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Abstract

We consider randomized block coordinate stochastic mirror descent (RBSMD) methods for solving

high-dimensional stochastic optimization problems with strongly convex objective functions. Our goal

is to develop RBSMD schemes that achieve a rate of convergence with a minimum constant factor with

respect to the choice of the stepsize sequence. To this end, we consider both subgradient and gradient

RBSMD methods addressing nonsmooth and smooth problems, respectively. For each scheme, (i) we

develop self-tuned stepsize rules characterized in terms of problem parameters and algorithm settings;

(ii) we show that the non-averaging iterate generated by the underlying RBSMD method converges to

the optimal solution both in an almost sure and a mean sense; (iii) we show that the mean squared error

is minimized. When problem parameters are unknown, we develop a unifying self-tuned update rule

that can be applied in both subgradient and gradient SMD methods, and show that for any arbitrary and

small enough initial stepsize, a suitably defined error bound is minimized. We provide constant factor

comparisons with standard SMD and RBSMD methods. Our numerical experiments performed on an

SVM model display that the self-tuned schemes are significantly robust with respect to the choice of

problem parameters, and the initial stepsize.

I. INTRODUCTION

In this work, we consider the canonical stochastic optimization problem given by

minimize
β∈B

F (β) := E[f(β, ξ)] , (SO)

where B ,
∏l

i=1 Bi ⊂ Rn with Bi ⊂ Rni being nonempty, closed, and convex sets, n ,∑l
i=1 ni, and the function f : B × Ω → R is a stochastic function. The vector ξ : Ω → Rd
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is a random vector associated with a probability space represented by (Ω,F ,P). A wide range

of problems in machine learning and signal processing can be formulated as problem (SO).

In addressing problem (SO), challenges arise in the development of efficient solution methods

mainly due to: (i) presence of uncertainty: in many applications arising in statistical learning, the

probability distribution P is unknown. Even when P is known, the evaluation of the expectation

of f becomes costly, especially when d > 5; (ii) high-dimensionality of the solution space:

another difficulty arises when n is huge. In such applications the computational complexity of

first-order methods significantly increases, which makes them impractical for large values of n

(e.g., 1012 or more). In addressing uncertainty, the stochastic approximation (SA) method was first

developed by Robbins and Monro [1]. Since then, the SA method and its variants have been vastly

employed in addressing stochastic optimization ([2]–[4]). Averaging techniques first introduced

by Polyak and Juditsky [5] proved successful in increasing the robustness of the SA method. In

vector spaces equipped with non-Euclidean norms, prox generalizations of deterministic gradient

method ([6], [7]) were introduced and applied in smooth and nonsmooth regimes. Also, in the

stochastic regime, Nemirovski et al. [8] developed the stochastic mirror descent (SMD) method

for solving problem (SO) when F is nonsmooth and convex. Under a window-based averaging

scheme, the rate of O
(
1/
√
t
)

is established. When the dimension of the solution space is huge,

to reduce the computational burden, coordinate descent (CD) methods have been developed in

recent decades (cf. [9]–[11]). Recently, Dang and Lan [12] developed the stochastic block mirror

descent (SBMD) method. They showed that under averaging the convergence rate of O
(
l/
√
t
)

and O (l/t) can be established for the case when F is merely convex, and strongly convex,

respectively. Some recent works have considered SMD on a class of non-convex problems called

variationally coherent that includes pseudo-/quasiconvex, and star-convex optimization problems

and provided convergence rate of O
(
1/
√
t
)

for strongly coherent problems [13], [14]. While

these non-asymptotic convergence orders are known to be optimal for the SMD method, the

performance of this method can be significantly sensitive with respect to problem parameters

and the uncertainty. Much of the interest in the literature has focused on establishing the optimal

convergence rates, and there is little guidance on development of stepsize update rules for the

SMD method in order to minimize the constant factor of the associated error bounds. Motivated

by this gap, our goal in this work lies in improvement of the finite-time behavior of the SMD

methods and their block variants through development self-tuned stepsizes. Several efforts have

2



been done in development of efficient stepsize rules for SA schemes (e.g., see [15], [16]). Spall

[17] discusses a harmonic stepsize of the form ηt = a
(t+1+A)α

where a > 0 is a tuning parameter,

and A ≥ 0 is the stability constant. George and Powell [18] propose a class of harmonic stepsizes

which minimizes the mean squared estimation error (see also [19], [20], [21], [22]). Self-tuned

stepsizes were first introduced in [23] where a recursive update rule is developed for the stochastic

(sub)gradient methods. It is shown that using such update rules, the mean squared error of the

method is minimized w.r.t. the stepsize choice. Motivated by that work, we develop self-tuned

stepsize rules for SMD methods and their randomized block variants (RBSMD) to solve problem

(SO) where the objective function F is strongly convex. We consider two cases where (i) F

is nondifferentiable, (ii) F is differentiable and has Lipschitz gradients. In the following, we

present the main contributions and explain the distinctions with the earlier works [23], [24]:

(1) Convergence and complexity analysis: For each variant of the RBSMD methods, we develop

new recursive error bounds. These error bounds are given by Lemma 2 and 5 for cases (i) and

(ii), respectively. In each case, we then develop self-tuned stepiszes that are characterized in

terms of problem parameters and algorithm settings. We show that under such update rules, the

error function of the underlying RBSMD method converges to zero in an almost sure and a mean

sense. Importantly, we show that the expected value of the error is minimized under the self-

tuned stepize rules within a specified range. We also derive bounds on the probability of error

of the RBSMD schemes in terms of problem parameters, algorithm settings, and the iteration

number (see Propositions 1 and 2 for cases (i) and (ii), respectively). Our results in this work

extend the previous findings on self-tuned stepsizes in [23], [24] to a broader class of algorithms,

i.e., SMD methods and their randomized block variants. Moreover, our approach in addressing

nonsmoothness is different from that considered in [23], [24]. Here we develop subgradient

variants of the RBSMD method allowing us to prove convergence to the true optimal solution to

problem (SO), while in [23], [24] a convolution-based smoothing scheme is applied where the

nondifferentiable function F is approximated by a smooth function defined on an expansion of

the feasible set B. Consequently, in addressing nonsmooth problems, the convergence in [23],

[24] is established to the optimal solution of an approximate smooth problem.

(2) Unifying self-tuned stepsizes: Another improvement to [23], [24] in deriving self-tuned

schemes is addressing the case where some of problem parameters are unknown. In this case, we

develop unifying self-tuned stepsizes and show convergence in both an almost sure and a mean

3



sense. Importantly, we show that for any arbitrary and small enough initial stepsize, a suitably

defined error bound of the SMD scheme is minimized (see Theorem 1). This indeed implies

robustness of the proposed schemes w.r.t. the choice of initial stepize and addresses a common

challenge associated with the harmonic choice of stepsizes.

(3) Constant factor comparison: While we prove the superiority of the constant factor of the

error bounds associated with the self-tuned RBSMD schemes, we also provide two sets of

comparisons: (i) with a widely used harmonic stepsizes (e.g., in [8], [17]), and also (ii) with an

averaging RBSMD scheme developed in [12]. In case (ii), our comparison implies the constant

factor for the class of stochastic subgradient methods can be improved up to four times under

non-averaging schemes versus using the averaging scheme in [12].

The rest of the technical note is organized as follows. In Section II, we describe the randomized

block coordinate SMD methods, then develop a self-tuned stepsize scheme for smooth and

nonsmooth problems and provide the convergence rate analysis. We present the experimental

results in Section III and conclude with some remarks in Section IV.

Notation. Throughout, we abbreviate “almost surely” as a.s., while Prob (Z) and E[z] are used

to denote the probability of an event Z, and the expectation of a random variable z, respectively.

We let βi ∈ Rni denote the ith block coordinate of vector β ∈ Rn, and the subscript i represent

the ith block of a mapping in Rn. For any i = 1, . . . , l, we use ‖ · ‖i to denote the general norm

on Rni and ‖ · ‖∗i to denote its dual norm. The inner product of vectors u, v ∈ Rn is defined

by 〈u, v〉 :,
∑l

i=1 〈ui, vi〉. We define norm ‖ · ‖ as ‖x‖2 :,
∑d

i=1 ‖xi‖2
i for any x ∈ Rn, and

denote its dual norm by‖ · ‖∗. Throughout, pi denotes the probability associated with choosing

the ith block coordinate. We use the notation p∧ :, min
1≤i≤l

pi, p∨ :, max
1≤i≤l

pi, Lmax :, max
1≤i≤l

Lωi ,

and µmin :, min
1≤i≤l

µωi .

II. SELF-TUNED RANDOMIZED BLOCK COORDINATE SMD

In this section, our goal is to develop self-tuned randomized block coordinate SMD methods.

We start with the case where the objective function is non-differentiable. Later, in Section II-B, we

discuss the case of differentiable objective functions with Lipschitz gradients. In Section II-C, we

provide unifying self-tuned update rules addressing both cases in absence of problem parameters.

Let the distance generating function ωi : Rni → R be a continuously differentiable function. The
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Bregman divergence Dωi : Rni × Rni → R associated with ωi is given for β1, β2 ∈ Bi as

Dωi(β1, β2) = ωi(β2)− ωi(β1)− 〈∇ωi(β1), β2 − β1〉.

Let ∇β2Dωi(·, ·) denote the partial derivative of Dωi(β1, β2) with respect to β2. Then,

∇β2Dωi(β1, β2) = ∇ωi(β2)−∇ωi(β1), for all β1, β2 ∈ Bi. (1)

The Bregman divergence has the following property for all β1, β2, β3 ∈ Bi

Dωi(β1, β2)−Dωi(β3, β2) = Dωi(β1, β3) + 〈∇ωi(β3)−∇ωi(β1), β2 − β3〉. (2)

We assume the distance generating function ωi has Lipschitz gradients with parameter Lωi and

is strongly convex with parameter µωi , i.e., for all β1, β2, β3 ∈ Bi

µωi
2
‖β2 − β1‖2 ≤ Dωi(β1, β2) ≤ Lωi

2
‖β2 − β1‖2. (3)

Remark 1. Lipschitzian property of ωi is a standard assumption in the literature of SMD

methods; the convergence rate analysis provided in [25] and [12] relies on this property. Also

note that for the stochastic gradient descent (SGD) method, we have µω = Lω = 1.

The prox mapping Pi : Bi × Rni → Bi is defined by

Pi(β1, β2) = argmin
z∈Bi

{〈β2, z〉+Di(β1, z)}, (4)

for all β1 ∈ Bi and β2 ∈ Rni . In the analysis, we use the following error function L : B×B → R

defined as

L(β, z) ,
∑l

i=1
pi
−1Di(β

i, zi), for all β, z ∈ B. (5)

A. Self-tuned randomized block subgradient SMD method

Consider problem (SO) where F is a non-differentiable convex function of β. Let gt ∈ ∂F (βt)

denote a subgradient of function F at point βt ∈ B, i.e., there exists gt such that

F (βt) + 〈gt, β − βt〉 ≤ F (β), for all β ∈ B.

Similarly, for any ξ ∈ Ω, we let g̃t ∈ ∂f(βt, ξ) denote a subgradient of function f(·, ξ) at point

βt. Throughout, we assume that F is strongly convex with parameter µF > 0 over the set B

with respect to the underlying norm ‖ · ‖, i.e., for all β1, β2 ∈ B and g ∈ ∂F (β2)

F (β1) ≥ F (β2) + 〈g, β1 − β2〉+
µF
2
‖β1 − β2‖2. (6)

In our analysis, we make use of the following result. The proof can be found in [26].

Lemma 1. Consider problem (SO). Let F be strongly convex with parameter µF > 0. Then,
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there exists a unique optimal solution β∗ ∈ B. Moreover, we have

F (β)− F (β∗) ≥ µF
2
‖β − β∗‖2, for all β ∈ B.

Next we present the outline of the randomized block coordinate SMD method. Let Pb be a

discrete probability distribution with probabilities pi > 0 for i = 1, . . . , l, where
∑l

i=1 pi = 1.

Given an initial vector β0 ∈ B, at iteration t ≥ 1, random variable it is generated from the

probability distribution Pb independently from random variable ξ. Then, only the itth block of

βt, i.e. βitt , is updated as follows:

βit+1 =

 Pit
(
βitt , ηtg̃it(βt)

)
if i = it,

βit if i 6= it,
(RB-SSMD)

where g̃it(βt) is the itth block of the subgradient of f(βt, ξt) and ηt is the stepsize. Throughout,

let Ft = {i0, ξ0, . . . , it−1, ξt−1}. Next, we state the main assumptions.

Assumption 1. Let the stochastic subgradient g̃(β) ∈ ∂f(β, ξ) be such that a.s. for all β ∈ B,

we have E[g̃(β)|β] = g(β) ∈ ∂F (β). Moreover, for all i = 1, . . . , l and β ∈ B, there exists a

scalar Ci > 0 such that E
[
‖g̃i(β)‖2

∗i |β
]
≤ C2

i .

Next, we develop a recursive inequality in terms of the error of the (RB-SSMD) scheme. Such

a recursive inequality will be employed to develop a self-tuned stepsize rule.

Lemma 2. Let Assumption 1 hold and βt be generated by the (RB-SSMD) scheme. Then for all

t ≥ 0,

E[L(βt+1, β
∗)|Ft] ≤

(
1− ηt2µFp∧L−1

max

)
L(βt, β

∗) + η2
t

∑l

i=1
C2
i (2µωi)

−1. (7)

Proof. At iteration t, we have βitt+1 = Pit
(
βitt , ηtg̃it(βt)

)
. Consider the definition of Pit given by

(4). Writing the optimality condition, we have

〈ηtg̃it +∇Dit(β
it
t , β

it
t+1), βit − βitt+1〉 ≥ 0, for all β ∈ B.

Using relations (1) and (2), and from the preceding relation,

Dit(β
it
t , β

it)−Dit(β
it
t+1, β

it)−Dit(β
it
t , β

it
t+1) ≥ ηt〈g̃it , βitt+1 − βit〉, for all β ∈B.

From the strong convexity of ωit and relation (3), we have

Dit(β
it
t , β

it)−Dit(β
it
t+1, β

it)− 0.5µωit‖β
it
t − βitt+1‖2

it ≥ ηt〈g̃it , βitt+1 − βit〉. (8)

By adding and subtracting ηt〈g̃it , βitt 〉 in the right-hand side, and using Fenchel’s inequality, we
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have

ηt〈g̃it , βitt+1 − βitt 〉+ ηt〈g̃it , βitt − βit〉 ≥ −0.5η2
tµ
−1
ωit
‖g̃it‖2

∗it − 0.5µωit‖β
it
t+1 − βitt ‖2

it

+ ηt〈g̃it , βitt − βit〉. (9)

Combining (8) and (9) yields for all β ∈ B

Dit(β
it
t+1, β

it) ≤ Dit(β
it
t , β

it) + ηt〈g̃it , βit − βitt 〉+ 0.5η2
tµ
−1
ωit
‖g̃it‖2

∗it .

From the preceding relation, relation (5), and that βit+1 = βit for all i 6= it, we have

L(βt+1, β) ≤
∑

i 6=it
p−1
i Di(β

i
t , β

i) + p−1
it

(
Dit(β

it
t , β

it) + ηt〈g̃it , βit − βitt 〉+ 0.5η2
tµ
−1
ωit
‖g̃it‖2

∗it

)
= L(βt, β) + p−1

it

(
ηt〈g̃it , βit − βitt 〉+ 0.5η2

tµ
−1
ωit
‖g̃it‖2

∗it

)
.

Taking conditional expectations from both sides of the preceding relation on Ft ∪ {it}, we get

E[L(βt+1, β) | Ft ∪ {it}] ≤ L(βt, β) + 0.5η2
tµ
−1
ωit
p−1
it
E
[
‖g̃it‖2

∗it | Ft ∪ {it}
]

+
ηt
pit
〈E[g̃it | Ft ∪ {it}] , βit − βitt 〉

≤ L(βt, β) + p−1
it
ηt
〈
git , β

it − βitt
〉

+ p−1
it
η2
t

C2
it

2µωit
,

where we used Assumption 1. Taking expectations from previous inequality with respect to it

and setting β := β∗,

E[L(βt+1, β
∗) | Ft] ≤ L(βt, β

∗) +
l∑

i=1

pi
pi

(
ηt
〈
gi, β

∗i − βit
〉

+ η2
t

C2
i

2µωi

)

= L(βt, β
∗) + ηt 〈gt, β∗ − βt〉+ η2

t

l∑
i=1

C2
i

2µωi
,

where we use the definition of 〈·, ·〉 given in the notation. From strong convexity of function F ,

we have 〈gt − g∗, βt − β∗〉 ≥ µF‖βt − β∗‖2. By optimality of β∗, we have 〈g∗, βt − β∗〉 ≥ 0.

From the two preceding relations and the definition of norm,

〈gt, βt − β∗〉 ≥ µF

l∑
i=1

‖βit − β∗i‖2
i ≥ 2µF

l∑
i=1

Di(β
i
t , β
∗i)

Lωi

≥ 2µFp∧L
−1
max

l∑
i=1

p−1
i Di(β

i
t , β
∗i) = 2µFp∧L

−1
maxL(βt, β

∗),

where in the second inequality we used relation (3), and in the last relation we used the definition

of function L. From the preceding two relations, we obtain the desired inequality.

Next, we present some important properties of the self-tuned sequences. Some of them can
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be found in [23] and [24]. The proof of the next lemma is presented in the Appendix.

Lemma 3. Let θ, δ > 0 be scalars, and {et} ≥ 0 be a sequence for t ≥ 0, such that for an

arbitrary non-negative sequence {ηt}

et+1 := (1− θηt)et + δη2
t , for all t ≥ 1. (10)

Let e0 ≤ 2δ
θ2

and let the self-tuned sequence {η∗t } be given by η∗t = η∗t−1

(
1− θ

2
η∗t−1

)
for any

t ≥ 1, where η∗0 = θ
2δ
e0. Then the following properties hold:

(a) For any fixed t ≥ 1, the vector (η∗0, . . . , η
∗
t−1) minimizes the function et(η0, . . . , ηt−1) over

the set Ut ,

{
γ ∈ Rt : 0 < γj ≤ 1/θ for j = 1, . . . , t

}
.

More precisely, for t ≥ 1, and any (η0, . . . , ηt−1) ∈ Ut,

et(η0, . . . , ηt−1)− et(η∗0, . . . , η∗t−1) ≥ δ(ηt−1 − η∗t−1)2.

(b) For all t ≥ 1, we have η∗t <
2
θ

(
1
t

)
. Moreover, under the choice of ηt := η∗t , the term et is

bounded by O(1/t):

et(η
∗
0, η
∗
1, . . . , η

∗
t−1) ≤ 4δ

θ2

(
1

t

)
, for all t ≥ 1. (11)

(c) We have
∑∞

t=0 η
∗
t =∞ and

∑∞
t=0 η

∗2
t <∞.

We use the following lemma in the convergence analysis.

Lemma 4. [ [27], page 49] Let {vt} be a sequence of non-negative random variables where

E[v0] <∞, let {αt} and {λt} be deterministic scalar sequences such that

E[vt+1|v0, . . . , vt] ≤ (1− αt)vt + λt, a.s. for all t ≥ 0,

0 ≤ αt ≤ 1, λt ≥ 0,
∞∑
t=0

αt =∞,
∞∑
t=0

λt <∞,
λt
αt
→ 0.

Then, vt → 0 a.s., E[vt]→ 0, and for any ε > 0 and t > 0

Prob(vj ≤ ε for all j ≥ t) ≥ 1− 1

ε

(
E[vt] +

∞∑
i=t

λi

)
.

Next, we present self-tuned stepsizes and their properties for the (RB-SSMD) method.

Proposition 1. Let {βt} be generated by the (RB-SSMD) method. Let the sets Bi be convex and

closed such that ‖βi‖ ≤Mi for all βi ∈ Bi and some Mi > 0, for all i. Let Assumption 1 hold

for some Ci large enough such that C2
i Lωi ≥ 8M2

i µωiµ
2
F for all i. Let the stepsize ηt be given
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by

η∗0 :=
4µFp∧

∑l
i=1 p

−1
i LωiM

2
i

Lmax
∑l

i=1 µ
−1
ωi
C2
i

,

η∗t := η∗t−1

(
1− p∧µFL−1

maxη
∗
t−1

)
, for all t ≥ 1.

Then, the following hold:

(a) The sequence {βt} converges a.s. to the unique optimal solution β∗ of problem (SO).

(b) For any t ≥ 1, the vector (η∗0, . . . , η
∗
t−1) minimizes the upper bound of the error E[L(βt, β

∗)]

given in Lemma 2 for all (η0, . . . , ηt−1) ∈
(

0, Lmax
2p∧µF

]t
.

(c) The (RB-SSMD) method attains the convergence rate O(1/t), i.e, for all t ≥ 1

E[‖βt − β∗‖2] ≤ p∨
µmin

∑l
i=1

C2
i

µωi

(
Lmax
p∧µF

)2
1
t
.

(d) Let ε and ρ be arbitrary positive scalars and T , 1.5
(

Lmax
p∧µF

)2∑l
j=1

C2
j

µωj

1
ερ

we have for all

t ≥ T

Prob (L(βj, β
∗) ≤ ε for all j ≥ t) ≥ 1− ρ.

Proof. (a) To show a.s. convergence, we apply Lemma 4. Consider the inequality (7) given by

Lemma 2. Let us define

vt , L(βt, β
∗), αt ,

2µFp∧
Lmax

η∗t , λt ,
l∑

i=1

C2
i

2µωi
η∗t

2. (12)

From definition of η∗0 and C2
i Lωi ≥ 8M2

i µωiµ
2
F , we have

α0 =
8µ2

Fp
2
∧
∑l

i=1

LωiM
2
i

pi

L2
max

∑l
i=1

C2
i

µωi

≤
p2
∧
∑l

i=1

L2
ωi
C2
i

piµωi

L2
max

∑l
i=1

C2
i

µωi

≤ p∧ < 1. (13)

Therefore, since {η∗t } is non-increasing, we have 0 ≤ αt ≤ 1 for all t ≥ 0. Moreover, from

Lemma 3(c), we have that
∑∞

t=0 αt =∞ and
∑∞

t=0 λt <∞. Also, the definition of αt and λt and

that the self-tuned stepsize η∗t has a limit of zero (see proof of Lemma 3, part (c) in the Appendix)

imply that λt
αt
→ 0. Therefore, all conditions of Lemma 4 are met and so L(βt, β

∗) → 0 a.s..

The definition of L and that pi > 0 for all i imply that Di(β
i
t , β
∗i) → 0 for all i. Using the

strong convexity of ωi (cf. (3)), we have µωi
2
‖βit − β∗i‖2 ≤ Di(β

i
t , β
∗i) for all i. We conclude

that βt → β∗ a.s..

(b) For any t ≥ 1, let us define the function et(η0, . . . , ηt−1) given by the recursion (10) where

θ , 2p∧µF
Lmax

, and δ ,
∑l

i=1
C2
i

2µωi
. Also, let e0 , 2

∑l
i=1 p

−1
i LωiM

2
i . Next, we show that L(β0, β

∗) ≤

9



e0. Using the Lipschitizan property of ∇ωi, and the triangle inequality, we have

L(β0, β
∗) =

l∑
i=1

Di(β
i
0, β

∗i)

pi
≤

l∑
i=1

Lωi
2pi
‖βi0 − β∗i‖2

i ≤
l∑

i=1

Lωi
2pi

(
2‖βi0‖2

i + 2‖β∗i‖2
i

)
≤

l∑
i=1

2LωiM
2
i

pi
= e0.

From L(β0, β
∗) ≤ e0, relations (10), (7) and using induction, it can be seen that E[L(βt, β

∗)] ≤

et(η0, . . . , ηt−1) for all t ≥ 0 and any arbitrary (η0, . . . , ηt−1) ∈
(

0, Lmax
2p∧µF

]t
. Therefore, et is a

well-defined upper bound for the algorithm. To complete the proof, it suffices to show that the

conditions of Lemma 3 hold. First we show that e0 ≤ 2δ
θ2

. From the values of e0, η∗0 , θ, and δ,

we have η∗0 = θ
2δ
e0. From the definition of α0 in (12) and (13), we have α0 = θη∗0 < 1. By two

preceding relations we obtain e0 ≤ 2δ
θ2

. Hence, conditions of Lemma 3 hold. From Lemma 3(a),

we conclude the desired result.

(c) Following the proof of part (b), from Lemma 3(b) and definitions of δ and θ in part (b), we

obtain for all t ≥ 1

E[L(βt, β
∗)] ≤ et ≤

(
Lmax
p∧µF

)2 l∑
i=1

C2
i

2µωi

1

t
. (14)

Note that from strong convexity of ωi we have

L(βt, β
∗) =

∑l

i=1
p−1
i Di(β

i
t , β
∗i) ≥

∑l

i=1
p−1
i 0.5µωi‖βit − β∗i‖2

i ≥ µmin(2p∨)
−1‖βt − β∗‖2.

Combining the two preceding relations completes the proof.

(d) We use the probabilistic bound given in Lemma 4. First we estimate the term
∑∞

i=t λi where

λi is given by (12). Note that Lemma 3(b) implies η∗i ≤ 2
θi

. Therefore, we can write
∞∑
i=t

λi =
∞∑
i=t

l∑
j=1

C2
j

2µωj
η∗i

2 ≤
l∑

j=1

C2
j

2µωj

∞∑
i=t

(
Lmax
p∧µF i

)2

≤
(
Lmax
p∧µF

)2 l∑
j=1

C2
j

2µωj

(
1

t
+

∫ ∞
t

1

x2
dx

)

=
(
Lmax(p∧µF )−1

)2
l∑

j=1

C2
j µωj

−1 (1/t) . (15)

By (15), (14), and Lemma 4, we obtain the desired relation.

Under a uniform distribution, i.e., pi = 1
l

for i = 1, . . . , l, Proposition 1 indicates that

E[‖βt − β∗‖2]→ 0 with the order of O
(
l
t

)
.This is similar to the error bound derived in [12] for

stochastic block mirror descent (SBMD) method (cf. Corollary 2.5 in [12]). Next, we compare

the constant factor of the error bound derived in [12] with that of (RB-SSMD) method.

Comparison 1. Let Assumption 1 hold for some unknown Ci > 0 for all i. Let βt be generated

10



by algorithm (RB-SSMD) where Lωi = Lω and µωi = µω for all 1 ≤ i ≤ l and β̄t be generated

by SBMD method in [12]. Then, By Lemma 1, we have E
[
‖β̄t − β∗‖2

]
≤ 2

µFµω
E
[
F (β̄t)− F (β∗)

]
and by Corollary 2.5 in [12], we have E

[
F (β̄t)− F (β∗)

]
≤ 2lLω

µF

∑l
i=1 C

2
i

(
1
t+1

)
. Combining the

preceding inequalities, we obtain for all t ≥ 1

E
[
‖β̄t − β∗‖2

]
≤ 4lLω
µ2
Fµω

l∑
i=1

C2
i

(
1

t+ 1

)
. (16)

On the other hand, by Proposition 1, we have for all t ≥ 1

E
[
‖βt − β∗‖2

]
≤ lL2

ω

µ2
ωµ

2
F

l∑
i=1

C2
i

(
1

t+ 1

)
. (17)

Comparing (16) and (17), we note that the constant factor of the error bound of (RB-SSMD)

method is smaller when Lω
µω

< 4. In particular, for SGD method where Lω = µω = 1, it can be

four times better than the constant factor of SBMD in [12].

Comparison 2. Proposition 1 states that the self-tuned stepsizes not only guarantee the conver-

gence of the (RB-SSMD) method, but also the constant factor provided in part (c) is the minimum

for any arbitrary stepsize rule within a given range. For example, compare this constant factor

with that of the stochastic subgradient method under harmonic stepsize rules in [8]. In that work

(see relations (2.9)-(2.10)), under the harmonic update rule for stepsizes given by ηt = γ/t for

some constant γ > 1/(2µF ), it is shown that

E
[
‖βt − β∗‖2

2

]
≤ max

{
γ2C2

2µFγ − 1
, ‖β0 − β∗‖2

2

}
1

t
. (18)

Let l = 1. Here we show that for any arbitrary γ > 1
2µF

, the term γ2C2

2µF γ−1
is larger than the

constant factor of the self-tuned stepsizes that is
(
CLω
µωµF

)2

. Note that in the stochastic subgradient

method ω(β) :=
‖β‖22

2
. This implies µω = Lω = 1. Then,

Harmonic constant factor
Self-tuned constant factor

=
γ2C2µ2

F

(2µFγ − 1)C2
=

γ2µ2
F

2µFγ − 1
.

Note that γ2µ2
F − 2µFγ+ 1 = (γµF − 1)2 > 0 for all γ > 1

2µF
. Therefore, the preceding relation

implies that the harmonic constant factor in [8] is larger than the self-tuned constant factor for

any arbitrary γ > 1
2µF

.

B. Self-tuned randomized block gradient SMD method

In this section, we assume the objective function in problem (SO) is differentiable and has

Lipschitz gradients. Our goal is to utilize this property and develop a self-tuned scheme that is

11



characterized with the problem parameters and algorithm settings. To solve problem (SO), we

consider the randomized block gradient SMD method as follows

βit+1 =

 Pit
(
βitt , ηtgit(βt)

)
if i = it,

βit if i 6= it,
(RB-GSMD)

for all t ≥ 0, where git(βt) is the itth block of the gradient of the stochastic function f(·, ξt) at

βt. Throughout this section, we let F have Lipschitz gradients with parameter LF > 0. We also

define the stochastic errors zt as follows

zt , g(βt)−∇F (βt). (19)

Next, we state the main assumptions on stochastic gradients.

Assumption 2. The errors zt are such that a.s. we have E[zt | Ft] = 0 for all t ≥ 0. Moreover,

there exists some νi > 0 for all i such that E[‖zit‖2
∗i|Ft] ≤ ν2

i , for all t ≥ 0.

Next, we have the lemma that provides a recursive bound on the error of the algorithm.

Lemma 5. Let Assumption 2 hold and βt be generated by the (RB-GSMD) method. We have

a.s. for all t ≥ 0

E[L(βt+1, β
∗)|Ft] ≤ (1− ηt2µFp∧L−1

max + η2
t 2LF

2p∨µ
−2
min)L(βt, β

∗) + η2
t

∑l

i=1
ν2
i µ
−1
ωi
. (20)

Proof. Consider the update rule (RB-GSMD). Writing the first-order optimality condition, we

have for all β ∈ B

〈ηtgit +∇Dit(β
it
t , β

it
t+1), βit − βitt+1〉 ≥ 0, (21)

Using equation (1), from (21) we obtain for all β ∈ B

〈∇ωit(βitt+1)−∇ωit(βitt ), βit − βitt+1〉 ≥ ηt〈git , βitt+1 − βit〉. (22)

Let β := β∗ in relation (22). Adding and subtracting the term ηt〈∇Fit(β∗), βitt+1 − β∗it〉, we get

〈∇ωit(βitt+1)−∇ωit(βitt ), β∗it − βitt+1〉 ≥ ηt〈git −∇F (β∗it), βitt+1 − β∗it〉

+ ηt〈∇Fit(β∗), βitt+1 − β∗it〉. (23)

From relation (2), we get

〈∇ωit(βitt+1)−∇ωit(βitt ), β∗it − βitt+1〉 = Dit(β
it
t , β

∗it)−Dit(β
it
t+1, β

∗it)−Dit(β
it
t , β

it
t+1).

12



Therefore, from the preceding relation, (23), and relation (3),

Dit(β
it
t , β

∗it)−Dit(β
it
t+1, β

∗it)−
µωit

2
‖βitt − βitt+1‖2

it − ηt〈∇Fit(β
∗), βitt+1 − β∗it〉 ≥

ηt〈git −∇Fit(β∗), βitt+1 − β∗it〉 (24)

Next, we find a lower bound for the right-hand side term. By adding and subtracting ηt〈git −

∇Fit(β∗), βitt 〉, we get

ηt〈git −∇Fit(β∗), βitt+1 − βitt 〉+ ηt〈git −∇Fit(β∗), βitt − β∗it〉 ≥
−η2

t

2µωit
‖git −∇Fit(β∗)‖2

∗it

−
µωit

2
‖βitt+1 − βitt ‖2

it + ηt〈git −∇Fit(β∗), βitt − β∗it〉, (25)

where the last inequality follows from Fenchel’s inequality, i.e., |〈x, y〉| ≤ 1
2
‖x‖2 + 1

2
‖y‖2

∗.

Combining (24) and (25) yields

Dit(β
it
t+1, β

∗it) ≤ Dit(β
it
t , β

∗it)− ηt(〈git −∇Fit(β∗), βitt − β∗it〉+ 〈∇Fit(β∗), βitt+1 − β∗it〉)

+
η2
t ‖git −∇Fit(β∗)‖2

∗it
2µωit

.

Using relation (19), and invoking the triangle inequality and relation (a + b)2 ≤ 2a2 + 2b2 for

any a, b ∈ R, we obtain

Dit(β
it
t+1, β

∗it) ≤ Dit(β
it
t , β

∗it)− ηt〈∇Fit(β∗), βitt+1 − β∗it〉

− ηt〈∇Fit(βt)−∇Fit(β∗)+zitt , βitt − β∗it〉+ η2
tµ
−1
ωit
‖∇Fit(βt)−∇Fit(β∗)‖2

∗it

+ η2
tµ
−1
ωit
‖zitt ‖2

∗it .

From the preceding relation, the definition of the function L, and that βit+1 = βit for all i 6= it,

we have

L(βt+1, β
∗) =

∑
i 6=it

p−1
i Di(β

i
t+1, β

∗i) + p−1
it
Dit(β

it
t+1, β

∗it)

≤ L(βt, β
∗) + p−1

it

(
− ηt〈∇Fit(βt)−∇Fit(β∗) + zitt , β

it
t − β∗it〉

− ηt〈∇Fit(β∗), βitt+1 − β∗it〉+ η2
tµ
−1
ωit
‖∇Fit(βt)−∇Fit(β∗)‖2

∗it + η2
tµ
−1
ωit
‖zitt ‖2

∗it

)
.

13



Taking conditional expectations from both sides of the preceding relation on Ft ∪ {it}, we get

E[L(βt+1, β
∗) | Ft ∪ {it}] ≤ L(βt, β

∗) + p−1
it
ηt(−〈∇Fit(β∗), βitt+1 − β∗it〉

+
〈
E
[
zitt | Ft ∪ {it}

]
, β∗it − βitt

〉
)

+ p−1
it
ηt〈∇Fit(βt)−∇Fit(β∗), β∗it − βitt 〉

+ p−1
it
η2
tµ
−1
ωit

(
‖∇Fit(βt)−∇Fit(β∗)‖2

∗it + E
[
‖zitt ‖2

∗it | Ft ∪ {it}
])
.

Assumption 2 implies that E
[
zitt | Ft

]
= 0. Using that and the bound provided in Assumption

2, we obtain

E[L(βt+1, β
∗) | Ft ∪ {it}] ≤ L(βt, β

∗)− p−1
it
ηt(〈∇Fit(β∗), βitt+1 − β∗it〉

+ 〈∇Fit(βt)−∇Fit(β∗), β∗it − βitt 〉)

+ p−1
it
η2
tµ
−1
ωit

(
‖∇Fit(βt)−∇Fit(β∗)‖2

∗it + ν2
it

)
.

Next, taking expectations with respect to it, we obtain

E[L(βt+1, β
∗) | Ft] ≤ L(βt, β

∗) + ηt (〈∇F (βt)−∇F (β∗), β∗ − βt〉 − 〈∇F (β∗), βt+1 − β∗〉)

+ η2
tµ
−1
min‖∇F (βt)−∇F (β∗)‖2

∗ + η2
t

∑l

i=1
ν2
i µ
−1
ωi
,

where we use the definition of 〈·, ·〉 given in the notation. Using the optimality condition for

problem (SO) and under the Lipschitzian property of ∇F and strong convexity of F ,

E[L(βt+1, β
∗) | Ft] ≤ L(βt, β

∗)− ηtµF‖βt − β∗‖2 + η2
tL

2
Fµmin

−1‖βt − β∗‖2

+ η2
t

∑l

i=1
ν2
i µωi

−1. (26)

From the definition of norm ‖ · ‖, we can write

‖βt − β∗‖2 =
∑l

i=1
‖βit − β∗i‖2

i ≥ 2
∑l

i=1
Di(β

i
t , β
∗i)L−1

ωi
≥ 2p∧L

−1
max

∑l

i=1
p−1
i Di(β

i
t , β
∗i)

= 2p∧L
−1
maxL(βt, β

∗),

where in the first inequality we used relation (3), and in the last relation we used the definition

of function L. Similarly,

‖βt − β∗‖2 ≤ 2
l∑

i=1

Di(β
i
t , β
∗i)

µωi
≤ 2p∨
µmin

L(βt, β
∗),

From the last three relations, we obtain the desired inequality.

Next, we present self-tuned stepsizes for the (RB-GSMD) method and show their properties.

Proposition 2. Let {βt} be generated by the (RB-GSMD) method. Let the set Bi be convex and
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closed such that ‖βi‖ ≤Mi for all βi ∈ Bi and some Mi > 0. Let Assumption 2 hold for some

νi > 0, and the stepsize ηt be given by

η∗0 :=
4µFp∧

∑l
i=1 p

−1
i LωiM

2
i

Lmax

(
8LF

2p∨
µmin2

∑l
i=1 p

−1
i LωiM

2
i +

∑l
i=1

2ν2i
µωi

) ,
η∗t := η∗t−1

(
1− p∧µFL−1

maxη
∗
t−1

)
, for all t ≥ 1.

Then, the following hold:

(a) The sequence {βt} generated by the (RB-GSMD) method converges a.s. to the unique

optimal solution β∗ of problem (SO).

(b) For any t ≥ 1, the vector (η∗0, η
∗
1, . . . , η

∗
t−1) minimizes the upper bound of the error E[Dω(βt, β

∗)]

given in Lemma 5 for all (η0, η1, . . . , ηt−1) ∈
(

0, Lmax
2µF p∧

]t
.

(c) The (RB-GSMD) method attains the convergence rate O(1/t), i.e, for all t ≥ 1

E
[
‖βt − β∗‖2

]
≤ 2

(
Lmax
p∧µF

)2
(

4
LF

2p∨
µmin2

l∑
i=1

p−1
i LωiM

2
i +

l∑
i=1

ν2
i

µωi

)
1

t
.

(d) Let ε and ρ be arbitrary positive scalars and T , 1.5
ερ

(
Lmax
p∧µF

)2

×(
8LF

2p∨
µmin2

∑l
j=1 p

−1
j LωjM

2
j +

∑l
j=1

2ν2j
µωj

)
we have for all t ≥ T

Prob (L(βj, β
∗) ≤ ε for all j ≥ t) ≥ 1− ρ.

Proof. Consider relation (20). Taking expectations from both sides and rearranging the terms,

we can write

E[L(βt+1, β
∗)] ≤

(
1− ηt2µFp∧L−1

max

)
E[L(βt, β

∗)] + 2η2
tLF

2p∨µ
−2
minE[L(βt, β

∗)]

+ η2
t

∑l

i=1
ν2
i µ
−1
ωi
.

From relation (3), and the triangle inequality, we have

L(βt, β
∗) ≤

l∑
i=1

p−1
i

Lωi
2
‖βit − β∗i‖2

i ≤ 2
l∑

i=1

p−1
i LωiM

2
i .

From the preceding inequalities, we obtain

E[L(βt+1, β
∗)] ≤

(
1− ηt2µFp∧L−1

max

)
E[L(βt, β

∗)] +

(
8LF

2p∨
µmin2

l∑
i=1

p−1
i LωiM

2
i +

l∑
i=1

2ν2
i

µωi

)
1

2
η2
t .

Let us define C2 ,
∑l

i=1 µωi
−1C2

i and C̄2 such that C̄2 , 8LF
2p∨

µmin2

∑l
i=1 p

−1
i LωiM

2
i +

∑l
i=1

2ν2i
µωi

.

Note that the preceding inequality is similar to the relation (7), where C2 is replaced by the term

C̄2. Therefore, the desired results here follow by only substituting C2 by C̄2 in Proposition 1. It

only remains to show that: (i) η∗0 =
4µF p∧

∑l
i=1 p

−1
i LωiM

2
i

LmaxC̄2 , and (ii) the conditions of Proposition 1
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also hold for α0. The relation (i) holds directly from definition of η∗0 given by Proposition 2 and

the definition of C̄. To show (ii), we need to verify that α0 < 1. From definition of α0 given by

(12), we have

α0 = 2µFp∧L
−1
maxη

∗
0 = 2µFp∧L

−1
max ×

4µFp∧
∑l

i=1 p
−1
i LωiM

2
i

Lmax

(
8LF

2p∨
µmin2

∑l
i=1 p

−1
i LωiM

2
i +

∑l
i=1

2ν2i
µωi

)
=
µ2
Fp

2
∧

L2
max

×
∑l

i=1 p
−1
i LωiM

2
i(

LF
2p∨

µmin2

∑l
i=1 p

−1
i LωiM

2
i

) =
µ2
F

L2
F

p2
∧
p∨

µ2
min

L2
max

< 1,

where the last relation follows since µF ≤ LF and µωi ≤ Lωi . Therefore, the conditions of

Proposition 1 hold for α0 and the desired results follow.

C. Unifying self-tuned stepsizes

Recall that Propositions 1 and 2 provide self-tuned stepsize rules for the case where problem

(SO) is nonsmooth and smooth, respectively. These update rules are characterized in terms of

problem parameters such as Ci, νi, µF and algorithm settings such as µωi ,Lωi . An important

question is how we may employ such self-tuned stepsize rules when some of the problem

parameters are not known in advance, or are challenging to estimate? Here, our goal is to

develop a unifying class of self-tuned stepsize rules that can be employed in both smooth and

nonsmooth cases when some of the problem parameters are unavailable. Assume that l = 1.

Let us compare the stepsize rules in Propositions 1 and 2. We observe that although the initial

stepsize η∗0 is different, both schemes share the same tuning rule. We also observe that the only

problem parameter that is needed to be known for the tuning update rule is µF . This parameter is

known in advance in many applications such as SVM. Note that Lω is the Lipschitzian parameter

associated with the prox mapping and depends on the choice of the distance generating function

ω. This function is user-specified. In practice, when problem parameters such as M,C, or LF

are unavailable or difficult to estimate, the initial stepsize η∗0 cannot be evaluated. In such cases

one may choose η∗0 arbitrarily and still use the update rule η∗t := η∗t−1

(
1− (µF/Lω)η∗t−1

)
. We

show that even under this relaxation, some of the main properties of the self-tuned stepsizes are

preserved by the following result.

Theorem 1. [Unifying self-tuned stepsize rules] Consider problem (SO) with l = 1. Let the set

B be convex, closed, and bounded. Suppose either of the following cases holds:

case (1): F is non-differentiable and Assumption 1 holds for some unknown C > 0.
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case (2): F is continuously differentiable over B for all ξ, but ∇F is not Lipschitz over B and

Assumption 2 holds.

case (3): F is differentiable over B, it has Lipschitz gradients with an unknown parameter LF ,

and Assumption 2 holds.

In cases (1) and (2), let {βt} be generated by algorithm (RB-SSMD). In case (3), let {βt}

be generated by algorithm (RB-GSMD). In all cases, let the stepsize ηt be given by ηt :=

ηt−1 (1− (µF/Lω)ηt−1) for all t ≥ 1, where 0 < η0 ≤ Lω/2µF is an arbitrary constant. Then: (i)

{βt} converges to β∗ a.s., and (ii) there exists a threshold η̄ ≤ Lω/2µF such that for any η0 ≤ η̄,

an upper bound of the error E[Dω(βt, β
∗)] is minimized for all (η0, . . . , ηt−1) ∈ (0,Lω/2µF ]t.

Proof. First, we show (i) and (ii) hold in case (1). Let Cmin denote the minimum of all

constants C > 0 that satisfy Assumption 1 (note that such a constant always exits). Let

C̄ , max
{
Cmin,

√
8M2µωµ2

F/Lω

}
and define η̄ , 4µFµωM

2/C̄2. Note that η̄ ≤ Lω
2µF

from

definition of C̄. Let 0 < η0 ≤ η̄ be an arbitrary scalar and define C0 , C̄
√
η̄/η0. Note that

since C0 ≥ C̄ ≥ Cmin, C0 satisfies Assumption 1. Also, C2
0Lω ≥ 8M2µωµ

2
F . Therefore, for

η0 = 4µFµωM
2/C0

2, we found a C0 such that all conditions of Proposition 1 are met. Then we

can apply Proposition 1 which implies that (i) and (ii) hold. Next, consider case (2). Note that

since f is continuously differentiable, the set ∂f(β, ξ) is a singleton, i.e., ∂f(β, ξ) = {∇f(β, ξ)}.

From compactness of B and continuity of ∇f(·, ξ), we conclude that Assumption 1 holds for

some C > 0. Next, in a similar fashion to the proof of case (1), we can conclude that (i) and

(ii) hold in case (2). The proof for case (3) can be done by invoking Proposition 2 similar to

the proof for case (1).

Remark 2. The unifying stepsize rule minimizes the mean squared error even when problem

parameters are unknown. This suggests that self-tuned stepsizes are robust with respect to the

choice of the initial stepsize. We will demonstrate this property of the self-tuned stepsizes in our

numerical experiments in Section III. This can be seen as an important advantage in contrast

with the classical harmonic stepsizes of the form ( a
t+b

)c that have been seen very sensitive to

the choice of three parameters a, b and c (cf. [17], Ch. 4).
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III. EXPERIMENTAL RESULTS

In this section, we analyze the performance of the self-tuned RBSMD schemes for solving

the following soft-margin linear support vector machine problem:

min F (β) ,
1

m

∑m

i=1
L(〈β,xi〉, yi) +

λ

2
‖β‖2

2 , (27)

where L(〈β,xi〉, yi) , max{0, 1−yi〈β,xi〉}. SVM is known as an effective classification frame-

work and is applied to real-world applications such as text categorization, image classification,

etc. [28]. We use two binary classification data sets namely RCV1 and Skin. The Reuters Corpus

Volume I (RCV1) data set [29] is a collection of news-wire stories produced by Reuters journalists

from 1996-1997. The articles are categorized into four different classes including Industrial,

Economics, Social, and Markets. Here, the samples are documents and the features represent the

existence/nonexistence of a given token in an article. We use a subset of the original data set

with 199,328 samples and 138,921 features. The goal is to predict whether an article belongs to

Markets class or not. Skin segmentation data set classifies each pixel of scan photographs as skin

or non-skin texture and is used in face and human detection applications. The goal is identifying

the skin-like regions. It consists of 3 features, and 245,057 samples out of which 50,859 are

the skin samples and 194,198 are non-skin samples. Note that (27) is a nonsmooth problem

TABLE I: Initial stepsize values for RCV1 data set

λ η0[1] η0[2] =
Lω

10µF
η0[3] =

Lω
4µF

0.001 0.9 100 250

0.01 0.9 10 25

1 0.01 0.1 0.25

and F is strongly convex with parameter λ. We compare the unifying self-tuned stepsize rule

given by Theorem 1 with harmonic stepsizes of the form ηt = a
(t+b)

where a and b are scalars

[17]. Our goal is to compare the sensitivity of the harmonic stepsize rule with different choices

of parameters a and b, with that of the unifying self-tuned stepsize rule with different initial

stepsizes. Let l = 1, we set ω = 1
2
‖β‖2

2 where µω = Lω = 1. For any fixed value of λ, we use

three different choices of η0, all within the interval (0,Lω/2µF ] as assumed in Theorem 1. Initial

stepsizes are denoted by η0[1], η0[2], and η0[3] and are selected according to Table I. For each

experiment, the algorithm is run for T = 104 iterations. Spall [[17], pg. 113] considers using b

18



that is about 5 − 10% of the total number of iterations. Accordingly, we choose b = 0.1T and

also b = 0.2T which is observed to be a better selection in some of the preliminary experiments.

We select a = η0b in order to start from the same initial stepsize as the self-tuned stepsize. In

addition, we compare our proposed scheme with the harmonic stepsize η0/t. Figures 1 and 2
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Fig. 1: RCV1 data set

demonstrate the performance of these stepsize schemes in terms of logarithm of the averaged

objective function F . In these plots, the blue and red curves correspond to the harmonic stepsize

with parameter b = 1000 and b = 2000 respectively, and the green curves denote the stepsize

η0/t. The black curves represent the self-tuned stepsize rule.

We observe in Figures 1 and 2 that the self-tuned stepsize scheme outperforms the harmonic
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stepsize in most of the experiments. Importantly, the self-tune stepsize is significantly more

robust with respect to (i) the choice of λ; (ii) the data set; and (iii) the initial value of the

stepsize.
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Fig. 2: Skin data set

IV. CONCLUDING REMARKS

We consider stochastic optimization problems with strongly convex objective functions. We

develop self-tuned stepsize rules for stochastic subgradient and gradient randomized block coor-

dinate mirror descent methods. For each scheme, we prove almost sure convergence and show

that under the self-tuned stepsize rules, the error bound of the RBSMD scheme is minimized. In

the case that some problem parameters are unknown, we develop a unifying self-tuned update

rule for which an error bound of the scheme is minimized for any arbitrary and small enough

initial stepsize.
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V. APPENDIX

Proof of Lemma 3: (a) To show part (a), we first use induction on t to show that et satisfies

et(η
∗
0, η
∗
1, . . . , η

∗
t−1) =

2δ

θ
η∗t , for all t ≥ 0. (28)

Note that it holds for t = 0 from the definition η∗0 = θ
2δ
er0. Next, let us assume (28) holds for

t. From this and relation (10), we have

et+1(η∗0, η
∗
1, . . . , η

∗
t ) = (1− θη∗t )et(η∗0, η∗1, . . . , η∗t−1) + δη∗t

2 = (1− θη∗t )
2δ

θ
η∗t + δη∗t

2

=
2δ

θ
η∗t

(
1− θη∗t +

θη∗t
2

)
=

2δ

θ
η∗t

(
1− θη∗t

2

)
=

2δ

θ
η∗t+1,

where in the last equation, we used the definition of η∗t+1. This implies that relation (28) holds

for t+ 1 and therefore, for any t ≥ 0. We now use induction on t to prove that (η∗0, η
∗
1, . . . , η

∗
t−1)

minimizes et for all t ≥ 1. By the definition of er1 and the relation er1(η∗0) = 2δ
θ
η∗1 shown

previously, we have

er1(η0)− er1(η∗0) = (1− θη0)er0 + δη2
0 −

2δ

θ
η∗1.

Therefore, using relation η∗1 = η∗0
(
1− θ

2
η∗0
)

and η∗0 = θ
2δ
er0, we can write

er1(η0)− er1(η∗0) = (1− θη0)
2δ

θ
η∗0 + δη2

0 −
2δ

θ
η∗0

(
1− θ

2
η∗0

)
= δ(η0 − η∗0)2.

This implies that part (a) holds for t = 1. In the rest of the proof, for the sake of simplicity,

we use et+1 for an arbitrary vector (η0, η1, . . . , ηt) ∈ Ut+1 and er∗t+1 for et+1 evaluated at

(η∗0, η
∗
1, . . . , η

∗
t ). Now suppose part (a) holds for some t ≥ 1 implying that et ≥ e∗t holds for any

(η0, η1, . . . , ηt−1) ∈ Ut. Using (10) and (28), we have

et+1 − e∗t+1 = (1− θηt)et + δη2
t −

2δ

θ
η∗t+1.

Using et ≥ e∗t , relation (28), the definition of η∗t+1 and that ηt ≤ 1
θ
, we get

et+1 − e∗t+1 ≥ (1− θηt)
2δ

θ
η∗t + δη2

t −
2δ

θ
η∗t

(
1− θ

2
η∗t

)
= δ(ηt − η∗t )2.

Therefore, part (a) holds for t+ 1. We conclude that the result of part (a) is true for any t ≥ 1.

(b) Using the recursive relation η∗t+1 = η∗t
(
1− θ

2
η∗t
)
, we have

1

ηt+1

=
1

ηt
(
1− θ

2
ηt
) =

1

ηt
+

θ
2

1− θ
2
ηt
, for all t ≥ 0.

Summing up from t = 0 to k and canceling the common terms from both sides, we obtain

1

ηk+1

=
1

η0

+
θ

2

k∑
t=0

1

1− θ
2
ηt
>
θ

2

k∑
t=0

1

1− θ
2
ηt
. (29)

Note that from the definition of η∗0 and er0, we have 0 < η∗0 ≤ 1
θ
. From relation η∗t =
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η∗t−1

(
1− θ

2
η∗t−1

)
we have 0 < η∗t ≤ 1

θ
for all t ≥ 0. Consequently, the term 1− θ

2
η∗t is a number

between zero and one. Therefore,
(
1− θ

2
η∗t
)−1

> 1 which implies that
∑k

t=0

(
1− θ

2
η∗t
)−1

> k+1.

Therefore, using relation (29), for all k ≥ 1 we have η∗k <
2

θk
. Combining inequality (28) and

the preceding inequality, we obtain the desired result.

(c) First, we show
∑∞

t=0 η
∗
t =∞. From η∗t = η∗t−1

(
1− θ

2
η∗t−1

)
for all t ≥ 0, we obtain

η∗t+1 = η∗0

t∏
i=0

(
1− θ

2
η∗i

)
. (30)

Note that since η∗0 ∈
(
0, 1

θ

]
, from η∗t = η∗t−1

(
1− θ

2
η∗t−1

)
it follows that {η∗t } is positive non-

increasing sequence. Therefore, the limit limt→∞ η
∗
t exists and it is less than 2

θ
. Thus, by taking

the limits from both sides in η∗t = η∗t−1

(
1− θ

2
η∗t−1

)
, we obtain limt→∞ η

∗
t = 0. Then, by taking

limits in (30), we further obtain

lim
t→∞

t∏
i=0

(
1− θ

2
η∗i

)
= 0.

To arrive at a contradiction, suppose that
∑∞

i=0 η
∗
i <∞. Then, there is an ε ∈ (0, 1) such that for

j sufficiently large, we have θ
2

∑t
i=j η

∗
i ≤ ε, for all t ≥ j. Since

∏t
i=j

(
1− θ

2
η∗i
)
≥ 1− θ

2

∑t
i=j η

∗
i

for all j < t, by letting t→∞, we obtain for all j sufficiently large,
∞∏
i=j

(
1− θ

2
η∗i

)
≥ 1− θ

2

∞∑
i=j

η∗i ≥ 1− ε > 0.

This contradicts the statement limt→∞
∏t

i=0

(
1− θ

2
η∗i
)

= 0. Hence, we conclude that
∑∞

t=0 η
∗
t =

∞. Next, we show that
∑∞

t=0 η
∗
t

2 <∞. From η∗t = η∗t−1

(
1− θ

2
η∗t−1

)
we have

η∗i = η∗i−1 −
θ

2
η∗i−1

2, for all i ≥ 1.

Summing the preceding relation from i = 0 to t and canceling the common terms, we obtain

η∗t = η∗0 −
θ

2

t−1∑
i=0

η∗2i , for all t ≥ 1.

By taking limits and recalling that limt→∞ η
∗
t = 0, we obtain the desired result.
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