family of sets

(C.6) Ω
f
t ≔

{
y ∈ R

n
�� gt (y) = 0

}
for t = 0, . . . ,T − 1.

Finally, we define the lift of the frequency constraints on the control trajectories:

(C.7)

T+1 factors︷            ︸︸            ︷
R

d × . . . ×R
d ×R

m × . . . ×R
m︸             ︷︷             ︸

T factors

∋ (ξ0, . . . ξT , µ0, . . . µT−1) ≕ y 7−→

F̂(y) ≔ F
(
πu

0(y), . . . , π
u
T−1(y)

)
= F(µ0, . . . , µT−1).

We define a process z to be the concatenation of a control trajectory (u0, . . . , uT ) and its

corresponding state trajectory (x0, . . . , xT ) traced by the system according to (2.1) as

z ≔ (x0, . . . , xT , u0, . . . , uT ).

A process z satisfying the frequency constraints belongs to the set Ω̂u defined by

(C.8) Ω̂u ≔
{
y ∈ R

n
�� F̂(y) = 0

}
.

Employing the lifts and the notations introduced in (C.3), (C.4), (C.6), and (C.8), we

state the optimal control problem (2.14) equivalently as the following relative extremum

problem:

(C.9)

minimize
z∈Rn

C(z)

subject to

{
z ∈ Σ,
Σ ≔

(⋂T−1
t=0 Ω

f
t

)
∩
(⋂T

t=0Ω
x
t

)
∩
(⋂T−1

t=0 Ω
u
t

)
∩ Ω̂u.

In the sequel z∗ will denote a solution of the relative extremum problem (C.9), comprising

of the optimal control trajectory (u∗t )T−1
t=0

that solves (2.14) and the resulting optimal state

trajectory (x∗t )Tt=0
.

Define

Ω
C (z∗) ≔ {z∗} ∪

{
z ∈ R

n
�� C(z) < C(z∗)

}
.

By Proposition B.5, z∗ solves (C.9) if and only if Σ ∩ ΩC (z∗) = {z∗}. Let

Qf
t,Q

x
t ,Q

u
t , and Q̂u be tents of the sets Ωf

t,Ω
x
t ,Ω

u
t , and Ω̂u at z∗, respectively.
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(The sets Qf
t,Q

x
t ,Q

u
t , and Q̂u depend on z∗, of course, but for notational simplicity we do

not explicitly depict the dependence of these sets on z∗ in what follows.) By Theorem B.2

the half-space given by

(C.10) QC
≔

{
z ∈ R

n

����
〈
∂

∂z
C(z∗), z − z∗

〉
6 0

}

is a tent of ΩC (z∗) at z∗.

Proposition C.1. The family of tents
{
QC, Q̂u

}
∪
{
Qf

t

}T−1

t=0
∪
{
Qx

t

}T
t=0

∪
{
Qu

t

}T−1

t=0
is separable.

Proof. The assertion follows from Proposition B.5 and Theorem B.4. Indeed, since the tent

QC is a half-space, (and therefore, not a plane,) the family
{
QC, Q̂u

}
∪
{
Qf

t

}T−1

t=0
∪
{
Qx

t

}T
t=0

∪{
Qu

t

}T−1

t=0
of tents satisfies the hypothesis of Theorem B.4. If the family is not separable,

then the intersection Σ ∩ ΩC (z∗) contains a point z′ different from z∗. This means that

Σ ∩ ΩC (z∗) , {z∗}. But then, this contradicts optimality of z∗ (cf. Proposition B.5). �

Proposition C.2. There exist vectors

◦ λC ∈
(
QC

)◦
,

◦ λf
t ∈

(
Qf

t

)◦
for t = 0, . . . ,T − 1,

◦ λx
t ∈

(
Qx

t

)◦
for t = 0, . . . ,T ,

◦ λu
t ∈

(
Qu

t

)◦
for t = 0, . . . ,T − 1, and

◦ λ̂u ∈
(
Q̂u

)◦
,

not all zero, such that

(C.11) λC
+

T−1∑
t=0

λf
t +

T∑
t=0

λx
t +

T−1∑
t=0

λu
t + λ̂

u
= 0.

Proof. Since the family of cones
{
QC, Q̂u

}
∪
{
Qf

t

}T−1

t=0
∪
{
Qx

t

}T
t=0

∪
{
Qu

t

}T−1

t=0
is separable

in view of Proposition C.1, by Theorem A.5 there exist vectors in the dual cones of each of

the cones in
{
QC, Q̂u

}
∪
{
Qf

t

}T−1

t=0
∪
{
Qx

t

}T
t=0

∪
{
Qu

t

}T−1

t=0
that satisfy (C.11). �

We observe that since z ∈ QC satisfies the inequality〈
∂

∂z
C(z∗), z − z∗

〉
6 0,

in view of (C.10), every vector in the dual cone
(
QC

)◦
is of the form

λC
= ηC ∂

∂z
C(z∗),

where ηC
> 0.

Proposition C.3. If z∗ is a solution of the relative extremum problem (C.9), there exist

ηC
> 0 and dual vectors

◦ λf
t ∈

(
Qf

t

)◦
for t = 0, . . . ,T − 1,

◦ λx
t ∈

(
Qx

t

)◦
for t = 0, . . . ,T ,

◦ λu
t ∈

(
Qu

t

)◦
for t = 0, . . . ,T − 1, and

◦ λ̂u ∈
(
Q̂u

)◦
,
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such that

(C.12) ηC ∂

∂z
C(z∗) +

T−1∑
t=0

λf
t +

T∑
t=0

λx
t +

T∑
t=0

λu
t + λ̂

u
= 0.

In particular, if ηC
= 0, then at least one of the vectors

{
λf
t

}T−1

t=0
,
{
λx
t

}T
t=0
,
{
λu
t

}T−1

t=0
, λ̂u is

not zero.

Proof. Follows at once from the arguments in the proof of Theorem B.6. �

Proposition C.4. The family of tents
{
Qx

t

}T
t=0

∪
{
Qu

t

}T−1

t=0
is not separable.

Proof. Define the subspaces Lxs , s = 0, . . . ,T , and Lus , s = 0, . . . ,T − 1, as:

Lxs ≔

{
z ∈ R

n

�����
πx
t (z) = 0 for t ∈ {0, . . . ,T } \ {s}, and

πu
t (z) = 0 for t = 0, . . . ,T − 1

}
,

Lus ≔

{
z ∈ R

n

�����
πx
t (z) = 0 for t = 0, . . . ,T, and

πu
t (z) = 0 for t ∈ {0, . . . ,T − 1} \ {s}

}
.

Observe that Lx0
+ · · · + LxT + Lu0

+ · · · + LuT−1
= R

n. Consider the subspaces L∆xt and

L∆ut of Rn defined by:

L∆xt ≔
{
z ∈ R

n
�� πx

t (z) = 0
}

for t = 0, . . . ,T,

L∆ut ≔
{
z ∈ R

n
�� πu

t (z) = 0
}

for t = 0, . . . ,T − 1.

L∆xt =

T+1 factors︷                                                   ︸︸                                                   ︷
R

d × . . . ×R
d × {0}︸︷︷︸

(t+1)-th factor

× R
d . . . ×R

d ×

T factors︷                     ︸︸                     ︷
R

m × . . . × . . . ×R
m.

L∆ut =

T+1 factors︷            ︸︸            ︷
R

d × . . . ×R
d ×

T factors︷                                                         ︸︸                                                         ︷
R

m × . . . ×R
m × {0}︸︷︷︸

(t+1)-th factor

×R
m × . . . ×R

m.

Let qx
t (x∗t ) be a local tent of St at x∗t and let qu

t (u∗t ) be a local tent of Ut at u∗t . Observe

that the inclusions qx
t ⊂ πx

t

(
Lxt

)
for t = 0, . . . ,T , and qu

t ⊂ πu
t

(
Lut

)
for t = 0, . . . ,T − 1,

hold.

We now construct a family of tents Qx
t and Qu

t in the following way:

(C.13)
Qx

t ≔
{
z ∈ R

n
�� πx

t (z) ∈ qx
t (πx

t (z∗))
}

for t = 0, . . . ,T,

Qu
t ≔

{
z ∈ R

n
�� πu

t (z) ∈ qu
t (πu

t (z∗))
}

for t = 0, . . . ,T − 1.

Let us lift the tents qx
t (x∗t ) as follows:

q̃x
t (x∗t ) ≔

( T+1 factors︷                                                         ︸︸                                                         ︷
{0} × . . . × {0} × qx

t (z∗)︸︷︷︸
(t+1)-th factor

× {0} × . . . × {0} ×

T factors︷                              ︸︸                              ︷
{0} × . . . × {0} × . . . × {0}

)

Observe that q̃x
t (x∗t ) ∈ Lxt . Therefore,

Qx
t = q̃x

t (x∗t ) ∪ L∆xt
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and similarly for Qu
t . Since qx

t and qu
t are convex cones, it follows that the tents Qx

t and Qu
t

satisfy the hypothesis of Theorem A.6.

Theorem A.6 asserts that the family of tents
{
Qx

t

}T
t=0

∪
{
Qu

t

}T−1

t=0
is inseparable, and this

establishes the claim. �

Remark C.1. Note that any sub-family of an inseparable family of cones is also inseparable.

Thus, in addition to the family of tents
{
Qx

t

}T
t=0

∪
{
Qu

t

}T−1

t=0
being inseparable, we have that

the families
{
Qx

t

}T
t=0

,
{
Qu

t

}T−1

t=0
are both individually inseparable.

The following proposition constitutes the keystone of our proof of the main Theorem

3.1.

Proposition C.5. If z∗ is an optimal process of (C.9), then there exist ηC
> 0 and dual

vectors

◦ λf
t ∈

(
Qf

t

)◦
for t = 0, . . . ,T − 1,

◦ λx
t ∈

(
Qx

t

)◦
for t = 0, . . . ,T , and

◦ λ̂u ∈
(
Q̂u

)◦
,

such that

(C.14)

〈
−ηC ∂

∂z
C(z∗) +

T−1∑
t=0

λf
t −

T∑
t=0

λx
t − λ̂u, z̃

〉
6 0,

for every vector z̃ such that z∗ + z̃ ∈ ⋂T−1
t=0 Qu

t . In particular, if ηC
= 0, then at least one

of
{
λf
t

}T−1

t=0
and λ̂u is not zero.

Proof. From Proposition C.3 we infer that there exist ηC
> 0 and dual vectors

◦ λf
t ∈

(
Qf

t

)◦
for t = 0, . . . ,T − 1,

◦ λx
t ∈

(
Qx

t

)◦
for t = 0, . . . ,T ,

◦ λu
t ∈

(
Qu

t

)◦
for t = 0, . . . ,T − 1, and

◦ λ̂u ∈
(
Q̂u

)◦
,

satisfying (C.12), such that if ηC
= 0, then at least one of the vectors{

λf
t

}T−1

t=0
,
{
λx
t

}T
t=0
,
{
λu
t

}T−1

t=0
, λ̂u

is not zero. From Proposition C.4 we know that the family of cones
{
Qx

t

}T
t=0

∪
{
Qu

t

}T−1

t=0

is inseparable. Observe that if ηC
= 0 and all of

{
λf
t

}T−1

t=0
and λ̂u are zero, then the vectors{

λu
t

}T
t=0
,
{
λu
t

}T−1

t=0
in the dual cones of the family

{
Qx

t

}T
t=0

∪
{
Qu

t

}T
t=0

, not all zero, satisfy

T∑
t=0

λx
t +

T−1∑
t=0

λu
t = 0.

In view of Theorem A.5, this contradicts the fact that the family of cones
{
Qx

t

}T
t=0

∪
{
Qu

t

}T−1

t=0
is inseparable. This establishes the final assertion.

We now establish the main assertion. From (C.12) we have, for any z̃ ∈ R
n,〈

ηC ∂

∂z
C(z∗) +

T−1∑
t=0

λf
t +

T∑
t=0

λx
t + λ̂

u, z̃

〉
= −

T−1∑
t=0

〈
λu
t , z̃

〉
.
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If z̃ is a vector such that z∗ + z̃ ∈ ⋂T−1
t=0 Qu

t , then z∗ + z̃ ∈ Qu
t for each t = 0, . . . ,T − 1. Since

λu
t ∈

(
Qu

t

)◦
, by definition we have

〈
λu
t , z̃

〉
6 0 for each t = 0, . . . ,T − 1, leading to

〈
ηC ∂

∂z
C(z∗) +

T−1∑
t=0

λf
t +

T∑
t=0

λx
t + λ̂

u, z̃

〉
= −

T−1∑
t=0

〈
λu
t , z̃

〉
> 0

⇒
〈
−ηC ∂

∂z
C(z∗) +

T−1∑
t=0

(
−λf

t

)
−

T∑
t=0

λx
t − λ̂u, z̃

〉
6 0

Observe that the dual cones
(
Qf

t

)◦
are subspaces and hence, if λf

t ∈
(
Qf

t

)◦
, then λ̃f

t ≔ −λf
t ∈(

Qf
t

)◦
. And this proves the proposition. �

Before we delve into the final result that helps us prove Theorem 3.1, we make some

observations on the dual vectors and the gradient matrices. We have the following charac-

terisation of the dual vectors
{
λf
t

}T−1

t=0
,
{
λx
t

}T
t=0

and λ̂u.

• By the construction in (C.13), for z∗+ z̃ ∈ Qx
t , the coordinates πx

s (z̃) for s , t are arbitrary

and πu
τ(z̃) are arbitrary. The coordinates πx

t (z̃) lie in the cone qx
t (z∗). Since a dual vector

λx
t ∈

(
Qx

t

)◦
has to satisfy (A.1), for all z∗ + z̃ ∈ Qx

t

〈
λx
t , z̃

〉
6 0

But since πx
s (z̃) for s , t and πu

τ(z̃) for τ = 0, . . . ,T − 1 are arbitrary, it can be seen

that the corresponding coordinates in λx
t are zeroes, that is, πx

s (λx
t ) = 0 for s , t and

πu
τ(λx

t ) = 0 for τ = 0, . . . ,T − 1.

Since πx
t (z̃) ∈ qx

t (x∗t ), the corresponding coordinate of λx
t , which is πx

t (λx
t ) lies in the

dual cone
(
qx
t (x∗t )

)◦
which we denote by ηx

t .

λx
t = (0, . . . , ηx

t , . . . , 0, 0, . . . , 0)

• By Theorem B.1, the tangent plane ofΩf
t at z∗ is a tent ofΩf

t at z∗. Considering Qf
t to be

the tangent plane, every vector in the corresponding dual cone
(
Qf

t

)◦
is of the form

λf
t =

(
∂

∂z
gt (z∗)

)⊤
ηf
t, for t = 0, . . . ,T − 1,

where ηf
t ∈ R

d.

• Similarly, the tangent plane of Ω̂u at z∗ is a tent of Ω̂u at z∗. Considering Q̂u to be the

tanget plane, every vector in the dual cone
(
Q̂u

)◦
is of the form

λ̂u
=

(
∂

∂z
F(z∗)

)⊤
η̂u,

where η̂u ∈ R
ℓ .
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From (C.3), (C.5), (C.7), we obtain the components of λC, λf
t, λ̂

u as follows:

(C.15)




∂

∂ξt
C(z∗) = ∂

∂ξ
ct
(
x∗t , u

∗
t

)
,

∂

∂µt
C(z∗) = ∂

∂µ
ct
(
x∗t , u

∗
t

)
,

∂

∂ξt
gt (z∗) =

∂

∂ξ
ft
(
x∗t , u

∗
t

)
,

∂

∂ξt
gt+1(z∗) = −Id,

∂

∂ξt
F(z∗) = 0,

∂

∂µt
F(z∗) = F̃t,

∂

∂µt
gt (z∗) =

∂

∂µt
ft
(
x∗t , u

∗
t

)
,

for t = 0, . . . ,T − 1, and Id being the d × d identity matrix.

Proposition C.6. If z∗ ≔
(
(x∗t )Tt=0

, (u∗t )T−1
t=0

)
is an optimal process of the optimal control

problem (2.14), then there exist ηC
> 0 and dual vectors

◦ ηf
t ∈

(
R

d
)⋆

for t = 0, . . . ,T − 1,

◦ ηx
t ∈

(
qx
t (x∗t )

)◦
for t = 0, . . . ,T ,

◦ η̂u ∈
(
R

ℓ
)⋆

,

such that,

(i)

−ηC ∂

∂ξ
ct (x∗t , u∗t ) +

∂

∂ξ
ft (x∗t , u∗t )⊤ηf

t − ηf
t−1 − η

x
t = 0 for t = 1, . . . ,T − 1;

(ii) while ηf
0
, ηf

T−1
satisfy

ηf
T−1 = −ηx

T ,

− ηC ∂

∂ξ
c0(x∗0, u∗0) +

∂

∂ξ
f0(x∗0, u∗0)⊤ηf

0 − ηx
0 = 0; and

(iii) 〈
−ηC ∂

∂µ
ct (x∗t , u∗t ) +

∂

∂µ
ft (x∗t , u∗t )⊤ηf

t − F̃⊤
t η̂

u, ũt

〉
6 0

for all vectors ũt such that u∗t + ũt ∈ qu
t (u∗t ), for t = 0, . . . ,T − 1.

In particular, if ηC
= 0, then at least one of

{
ηf
t

}T−1

t=0
and η̂u is not zero.

Proof. By Proposition C.5, there exist vectors
{
ηf
t

}T−1

t=0
, η̂u and ηC ∈ R, not all zero satistying

(C.14). By the construction in (C.13), for z∗ + z̃ ∈ Qu
t , the coordinates πx

t (z̃) are arbitrary.

So we choose t (∈
{
0, . . . ,T

}
) and a z̃ such that πx

t (z̃) ∈ R
d is arbitrary and

πx
s (z̃) = 0 for s = 0, . . . ,T, s , t,

πu
τ(z̃) = 0 for τ = 0, . . . ,T − 1.

Let x̃t ≔ πx
t (z̃). When we use this particular collection of z̃ in (C.14), only the ξt coordinates

in the dual vectors will survive. And the remaining equation is,〈
−ηC ∂

∂ξt
C(z∗) +

T−1∑
s=0

∂

∂ξt
gt (z∗) −

T∑
s=0

λx
t −

∂

∂ξt
F(z∗), x̃t

〉
6 0.



26 P. PARUCHURI AND D. CHATTERJEE

Using the fact that x̃t can be positive or negative and the results in (C.15), we have the

following condition for each t = 1, . . . ,T − 1:

(C.16)

− ηC ∂

∂ξt

T−1∑
s=0

cs(z∗) +
T−1∑
s=0

(
∂

∂ξt
gs(z∗)

)⊤
ηf
s − ηx

t = 0

⇒ − ηC ∂

∂ξt
ct(x∗t , u∗t ) +

∂

∂ξt
ft (x∗t , u∗t ) − ηf

t−1 − ηx
t = 0

Using x̃T−1 of the same construction, we get the equation ηf
T−1
+ ηx

T
= 0 and using x̃0, we

get,

−ηC ∂

∂ξ0

c0(x∗0, u
∗
0) +

∂

∂ξ0

f0(x∗0, u
∗
0) − η

x
0 = 0

This proves the first condition.

If we take z̃ such that its coordinates πx
s (z̃) are all zero and πu

τ(z̃) are zero for τ =

0, . . . ,T − 1, τ , t. And πu
t (z̃) ≕ ũt is such that u∗t + ũt ∈ qu

t (u∗t ). It is easy to see that the

vector z̃ thus generated lies in the intersection
⋂T−1

t=0 Qu
t . Thus, using equation (C.14) and

by the construction, we have

(C.17)

〈
−ηC ∂

∂µt
ct (x∗t , u∗t ) +

∂

∂µt
ft (x∗t , u∗t )⊤ηf

t − F̃⊤
t η̂

u, ũt

〉
6 0.

This procedure can be repeated with vectors for each t = 0, . . . ,T − 1, and the assertion

follows. �

We are finally ready for ready for the proof of our main result.

Proof of Theorem 3.1. Observe that from the definition of the Hamiltonian HηC,η̂u
in (3.1),

we have

(C.18)




∂

∂ξ
HηC,η̂u (

ηf
t, t, x∗t , u

∗
t

)
= −ηC ∂

∂ξ
ct (x∗t , u∗t ) +

∂

∂ξ
ft (x∗t , u∗t )⊤ηf

t

for t = 0, . . . ,T − 1, and

∂

∂µ
HηC,η̂u (

ηf
t, t, x∗t , u

∗
t

)
= −ηC ∂

∂µ
ct (x∗t , u∗t ) +

∂

∂µ
ft (x∗t , u∗t )⊤ηf

t − F̃⊤
t η̂

u.

The conditions of non-negativity (PMP-i), non-triviality (PMP-ii) follow from the statement

of the Proposition C.6. From (C.18) and (C.16), we get the adjoint dynamics in (PMP-iii).

The transversality conditions follow from Proposition C.6 (ii). The equation (C.17) readily

provides the Hamiltonian maximisation condition (PMP-v). �

§ C.2. Alternate Proof. This section provides an alternate approach, suggested to us by

Navin Khaneja, to establish Theorem 3.1; we include it here for its scientific merit and for

completeness.

Alternate Proof of Theorem 3.1. Let us define an auxillary system with the dynamics

(C.19) wt+1 = ht (wt, ut ) ≔ wt − F̃tut for t = 0, . . . ,T − 1,

where wt ∈ R
ℓ.
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Observe that the frequency constraints in (2.14), in view of (2.13), can now be viewed

as the terminal state constraint on the auxillary system (C.19) as

(C.20) w0 = 0 and wT = 0.

We can now rewrite the problem (2.14) into a standard optimal control problem with

constraints on control magnitude and states.

(C.21)

minimize
(ut )T−1

t=0

T−1∑
t=0

ct (xt, ut )

subject to




dynamics (2.1),

auxillary dynamics (C.19),

xt ∈ St for t = 0, . . . ,T,

w0 = 0 and wT = 0,

ut ∈ Ut for t = 0, . . . ,T − 1,

For the optimal control problem (C.21), using the usual PMP formulation, we can define

the Hamiltonian as

(C.22)
R ×

(
R

ℓ
)⋆ ×

(
R

d
)⋆ × N ×R

d ×R
ℓ ×R

m ∋ (ν, ϑ, ζ, s, υ, ξ, µ) 7−→
Hν(ϑ, ζ, s, υ, ξ, µ) ≔ 〈ϑ, hs(υ, µ)〉 + 〈ζ, fs(ξ, µ)〉 − νcs(ξ, µ) ∈ R.

From the assertions of the usual PMP, if
(
(w∗

t )Tt=0
, (x∗t )Tt=0

, (u∗t )T−1
t=0

)
is an optimal state-action

trajectory of (C.21), then there exist

◦ a trajectory
(
ηf
t

)T−1

t=0
⊂

(
R

d
)⋆

,

◦ a trajectory
(
ηh
t

)T−1

t=0
⊂

(
R

ℓ
)⋆

,

◦ a sequence
(
ηx
t

)T
t=0

⊂
(
R

d
)⋆

and

◦ ηC ∈ R

satisfying the following conditions:

(N-i) non-negativity condition

ηC
> 0;

(N-ii) non-triviality condition

the state-adjoint trajectory
(
ηf
t

)T−1

t=0
, the auxillary state-adjoint trajectory(

ηh
t

)T−1

t=0
and ηC do not simultaneously vanish;

(N-iii) state, auxillary state and adjoint system dynamics

x∗t+1 =
∂

∂ζ
HηC (

ηh
t , η

f
t, t, w

∗
t , x∗t , u

∗
t

)
for t = 0, . . . ,T − 1,

w∗
t+1 =

∂

∂ϑ
HηC (

ηh
t , η

f
t, t, w

∗
t , x∗t , u

∗
t

)
for t = 0, . . . ,T − 1

ηf
t−1 =

∂

∂ξ
HηC (

ηh
t , η

f
t, t, w

∗
t , x∗t , u

∗
t

)
− ηx

t for t = 1, . . . ,T − 1,

ηh
t−1 =

∂

∂υ
HηC (

ηh
t , η

f
t, t, w

∗
t , x∗t , u

∗
t

)
for t = 1, . . . ,T − 1,

where ηx
t lies in the dual cone of a tent qx

t (x∗t ) of St at x∗t ;

(N-iv) transversality conditions

∂

∂ξ
HηC (

ηh
0, η

f
0, 0, w

∗
0, x∗0, u

∗
0

)
− ηx

0 = 0 and ηf
T−1 = −ηx

T ,
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w∗
0 = 0 and w∗

T = 0;

where ηx
0

lies in the dual cone of a tent qx
0
(x∗

0
) of S0 at x∗

0
and ηx

T
lies in the dual

cone of a tent qx
T
(x∗

T
) of ST at x∗

T
;

(N-v) Hamiltonian maximization condition, pointwise in time,〈
∂

∂µ
HηC (

ηh
t , η

f
t, t, w

∗
t , x∗t , u

∗
t

)
, ũt

〉
6 0 whenever u∗t + ũt ∈ qu

t (u∗t ),

where qu
t (u∗t ) is a local tent at u∗t of the set Ut of admissible actions;

Observe that from the definition of Hamiltonian in (C.22) and from (C.19), the auxillary

state-adjoint dynamics reduces to (for t = 1, . . . ,T − 1)

ηh
t−1 =

∂

∂υ
HηC (

ηh
t , η

f
t, t, w

∗
t , x∗t , u

∗
t

)
=

∂

∂υ

(〈
ηh
t , ht (w∗

t , u
∗
t )
〉
+

〈
ηf
t, ft (x∗t , u∗t )

〉
− ηCct (x∗t , u∗t )

)

=

∂

∂υ

〈
ηh
t , ht (w∗

t , u
∗
t )
〉
= ηh

t

and ηh
T−1

can be chosen arbitrarily. This implies the trajectory
(
ηh
t

)T−1

t=0
can be replaced by

a constant vector, say η̂u ∈ R
ℓ . That is,

(C.23) ηh
0 = · · · = ηh

T−1 ≕ η̂u.

Similarly, using the definition of the Hamiltonian, the condition (N-v) can be written as

(C.24)

〈
∂

∂µ
HηC (

ηh
t , η

f
t, t, w

∗
t , x∗t , u

∗
t

)
, ũt

〉
6 0

⇔
〈
∂

∂µ

(〈
ηh
t , ht (w∗

t , u
∗
t )
〉
+

〈
ηf
t, ft (x∗t , u∗t )

〉
− ηCct (x∗t , u∗t )

)
, ũt

〉
6 0

⇔
〈
∂

∂µ

(〈
ηh
t , w

∗
t + F̃tu

∗
t

〉
+

〈
ηf
t, ft (x∗t , u∗t )

〉
− ηCct (x∗t , u∗t )

)
, ũt

〉
6 0

⇔
〈
∂

∂µ

(〈
ηf
t, ft (x∗t , u∗t )

〉
− ηCct (x∗t , u∗t ) +

〈
η̂u,−F̃tu

∗
t

〉)
, ũt

〉
6 0

whenever u∗t + ũt ∈ qu
t .

Hence, defining a new Hamiltonian as in (3.1), the conditions (N-i) - (N-v) transform to

the conditions (PMP-i) - (PMP-vi) as shown below.

(i) The non-negativity condition (PMP-i) is same as the condition (N-i)

(ii) Since the non-triviality condition (N-ii) asserts that ηC,
(
ηf
t

)T−1

t=0
,
(
ηh
t

)T−1

t=0
do not vanish

simultaneosly, the non-triviality condition (PMP-ii) follows from (C.23).

(iii) It can be observed from the way the Hamiltonian is defined in (3.1), the optimal state

and adjoint dynamics specified in (N-iii) is same as the one in (PMP-iii).

(iv) The transversality conditions in (PMP-iv) also follow from the definition of Hamilto-

nian in (3.1) and the conditions (N-iv) on states (x) and adjoint (ηf
t ).

(v) From (C.24), we can see that (N-v) holds if and only if (PMP-v) holds.

(vi) The condition (PMP-vi) is another way of writing the transversality conditions on

auxillary states and auxillary state-adjoints in (N-iv). The equivalence follows directly

from the dynamics of auxillary states specified by (N-iii) and the equivalence of the

condition (PMP-vi) and the boundary conditions on auxillary states in (N-iv) as shown

in (C.20).
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Our proof is now complete. �

Appendix D. Proofs of Corollaries

Proof of Corollary 3.2. The conditions (AFF-i), (AFF-ii), (AFF-iii), (AFF-iv), and (AFF-vi)

follow directly from Theorem 3.1. The Hamiltonian maximization condition, pointwise in

time, (AFF-v) is proved as follows:

Since Ut is convex, by Theorem B.3, the supporting cone Kt of Ut at u∗t is a local tent

of Ut at u∗t . By (PMP-v), for every vector ũt satisfying u∗t + ũt ∈ Kt , the optimal actions

u∗t , optimal states x∗t and the adjoint vectors ηf
t satisfy〈

∂

∂µ
HηC,η̂u (

ηf
t, t, x∗t , u

∗
t

)
, ũt

〉
6 0.

Since the supporting cone Kt includes the set Ut , the directions ũt satisfying u∗t + ũt ∈ Kt

include all the directions into the set Ut from u∗t . This implies that at u∗t , the directional

derivative ∂
∂µ

HηC,η̂u (
ηf
t, t, x∗t , u

∗
t

)
is non-positive for every direction ũt into the setUt , which

is a necessary condition for optimality of HηC,η̂u (
ηf
t, t, x∗t , µ

)
at u∗t . Note that since ct (ξ, ·)

is convex, we have[
∂2

∂µi∂µj
HηC,η̂u (

ηf
t, t, x∗t , u

∗
t

) ]
i, j

= −
[

∂2

∂µi∂µj
ct (x∗t , u∗t )

]
i, j

6 0.

Thus, the function HηC,η̂u (
ηf
t, t, x∗t , ·

)
: Ut −→ R is concave, and hence the necessary

condition for optimality is also sufficient. The set Ut being compact, the function HηC,η̂u

attains its maximum. �

Proof of Corollary 3.3. Observe that when St = R
d, the dual cone of qx

t (x∗t ),
(
qx
t (x∗t )

)◦
={

0
}

and when St is a singleton set, the dual cone
(
qx
t (x∗t )

)◦
= R

d. Since St = R
d for

t = 1, . . . ,T − 1, the vectors ηx
t = 0 for t = 1, . . . ,T − 1. Thus, the adjoint dynamics in

(AFF-iii) specialises to (3.6). Since S0 and ST are singleton sets, the vectors ηx
0

and ηx
T

are

arbitrary and thus the transversality conditions in (AFF-iv) are trivially satisfied. �

Appendix E. Proofs of LQ Propositions

Proof of Proposition 4.1. Since both the initial and the final states are fixed, from the

transversality conditions we see that ηf
0

and ηf
T−1

can be arbitrary. Suppose that the PMP

holds in abnormal form, i.e., ηC
= 0. In this case the adjoint dynamics equation reduces to

the following.

ηf
t−1 = A⊤ηf

t for t = 1, . . . ,T − 1

The adjoint variable ηf
t is given in terms of the ηf

T−1
as

(E.1) ηf
t =

(
A⊤)T−t−1

ηf
T−1 for t = 0, . . . ,T − 1.

From the Hamiltonian maximization condition (which is uncosntrained optimization with

respect to control variable since there are no control action constraints), we obtain the

following conditions.

ηCRu∗t = B⊤ηf
t for t = 0, . . . ,T − 1.
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Since ηC
= 0, by assumption, it follows that

B⊤ηf
t = 0 for t = 0, . . . ,T − 1,

⇒ B⊤ (A⊤)T−t−1
ηf
T−1 = 0 for t = 0, . . .T − 1 in view of (E.1).

This implies that ηf
T−1

is in the null space of
(
B AB . . . AT−1B

)⊤
. But since the pair

(A, B) is controllable, the matrix
(
B AB . . . AT−1B

)
has full column rank and thus,

its range space (image) is Rd. Since the range space (image) of a matrix C is orthogonal

to the kernel/null space of its transpose C⊤, the null space of
(
B AB . . . AT−1B

)⊤
is

just the zero vector. This means that ηf
T−1
= 0. From (E.1), we see that

(
ηf
t

)T−1

t=0
is the zero

sequence. But this contradicts the non-triviality assertion of the PMP. �

Proof of Proposition 4.2. If ηC
= 0, then from (4.10) we have,

B⊤ηf
t = F̃⊤

t η̂
u for t = 0, . . . ,T − 1, and

ηf
t−1 = A⊤ηf

t for t = 0, . . . ,T − 1.

This means ηf
t = (A⊤)T−1−tηf

T−1
for t = 0, . . . ,T − 1 and therefore,

B⊤(A⊤)T−1−tηf
T−1 = F̃⊤

t η̂
u for t = 0, . . . ,T − 1.

Letting

B̃T ≔
©
«
B⊤(A⊤)T−1

...

B⊤

ª®®¬
∈ R

mT×d and F̃ ≔
©
«

F̃⊤
0
...

F̃⊤
T−1

ª®®¬
∈ R

mT×ℓ,

we have B̃Tη
f
T−1
= F̃η̂u. Note that B̃T is the transpose of the reachability matrix and

F̃ =
(
F D−1

)⊤
. By assumption, rank

(
B̃T

)
= d.

If the equation

(E.2)
(
B̃T −F̃

) (
ηf
T−1

η̂u

)
= 0

admits a non-trivial solution, then there exist ηC, η̂u and
(
η̂u
)T−1

t=0
, not all zero, satisfying

(4.10). Since when ηC
= the optimal state-action trajectory

(
(x∗t )Tt , (u∗t )T−1

t=0

)
is independent

of η̂u and
(
ηf
t

)T−1

t=0
, every feasible solution of (4.9) is an abnormal solution of PMP.

The equation (E.2) admits a non-trivial solution only when rank
(
B̃T −F̃

)
< d + ℓ.

Since rank
(
B̃T −F̃

)
= min{d + ℓ,mT }, there exist non-trivial solutions to (E.2) when

d + ℓ > mT . And when the rows of the reachability matrix and the frequency constraints

matrix F D−1 are independent, the rank
(
B̃T −F̃

)
= d + ℓ and there do not exist any non-

trivial solutions to (E.2) and thus, all the optimal state-action trajectories are normal. �
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