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Switching tube-based MPC: characterization of minimum

dwell-time for feasible and robustly stable switching
Bernardo A. Hernandez Vicente, Paul A. Trodden Member, IEEE

Abstract—We study the problem of characterizing mode dependent

dwell-times that guarantee safe and stable operation of disturbed switch-

ing linear systems in an MPC framework. We assume the switching

instances are not known a-priori, but instantly at the moment of switching.

We first characterize dwell-times that ensure feasible and stable switching

between independently designed robust MPC controllers by means of

the well established exponential stability result available in the MPC

literature. Then, we employ the concept of multi-set invariance to improve

on our previous results, and obtain an exponential stability guarantee

for the switching closed-loop dynamics. The theoretical findings are

illustrated via a numerical example.

Index Terms—Model predictive control, switching systems, dwell-time,

robust control, stability.

I. INTRODUCTION

Model predictive control (MPC) is a well established control

technique that handles state and input constraints explicitly, while

optimizing the system performance on-line [1]. However, the synthesis

of stabilizing and admissible MPC controllers relies largely on

knowing a model of the plant that is being controlled. On the other

hand, many plants are better represented by a collection of models

(or modes) and a logic based switching scheme [2]. This modelling

framework is referred to as switching systems and it poses serious

theoretical challenges for the design of admissible and stabilizing

MPC controllers; for example, guaranteeing constraint satisfaction

despite the switching between modes with different constraints.

To tackle some of these issues, many authors have focused on

the concept of invariance for a prescribed dwell-time [3]–[8]. A

dwell-time is a period of time during which the plant behaves as a

single fixed mode, and it is easy to show that short dwell-times may

result in unstable closed-loop dynamics even for locally stabilizing

controllers [2]. In [3], [4] coupled returnable sets are introduced for a

linear discrete time switching system subject to bounded additive

disturbances. These sets are used in [5] to design a stabilizing

and admissible MPC controller, albeit assuming homogeneity of

disturbances and constraints, and requiring the solution of a min-

max problem at each time instant. In [6], [7] a similar problem is

solved through the computation of inter-reachable sets. Constraint

satisfaction is guaranteed by design but stability is established only

when future switches are known a-priori.

Another approach is to consider the dwell-time as a design variable,

such as in [9], [10] where the goal is to compute a minimum dwell-

time to ensure feasibility and stability of a switched MPC control

architecture. Standard (robust) MPC controllers are designed for each

linear mode and the concept of set reachability is employed to compute

a minimum mode dependent dwell-time (MDT) that guarantees

feasible switching. A contraction requirement in the computation

of the reachability sets guarantees asymptotic stability.

A conceptually different technique is presented in [11], [12], where

Lyapunov functions of neighbouring modes are compared in order
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to compute minimum MDTs that guarantee exponential stability of

the switched closed-loop dynamics. Admissibility through a switch is

ensured by intersecting sub-level sets of the corresponding Lyapunov

functions of each mode. The latter are not invariant, but guarantee

constraint satisfaction by construction (similar to [4], [7], [10]).

In this note we propose an approach for the off-line computation

of admissible and stabilizing MDTs, for heterogeneous modes, based

on the exponential stability result thoroughly established in the

MPC literature. First we employ the exponential decay of the state

trajectories to characterize a simple set that contains the corresponding

closed-loop dynamics. This set is then used to compute MDTs that

allow for admissible switching given (robust) controllers independently

designed for each mode. The latter is in contrast to [6], [7] where the

reachability between neighbouring invariant sets has to be guaranteed

and [10] where the coupled invariant sets [3], [4] are employed.

Furthermore, by using a simple set, we are able to compute the

corresponding MDTs without the need for the explicit computation

of reachable sets of the MPC-controlled system (as required in [10]).

In the nominal case we establish exponential stability of the origin

by comparing Lyapunov functions, improving on the asymptotic

stability result found in [6], [9], [10]. In the robust case, and provided

a sufficiently long MDT, we guarantee finite time convergence

(exponentially fast) to a neighbourhood of the origin. However, given

the switching dynamics, this neighbourhood is larger than the one

related to the robust control of single-mode uncertain dynamics. In

order to improve on the latter, we present a second set of results that

employ the concept of invariant multi-sets [8]. These sets remain

invariant after a switch in a neighbour-to-neighbour framework,

thus allowing for an exponential stability guarantee for a reduced

neighbourhood around the origin in the robust case.

A. Notation

For C,D ⊂ Rn, C⊕ D and C⊖ D are, the Minkowski sum and

Pontryagin difference respectively [13]. The 1-norm ball centred at

the origin with radius r is Br and conv {·} is the convex hull operator.

The set of positive integers including 0 is N0. For x ∈ Rn and

Q ∈ Rn×n, ||x||2Q is shorthand for x⊤Qx, |x|p represents the p-

norm of x and Q > 0 means that Q is positive definite. The identity

matrix of dimension n is In. For a > b ∈ N0, a : b is the sequence

of integers from a to b. A polytope is a compact polyhedron.

II. PRELIMINARIES

A. Switching dynamics

We consider a general class of discrete-time switching linear systems

subject to bounded additive disturbances and constraints, represented

in state space form by

x(t+ 1) = Aσ(t)x(t) +Bσ(t)u(t) + w(t)

x(t) ∈ Xσ(t) ⊂ Rnx

u(t) ∈ Uσ(t) ⊂ Rnu

w(t) ∈ Wσ(t) ⊂ Rnx ,

(1)

where x(t) and u(t) are respectively the state and input of the system

at time t. The switching signal σ(·) is a piecewise constant function
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that, at each sampling time, takes values in the finite set M =
{1, . . . ,M}, and indicates the currently active mode. We require the

following assumptions.

Assumption 1. Xm, Um and Wm are convex polytopes. Xm and

Um contain the origin in their interior and Wm contains the origin.

Assumption 2. The pair (Am, Bm) is stabilizable ∀m ∈ M.

Assumption 2 implies the existence, for each mode, of a linear gain

Km that renders Ām = Am+BmKm Schur. The switching instances

are {t0, t1, . . . , tk, . . .} with t0 = 0 and tk ≥ tk−1 + 1, thus σ(t) is

constant in [tk−1 , tk) for all k ≥ 1. Furthermore we assume that the

switching signal is unknown a-priori but known instantly at each time

t, and that the switching and sample times coincide. The latter allows

us to define the concept of mode dependent dwell-time (MDT).

Definition 1. The MDT associated to mode m ∈ M, say τm, is the

minimum amount of time during which the switching system remains

in mode m before leaping into another allowable mode. It follows

that tk+1 − tk ≥ τm for any k ∈ N0 such that σ(tk) = m.

In many applications only certain switches are allowed. In this case

we refer to σ(·) as a constrained switching signal (CSS). A CSS can

be precisely represented by a directed graph G (M, E), where M is

the set of nodes, and E = {(s, d) |s, d ∈ M} the set of edges that

link the nodes together. Each edge represents an allowed switch and

for each (s, d) ∈ E , s represents the source node and d the destination

node. In other words, at each time instant t

σ(t) ∈ Mσ(t−1) = {d ∈ M| (σ(t− 1), d) ∈ E} ⊆ M.

We focus on the regulation problem, i.e. the design of a control

law u(t) = κ(x(t)) that admissibly stabilizes the origin (or a

neighbourhood of it) given a CSS. Although it might be trivial

to design robustly stabilizing MPC controllers for each mode, it

can be shown that mode-stabilizing controllers can destabilize the

switching system if the switches happen too rapidly. Furthermore,

the heterogeneity of the constraints may result in constraint violation

at the moment of switching. In this note, we propose a solution to

these issues that relies on characterizing the minimum MDT required,

by each mode, to guarantee stable and admissible switching between

mode-stabilizing tube-based MPC controllers.

B. Single Tube MPC

In order to achieve robust regulation of the constrained switching

system (1) we employ the robust control technique known as tube

MPC (TMPC) [14], and the exponential stability result available for

it. We now recall some standard definitions and a brief description

of the TMPC technique applied to a single mode m ∈ M (see [14],

[15] for a detailed description).

Definition 2 (Invariant sets). Consider the dynamics in (1) for a

single mode m and control law u(t) = Kmx(t). A set Sm is robust

positive invariant (RPI) for mode m if ĀmSm⊕W ⊆ Sm, and positive

invariant (PI) if Wm = {0}. Furthermore, Sm is an admissible RPI

(PI) set if Sm ⊂ Xm and KmSm ⊂ Um.

TMPC relies on the regulation of artificial undisturbed (also called

nominal) trajectories represented by (x̄(t), ū(t)), subject to constraints

tightened by an RPI set to account for the effect of the disturbances. At

each time instant, the optimal control problem solved by the m-TMPC

controller is

PNm(x(t)) : min
ū,x̄0

JNm (ū, x̄0) (2a)

s.t. (for k = 0, . . . , Nm − 1)

x(t)− x̄0 ∈ Sm (2b)

x̄k+1 = Amx̄k +Bmūk (2c)

x̄k ∈ X̄m ⊆ Xm ⊖ Sm (2d)

ūk ∈ Ūm ⊆ Um ⊖KmSm (2e)

x̄Nm ∈ X̄f,m ⊆ X̄m, (2f)

where (x̄k, ūk) are the nominal predictions, updated at each time

instant to account for the newly measured true state, Nm is the

prediction horizon, and ū = {ū0, . . . , ūNm−1} is the input sequence

to be optimized. The sets Sm and X̄f,m are respectively an admissible

RPI and an admissible PI set for the uncertain and nominal dynamics

(2c) of mode m for a given stabilizing Km according to Definition 2.

These sets can be computed using several different approaches such

as [13], [16]–[18].

In standard tube MPC implementations, the cost function is designed

to approximate the infinite horizon LQR cost

JNm (ū, x̄0) =

N−1
∑

k=0

(

||x̄k||2Qm
+ ||ūk||2Rm

)

+ ||x̄N ||2Pm
,

with Qm, Rm > 0 and Ā⊤
mPmĀm +Qm +K⊤

mRmKm − Pm = 0.

Define
(

ū
∗(x(t)), x̄∗

0(x(t))
)

= arg PNm(x(t))

VNm(x(t)) = JNm

(

ū
∗(x(t)), x̄∗

0(x(t))
)

,

then the nominal trajectories are updated with (x̄(t), ū(t)) =
(x̄∗

0(x(t)), ū
∗
0(x(t))). Let X̄Nm be the set of all the states for which

PNm(x) is feasible when constraint (2b) is replaced by x̄0 = x(t),
then the following result holds [14], [15].

Proposition 1. If (i) Assumptions 1 and 2 hold, (ii) the sets Sm

and X̄f,m are convex polytopes with the origin in their interior,

and (iii) the loop is closed with u(t) = κm(x(t)) = ū∗
0(x(t)) +

Km (x(t)− x̄∗
0(x(t))), then (a) the optimization problem (2) is

recursively feasible with feasibility region XNm = Sm⊕X̄Nm (b) the

sets X̄Nm and X̄Nm−1 are convex polytopes with the origin in their

interior and invariant under ū∗
0(x(t)), (c) state and input constraints

are met at all times despite the disturbance, and (d) there exist constant

scalars bm, dm, fm > 0 such that for all x ∈ XNm and w ∈ Wm it

holds that:

bm|x̄∗
0(x)|22 ≤VNm(x) ≤ dm|x̄∗

0(x)|22 (3a)

VNm (Amx+Bmκm(x) + w)−VNm(x) ≤ −fm|x̄∗
0(x)|22. (3b)

Corollary 1. The system of inequalities (3) implies that there exist

constant scalars cm > 0 and λm ∈ (0, 1) such that for all x(0) ∈
Sm ⊕ X̄Nm , it holds that

|x̄(t)|2 ≤ cmλt
m|x̄(0)|2. (4)

Therefore the origin is exponentially stable for the optimized nominal

trajectories of mode m.

Proofs for Proposition 1 and Corollary 1 can be found in [14], [15].

III. SWITCHING TUBE MPC

Mode-admissible and mode-stabilizing controllers can result in

constraint violation and unstable behaviour if the switch between

modes occurs too quickly [2]. To prevent these issues, given the

switching system in (1) and a collection of m independent robust
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controllers like the one described in Section II-B, we propose

the characterization of minimum MDTs for admissible switching

and minimum MDTs for stabilizing switching, both depending on

the exponential stability constants presented in Proposition 1 and

Corollary 1. The core idea of our approach to finding MDTs for

admissible switching is to bound the state of the m mode closed-

loop system within a simple set whose Chebyshev radius decreases

exponentially over time. Whenever this set is inside the feasibility

region of a neighbouring mode, say l, a switch is admissible.

Corollary 1 bounds the 2-norm of the nominal state trajectories,

however we propose to use a 1-norm ball as a bounding set because

the latter is a convex polyhedron. This results in the set operations

needed in our approach – for example, the intersection of two convex

sets – being greatly simplified. We now recast the exponential decay

in (4) to account for the 1-norm.

|x̄(t)|1 ≤ √
nxcmλt

m|x̄(0)|2 (5)

A drawback of using a 1-norm ball is that its radius (the right hand

side of (5)) is larger than the radius of the corresponding 2-norm

ball (right hand side of (4)). This introduces conservativeness since a

possibly larger number of time steps is required for the admissibility

inclusion to be verified. However, the difference between both radii,

and thus the associated conservativeness, decreases exponentially fast.

A. Minimum MDT for admissible switching: known XNm

Admissibility of the m-TMPC controller depends on whether the

current state lies inside the feasibility region XNm . Proposition 1

guarantees that, given an appropriate design, these feasibility sets are

convex polytopes. These sets are also often called the Nm-stabilizable

sets to X̄f,m since they contain all the states that can be feasibly driven

to the terminal set with a sequence of Nm control actions. Following

this, and according to [18], the computation of X̄Nm requires Nm

iterations of the backwards reachability operator, starting in X̄f,m.

If the dimension of the plant is large, the number of defining half-

spaces may grow prohibitively fast throughout the iterations, making

it computationally expensive to reach Nm. Our first set of results

assume that X̄Nm and X̄Nm−1 are known for all m ∈ M, but in

view of the previous discussion, Section III-B provides an alternative

for when that is not the case.

Suppose m, l ∈ M; a switch from mode m to mode l is feasible at

time tk if and only if x(tk) ∈ XNl
. However the heterogeneity of the

modes may result in XNm * XNl
thus, even though x(tk−1) ∈ XNm

implies x(tk) ∈ XNm−1 with XNm−1 invariant for the closed-loop,

it does not necessarily imply x(tk) ∈ XNl
. Note that we imposed

tk ≥ tk−1 + 1, thus the dwell-times are necessarily no less than one.

In view of this, define

αm = max
x∈X̄Nm−1

|x|2, (6)

and set rm(τ) =
√
nxcmλτ

mαm. Then, the following result holds.

Proposition 2. Define

Brm(t−tk−1−1) = X̄Nm−1 ∩ Brm(t−tk−1−1). (7)

If mode m became active at the last switching instant tk−1 (feasibly),

and the loop is closed with κm(·), the nominal state trajectory of the

switching system fulfils x̄(t) ∈ Brm(t−tk−1−1) for all t ≥ tk−1 + 1.

Proof. If x(tk−1) ∈ XNm and the loop is closed with κm(·), then

x̄(t) ∈ X̄Nm for all t ≥ tk−1. Particularly x̄(tk−1 + 1) ∈ X̄Nm−1.

The rest follows from the exponential stability result in Corollary 1

and inequality (5). �

Note that rm(t − tk−1 − 1) is a conservative radius for the ball

that contains the state at time t because it is computed with αm

instead of the current state norm |x(tk−1 + 1)|2, however this allows

Proposition 2 to be independent of the initial state and of the specific

times in which a switch takes place. Nevertheless, given the effect of

the additive disturbance, the m-TMPC controller can only guarantee

stability of the set Sm, thus feasible switching needs the following

assumption.

Assumption 3. For all m ∈ M it holds that Sm ⊂ Sl ⊕ X̄Nl
for all

l ∈ Mm.

Theorem 1. Consider any pair m, l ∈ M with m 6= l, σ(tk−1) = m
and l ∈ Mm. If τf

m,l is such that Sm⊕B
rm(τ

f
m,l

)
⊆ Sl⊕X̄Nl

, then a

switch to mode l is feasible at any time tk that fulfils tk− tk−1−1 ≥
τf

m,l.

Proof. If tk ≥ tk−1+1+τf

m,l, then x(tk) ∈ Sm⊕B
rm(τ

f
m,l

)
⊆ XNl

,

thus the optimization problem PNl
(x(tk)) is feasible. �

Corollary 2. If σ(·) is CSS, then the minimum MDT that guarantees

feasible switching out of mode m is τf
m defined by

τf
m = 1 + max

l∈Mm

τf

m,l.

Since we use 1-norm balls to bound the state trajectories, instead

of accurate reachable sets such as in [10], we expect to obtain longer

(more conservative) feasibility MDTs. However, the computation of

exact reachable sets requires the explicit characterization of κm(·);
although this is possible for low-dimensional systems, it requires the

implementation of multi-parametric programming [19]. Theorem 1,

on the other hand, only requires the computation of X̄Nm , which is

achievable by the recursive application of the backwards reachability

operation [18].

B. Minimum MDT for admissible switching: unknown XNm

The computation of feasibility regions does not scale well with the

dimension of the plant, however, as the number of defining half-spaces

of the backwards reachability sets may grow prohibitively large. Given

the invariance of the terminal set, it can be shown [18] that the im-step

stabilizable sets to X̄f,m are consecutively inclusive, hence any X̄im

with im ∈ [1, Nm) represents a feasible set for (2). Nevertheless, if

X̄Nm is not tractable, then the computation of X̄im may also not

be, even for im = 1. In order to avoid computing any such set note

that for a feasible switch it is sufficient that Sm ⊕ B
rm(τ

f
m,l

)
⊆ XNl

,

which is readily met if Sm⊕B
rm(τ

f
m,l

)
⊆ Sl⊕Θl for any Θl ⊆ X̄Nl

.

Proposition 3. Assume that X̄Nm has a non-empty interior and define

the vertices of X̄m by
{

vim
}

for i = 1, . . . , nm. For all i = 1, . . . , nm

there exist β̄i
m ∈ (0, 1] such that PNm

(

βi
mvim

)

, with constraint (2b)

replaced by x̄0 = βi
mvim, is feasible for βi

m ∈
(

0, β̄i
m

]

but infeasible

for βi
m > β̄i

m. Furthermore, Θm = conv
{

β̄i
mvim

}

⊆ X̄Nm .

Proof. If X̄Nm has a non-empty interior, then there exists r > 0
such that Br ⊆ X̄Nm . It follows from the compactness of X̄m that

there exists β ∈ (0, 1] such that βX̄m ⊆ Br , which completes the

proof. �

The set Θm described in Proposition 3 serves as a replacement

to X̄Nm when the latter is not available. In order to compute the

feasibility MDTs replace αm in (6) by

ᾱm = max
x∈Θm

|x|2, (8)

and X̄Nm−1 in (7) by X̄m, then the following holds.
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Theorem 2. Consider any pair m, l ∈ M with m 6= l, σ(tk−1) = m,

l ∈ Mm and Θl from Proposition 3. If τ̄f

m,l is such that Sm ⊕
B
rm(τ̄

f
m,l

)
⊆ Sl ⊕Θl, then a switch to mode l is feasible at any time

tk that fulfils tk − tk−1 ≥ τ̄f

m,l.

Proof. First notice that Θm is feasible but not invariant under the

m-TMPC control law, unlike X̄Nm−1. In view of this, and given that

x̄(t) ∈ X̄m at all times by construction, Proposition 2 holds with

X̄Nm−1 replaced by X̄m in (7). Furthermore, if tk ≥ tk−1+τ̄f

m,l, then

x(tk) ∈ Sm ⊕ B
rm(τ̄

f
m,l

)
⊆ Sl ⊕ Θl ⊆ XNl

, thus the optimization

problem PNl
(x(tk)) is feasible. �

Corollary 3. If σ(·) is CSS, then the minimum MDT that guarantees

feasible switching out of mode m is τ̄f
m defined by

τ̄f
m = max

l∈Mm

τ̄f

m,l.

Remark 1. In order to obtain the values of β̄i
m first note that we only

need to verify whether PNm

(

β̄i
mvim

)

has a feasible solution, rather

than finding the optimal. The exact values of β̄i
m in Proposition 3 can

then be easily found by solving, for each vertex, the linear program

max
ū,β̄i

m

β̄i
m

subject to constraints (2c)–(2f) and x̄0 = β̄i
mvim.

Remark 2. If the vertices of X̄m are not available, we can replace

X̄m in Proposition 3 with any convex polytope in Rnx . The

conservativeness of the resulting collection of sets Θm depends on

the number of vertices of the unknown X̄Nm , but Theorem 2 and

Corollary 3 hold without changes.

Note that, although Θl ⊆ X̄Nl
, Theorem 2 does not necessarily

lead to longer feasibility MDTs. This is because ᾱm in (8) is also

computed with respect to Θm ⊆ X̄Nm . However, this approach does

result in a smaller region of attraction. Interestingly, a similar trade-off

is observed in [20]. To address this issue, and recover the full region

of attraction, assume that x(0) is known before initializing the plant.

Depending on the application only an estimate might be available,

however a worst case scenario approach can be observed. Even if

x(0) /∈ Sm ⊕ Θm, we can easily test x(0) ∈ XNm just by solving

PNm(x(0)) off-line. In view of this we can define a supplementary

MDT τm,0 for the initial state, such that Brm,0(τm,0) ⊆ Θm with

rm,0(τ) =
√
nxcmλτ

m|x(0)|2. After the initialization MDT has

passed, it is guaranteed that the x(τm,0) ∈ Sm ⊕Θm. Thereafter, the

feasibility MDTs computed by Theorem 2 and Corollary 3 guarantee

admissible switching, thus practically recovering the full size of the

region of attraction. If the initial mode σ(0) is known, then τσ(0),0 is

enforced as initialization MDT. However, since the switching signal is

not available for design, enforcing the maximum initialization MDT

among all modes guarantees admissible switching independent of the

initialization mode.

C. MDT for robustly stabilizing switching

The exponential stability of the nominal trajectories described in

Corollary 1 (valid for a single mode) relies primarily upon the optimal

value function VNm (·) being a Lyapunov function for the closed-loop

system [15]. However, when a switch happens, two different cost

functions come into play, thus the rate of change (3b) is not necessarily

negative. This implies that, although an MDT greater or equal to τf
m

(or τ̄f
m) ensures feasible switching and the nominal trajectories are

not affected by disturbances, they could oscillate around the edges of

the feasibility regions, and never approach the origin.

In [11] a multiplicative difference is employed, in an undisturbed

set-up, to relate the optimal value functions of different modes and

compute a minimum MDT required to maintain nominal stability.

However, a similar approach is not valid here because the bounds

in (3) depend on x̄∗
0(x), which is an optimization variable, and so it

does not necessarily take the same value for different controllers at a

given state x.

In fact, it can be shown that,

VNl
(x(tk+1))− VNm(x(tk)) ≤Gl,m|x̄∗

0,m(x(tk))|22
+ dl|x̄∗

0,l(x(tk+1))|22
(9)

where x̄∗
0,m(x(tk)) solves PNm(x(tk)), x̄

∗
0,l(x(tk+1)) is the solution

to PNl
(x(tk+1)) and Gl,m is a negative monotonically decreasing

function of the bounds in (3) and tk+1 − tk. Although x̄∗
0,l(x(tk+1))

is also a function of tk+1 − tk, it can only be defined via the explicit

characterization of the control law κl(·). Furthermore, if Sm * Sl, a

switch from mode m to mode l could result in an increase of optimal

value function after it had become zero, thus we cannot guarantee

exponential stability of the origin for the nominal closed-loop switched

trajectories.

Instead of directly comparing optimal value functions, we make use

of the robust invariance property of the feasibility regions in order to

compute a collection of robustly stabilizing MDTs. First assume that

a collection of sets {Ωm}
m∈M

that fulfil the following assumptions

is available.

Assumption 4. For all m ∈ M the set Ωm is a PI set for the m
nominal closed-loop dynamics x̄(t+ 1) = Amx̄(t) +Bmū∗

0(x(t)).

Assumption 5. For all l ∈ M, the set Ωl is large enough such that

Sm ⊂ Sl ⊕ Ωl holds for all m such that l ∈ Mm.

The goal of the collection of sets Ωm is to provide a robust stability

result despite the switching, at the expense of increasing the size of

the set that is shown to be stable (when compared to a non-switching

implementation). In view of Assumption 3, which is required for this

overall approach to computing MDTs to be applicable, Assumptions 4

and 5 are met with Ωm = X̄Nm . However, we seek to characterize

the smallest possible neighbourhood of Sm that can be rendered

stable despite the switching. In general, finding the minimal set that

is invariant under the m-TMPC nominal control law and that fulfils

Assumption 5 is not simple, since it requires the characterization of

sub-level sets of the optimal value function. For unconstrained linear

systems stabilized by a linear control law, these sets are characterized

by simple ellipsoids (given the quadratic cost); but state constraints

yield an implicit and non-linear MPC control law, resulting in that

the sub-level sets need to be obtained numerically [15].

Nevertheless, there exist two simple candidates for Ωm that fulfil

Assumption 4 and may meet Assumption 5, although without any

minimality guarantees . A first alternative is X̄Nm−1 which according

to Proposition 1 remains invariant under the nominal control law.

A second alternative is a scaling of the corresponding terminal set.

Indeed, if Km is set to the corresponding LQR gain and X̄f,m as the

maximal admissible PI set, then δX̄f,m also meets Assumption 4 for

any δ ∈ [0, 1). Considering then, that the terminal gain associated to

X̄f,m does not need to be set equal to the tube gain, the design of

the former could account for the fulfilment of Assumption 5.

If Assumption 3 holds, Theorem 1 guarantees the existence of

a collection of τf

m,l such that Sm ⊕ B
rm(τ

f
m,l

)
⊆ Sl ⊕ X̄Nl

for all

m ∈ M and l ∈ Mm. Accordingly, if the true MDTs are defined

following Corollary 2 then the set

O =
⋃

m∈M

(

Sm ⊕ X̄Nm

)

is an RPI set for the switched closed-loop dynamics. In view of this

we have the following result.
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Proposition 4. If Assumptions 4 and 5 hold, then there exists τg

m,l ≥ 1
such that

Sm ⊕
(

Ωm ∩ Br̂m(τ
g
m,l

)

)

= Sm ⊕ B̂r̂m(τ
g
m,l

) ⊆ Sl ⊕ Ωl, (10)

where r̂m(τ) =
√
nxcmλτ

m maxx∈Ωm |x|2. Furthermore, if the

feasibility MDTs are set to max
(

τf

m,l, τ
g

m,l

)

, the set

Og =
⋃

m∈M

(Sm ⊕ Ωm) (11)

is an RPI set for the switched closed-loop dynamics.

Proof. Given Assumption 4 and Corollary 1, for any x̄(0) ∈ Ωm

the nominal closed-loop fulfils x̄(t) ∈ B̂r̂m(t). In view of this and

Assumption 5, it follows that there exists a positive τg

m,l such that

(10) holds. Moreover, if the feasibility MDTs are set to the maximum

between τf

m,l and τg

m,l, it follows from Assumptions 4, the proof of

Theorem 2 and the recursive feasibility guarantee in Proposition 1 that

once the state reaches Og in (11) it remains there forever, independent

of the disturbance and the switching signal, thus Og is an RPI set

for the switching closed-loop dynamics. �

Define now

τg
m = max

l∈Mm

τg

m,l,

in view of Proposition 4, the following result holds.

Theorem 3. If Assumptions 4 and 5 hold, the feasibility MDTs are

τ̂f
m = max

{

τf
m, τg

m

}

for all m ∈ M and, for at least one m̄ ∈ M
the stability MDT τs

m̄ is such that Brm̄(τs
m̄) ⊆ B̂r̂m̄(τ

g
m̄), then, as soon

as σ(tk) = m̄, the true state enters Og in finite time posterior to the

switch into mode m̄ and remains therein for all future time instances.

Proof. Since there exists at least one m̄ such that Brm̄(τs
m̄) ⊆

B̂r̂m̄(τ
g
m̄), it follows that if σ(tk) = m̄, then for any t ∈

[tk + τs
m̄, tk+1) the state fulfils x(t) ∈ Sm̄ ⊕ Br̂m(τ

g
m), thus

x(t) ∈ Og . Moreover, x(t) ∈ Sl ⊕ Ωl for all l ∈ Mm̄, thus

given Assumptions 4 and 5, if the feasibility MDTs fulfil τ̂f
m ≥ τg

m,

Proposition 4 holds and the set Og is RPI set for the switched closed-

loop dynamics, thus x(t) ∈ Og for all t ≥ tk + τs
m̄. �

Remark 3. In Assumption 5 the set Ωl can be arbitrarily small only

if Sm ⊆ Sl, for all m ∈ M such that l ∈ Mm. Otherwise, the size

of Ωl is lower bounded so that Sm ⊂ Sl ⊕ Ωl holds.

Theorem 3 guarantees robust stability of the set Og by means of

the recursive feasibility property associated to the different TMPC

optimization problems. In this context the stability MDT τs
m̄ is nothing

more than a large enough feasibility MDT so that mode m̄ reaches

Br̂m(τ
g
m,l

) ⊆ Ωm̄, rendering Og invariant for all subsequent switches.

D. Robustly stabilizing and admissible switching MDT

If the feasibility regions XNm have been computed, it follows

from Corollary 2 and Theorem 3 that the minimum MDT required

to achieve robustly stabilizing and constraint admissible closed-loop

dynamics with the switching TMPC controllers is τm defined by

τm = max
{

max
{

τf
m, τg

m

}

, τs
m

}

.

If the feasibility regions are not available, then it follows from

Corollary 3 and Theorem 3 that the aforementioned MDT is

τm = max
{

max
{

τ̄f
m, τg

m

}

, τs
m

}

.

IV. UNDISTURBED DYNAMICS

The undisturbed case, i.e. when Wm = {0} for all m ∈ M, can

be seen as a special instance of the general MDT problem analysed

in Section III. The undisturbed MPC optimization can be obtained

from the tube one presented in Section II-B by setting Sm = {0};

this results in the nominal trajectories equating the true ones with

x̄0 = x(t), effectively reducing the number of optimization variables.

With the above modifications, the results pertaining the computation

of minimum feasibility MDTs described in Sections III-A and III-B

hold, however, the stability MDT results can be strengthened due to

the fact that x̄∗
0(x) is not an optimization variable, and therefore does

not change from mode to mode at the same state x.

A. MDT for stabilizing switching

As discussed before, when a switch takes place two different cost

functions must be compared, thus the rate of change (3b) is not

necessarily negative. In order to account for a switch, for all pairs

m, l ∈ M with l ∈ Mm define µl,m ≥ dl − bm, where dl and bm
are those in (3a). It follows that

VNl
(x)− VNm(x) ≤ µl,m|x|22 ∀x ∈ XNm ∩ XNl

. (12)

Equation (12) provides an additive bound on the change of the optimal

value functions at the same state when a switch takes place. Note

that the main difference between (9) and (12) is that the right hand

side of the latter does not depend on the optimization of two different

controllers, but on the fixed value of the current state. In view of (12),

the following result holds.

Theorem 4. For any two switching instances (tk, σ(tk) = m) and

(tk+1, σ(tk+1) = l ∈ Mm) that fulfil the associated feasibility MDT,

if tk+1 − tk ≥ τs
m,l with τs

m,l such that

µl,mc2mλ
2τs

m,l
m

dm
< 1−

(

1− fm
dm

)τs
m,l

= F(fm, dm, τs
m,l), (13)

then the origin is exponentially stable for the switched closed-loop,

with respect to the switching instants.

Proof. First of all note that (12) puts a finite bound on the increase

of the optimal value function produced by a switch at any given

state. Secondly, from (12) and algebraic manipulation of (3) and (4)

it follows that

VNl
(x(tk+1))− VNm(x(tk)) ≤− dmF(fm, dm, τs

m,l)|x(tk)|22
+ µl,mc2mλ

2(tk+1−tk)
m |x(tk)|22,

(14)

thus if (13) holds, the left hand side of (14) is negative. Furthermore,

since (3) holds for all m ∈ M it follows that there exists b, d, f > 0
such that the candidate function V (x(tk)) = Vσ(tk)(x(tk)) fulfils

b|x(tk)|22 ≤V (x(tk)) ≤ d|x(tk)|22
V (x(tk+1))−V (x(tk)) ≤ −f |x(tk)|22.

In turn, this implies that there exists constants c > 0 and γ ∈ (0, 1)
such that |x(tk)|2 ≤ cγk|x(0)|2, therefore the origin is exponentially

stable for the switched closed-loop dynamics. �

Since VNm(·) is a Lyapunov function for all m ∈ M, it must

happen that fm < dm. In view of this, the right hand side of the

inequality in (13) is positive, monotonically increasing on τs
m,l and

bounded above by 1. Also, the left hand side is negative if µl,m < 0,

and positive but monotonically decreasing on τs
m,l and bounded below

by 0 if µl,m ≥ 0, thus a finite τs
m,l always exists such that (13) is

met.
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The bound in (12), however explicit, might lead to unnecessary

conservativeness given that at any switching time tk there is only one

MPC controller active. An alternative is to compare the corresponding

optimal value functions at dynamically adjacent states. For all pairs

m, l ∈ M with l ∈ Mm define µ̄l,m ≥ µl,m − fl. It follows that

VNl
(Amx+Bmκm(x))− VNm(x) ≤ µ̄l,m|x|2

∀ (Amx+Bmκm(x)) ∈ XNm ∩ XNl
, x ∈ XNm ,

which provides an additive bound on the change of the optimal value

functions at dynamically adjacent states. In view of this, we have the

following result analogous to Theorem 4.

Proposition 5. If τ̄s
m,l is such that

µ̄l,mc2mλ
2(τ̄s

m,l−1)
m

dm
< 1−

(

1− fm
dm

)τ̄s
m,l−1

, (15)

the origin is exponentially stable for the switched closed-loop, with

respect to the switching instants.

Proposition 5 follows from the same arguments than Theorem 4.

Analogously to (13), there exists a finite τ̄s
m,l such that (15) is met.

However, whether (15) is less stringent than (12) cannot be determined

without specifying the values of the various bounding constants in

(3). In view of this, we propose to compute both and compare them

in order to obtain the less conservative stabilizing MDT.

Corollary 4. If σ(t) is a CSS, then the minimum MDT that guarantees

exponential stability throughout a switch out of mode m is τs
m defined

by

τs
m = max

l∈Mm

min
{

τs
m,l, τ̄

s
m,l

}

.

In parallel to the robust case, if the feasibility regions XNm

have been computed, it follows from Corollary 2, Theorem 4 and

Proposition 5 that the minimum MDT required to achieve stabilizing

and constraint admissible closed-loop dynamics with the switching

MPC controllers is τm defined by

τm = max
{

τf
m, τs

m

}

,

and if the feasibility regions are not available, Corollary 3, Theorem 4

and Proposition 5 yield a minimum MDT of

τm = max
{

τ̄f
m, τs

m

}

.

V. SWITCHING MULTI-SET TUBE MPC

The main feature that allowed us, in Section IV-A, to improve on

the stability MDT results of Section III-C is the fact that the nominal

trajectories are not re-optimized at each time instant (because they

represent the true plant states). In order to obtain similar results in the

robust set-up we propose to employ an alternative version of TMPC

in which the nominal trajectories are allowed to evolve independently

after initialization [15, Chapter 3]. At time t = 0 the optimal problem

PNm is solved, but for any t > 0 constraint (2b) is replaced by

x̄0 = x̄∗
1(x(t− 1)). Therefore, the nominal state at time t is the one

step ahead optimal prediction made at time t− 1, or simply

x̄0 = x̄(t) = Amx̄(t− 1) +Bmū∗
0(t− 1), (16)

thus the nominal state and the true state evolve separately, and the

cost function now depends only on the nominal trajectories. We now

recast Proposition 1 to reflect such modifications. In what follows we

refer to the modified optimization problem as P̄Nm

Proposition 6. If Assumptions 1 and 2 hold, the sets Sm and X̄f,m

are convex polytopes with the origin in their interior, the loop is

closed with u(t) = κm(x(t)) = ū∗
0(x̄(t)) + Km (x(t)− x̄(t)) and

constraint (2b) is replaced by (16) then (a) the optimization problem

P̄Nm is recursively feasible with feasibility region XNm = Sm⊕X̄Nm

(b) the sets X̄Nm and X̄Nm−1 are convex polytopes with the origin

in their interior and invariant under ū∗
0(x(t)), (c) state and input

constraints are met at all times despite the disturbance, and (d) there

exists constant scalars bm, dm, fm > 0 such that for all x̄ ∈ X̄Nm it

holds that:

bm|x̄|22 ≤VNm(x̄) ≤ dm|x̄|22 (17a)

VNm (Amx̄+Bmū∗
0(x̄))−VNm(x̄) ≤ −fm|x̄|22. (17b)

Furthermore, there exists constant scalars cm > 0 and λm ∈ (0, 1)
such that for all x̄(0) ∈ X̄Nm , it holds that

|x̄(t)|1 ≤ √
nxcmλt

m|x̄(0)|2. (18)

Therefore the origin is exponentially stable for the nominal trajectories

of mode m when in closed-loop with κ̄m(x(t)) = ū∗
0(x̄(t)).

The proof to Proposition 6 can be found in [15].

A. Minimum MDT for admissible switching: known XNm

Although similar arguments to those in Section III-A can be used

to bound the nominal state inside a ball of time dependent radius,

Theorem 1 does not hold for this version of TMPC. To illustrate why,

note that Proposition 2 holds for P̄Nm , thus if mode m became active

(feasibly) at time tk−1, we can find a finite t̄ > tk−1 such that

x̄(t̄) ∈ Brm(t̄−tk−1−1) ⊆ X̄Nl
⊆ X̄l. (19)

Furthermore, x(t̄)− x̄(t̄) ∈ S̄m due to the robust invariance property

of Sm. Given (19) P̄Nl
is feasible at time t̄, so if a switch takes place

the input is defined by

u(t̄) = ū(t̄) +Kl (x(t̄)− x̄(t̄)) ∈ Ūl ⊕KlSm,

but since Ūl ⊕KlSm is not necessarily a subset of Ul, the true input

constraints may be violated. Furthermore, even, if u(t̄) ∈ Ul, it is

easy to show that

x(t̄+ 1)− x̄(t̄+ 1) ∈ ĀlSm ⊕Wl,

which is not necessarily a subset of Sl yielding a possible violation

of the true state constraints at time t̄+ 1.

We propose to address the state constraint violation issue by

employing the concept of multi-set invariance proposed in [8].

Following the results presented there, we can compute a collection of

sets {Sm}
m∈M

that fulfil

ĀlSm ⊕Wl ⊆ Sl, ∀m ∈ M ∀l ∈ Mm ∪ {m} . (20)

In order to guarantee that the input constraints are not violated we

incorporate an additional control step represented by an m, l-transition

controller, characterized by the following optimization problem

P̃m
Nl

(x(t)) : min
ū

JNl
(ū, x̄0) (21a)

s.t. (for k = 0, . . . , Nl − 1)

x̄0 = x̄(t) (21b)

ū0 ∈ Ũm
l ⊆ Ul ⊖KlSm (21c)

x̄k+1 = Alx̄k +Blūk (21d)

x̄k ∈ X̄l ⊆ Xl ⊖ Sl (21e)

ūk ∈ Ūl ⊆ Ul ⊖KlSl (21f)

x̄Nl
∈ X̄f,l ⊆ X̄l. (21g)

Define V m
Nl

(x(t)) as the optimal value function for (21) with

ū
∗(x̄(t)) = argmin P̃m

Nl
(x(t)),
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and the set X̃m
Nl

as the set of all the states for which P̃m
Nl

(x) is

feasible. The following result holds.

Proposition 7. For any pair m, l ∈ M with, σ(tk−1) = m and

l ∈ Mm, if the set Sl fulfils (20), x̄(tk) ∈ X̃m
Nl

and the loop is closed

with u(tk) = κl(x(tk)) = ū∗
0(x̄(t)) + Kl (x(tk)− x̄(tk)) then (a)

P̄Nl
(x(tk + 1)) is feasible, (b) u(tk) ∈ Ul and x(tk + 1) ∈ Xl, and

(c) V m
Nl

(x) fulfils (17) and (18) for all x̄ ∈ X̃m
Nl

.

Proof. (a) If x̄(tk) ∈ X̃m
Nl

, then the m, l-transition optimization is

feasible, and so there exists a sequence of Nl−1 control actions inside

Ūl such that, starting from x̄(tk + 1), the state sequences reach X̄l,f

without leaving X̄l. This implies x̄(tk + 1) ∈ X̄Nl−1 ⊆ X̄Nl
, thus

P̄Nl
(x(tk +1)) is feasible. (b) Feasibility of P̃m

Nl
(x̄(tk)) implies that

u(tk) ∈ Ũm
l ⊕KlSm, which by (21c) is a subset of Ul. Furthermore,

since Sl fulfils (20), then x(tk + 1)− x̄(tk + 1) ∈ Sl, thus

x(tk + 1)− x̄(tk + 1) + x̄(tk + 1) ∈ Sl ⊕ X̄Nl
⊆ Xl.

(c) Follows from the proof of Proposition 6 (see [15]). �

In view of Proposition 7, the following holds from Theorem 1.

Theorem 5. Consider any pair m, l ∈ M with m 6= l, σ(tk−1) = m
and l ∈ Mm. If τf

m,l is such that B
rm(τ

f
m,l

)
⊆ X̃m

Nl
, then a switch

to mode l is feasible at any time tk that fulfils tk − tk−1 − 1 ≥ τf

m,l.

Corollary 5. If σ(·) is CSS, then the minimum MDT that guarantees

feasible switching out of mode m is defined by

τf
m = 1 + max

l∈Mm

τf

m,l.

Remark 4. Theorem 5 is the parallel of Theorem 1 when we employ

the TMPC version in which nominal trajectories are not optimized.

The results in Section III-B, i.e. when the feasibility regions are not

available, are also valid in this case with the appropriate modifications

to account for the m, l-transition controller.

B. Robustly stabilizing and admissible switching MDT

Since the nominal trajectories are not optimized, and given that

V m
Nl

(x) is a Lyapunov function for the m, l-transition trajectories (see

Proposition 7) the results from Section IV-A related to minimum

required stabilizing MDTs apply without changes to the nominal

trajectories. In view of this, if the feasibility regions XNm have

been computed, it follows from Corollaries 4 and 5 that the minimum

MDT required to achieve robustly stabilizing and constraint admissible

closed-loop dynamics with the switching multi-set TMPC controllers

is τm defined by

τm = max
{

τf
m, τs

m

}

.

By employing the concept of multi-set invariance, alongside with

a different variant of TMPC, we are able to guarantee exponential

stability of the origin for the nominal trajectories even in the presence

of heterogeneous disturbances and constraints. However, the multi-sets

fulfil (20) for all l ∈ Mm additionally to the standard RPI condition

(represented by l = m), therefore the minimal invariant multi-sets

are, at least, as large as the minimal RPI sets, possibly shrinking the

region of attraction of the switching multi-set TMPC controller.

VI. ILLUSTRATIVE EXAMPLE

To illustrate our approach to computing MDTs we consider

a switching system with M = 5 and a CSS represented by

the graph in Figure 1. The dynamics of each mode are A1 =
[1.5 0; 1.5 1], A2 = [1 1.5; 0 1.5], A3 = [0.7 0.1; 0.2 0.4],
A4 = [0.8 0.3; 0.4 0.1], A5 = [0.2 0.1; 0.2 0.6], B1 = [1; 0.8],
B2 = [1; 0.8], B3 = [1; 0.5], B4 = [0.7; 0.8] and B5 = [1.3; 0.6].

12

3 4 5

Fig. 1. Graph representing the CSS for the numerical example.
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Fig. 2. Robust invariant sets: minimal multi-set, minimal RPI set.

Each mode is subject to state constraints, X1 =
{

x ∈ R2 | |x|∞ ≤ 2
}

,

X2 = 1/2X1, X3 = X1, X4 = TX1, X5 = X4, with T = [1.5 0; 0 1],
and input constraints U2 = {u ∈ R | |u|∞ ≤ 2}, U1 = 3/2U2,

U3 = 2U2, U4 = U1, U5 = 1/4U1. Finally, each mode is subject

to additive uncertainties bounded by W3 =
{

w ∈ R2 | |w|∞ ≤ 1
}

,

W1 = 1/10W3, W2 = W1, W4 = 1/2W3, W5 = 7/10W3, which

fulfils Assumption 1. Although of low order, this example incorporates

a high level of heterogeneity.

For simplicity of exposition we set the cost matrices to Q1 = 10I2,

Q2:5 = I2, R1:5 = 1, and the MPC horizons to N1:5 = 5. By

setting Km to the corresponding LQR gain Assumptions 2 and 3 are

met, therefore the implementation of independently designed TMPC

controllers is feasible. Figure 2 shows the minimal RPI set and the

minimal multi-set for modes 2 and 4. As expected, the minimal multi-

set, being more demanding, can be larger, leading to a smaller region

of attraction for certain modes.

Table I (first two columns) shows the exponential stability constants

computed following the guidelines in [15, Section 2.4]. The analysis

depicted therein focuses on the existence of the bounding functions in

(3) and not their tightness, giving way to a conservative upper bound

(i.e. a large dm in (3a)). This in turn yields a large cm and a λm ≈ 1,

resulting in a slow convergence rate. This has a direct impact on the

shrinkage rate of the set Brm in (7), thereby increasing the MDTs

required to guarantee a feasible switching.

Table II presents the feasibility MDTs computed following our

approach and employing the exponential stability constants in Table I.

As expected, given the conservative upper bound obtained from [15],

some of the feasibility dwell-times are unnecessarily conservative. For

example, whenever mode 5 becomes active, it must remain active for

392 time steps before we can guarantee that a switch into modes 1

TABLE I
CONVERGENCE CONSTANTS FOR THE TMPC CASE.

Analytical bound [15] Numerical bound

Mode cm λm cm λm

1 4.093 0.970 1.409 0.705
2 3.310 0.953 1.902 0.851
3 2.564 0.921 1.141 0.481
4 2.670 0.927 1.287 0.629
5 7.610 0.991 1.186 0.538
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TABLE II
FEASIBILITY MDTS.

TMPC Multi-set MPC

Mode τ
f
m τ̄

f
m τ

f
m τ̄

f
m τ

f
m τ̄

f
m

1 97 96 77 76 89 88
2 1 1 1 1 1 1
3 1 20 1 1 1 20
4 31 30 39 38 27 26
5 392 462 447 446 89 90

TABLE III
FEASIBILITY MDTS (NUMERICAL BOUNDS).

TMPC Multi-set MPC

Mode τ
f
m τ̄

f
m τ

f
m τ̄

f
m τ

f
m τ̄

f
m

1 7 6 9 8 6 5
2 1 1 1 1 1 1
3 1 2 1 1 1 2
4 5 4 6 5 4 3
5 4 4 5 4 3 2

or 3 is feasible (for the TMPC case with known feasibility regions).

To demonstrate the practicality of our approach in characterizing

MDTs, we estimate a tighter upper bound (dm) through Monte

Carlo simulations. The corresponding optimization problem (either

(2) or the modified versions discussed in Section V) is solved for

1000 randomly selected, albeit feasible, values of the state. A less

conservative upper bounding scalar dm is then obtained by comparing

VNm(x(t)) and dm|x̄∗
0(x)|22 at each randomly selected point. Table I

shows the convergence constants resulting from these numerically

obtained bounds and Table III presents the feasibility MDTs that

result from using these tighter bounds. In this case, mode 5 needs to

remain active only during 4 time steps to allow for a feasible switch,

around 1% of the time obtained using the analytical bounds. These

result indicate that our approach can obtain suitable mode dependent

dwell-times given tight bounds on the optimal value function.

Finally, Table IV presents the stability MDTs obtained with the

numerical bounds. In the TMPC case the stability guarantee relies

on feasibility (Theorem 3), therefore the MDTs are generally larger

when compared to the Multi-set case. Furthermore, the stability MDT

of mode 2 is generally larger than for other modes across cases. This

can be explained by the cost functions; indeed, mode 2 is allowed

to switch into mode 1 (see Figure 1) however Q1 = 10Q2, therefore

we need to stay a longer time in mode 2 to guarantee a cost decrease

when switching to mode 1.

VII. CONCLUSIONS

In this note we presented a new approach to establishing minimum

required MDTs to ensure admissible and robustly stabilizing closed-

loop trajectories in a robust MPC set-up. A disadvantage of our

approach is that the exponential decay rate in (4), upon which

the the MDTs depend, can only be guaranteed when the MPC

TABLE IV
STABILITY MDTS (NUMERICAL BOUNDS).

TMPC Multi-set MPC

Mode τ
g
m τsm(τ̄sm) τsm τsm

1 15 19(18) 1 1
2 1 95(94) 13 14
3 1 21(20) 2 2
4 16 19(18) 4 3
5 7 12(11) 4 4

optimization is solved to optimality. Nevertheless, our set-up results in

the corresponding optimization being a convex QP problem, for which

efficient algorithms exist. However, the decay rates that are the norm

in robust MPC implementations are not always tight, which, alongside

the use of 1-norm balls for bounding the closed-loop trajectories,

results in unnecessarily conservative MDTs. Nevertheless, our example

showed that admissible and stabilizing switching can be guaranteed

for considerably shorter MDTs by employing tighter bounds on the

MPC optimal value function, obtained numerically in this note.

Future work will focus on the definition of less conservative upper

bounds for the MPC optimal value function, and in incorporating the

case in which the switch is not assumed to be detected immediately.
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