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Abstract

The s-energy is a generating function of wide applicability in network-based dynam-
ics. We derive an (essentially) optimal bound of (3/ρs)n−1 on the s-energy of an n-agent
symmetric averaging system, for any positive real s ≤ 1, where ρ is a lower bound on the
nonzero weights. This is done by introducing the new dynamics of twist systems. We show
how to use the new bound on the s-energy to tighten the convergence rates of systems in
opinion dynamics, flocking, and synchronization.

1 Introduction

Averaging dynamics over time-varying networks is a process commonly observed in many well-
studied multiagent systems. It has been used to model swarming, polarization, synchronization,
gossip processes, and consensus formation in distributed systems [1, 8, 9]. Because of a dearth
of general convergence techniques, results in the area often rely on network connectivity as-
sumptions. The s-energy is a powerful analytical tool that allows us to overcome these restric-
tions [3]. It provides a global parametrized measure of the “footprint” of the system over an
infinite horizon. This stands in sharp contrast with the local arguments (spectral or Lyapunov-
based) typically used to prove fixed-point attraction.

The main result of this paper is an optimal bound on the s-energy of symmetric averaging
systems. The new bound is used to tighten the convergence rates of various multiagent systems
in opinion dynamics, flocking, and self-synchronization of coupled oscillators [1,3,7,10,11,13–
15, 17, 19–21].
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Before moving to the technical discussion, we illustrate the role of the s-energy with a toy
system. Fix ρ ∈ (0, 1/2] and place n agents at x1, . . . , xn in [0, 1]. Given any ε > 0, for any
integer t > 0, pick two agents i, j such that x j − xi ≥ ε (if any) and move them anywhere in the
interval [xi + δ, x j − δ], where δ = ρ(x j − xi). Repeat this process as long as possible. Note the
high nondeterminism of the dynamics: not only can we choose the pair of agents at each step,
but we can move them anywhere we please within the specified interval. Despite this freedom,
the process always terminates in O

( 1
ρn log 1

ε

)n−1 steps, for any small enough ε > 0, and the
bound is tight.1 This result is a direct consequence of our new bound on the s-energy. The proof
relies on a reduction to twist systems, a new type of multiagent dynamics that we define in the
next section.

The s-energy. Let (gt)∞t=1 be an infinite sequence of graphs over a fixed vertex set {1, . . . , n}.
Each gt is embedded in [0, 1], meaning that its vertices (the “agents”) are represented by n real
numbers between 0 and 1. Let µ1, . . . , µk denote the lengths of the intervals formed by the union
of the embedded edges of gt, and put `t = µs

1 + · · ·+µs
k, for real or complex s.2 The s-energy E(s)

of the system is defined as the infinite sum
∑

t>0 `t. Because the s-energy follows an obvious
scaling law, we note that embedding the graphs in the unit interval is not restrictive.

Averaging systems. In a (symmetric) averaging system, gt is undirected and supplied with
self-loops at the vertices. To simplify the notation, we fix t ∈ Z+ and denote by xi and yi the
positions of vertex i at times t and t + 1, respectively. Vertices are labeled so that x1 ≤ · · · ≤ xn.
For each i ∈ {1, . . . , n}, write r(i) = max{ j | (i, j) ∈ gt} and l(i) = min{ j | (i, j) ∈ gt}.3 Fix
ρ ∈ (0, 1/2]. The move of vertex i from xi to yi is subject to

xl(i) + δi ≤ yi ≤ xr(i) − δi, (1)

where δi = ρ(xr(i) − xl(i)). In other words, vertex i can move anywhere within the interval
covered by its incident edges, but not too close to the endpoints. If ρ = 0, convergence is clearly
impossible to ensure since i can easily oscillate periodically between two fixed vertices. We
emphasize the high nondeterminism of the process: gt is arbitrary and so is the motion of i
within its allotted interval.

The results. Although the 0-energy is typically unbounded, it may come as a surprise that
E(s) is always finite for any s > 0 [3]. In particular, the case s = 1 shows that it takes only a
finite amount of ink to draw the infinite sequence of graphs gt. We state the main result of this
article,4 and prove it in §3:

Theorem 1.1. The s-energy satisfies E(s) ≤ (3/ρs)n−1, for any 0 < ρ ≤ 1/2 and 0 < s ≤ 1.

1All logarithms are to the base 2.
2For example, if gt consists of three edges embedded as [0, 0.2], [0.1, 0.3], [0.7, 0.9], and one self-loop at 0.5,

then the union of the edges forms the three intervals [0, 0.3], [0.5, 0.5], [0.7, 0.9] and `t = (0.3)s + (0.2)s.
3Because gt is undirected and has self-loops, l(i) ≤ i ≤ r(i), (l ◦ r)(i) ≤ i ≤ (r ◦ l)(i). The notation l, r should not

obscure the fact that both functions can be chosen differently for each graph gt and its embedding (xi)n
i=1.

4We actually prove the slightly stronger bound of 2(2/ρs)n−1 for n > 2.
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We prove in §5.A that the bound O(1/ρs)n−1 is optimal for s = O
(
1/ log 1

ρ

)
and ρ ≤ 1/3.

These are the conditions we encounter in practice, which is why we are able to provide tight
bounds for all the applications discussed in this work. For s = 1, a quasi-optimal lower
bound of Ω(1/ρ)bn/2c is already known [3]. Theorem 1.1 lowers the previous upper bound of
(1/s)n−1(1/ρ)n2+O(1) [3].

The s-energy helps us bound the convergence rates of averaging network systems in full
generality. To our knowledge, no other current technique can prove these results. The power
of the s-energy is that it makes no connectivity requirements about the underlying dynamic
networks. We use it typically to bound the communication count Cε, which is defined as the
maximum number of steps t such that gt has at least one edge of length ε > 0 or higher. From
the inequality Cε ≤ ε−sE(s), setting s = 1/ log 1

ε and s = n/ log 1
ε in Theorem 1.1 yields:

Theorem 1.2. The communication count satisfies Cε = O
(

1
ρ log 1

ε

)n−1
for any 2−n ≤ ε ≤ 1/2,

and Cε = O
(

1
ρn log 1

ε

)n−1
for 0 < ε < 2−n.

This lowers the previous upper bound of (1/ρ)n2+O(1)(log 1/ε)n−1 [3]. We prove in §5.B that
the new bound is optimal for any positive ε ≤ ρ2n and ρ ≤ 1/3. We close this introduction with
a few remarks about the results and their context:

1. The results extend to a large family of asymmetric averaging systems. Indeed, Theo-
rems 1.1 and 1.2 hold for any infinite sequence of cut-balanced digraphs gt: recall that
a directed graph is said to be cut-balanced if its weakly connected components are also
strongly connected.

2. The polylogarithmic factor
(
log 1/ε

)n−1 in the convergence rate of Theorem 1.2 is a dis-
tinctive feature of time-varying network-based dynamics. Markov chains, for example,
have convergence rates proportional to log 1/ε.

3. Our definition of the s-energy differs slightly from the original formulation [3], which
introduced the total s-energy as

∑
t>0

∑
(i, j)∈gt di j(t)s, where di j(t) is the distance between

the vertices i, j in the embedding of gt. Up to a correction factor of at most
(
n
2

)
, our bounds

apply to the total s-energy as well.

4. As noted in [6], the s-energy can be interpreted as a generalized Dirichlet series or, al-
ternatively, as a partition function with s as the inverse temperature. Both interpretations
have their own benefits, such as highlighting the lossless encoding properties of the s-
energy or the usefulness of Legendre-transform arguments with the relevant thermody-
namical quantities.

2 Twist Systems

We reduce averaging systems to a simpler kind of dynamics where agents keep the same order-
ing at all time. In a twist system, n points move within [0, 1] at discrete time steps. As before,
we fix t ∈ Z+ and describe the motion of each point xi at time t to its next position yi at time t+1.
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Unlike the averaging kind, twist systems preserve order; that is, assuming that x1 ≤ · · · ≤ xn,
then y1 ≤ · · · ≤ yn. To describe the motion from t to t + 1, we choose two integers 1 ≤ u < v ≤ n
and, for any i (u ≤ i ≤ v), we define the twist of xi as the interval within [xu, xv] defined by

τi =
[
xu + ρ(xmin{i+1,v} − xu), xv − ρ(xv − xmax{i−1,u})

]
. (2)

Fixing ρ ∈ (0, 1/2] ensures that all the twists are well-defined.5 The only constraints on the
dynamics are: (i) y1 ≤ · · · ≤ yn; and (ii) yi ∈ τi for any u ≤ i ≤ v, and yi = xi otherwise.

x1

τ i

yi

xu xi xv xn

yu yv yny1

Figure 1: The interval τi extends from a distance ρ(xi+1 − xu) to the right of xu to a distance ρ(xv − xi−1)
to the left of xv: it thus twists [xi−1, xi+1] into the allowed interval for yi.

Observe that conditions (i,ii) are always feasible: for example, we can choose yi to be the
leftmost point in τi; of course, there is no need to do so and the expressive power of twist systems
comes from the freedom they offer. Like their averaging counterparts, such systems are highly
nondeterministic: at each step t, both the choice of u, v and the motion of the points are entirely
arbitrary within the constraints (i,ii). Writing `t = (xv − xu)s, we define the s-energy of the twist
system as E(s) =

∑
t>0 `t. The next result justifies the introduction of twist systems.

Theorem 2.1. Any averaging system can be viewed as a twist system with the same parameter
ρ and the same s-energy.

Proof. Referring to our previous notation, recall that µ1, . . . , µk denote the lengths of the intervals
I j formed by the union of the edge embeddings of gt. We subdivide the time interval from t to
t + 1 into k time windows and, for j = 1, . . . , k, we process the motion within I j during the j-th
window while keeping the other vertices fixed. All windows are treated similarly, so it suffices
to explain the case k = 1. Let xi (resp. x′i) be the position of vertex i at time t (resp. t + 1) and
let y1 ≤ · · · ≤ yn be the sequence of x′i sorted in nondecreasing order.6 Let xu, . . . , xv denote the
positions within I1; we may assume that u < v. The other vertices are kept fixed, so we have
yi = xi for i < u or i > v. To show that the transition from xi to yi meets the conditions of a

5Indeed, we can check that τi = [a, b], where a ≤ b. The terminology refers to the “twisting” of the interval
[xi−1, xi+1] around xi into the interval τi around yi.

6We break ties by using the index i. Note that the yi’s are sorted, so they are not the same as those used in the
definition of averaging systems given above.
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twist system, we need to prove that yi ∈ τi for any i between u and v. By the symmetry of (2), it
suffices to show that, for u ≤ i ≤ v,

yi ≤ xv − ρ(xv − xmax{i−1,u}). (3)

Assume that u < i ≤ v and let x̄ j be shorthand for ρx j +(1−ρ)xv. The entire interval I1 is covered
by edges of gt, so there must be at least one edge (a, b) that covers [xi−1, xi], ie, b < i ≤ a. By (1),
x′a ≤ ρxl(a) + (1−ρ)xr(a), with l(a) ≤ b < i and r(a) ≤ v; hence x′a ≤ x̄i−1. It also follows from (1)
and the presence of self-loops that x′j ≤ ρxl( j) + (1 − ρ)xr( j) ≤ x̄i−1 for any j (u ≤ j < i); also
x′j = x j ≤ x̄i−1 for j < u. Putting it all together, this proves the existence of at least i indices
l ≤ v such that x′l ≤ x̄i−1. It follows that yi ≤ x̄i−1; hence (3) for u < i ≤ v. To complete the
proof of (3), we note that the case i = u follows from yu ≤ yu+1. The case k > 1 is handled by
repeating the previous analysis for each interval I j. The s-energy contributed by one step of the
averaging system matches the energetic contribution of the k substeps of the twist system. �

3 Bounding the s-Energy

The proof of Theorem 1.1 is unusual in the context of dynamics because it is algorithmic: it
consists of a set of trading rules that allows money to be injected into the system and exchanged
among the vertices to meet their needs. As the transactions take place, money is spent to pay for
the s-energy expended along the way. If all of the energy can be accounted for in this manner,
then the amount of money injected in the system is an upper bound on E(s). In our earlier
work [3], we were able to pursue this approach only for the case s = 1. We show here how to
extend it to all s ∈ (0, 1]. The idea was to supply each vertex with its own credit account and
then let them trade credits to pay for the s-energy incrementally. This strategy does not work
here because of its inability to cope with all the scales present in the system.7 The remedy is
to supply each pair of vertices with their own account. Only then are we able to accommodate
all scales at once. By appealing to Theorem 2.1, we may substitute twist systems for averaging
systems. We focus the analysis on the transition at time t from x1 ≤ · · · ≤ xn to y1 ≤ · · · ≤ yn.
Our only assumption is that, for some u, v (1 ≤ u < v ≤ n), we have yi ∈ τi for any u ≤ i ≤ v,
and yi = xi otherwise.

For each pair (i, j) such that 1 ≤ i < j ≤ n, we maintain an account Bi, j consisting of
(x j − xi)sA j−i credits, where A := 2/ρs and one credit is used to pay for a single unit of s-energy.
(Amounts paid need not be integers.) We show that updating each Bi, j at time t to B′i, j at time
t + 1 leaves us with enough unused money to pay for the s-energy (xv − xu)s released at that
step.8 No new money is needed past the initial injection at time 1, so the s-energy is at most the

7We illustrate the difficulty with a simple example. Set n = 3 and assign xs
i Ai credits to the account for vertex

i = 1, 2, 3. Initialize the system with x1 = 0, x2 = 1 − ε, and x3 = 1; set ρ = 1/2, with g1 consisting of the single
edge (2, 3). Assume now that y1 = 0 and y2 = y3 = 1 − ε/2. The account for vertex 3, the only one to release money,
gives out only (1 − (1 − ε/2)s)A3 ≈ 1

2 sεA3 credits. If s < 1 and ε > 0 is very small, this is not enough to cover the
s-energy of εs needed for the first step. The problem is that the credit accounts do not operate at all scales.

8We refer to Bi, j as both the account for (i, j) and its value.
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sum of all the Bi, j’s at the beginning: E(s) ≤
∑

i< j A j−i <
( A

A−1
)2An−1 < 2(2/ρs)n−1, for n > 2.

For n = 2, E(s) ≤ A, hence Theorem 1.1. We begin with a few words of intuition:

• We update Bi, j to B′i, j by considering the pairs (i, j) in descending order of j − i, starting
with (1, n). In general, the update for (i, j) will rely on money released by the pairs (i−1, j)
and (i, j + 1), whose accounts will have already been updated. In turn, the pair (i, j) will
then be expected to provide money to both (i, j − 1) and (i + 1, j): the donation will be
made in two equal amounts.

• How much money should (i, j) receive from its donors. For the sake of this informal
discussion, let us focus on the case u ≤ i < j ≤ v. The account Bi, j should receive enough
to grow to (xv − xu)sA j−i. This typically exceeds its balance of (x j − xi)sA j−i at time t, so
an infusion of money is required. Of course, the amount actually needed for B′i, j is only
(y j − yi)sA j−i, so this in turn frees

(
(xv − xu)s − (y j − yi)s)A j−i ≥ 0, which can be then

passed on to (i, j − 1) and (i + 1, j).

• We pay for the energetic contribution at time t by spending the leftover money from the
update for (u, u + 1), which we show to be at least (xv − xu)s, as required.

B1,4 → ′B1,4

B1,3 → ′B1,3 B2,4 → ′B2,4

B1,2 → ′B1,2 B2,3 → ′B2,3 B3,4 → ′B3,4

1

2
D1,4

1

2
D1,4

1

2
D1,3

1

2
D1,3

1

2
D2,4

1

2
D2,4

Figure 2: Updating B1,4 to its new value of B′1,4 releases D1,4 credits, which are passed on evenly to
the pairs (1, 3) and (2, 4). With this scheme in place, updating B2,3 to B′2,3 can make use of C2,3 =
1
2 (D1,3 + D2,4) credits.

Proof of Theorem 1.1. We update Bi, j by using Ci, j credits supplied by the accounts Bi−1, j and
Bi, j+1. We show how this produces a leftover Di, j, which can then be donated to (i + 1, j) and
(i, j − 1) in equal amounts. Here are the details: for all 1 ≤ i < j ≤ n in descending order of
j − i = n − 1, . . . , 1, apply the following assignments (Fig.2):Ci, j ←

1
2 (Di−1, j + Di, j+1)

Di, j ← Bi, j + Ci, j − B′i, j,
(4)
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where Bi, j = (x j − xi)sA j−i, B′i, j = (y j − yi)sA j−i, and Di, j = 0 if i < 1 or j > n. The assign-
ments denote transfers of money. This explains the factor of 1/2, which keeps the money pool
conserved: for example, one half of Di, j goes to (i, j − 1) and the other half to (i + 1, j). The
soundness of the trading scheme rests entirely on the claimed nonnegativity of all the donations
Di, j. For any i ∈ {1, . . . , n}, define u(i) = u and v(i) = v if u ≤ i ≤ v; and set u(i) = v(i) = i
otherwise. We prove by induction on j − i > 0 that, for 1 ≤ i < j ≤ n, Bi, j + Ci, j ≥ (xv( j) − xu(i))sA j−i

Di, j ≥ 0.

(5)

(6)

The next inequality, which follows from dzs/dz ≥ s for s, z ∈ (0, 1], will prove useful in estab-
lishing (5, 6):

1 − (1 − x)s ≥ sx for any s, x ∈ [0, 1]. (7)

• Case u ≤ i < j ≤ v. By affine invariance, we can always assume that xu = xv − 1 = 0. We
begin with the case u < i < j ≤ v and observe that v( j) = v and u(i − 1) = u(i) = u. Because
yi−1 ∈ τi−1, we have yi−1 ≥ ρxi. Using (7), we find that

Di−1, j = Bi−1, j + Ci−1, j − B′i−1, j ≥
(
(xv( j) − xu(i−1))s − (y j − yi−1)s)A j+1−i

≥
(
1 − (1 − ρxi)s)A j+1−i ≥ ρsxiA j+1−i.

(8)

If i = u, we have xi = 0, hence (8) merely expresses nonnegativity, which holds inductively.
We conclude that (8) obtains for any u ≤ i < j ≤ v. Likewise, by symmetry, Di, j+1 ≥ ρs(1 −
x j)A j+1−i. It follows from (4) that Ci, j ≥

1
2ρs

(
1− (x j− xi)

)
A j+1−i ≥

(
1− (x j− xi)s)A j−i; therefore,

Bi, j + Ci, j ≥ (x j − xi)sA j−i +
(
1 − (x j − xi)s)A j−i = A j−i = (xv( j) − xu(i))sA j−i,

which establishes (5). Since xu(i) = xu ≤ yi ≤ y j ≤ xv = xv( j), this also proves that

Di, j = Bi, j + Ci, j − B′i, j ≥ A j−i − (y j − yi)sA j−i ≥ 0;

hence (6).

• Case i < u ≤ j ≤ v. This time, we set xi = 0 and xv = 1 and note that u(i) = i and v( j) = v.
We begin with the case j < v, which implies that v( j + 1) = v. Using (4, 5), yi = xi, y j+1 ∈ τ j+1,
and (7) in this order, we find that

Di, j+1 = Bi, j+1 + Ci, j+1 − B′i, j+1 ≥
(
(xv( j+1) − xu(i))s − (y j+1 − xi)s)A j+1−i

≥
(
1 − (1 − ρ(1 − x j))s)A j+1−i ≥ ρs(1 − x j)A j+1−i ≥ (1 − x j)A j−i.

(9)

Again, by induction, Di−1, j ≥ 0; therefore, by (4),

Bi, j + Ci, j ≥ Bi, j + 1
2 Di, j+1 ≥

(
xs

j + (1 − x j)
)
A j−i ≥ A j−i = (xv( j) − xu(i))sA j−i;

hence (5). For the case j = v, again note that the lower bounds on Di−1, j and Di, j+1 we just used
still hold, and thus so does (5) for all i < u ≤ j ≤ v. Finally, y j ≤ xv; hence xu(i) = xi = yi ≤ y j ≤

xv = xv( j), and (6) follows from (4, 5).
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The case u ≤ i ≤ v < j is the mirror image of the last one while the remaining three cases are
trivial and require no account updates. We pay for the s-energy contribution at time t by tapping
into Du,u+1, which is unused. For this to work, it suffices to show that Du,u+1 ≥ (xv − xu)s. We
have yi ∈ τi (i = u, u + 1); hence

yu+1 − yu ≤ xv − ρ(xv − xu) − (xu + ρ(xu+1 − xu))

≤ ρ(xu − xu+1) + (1 − ρ)(xv − xu) ≤ (1 − ρ)(xv − xu).

Thus, it follows from (4, 5, 7), together with u(u) = u and v(u + 1) = v, that

Du,u+1 = Bu,u+1 + Cu,u+1 − B′u,u+1 ≥ A(xv(u+1) − xu(u))s − A(yu+1 − yu)s

≥
(
1 − (1 − ρ)s)A(xv − xu)s ≥ ρsA(xv − xu)s ≥ (xv − xu)s.

This completes the proof of Theorem 1.1 for twist systems. By Theorem 2.1, this also implies
the same upper bound for averaging systems. �

4 Applications

A number of known convergence rates for various averaging systems can be sharpened by ap-
pealing to Theorems 1.1 and 1.2. We give a few examples below.

4.1 Asymmetric averaging systems

Symmetric averaging systems have been widely used to model backward products of the form
(At · · · A1x)t>0, where each Ak is a type-symmetric stochastic matrix with positive diagonal and
nonzero entries at least ρ > 0 [2, 8, 11, 13, 15, 17].9 In other words, Ak is the matrix of a lazy
random walk in an undirected graph gk with a lower bound of ρ on the nonzero probabilities.
A close examination of the proof of Theorem 2.1 shows that the graphs gt may be directed
as long as the vertices still have self-loops, and, for each i = u + 1, . . . , v, there exist edges
“hovering” over i from both sides, ie, (a, b) and (b′, a′), with a, a′ < i ≤ b, b′. We note that this
property holds if each directed graph gt is cut-balanced.10 This gives us a strict generalization of
Theorems 1.1 and 1.2 for asymmetric averaging systems whose sequences of digraphs are cut-
balanced. This goes beyond the convergence of these systems, which was established in [12].

4.2 Opinion dynamics

There has been considerable attention given to consensus formation in social dynamics [8–10].
Given a set of agents in high-dimensional space, where coordinates model opinions, one imag-
ines that at each step a subset of them come into contact and, through a process of deliberation,
adjust their opinions toward agreement. Will such a process converge to consensus, polarization,
a mixture of both, or not at all? Mathematically, the agents are represented by their position in

9A matrix A is type-symmetrix if Ai j and A ji are both positive or both 0 for all i, j.
10A directed graph is cut-balanced if its weakly connected components are strongly connected.

8



d-dimensional space: x1, . . . , xn in [0, 1]d. We fix 0 < α ≤ 1 and iterate on the following process
forever: (1) choose an arbitrary nonempty subset of the agents and move them anywhere inside
the box (1 − α)B + αc, where B is the smallest (axis-parallel) box enclosing the chosen agents
and c is the center of B; (2) repeat. Intuitively, one “squeezes” the subset of agents together a
little.

Theorem 4.1. For any positive ε ≤ 2−dn, at all but O
( 1

dαn log 1
ε

)n−1 time steps, the smallest box
enclosing the chosen agents has volume less than ε.

Proof. We set up a symmetric averaging system as follows: gt consists of n self-loops, together
with the complete graph joining the agents of the chosen subset; along each axis, the dynamics
obeys (1) with parameter ρ = α/2. Let `t( j) be the length of the graph’s projection onto the j-th
axis. By Theorem 1.1, we know that, for any 0 < r ≤ 1,

∑
t>0 `t( j)r ≤ (6/αr)n−1. Let Vt be the

volume of the smallest box enclosing the agents picked at time t. By the generalized Hölder’s
inequality, for 0 < s ≤ 1/d,

∑
t>0

V s
t =

∑
t>0

d∏
j=1

`t( j)s ≤

d∏
j=1

(∑
t>0

`t( j)ds
)1/d
≤ (6/dαs)n−1.

Set s = n/ log 1
ε and use Markov’s inequality to complete the proof. �

4.3 Flocking

Many models of bird flocking have been developed over the years and used to great effect in CGI
for film and animation. Their mathematical analysis has lagged behind, however. In a simple,
popular model tracing its roots back to Cucker & Smale, Vicsek, and ultimately Reynolds, a
group of n birds is represented by two n-by-3 matrices x(t) and v(t), where the i-th rows encode
the location and velocity in R3 of the i-th bird, respectively [7, 13, 21]. The dynamics obeys the
relations  x(t) = x(t − 1) + v(t)

v(t + 1) = P(t) x(t),

where P(t) is an n-by-n stochastic matrix whose entry (i, j) is positive if and only if birds i
and j are within a fixed distance R of each other. All entries are rationals over O(log n) bits. A
tight bound on the convergence of the dynamical system was established in [4,5]: it was shown
that steady state is always reached within a number of steps equal to a tower-of-twos of height
proportional to log n; even more amazing, this bound is optimal. The lead-up to steady-state
consists of two phases: fragmentation and aggregation. The latter can feature only the merging
of flocks while the (much shorter) fragmentation phase can witness the repeated formation and
breakup of flocks. Technically, a flock is defined as the birds in a given connected component of
the network joining any two birds within distance R. It has been shown that the total number of
network switches (ie, the number of steps where the communication network changes) is nO(n2).
We improve this bound to nO(n) by using the s-energy. It was demonstrated in [4] (page 21:7)
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that the number of network switches is bounded by the communication count Cε, for ε ≥ n−bn2
,

ρ ≥ n−c and constant b, c > 0. Our claim follows from Theorem 1.2. �

4.4 Self-synchronizing oscillators

The self-organized synchronization of coupled oscillators is a well-known phenomenon in physics
and biology: it is observed in circadian neurons, firing fireflies, yeast cell suspensions, cardiac
pacemaker cells, power plant grids, and even musical composition (eg, Ligeti’s poème sym-
phonique). In the discrete Kuramoto model studied in [16–18], all oscillators share the same
natural frequency and the phase of the i-th one obeys the recurrence:

θi(t + 1) = θi(t) +
K∆T
|ni(t)|

∑
j∈ni(t)

sin
(
θ j(t) − θi(t)

)
,

where ni(t) is the set of vertices adjacent to i in gt (which includes i). Following [17], we assume
that all n phases start in the same open half-circle, which we can express as α−π/2 ≤ θi(0) ≤ π/2,
for some arbitrarily small positive constant α. We find that sin(θ j(0)− θi(0)) = ai j

(
θ j(0)− θi(0)

)
,

where cα ≤ ai j ≤ 1, for constant c > 0. This condition holds for all t since averaging keeps
the phases in the same open half-circle. The dynamics is that of a symmetric averaging system
provided that we pick ρ small enough so that bρn/α ≤ K∆T ≤ 1, for a suitable constant b > 0.
By Theorem 1.2, for any ε ≤ 2−n, the number of steps where two oscillators are joined by an
edge while their phases are off by ε or more is O

( 1
αK∆T log 1

ε

)n−1.

5 The Lower Bound Proofs

A. We prove that the bound O(1/ρs)n−1 from Theorem 1.1 is optimal for s = O
(
1/ log 1

ρ

)
and ρ ≤ 1/3. A lower bound construction from [3] (page 1703) describes a system whose
n-agent s-energy satisfies the recurrence En ≥ ρsEn−1 + (1 − 2ρ)sEn + 1 for n > 1; hence,
for positive constant b, E2 ≥ b/ρs and En ≥ (bρs−1/s)En−1 for n > 2. This shows that
En ≥ (b/ρs)n−1ρs(n−2) = Ω(1/ρs)n−1, for s = O

(
1/ log 1

ρ

)
, as claimed. �

B. We prove that Cε = Ω
(

1
ρn log 1

ε

)n−1
, for any positive ε ≤ ρ2n and ρ ≤ 1/3. Note that ρ must

be bounded away from 1/2 (we choose 1/3 for convenience): indeed, in the case of two vertices
at distance 1 joined by an edge, we have the trivial bound Cε = 1 for ρ = 1/2. The proof revisits
an earlier construction [3] and modify its analysis to fit our purposes. If n > 1, the n vertices
of g1 are positioned at 0, except for xn = 1. Besides the self-loops, the graph g1 has the single
edge (n − 1, n). At time 2, the vertices are all at 0 except for xn−1 = ρ and xn = 1 − ρ. The first
n − 1 vertices form a system that stays in place if n = 2 and, otherwise, proceeds recursively
within [0, ρ] until it converges to the fixed point ρ/(n−1): this value is derived from the fact that
each step keeps the mass center invariant. After convergence11 of the vertices labeled 1 through

11We can use a limiting argument to break out of the infinite loop.
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n− 1, the n-vertex system repeats the previous construction within [ρ/(n− 1), 1− ρ]. Let C(n, ε)
denote the communication count for n agents: we have C(n, ε) = 0 if n = 1 or ε > 1; else

C(n, ε) ≥ 1 + C
(

n − 1,
ε

ρ

)
+ C

(
n,

ε

1 − ρn/(n − 1)

)
. (10)

By expanding the recurrence and using monotonicity,

C(n, ε) ≥ k + k C
(

n − 1,
ε

ρ(1 − 2ρ)k−1

)
, for k =

⌈ (log ε)/n − log ρ
2 log(1 − 2ρ)

⌉
. (11)

Assume now that ε ≤ ρ2n. From our choice of k, we easily verify that

ρ(1 − 2ρ)k−1 ≥ ε1/n . (12)

The recurrence (11) requires that ε/
(
ρ(1 − 2ρ)k−1) < 1, which follows from (12). Since ε1/2n ≤

ρ ≤ 1/3, we have k ≥ b
ρn log 1

ε , for constant b > 0. It follows that C(2, ε) = Ω( 1
ρ log 1

ε ) and, for
n > 2, by (12),

C(n, ε) ≥
( b
ρn

log
1
ε

)
C
(
n − 1, ε1−1/n

)
.

We verify that the condition ε ≤ ρ2n holds recursively: ε1−1/n ≤ ρ2(n−1). By induction, it follows

that C(n, ε) ≥ Ω
(

1
ρn log 1

ε

)n−1
, as desired. �
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