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Hierarchical decomposition of LTL synthesis
problem for nonlinear control systems

Pierre-Jean Meyer, Dimos V. Dimarogonas

Abstract—This paper deals with the control synthesis problem
for a continuous nonlinear dynamical system under a Linear
Temporal Logic (LTL) formula. The proposed solution is a top-
down hierarchical decomposition of the control problem involving
three abstraction layers of the problem, iteratively solved from
the coarsest to the finest. The LTL planning is first solved on
a small transition system only describing the regions of interest
involved in the LTL formula. For each pair of consecutive regions
of interest in the resulting accepting path satisfying the LTL
formula, a discrete plan is then constructed in the partitioned
workspace to connect these two regions while avoiding unsafe
regions. Finally, an abstraction refinement approach is applied
to synthesize a controller for the dynamical system to follow each
discrete plan. The second main contribution, used in the third
abstraction layer, is a new monotonicity-based method to over-
approximate the finite-time reachable set of any continuously
differentiable system. The proposed framework is demonstrated
in simulation for a motion planning problem of a mobile robot
modeled as a disturbed unicycle.

Index Terms—Hierarchical decomposition, LTL planning,
abstraction-based synthesis, mixed-monotone systems, reachabil-
ity analysis.

I. INTRODUCTION

Control synthesis and planning for continuous dynamical
systems under high-level specifications, such as Linear Tempo-
ral Logic (LTL) formulas [2], usually cannot be solved directly
on the continuous dynamics. The classical solutions to this
problem thus rely on a two-step approach, where we first create
a finite abstraction (the abstract or symbolic model) of the
continuous dynamical system (the concrete model), and then
leverage formal methods from the field of computer science to
synthesize a controller for the abstraction to satisfy the high-
level specifications. Provided that the abstraction was created
to obtain some behavioral relationship (such as alternating
simulation [25] or feedback refinement relation [21]) between
the concrete and abstract models, the controller obtained on
the abstraction can then be concretized into a controller for
the concrete model to satisfy the desired specifications.

This topic recently received significant interest resulting in
various abstraction methods such as designing local feedback
controllers between any two neighboring cells of a state
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space partition to guarantee the creation of a deterministic
abstraction [9], [4], considering infinite-time reachability anal-
ysis of neighboring cells [20], [29], or fixed and finite-time
reachability analysis [5], [21], which we consider in this paper.
While the combined results of all these approaches cover
a wide range of dynamical systems and control objectives,
when taken separately most of these approaches (as well as
others in the literature) are restricted to particular classes
of systems (e.g. multi-affine [9], mixed-monotone [5]) and
subsets of LTL formulas (e.g. reach-avoid-stay [20], [29],
co-safe LTL [9]). However, providing a framework capable
of solving the synthesis problem for any dynamical systems
under general LTL formulas remains a challenging problem.

This can particularly be observed when considering the
main software toolboxes in the literature aimed at addressing
such high-level control problems on dynamical systems, which
can be split in two categories. On one side are tools such as
TuLiP [28], conPAS2 [26] and LTLMoP [8] which can handle
general LTL specifications (conPAS2) or the large subset of
GR(1) formulas (TuLiP, LTLMoP) but are restricted to simpler
dynamical systems such as fully actuated (LTLMoP) and
piecewise affine models (TuLiP, conPAS2). On the other side,
switched or nonlinear dynamical systems are handled by tools
such as PESSOA [14], CoSyMa [19] and SCOTS [22], but
only for combination of safety and reachability specifications.

To overcome these limitations, in this paper we propose a 3-
layer hierarchical decomposition of the control problem aimed
at addressing general control synthesis for nonlinear dynamical
systems under LTL specifications. As opposed to the 2-step
bottom-up symbolic control approach presented above which
starts by computing an abstraction of the dynamical system
before synthesizing a controller on this abstraction, we rather
take inspiration from top-down hierarchical decomposition in
the field of artificial intelligence [23]. In this approach, we
have several granularities of abstraction of the control problem
and we first solve the problem on the most abstract layer, then
iteratively refine this result by going down to a more detailed
layer whose subproblem consists of realizing the solution of
the above layer. Given an initial partition of the state space
(possibly containing unsafe regions) and an LTL formula
defined over a set of regions of interest, each corresponding
to a single cell of this partition, the proposed hierarchical
decomposition proceeds to the following three steps.

1) Solve the LTL planning problem on a finite transition
system that only represents the regions of interest, and
obtain a resulting infinite sequence of regions to visit.

2) Find a discrete plan in the partitioned state space con-
necting each pair of consecutive regions in this sequence
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while avoiding unsafe regions.
3) Synthesize a controller for the dynamical system to

follow each discrete plan in a sampled-time manner.
The main contribution of this paper is the 3-layer hierarchi-

cal structure allowing to tackle control problems for nonlinear
systems under general LTL specifications, without restricting
each layer to specific tools. The first two layers can easily be
solved by classical methods for LTL model checking on finite
systems [2] and graph searches [6], respectively. For the third
layer, we consider the recent abstraction refinement approach
in [17] which is applicable to any system associated with a
method to over-approximate its finite-time reachable sets. The
second contribution of this paper is thus the definition of a
new reachability analysis method relying on the monotonicity
property [24] but applicable to any continuously differentiable
system without any monotonicity assumption.

This paper is structured as follows. In Section II, our main
contributions are compared to existing work in the literature.
Section III formulates the control problem and introduces the
3-layer hierarchical decomposition of LTL control problems on
nonlinear dynamical systems. The new reachability analysis
for any continuously differentiable system is presented in
Section IV alongside an overview of the abstraction refinement
algorithm in which it is used. Finally, Section V presents a nu-
merical implementation of the proposed approach to a motion
planning problem for a unicycle robot with disturbances.

II. RELATED WORK

The abstraction method in the third step uses a finite-time
reachability analysis of the dynamical system to compute the
non-deterministic transitions of the abstraction. In this paper,
we propose a new reachability analysis approach relying on a
monotonicity property [24] but applicable to dynamical sys-
tems which are not monotone. A first abstraction-based control
approach relying on the monotonicity property was introduced
in [18] for monotone systems and then extended in [5] for
the larger class of mixed-monotone systems. An extension of
the sufficient conditions for mixed-monotonicity from [5] to
any continuously differentiable system was recently introduced
in [30] for another type of abstraction [29]. Starting from
systems satisfying the mild conditions in [30], our contribution
is to define a new finite-time reachability analysis approach
inspired by, yet strictly more general than, the one in [5], thus
opening the use of monotonicity-based abstraction approaches
to any continuously differentiable system.

To further compare the proposed approach with the pre-
viously mentioned works, we can first note that the intro-
duction of the intermediate layer in our hierarchical decom-
position allows the consideration of more general control
objectives than PESSOA [14], CoSyMa [19] or SCOTS [22]
by translating a general LTL specification into a sequence of
reachability problems. In addition, the new contribution on
monotonicity-based reachability analysis for any continuously
differentiable nonlinear system opens this approach to a much
wider class of systems than those considered in TuLiP [28],
conPAS2 [26] and LTLMoP [8]. Regarding other tools also
covering nonlinear systems, it should be noted that PES-
SOA [14] does not natively handle those systems and requires

the user to manually provide a Matlab function computing
an over-approximation of the reachable set, while an over-
approximation method is included by default in our approach.
The consideration of nonlinear systems in CoSyMa [19] is
based on an incremental stability assumption, which is relaxed
in this paper. Finally, SCOTS [22] simply uses a different
over-approximation method based on Lipschitz arguments to
create a growth bound on the nonlinear system’s reachable
set. Although we compare our contributions to existing tools
as they are good indicators of the generality of results that can
be covered in this field, this paper mainly focuses on providing
the initial theoretical results and structure for a possible future
development of a general and fully reusable tool.

Among other relevant work, 2-layer top-down structures are
proposed in [13], [27] for fully actuated and piecewise affine
systems respectively, where the first layer of the present paper
is skipped to look directly for a discrete plan satisfying the
LTL formula in the partitioned environment, then a continuous
controller is designed to realize this discrete plan. Similarly,
the 3-layer top-down decomposition mentioned in [3] also
skips the first layer but splits the second one in two compo-
nents: first finding all discrete plans satisfying the LTL formula
in the partitioned environment without obstacle, then picking
an optimal plan based on obstacle avoidance. The third layer
in [3] uses a deterministic abstraction approach similar to [9]
to implement this discrete plan on a robot modeled by an
affine system. Another 3-step hierarchical decomposition of
an LTL control problem is presented in [7], but for a bottom-
up decomposition whose steps are significantly different from
our approach as they consist in first abstracting the dynamical
system into a fully actuated model (similarly to our second
step), then robustifying the specification to compensate for
the mismatches with the initial system and finally solving the
new LTL problem on the robust specification.

As a summary, the main theoretical contributions of the pro-
posed framework compared to existing tools for abstraction-
based synthesis and other multi-layer approaches is the ability
to handle general LTL control problems (layer 1) on any
nonlinear system (new result on reachability analysis com-
bined with abstraction refinement in layer 3) at a reduced
computational cost (decomposing the LTL planning in two
steps with layer 2). Such general problems cannot be handled
by any of the approaches mentioned above.

III. HIERARCHICAL DECOMPOSITION OF LTL PROBLEMS

Let N, R, R+
0 and R−0 be the sets of positive integers,

reals, non-negative reals and non-positive reals, respectively.
For a, b ∈ Rn, the interval [a, b] ⊆ Rn is defined as
[a, b] = {z ∈ Rn | a ≤ z ≤ b} using componentwise
inequalities.

A. System description

We consider a class of continuous-time nonlinear control
systems subject to disturbances and modeled by:

ż = f(z, u, d), (1)
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where z ∈ Z ⊆ Rn, u ∈ U ⊆ Rp and d ∈ D ⊆ Rq are the
state, bounded control input and bounded disturbance input,
respectively. Throughout this paper, the vector field f of (1)
is assumed to be continuously differentiable. We denote as
Φ(t, z,u,d) the state (assumed to exist and be unique) reached
by (1) at time t ∈ R+

0 from initial state z ∈ Z , under the
piecewise continuous control u : R+

0 → U and disturbance
functions d : R+

0 → D. We use Φ(t, z, u, d) with u ∈ U and
d ∈ D in the case of constant input functions u : R+

0 → {u}
and d : R+

0 → {d}.
Given a sampling period τ ∈ R+

0 , a sampled version of
system (1) can be described as a non-deterministic (due to
the disturbance) infinite transition system Sτ = (Xτ , Uτ , δτ )
where: Xτ = Z is the set of states; Uτ = U is the set of
control inputs; the transition relation δτ : Xτ × Uτ → Xτ

is such that z′ ∈ δτ (z, u) if there exists a disturbance
d : [0, τ ] → D such that z′ = Φ(τ, z, u,d), i.e. z′ can be
reached from z exactly in time τ by applying the constant
control u on [0, τ ]. While, to the best of our knowledge, there
exists very few results involving the choice of the sampling
period for abstraction-based approaches [4], some guidelines
are provided in Section V-B3 for a unicycle model and in [15]
for systems with additive control input (ż = f(z, d) + u).

B. Hierarchical decomposition of an LTL control problem

We consider a high-level control problem on the sampled-
time system Sτ evolving in the workspace Xτ = Z ⊆ Rn
associated to a uniform partition P ⊆ 2Z into intervals
(for compatibility with the reachability analysis introduced in
Section IV-A). The description of this workspace also includes
a set Obs ⊆ P of unsafe regions (referred to as obstacles in
this section) and a set Π ⊆ P\Obs of regions of interest. The
control specification is described by a Linear Temporal Logic
(LTL) formula ϕ defined over the set of regions of interest Π.
The reader is referred to [2] for an introduction on the LTL
framework. We thus aim at solving the following problem.

Problem 1. Find a controller C : Xτ → Uτ such that the
closed-loop sampled system Sτ with transitions δτ (z, C(z))
satisfies the LTL formula ϕ while avoiding the obstacles
Obs ⊆ P .

To solve Problem 1, we propose a hierarchical control struc-
ture involving three different abstraction layers of the dynam-
ical system and its environment, each of which successively
addresses one aspect of the control problem as sketched in
Figure 1. The evolution of the control objectives (highlighted
in red in Figure 1) is obtained through the following three
steps, each applied on a different abstraction layer (in blue).

1) LTL planning: We first solve the LTL planning problem
on a transition system SΠ = (Π, δΠ) whose states are the
regions of interest in the finite set Π ⊆ P\Obs and its
transition relation is δΠ ⊆ Π2. The user can freely choose
between defining δΠ = Π2 (i.e. each region of interest can
reach any other) to disregard the workspace geometry or
manually creating δΠ  Π2 to consider physical constraints.
Any standard LTL model checker (see e.g. [11]) can then
be used with SΠ and ϕ to obtain an accepting path in SΠ

LTL formula

Workspace (RoI,
obstacles, partition)

Dynamical system

FTS of
the RoI FTS of the

partitioned
workspace

Sequence
of RoI

Discrete plan
between each
pair of RoI

Control synthesis
using abstraction

refinement

Symbolic
abstraction

Fig. 1. Hierarchical structure of the problem solution (RoI = Regions of
Interest, FTS = Finite Transition System).

satisfying the LTL formula ϕ. Let π̄ = π0π1π2 . . . denote this
accepting path (if it exists) as a (possibly infinite) sequence of
regions of interest in Π.

2) Discrete plan and obstacle avoidance: Next we focus on
obtaining a discrete plan in the workspace partition P realizing
the accepting path π̄. Let N (σ) ⊆ P be the set of neighbors
of a cell σ ∈ P (i.e. the partition elements having a common
facet with σ), with the assumption that σ ∈ N (σ). The second
abstraction layer thus describes possible motion in the physical
environment while disregarding the system dynamics and is
represented by the transition system SP = (P, δP) whose set
of states (or cells) is P and its transition relation δP ⊆ P2 is
such that (σ, σ′) ∈ δP for all σ ∈ P\Obs, σ′ ∈ N (σ)\Obs.
As a result, any behavior of SP induced by the above transition
relation δP is guaranteed to satisfy the obstacle avoidance.

Then for each pair (πi, πi+1) ∈ Π2 of consecutive regions
of interest in the accepting path π̄, we look for a plan
Λi = σi0σ

i
1 . . . σ

i
ri in P\Obs connecting the two cells σi0 = πi

and σiri = πi+1. Since Π is finite, there is necessarily a
finite number of such pairs appearing in an infinite accepting
path π̄, which means that even an LTL formula with infinitely
repeating properties is translated into a finite set of finite plans.
The search for the plan Λi = σi0σ

i
1 . . . σ

i
ri is done through

classical graph search algorithms on SP (see e.g. [6]), such
as a Breadth-First Search or a Dijkstra algorithm to consider
weighted transitions (e.g. to penalize transitions going to a cell
neighboring an obstacle), which are guaranteed to find such
plans Λi as long as πi and πi+1 can be connected in SP .

Remark 2. Π ⊆ P ensures that each pair (πi, πi+1) in π̄
only needs one plan Λi as above. The more general case with
Π ⊆ 2P can be handled at a greater computational cost, since
a plan in P needs to be found for each pair in πi×πi+1 ⊆ P2.

3) Control synthesis: After applying the first two layers as
above, Problem 1 can then be solved by obtaining a solution to
the following problem for each plan Λi from Section III-B2.

Problem 3. Given a plan Λi = σi0σ
i
1 . . . σ

i
ri in P , find a

controller Ci : Xτ → Uτ such that the closed-loop sampled
system Sτ follows this plan, i.e. for any trajectory z0 . . . zri
of Sτ with z0 ∈ σi0 and zk+1 ∈ δτ (zk, C

i(zk)) for all k ∈
{0, . . . , ri − 1}, it holds that zk ∈ σik.

As for the other layers, any tool able to solve Problem 3
can be used in this third layer. One possible example is the
approach in [9] where an abstraction of Sτ is created as a finite
transition system obtained by designing feedback controllers
deterministically driving the system between any two neighbor
cells in P . While the obtained deterministic abstraction leads
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to a straightforward solution for Problem 3, such approach is
limited to the class of multi-affine systems.

For the highest generality of the proposed hierarchical
structure, the suggested solution for the third layer (detailed
in Section IV) is another abstraction-based approach relying
on reachability analysis of system (1) and which has the ad-
vantage of being applicable to any continuously differentiable
system. Unlike [9] above, the drawback of such approach is
that the obtained abstraction is a non-deterministic transition
system (see e.g. [5]) which is thus unlikely to deterministically
follow the plan Λi in Problem 3. Instead of manually looking
for abstractions of finer granularity on which the control
problem is feasible, we consider an abstraction refinement
approach as in [17] where an abstraction is created on the
initial coarse partition P and then iteratively refined by re-
partitioning the cells where the control synthesis fails.

4) General comments: The main contribution of this sec-
tion is the new 3-layer hierarchical framework to solve Prob-
lem 1 for nonlinear systems under general LTL specifications.
However as mentioned above, each layer can be tackled by any
existing tool able to address the corresponding subproblem,
and the examples mentioned in this section are not claimed
to be the optimal choices nor to be new contributions of this
paper. Unlike the first two layers relying on well established
tools, the abstraction refinement approach proposed for the
third layer is a more recent result [17], and although its
algorithm is not new, its applicability to any continuously
differentiable system is the second main contribution of this
paper which we thus describe in more detail in Section IV.

The proposed structure combining the first and second
layers has the advantage of providing a solution to the LTL
planning on P at a significantly lower computational cost than
if this problem were to be solved in a single step, directly on
SP . As will be seen in the numerical example of Section V,
the main computational bottleneck is on the control synthesis
in the third layer, which is the trade-off for the generality
offered by the proposed abstraction refinement approach. As
mentioned above, the computational complexity of layer 3 can
be reduced at the cost of generality by using more efficient
tools which are only applicable to smaller classes of systems.

Finally, we provide some guidelines on how to handle infea-
sibility of each layer’s subproblem. In layer 1, if the LTL spec-
ification ϕ is infeasible, specification revision methods [12]
can be considered to find a new specification satisfiable by SΠ

and as close to ϕ as possible. In layer 2, if regions of interest
πi, πj ∈ Π cannot be connected in P\Obs, the first abstraction
layer SΠ needs to be updated with the physical constraints:
(πi, πj) /∈ δΠ and (πj , πi) /∈ δΠ. In layer 3, if we fail to
synthesize a controller within reasonable refinement iterations,
the abstraction refinement algorithm can be combined with the
plan revision approach in [15] to look for alternative plans Λi.

IV. GENERALIZED ABSTRACTION REFINEMENT

The abstraction refinement approach considered in the third
layer and initiated in [17] is applicable to any system (1) whose
finite-time reachable sets can be efficiently over-approximated.
In Section IV-A, we thus introduce the second main con-
tribution of this paper: a new reachability analysis approach

applicable to any continuously differentiable system (1). For
self-containment of the paper, Section IV-B then provides an
overview of the abstraction refinement algorithm from [17].

A. General monotonicity-based reachability analysis

Monotone systems are systems whose trajectories preserve
some partial orders as below. A formal definition of a partial
order is omitted in this paper but can be found in [1].

Definition 4. System (1) is monotone with respect to partial
orders �z , �u and �d on the state, control and disturbance in-
puts respectively, if for all time t ∈ R+

0 , initial states z, z′ ∈ Z ,
control functions u,u′ : [0, t]→ U and disturbance functions
d,d′ : [0, t] → D we have: z �z z′,u �u u′,d �d d′ ⇒
Φ(t, z,u,d) �z Φ(t, z′,u′,d′).

In this section, we provide a new reachability analysis
approach relying on the monotonicity property but without
any monotonicity assumption on (1). The recent results in [30]
extend the sufficient conditions for mixed-monotonicity (see
e.g. [5]) to any continuous-time system whose Jacobian ma-
trices are bounded over the considered sets of states and
inputs. Our new contribution in this section starts from systems
satisfying the very mild sufficient conditions in [30] and
defines a new reachability analysis approach which is inspired
by but is strictly more general than the one in [5].

In what follows, several steps need to be identically applied
to all three variables z ∈ Z ⊆ Rn, u ∈ U ⊆ Rp and d ∈
D ⊆ Rq . When this is the case, we will use generic notations
with variable c ∈ {z, u, d} and dimension m ∈ {n, p, q} such
that c ∈ Rm. We first denote as acij and bcij the bounds of
the partial derivatives of the vector field f as follows: for all
z ∈ Z , u ∈ U , d ∈ D, i ∈ {1, . . . , n} and j ∈ {1, . . . ,m},
∂fi
∂cj

(z, u, d) ∈ [acij , b
c
ij ]. The values of these bounds lead us to

consider the 4 cases below, covering all possibilities for the
sign of each partial derivative, as in [30]:

(C1) acij ≥ 0: positive,
(C2) acij ≤ 0 ≤ bcij and |acij | ≤ |bcij |: mostly positive,
(C3) acij ≤ 0 ≤ bcij and |acij | ≥ |bcij |: mostly negative,
(C4) bcij ≤ 0: negative.
We then define the function g such that for all z, z∗ ∈ Z ,

u, u∗ ∈ U , d, d∗ ∈ D and i ∈ {1, . . . , n} we have

gi(z, u, d, z
∗, u∗, d∗) = fi(Zi, Ui, Di) + αzi (z − z∗) (2)

+ αui (u− u∗) + αdi (d− d∗),

where the components of Zi = (zi1 . . . zin)>, Ui =
(ui1 . . . uip)

>, Di = (di1 . . . diq)
> and αci = (αci1 . . . α

c
im)

are defined according to cases (C1)-(C4) for ∂fi
∂cj

as follows
with c ∈ {z, u, d} in all notations below:

cij =

{
cj if (C1) or (C2),
c∗j if (C3) or (C4),

αcij =


−acij if (C2),
bcij if (C3),
0 otherwise.

The above definition of g is a straightforward extension, to
non-autonomous systems with control and disturbance inputs,
of the one introduced in [30]. In what follows, we provide
our main contribution on this topic which describes how
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to compute an interval over-approximation of the finite-time
reachable set for any continuously differentiable system (1),
without needing any additional assumption. For this we define
the following dynamical system evolving in Z2:(

ż
ż∗

)
= h(z, u, d, z∗, u∗, d∗) =

(
g(z, u, d, z∗, u∗, d∗)
g(z∗, u∗, d∗, z, u, d)

)
(3)

and similarly to Φ we denote the trajectories of (3) as
Φh(·, z,u,d, z∗,u∗,d∗) : R+

0 → Z2, where bold variables are
piecewise continuous input functions. Let Φ1

h and Φ2
h denote

the first n and last n components of Φh, respectively. Then,
a single successor of (3) can be used to compute an over-
approximation of the finite-time reachable set of (1) as follows.

Theorem 5. For all bounds z, z ∈ Rn, u, u ∈ Rp, d, d ∈ Rq
and for all t ∈ R+

0 , z ∈ [z, z], u : [0, t] → [u, u] and d :
[0, t]→ [d, d] we have (using componentwise inequalities):

Φ1
h(t, z, u, d, z, u, d) ≤ Φ(t, z,u,d) ≤ Φ2

h(t, z, u, d, z, u, d).

Proof. From the terms αci (c−c∗) in (2), we can show similarly
to [30] that for all variables c ∈ {z, u, d} (with c ∈ Rm,
m ∈ {n, p, q}), i ∈ {1, . . . , 2n} and j ∈ {1, . . . ,m} we have

∂hi
∂cj

{
≥ 0 if i ≤ n,
≤ 0 if i ≥ n,

and
∂hi
∂c∗j

{
≤ 0 if i ≤ n,
≥ 0 if i ≥ n.

Then from [1], (3) is monotone as in Definition 4 with the
partial orders �z , �u and �d on the spaces R2n, R2p and R2q ,
respectively, as defined below. For all variables c ∈ {z, u, d}
with c ∈ Rm, the partial order �c is characterized by the
orthant (R+

0 )m × (R−0 )m of space R2m as follows: for all

c1, c2, c3, c4 ∈ Rm,
(
c1

c2

)
�c

(
c3

c4

)
⇔

{
c1 ≤ c3,
c2 ≥ c4,

where

≤ and ≥ are the componentwise inequalities on Rm. For all

c ∈ [c, c] ⊆ Rm we thus have
(
c
c

)
�c
(
c
c

)
�c
(
c
c

)
and we

can then use Definition 4 for system (3) to obtain the following
over-approximation: for all t ∈ R+

0 , z ∈ [z, z], u : [0, t] →
[u, u] and d : [0, t]→ [d, d] we have{

Φh(t, z, u, d, z, u, d) �z Φh(t, z,u,d, z,u,d),

Φh(t, z,u,d, z,u,d) �z Φh(t, z, u, d, z, u, d).

From (2), g(z, u, d, z, u, d) = f(z, u, d) which implies

Φh(t, z,u,d, z,u,d) =

(
Φ(t, z,u,d)
Φ(t, z,u,d)

)
. Then by symmetry

of (3), we have Φ1
h(t, z, u, d, z, u, d) = Φ2

h(t, z, u, d, z, u, d)
finally giving the result in Theorem 5.

Theorem 5 thus provides a method to obtain over-
approximations of the finite-time reachable sets for any con-
tinuously differentiable system (1) by computing a single
successor state Φh(t, z, u, d, z, u, d) of system (3).

B. Abstraction refinement algorithm

For each plan Λi obtained in the second layer (Sec-
tion V-B2), we abstract the sampled system Sτ by the finite
transition system Sia = (Xi

a, Ua, δ
i
a), where: the set of states

(or symbols) Xi
a is a partition of the workspace Z ⊆ Rn

into intervals, i.e. any symbol s ∈ Xi
a is also an interval

s = [s, s] ⊆ Z of the workspace; the set of inputs Ua is a
finite subset of control values in U ; a transition s′ ∈ δia(s, u)
between symbols s ∈ Xi

a and s′ ∈ Xi
a with input u ∈ Ua

exists if s′ ∩ [Φ1
h(τ, s, u, d, s, u, d),Φ2

h(τ, s, u, d, s, u, d)] 6= ∅.

Remark 6. The over-approximation of the reachable set of (1)
from Theorem 5 with the constant control value u used above
to define δia can also be obtained with the less conservative
local bounds for the Jacobians ∂f

∂z and ∂f
∂d over the set of

possible states only during the time period [0, τ ].

Since the transition relation δia is non-deterministic and the
objective of Problem 3 is to deterministically follow the plan
Λi in P , we rely on an abstraction refinement approach by
considering the initial coarse partition Xi

a = P which is then
iteratively refined by re-partitioning the elements of Xi

a that
are responsible for preventing the synthesis of a controller.
Below, we provide an overview of the considered refinement
algorithm. For further details, the reader is referred to [17].

We first define the function P ia : P → 2X
i
a such that

P ia(σ) = {s ∈ Xi
a | s ⊆ σ} corresponds to the projection

of a cell σ ∈ P onto the given finer partition Xi
a. Then,

Algorithm 1 is centered around the computation of valid
sets defined as a function V i : P → 2X

i
a by proceeding

backwards along the plan Λi = σi0σ
i
1 . . . σ

i
ri . The final cell

σiri of Λi is considered as valid and the valid set func-
tion is thus initialized with V i(σiri) = {σiri}. Other valid
sets V i(σik) are then iteratively defined as the subset of
symbols in σik which can be driven towards the valid set
V i(σik+1) of the next cell for at least one control input in Ua:
V i(σik) =

{
s ∈ P ia(σik)

∣∣ ∃u ∈ Ua, δia(s, u) ⊆ V i(σik+1)
}

.
The controller Cia : Xi

a → Ua is simultaneously defined
by associating to each valid symbol s ∈ V i(σik) the first
of such control values. Given a cell σik and a targeted valid
set V i(σik+1), the function ValidSet(σik, V

i(σik+1)) in Algo-
rithm 1 denotes the computation of V i(σik) and Cia as above.

Data: P , Λi = σi0σ
i
1 . . . σ

i
ri ∈ P

ri+1, P ia : P → 2X
i
a .

1 Initialization: Xi
a = P , V i(σiri) = {σiri}

2 for k from ri − 1 to 0 do
3 {V i(σik), Cia} = ValidSet (σik, V

i(σik+1))
4 while V i(σik) = ∅ or V i(σi0) 6= P ia(σi0) do
5 j = Pick(k, ri − 1)
6 forall s ∈ P ia(σij)\V i(σij) do
7 Xi

a = (Xi
a\{s}) ∪ Split(s)

8 for l from j to k do
9 {V i(σil), Cia} = ValidSet (σil , V

i(σil+1))

Output: {Xi
a, V

i : P → 2X
i
a , Cia : Xi

a → Ua}
Algorithm 1: Abstraction refinement algorithm.

If V i(σik) = ∅ for some k (line 4), we first pick a cell σij
with j ∈ {k, . . . , ri−1} to be refined (line 5), split each of its
invalid symbols s ∈ P ia(σij)\V i(σij) into a set of subsymbols
Split(s) and update the partition Xi

a accordingly (lines 6-
7), and finally update the valid sets and controller for all cells
from σij to σik whose valid sets may be expanded after this
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refinement (lines 8-9). The refinement procedure is repeated
until V i(σi0) = Pa(σi0) (line 4), i.e. when starting from any
subsymbol in σi0, Sia can be controlled to reach σiri exactly in
ri steps. For each plan Λi, Algorithm 1 then returns the refined
partition Xi

a, the valid set function V i and the associated
controller Cia. The definition of both functions Pick and
Split can be arbitrary but some guidelines and examples
are provided in [15], [16], [17] and Section V-B3.

Lemma 7 ([17]). If Algorithm 1 terminates for a plan Λi,
then the controller Ci : Xτ → Uτ such that Ci(z) = Cia(s)
for all z ∈ s solves Problem 3, i.e. the closed loop of Sτ with
transitions z′ ∈ δτ (z, Ci(z)) follows Λi when starting in σi0.

The proof of Lemma 7 in [17] is independent of the over-
approximation method associated with system (1). A solution
to the main LTL control problem then immediately follows.

Corollary 8. If Algorithm 1 terminates for all plans Λi derived
in Section III-B2, then the controller C : N×Xτ → Uτ defined
by C(i, z) = Ci(z) solves Problem 1.

V. APPLICATION TO NON-HOLONOMIC MOTION PLANNING

In this section, we consider a high-level motion planning
problem for a mobile robot evolving in an office environment.
The robot is modeled by disturbed unicycle dynamics:

ż = f(z, u, d) =

v cos(θ) + d1

v sin(θ) + d2

ω + d3

 (4)

where z = (x, y, θ) ∈ Z ⊆ R3 is the state (2D position and
orientation), u = (v, ω) ∈ U ⊆ R2 is the control input (linear
and angular velocities) and d = (d1, d2, d3) ∈ D ⊆ R3 is
the disturbance. We further assume that the disturbance take
its values in an interval D = [d, d] of R3. We first apply
the proposed reachability analysis results to the unicycle (4)
in Section V-A. Section V-B then describes the considered
motion planning problem and the associated simulation results.

A. Reachability analysis

We first define function g : Z×U×D×Z×U×D → R3 as
in (2) for the unicycle model (4). Since all partial derivatives
of f3 are non-negative (ac3j ≥ 0 as in (C1) of Section IV-A
for all c ∈ {z, u, d}), we thus have αz3 = αd3 =

(
0 0 0

)
,

αu3 =
(
0 0

)
, Z3 = z, U3 = u and D3 = d, leading to:

g3(z, u, d, z∗, u∗, d∗) = f3(z, u, d) = ω + d3. (5)

For abstraction Sia in Section IV-B, the over-approximation
is computed with a known and constant control value u over
the time period [0, τ ]. The signs of ∂fi∂v for i ∈ {1, 2} thus have
no influence on this over-approximation since we always have
u = u∗ in (2), implying U1 = U2 = u and αui (u − u∗) = 0.
Since for i, j ∈ {1, 2} and k ∈ {1, 2, 3} the partial derivatives
∂fi
∂zj

and ∂fi
∂dk

are non-negative, we have αzi1 = αzi2 = 0, αdi =(
0 0 0

)
and Di = d, and we thus obtain for i ∈ {1, 2}:

gi(z, u, d, z
∗, u, d∗) = fi(Zi, u, d) + αzi3(θ − θ∗), (6)

where Z1, Z2, αz13 and αz23 are defined as in Section IV-A
from the values of the four bounds az13, bz13, az23 and bz23 of the

remaining two partial derivatives whose signs are not constant:

∂f1

∂θ
= −v sin(θ) ∈ [az13, b

z
13],

∂f2

∂θ
= v cos(θ) ∈ [az23, b

z
23].

(7)
Considering θ ∈ (−π, π] would result in too conserva-

tive global bounds ∂f1
∂θ ,

∂f2
∂θ ∈ [−v, v]. Instead, we follow

Remark 6 to find a subset of possible orientations on each
sampling period [0, τ ] and thus obtain tighter local bounds in
(7). Given an interval of initial orientations [θ0, θ0] ⊆ (−π, π]

and a known angular velocity ω, (4) gives θ̇ ∈ [ω+d3, ω+d3],
and thus the orientation θ(τ) at time τ > 0 is bounded as
θ(τ) ∈ [θ0 + τ(ω + d3), θ0 + τ(ω + d3)]. Over the whole
sampling period [0, τ ], we obtain the following set [θ, θ] of
possible orientations: θ([0, τ ]) ∈ [θ, θ] = [θ0 + min(0, τ(ω +
d3)), θ0 + max(0, τ(ω + d3))].

When v ≥ 0, the bounds in (7) can thus be computed by:

az13 = −v max
θ∈[θ,θ]

(sin(θ)), az23 = v min
θ∈[θ,θ]

(cos(θ))

bz13 = −v min
θ∈[θ,θ]

(sin(θ)), bz23 = v max
θ∈[θ,θ]

(cos(θ))
(8)

with swapped min and max operators when v < 0. Since
[θ, θ] ∩ (−π, π] 6= ∅, the extrema of the cos and sin are:

min
θ∈[θ,θ]

(cos(θ)) =

{
−1 if {−π, π} ∩ [θ, θ] 6= ∅
min(cos(θ), cos(θ)) otherwise

(9)

with similar equations replacing {−π, π} by {−2π, 0, 2π},
{−5π

2 , −π2 , 3π
2 } and {−3π

2 , π2 ,
5π
2 } for max(cos(θ)) = 1,

min(sin(θ)) = −1 and max(sin(θ)) = 1, respectively.
The bounds az13, bz13, az23 and bz23 computed from (8)-(9) for

each sampling period lead to function g defined in (5)-(6) fol-
lowed by the duplicated dynamical system (3) with vector field
h and trajectories Φh as in Section IV-A. Theorem 5 with state
interval [s, s] ⊆ Z and constant control u ∈ U gives the over-
approximation [Φ1

h(τ, z, u, d, z, u, d),Φ2
h(τ, z, u, d, z, u, d)] as

used for the abstraction refinement in Section IV-B.

B. Problem description and simulation results

We consider a high-level motion planning problem for a
mobile robot evolving in a 33 × 20 square meters office
environment. This 2D workspace is formed by four rooms and
a central hallway, as sketched in Figure 2 uniformly partitioned
into 20 × 12 cells and where the black cells represent static
obstacles (walls). The four regions of interest (in blue) denoted
as π1 to π4 correspond to the cells in which the observation
tasks of each room are to be carried out.

The robot is modeled as a unicycle (4) where the state
z = (x, y, θ) evolves in Z = [0, 33] × [0, 20] × (−π, π],
the control inputs u = (v, ω) are picked in the discrete set
Ua = {−0.5,−0.25, 0, 0.25, 0.5}×{−0.3,−0.15, 0, 0.15, 0.3}
and the disturbances lie in D = [−0.05, 0.05]×[−0.05, 0.05]×
[−0.03, 0.03]. The initial state of (4) is taken in the cell π1.

The control objective is expressed by the LTL formula ϕ =
�♦π2∧�♦π4∧♦π3∧¬π3Uπ4, whose first two elements are a
surveillance task in π2 and π4 (visit each infinitely often) and
the last two elements mean that we also want to eventually
visit π3 but not before π4 has been visited at least once. The
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obstacle avoidance is not included in ϕ since it is automatically
handled in the second layer of the hierarchical decomposition.

The simulation results are obtained on a laptop with a 1.7
GHz CPU and 4 GB of RAM (on Matlab for steps 2 and 3).

1) First layer - LTL planning: As in Section III-B1, we
first define the finite transition system SΠ = (Π, δΠ), where
Π = {π1, π2, π3, π4} is the set of regions of interest and
δΠ ⊆ Π2 represents the office structure in Figure 2 such
that room 1 can only be reached through room 2: δΠ =
Π2\{(π1, π3), (π3, π1), (π1, π4), (π4, π1)}. The LTL planning
is solved in 2 milliseconds (due to the small size of SΠ) by
the model checker P-MAS-TG [10] resulting in an infinite
accepting path π̄ = π1π2π4π3(π2π4)ω where the prefix
π1π2π4π3 is followed once and the suffix π2π4 is repeated
infinitely often. This infinite path can then be handled by
applying the next two layers to only five pairs of regions of
interest: π1 − π2, π2 − π4, π4 − π3, π3 − π2 and π4 − π2.

2) Second layer - Physical environment: The transition
system SP = (P, δP) is then defined as in Section III-B2
for the planning and obstacle avoidance in the 2D workspace
(partitioned in 20 × 12 cells) while disregarding the system
dynamics (4). For each of the above 5 pairs πi−πj , one of the
shortest discrete plan Λij = σij0 σ

ij
1 . . . σijrij in P connecting

σij0 = πi and σijrij = πj is obtained by applying a Breadth-
First Search algorithm [6] on SP , with an average computation
time of 46 milliseconds per pair πi − πj .

3) Third layer - Control synthesis: Taking inspiration from
the guidelines in [15], we pick the sampling period τ =
1.2 ∗ max(33/20, 20/12)/0.5 = 4 seconds approximating
the minimal time to translate vertically or horizontally a
cell in P to one of its neighbors using maximal linear
velocity u = (0.5, 0). The factor 1.2 multiplies this value to
account for (4) not always keeping axis-aligned orientations
θ ∈ {−π/2, 0, π/2, π} or using the maximal linear velocity.

Since the control objective Λij for this third layer is in the
2D workspace while system (4) has a 3D state, we consider
a modified definition for the valid set of a 2D cell σ ∈ P:
V i2D(σ) = {s ⊆ σ | ∃sθ ⊆ (−π, π], s × sθ ∈ Xi

a ∩ V i(σ ×
(−π, π])}, i.e. V i2D(σ) contains any 2D projection s of a 3D
symbol s× sθ belonging to both the refined partition Xi

a and
the valid set of the 3D cell σ× (−π, π] as in Section IV-B. As
a result, the abstraction refinement still works on the partition
Xi
a of the 3D state space but becomes more permissive since

the 2D control synthesis (using V i2D) disregards the validity
of the orientation. The drawback is that after each application
of the controller, we may need to rotate the robot to reach a
valid orientation (which always exists by definition of V i2D).

Function Pick in Algorithm 1 is chosen similarly to [16]
as a queue picking the oldest cell of Λij added to the queue
among the least refined ones. The orientation interval (−π, π]
is initially partitioned into 4 identical intervals. Function
Split(s) in Algorithm 1 then takes a uniform partition of
the 3D symbol s into 8 subsymbols (2 per dimension).

For the 5 plans Λ12, Λ24, Λ43, Λ32 and Λ42 from layer 2,
the control synthesis takes between 18 and 58 minutes (39
minutes per plan on average) with a number of refinement
iterations ranging from 40 to 76 (54 per plan on average).

4) Simulation results: Figure 2 provides a visualization of
the abstraction refinement results for plan Λ32, where the finer
black grid is the 2D projection of the refined partition Xi

a and
the red area is the 2D valid sets V i2D(σ) (not represented on
cells π2 and π3). In this particular case, the valid sets happen
to cover the whole cells: V i(σik) = P ia(σik) for all σik.

The disturbed unicycle (4) in closed-loop with the global
controller C from Corollary 8 is then simulated from an initial
state z0 randomly picked in the 3D cell π1× (−π, π]. At each
time step, the robot measures its position z = (x, y, θ) and
finds the corresponding 3D symbol s3D = s2D × sθ ∈ Xi

a

such that z ∈ s3D. Since the control synthesis was successful
for the current 2D cell σ2D ∈ P with s2D ⊆ σ2D, then by
definition of s2D ∈ V i2D(σ2D) there exists a valid 3D symbol
s′3D = s2D×s′θ ∈ Xi

a∩V i(σ2D×(−π, π]). If s3D 6= s′3D, we
apply a constant rotation u = (0, ω) until the system reaches
a new state z′ = (x, y, θ′) ∈ s′3D (assuming that we have
d1 = d2 = 0 during such rotations only). Whether a rotation
was done or not, we finally apply the constant control value
Cia(s2D) for τ = 4 seconds to go to the next cell of the current
plan and repeat this procedure with a new measurement of
the state. The closed-loop trajectory for plan Λ32 is displayed
in green in Figure 2. The snaps in this trajectory correspond
to rotations before applying the next control, while smoother
sections over several cells mean that no rotation was needed.

Fig. 2. Partitioned office environment with obstacles (black) and four regions
of interest (blue) as the center of each room. For plan Λ32 from π3 to π2,
we also display the refined partition (finer black grid), the valid symbols (red)
and the closed-loop trajectory (green).

5) Final comments: As mentioned in Section III-B, the
solver of each layer can be substituted by any existing tool
designed to tackle the same subproblem. For the example
of this section, we could also consider replacing layers 1
and 2 by conPAS2 [26] for a fully actuated system ż = u,
or layers 2 and 3 by the unicycle example provided in
PESSOA [14]. On the other hand, none of the existing tools
mentioned in Section I are capable of solving the whole
control problem tackled in this section, because they do not
handle either nonlinear systems [28], [26], [8] or general LTL
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specifications [14], [19], [22]. As a consequence, the 3-layer
hierarchical framework introduced in Section III-B is strictly
more general than these tools and thus cannot be compared
with them on the case study of this section for the disturbed
unicycle (4) under the LTL specification ϕ.

To highlight the novelty of the proposed approach, we can
however discuss the complexity for approaching the same
problem with abstraction-based methods without relying on
the hierarchical decomposition or abstraction refinement. With
no synthesis of an accepting path π̄ for the LTL formula and
of the discrete plans Λij realizing this path (as done in layers
1 and 2), a symbolic abstraction needs to be created for the
whole state space. The creation of such abstraction takes over
43 hours (compared to 3 hours in our framework) when using
the finest partition granularity reached in the abstraction refine-
ment layer to ensure that the controller obtained above could
be reproduced in this setting. Further intensive computation
would also result from attempting a controller synthesis with
respect to the LTL specification on this abstraction containing
over 98 millions state-input pairs. This last step could not even
be attempted as the abstraction variable weighted over 4GB
which could not be stored in Matlab.

VI. CONCLUSION

The first contribution of this paper is a three-layer hierar-
chical decomposition of a high-level control problem under
a Linear Temporal Logic formula by iteratively solving finer
versions of the problem: first solve the problem only on the
regions of interest involved in the LTL formula, then realize
the obtained sequence of regions by finding discrete plans in
the partitioned workspace, finally synthesize a controller for
the dynamical system to follow these plans. This framework
enables the consideration of general LTL control problems
for nonlinear systems and the subproblems defined at each
layer can be solved through various existing tools. The second
contribution is a new method to over-approximate the finite-
time reachable set of any continuously differentiable system,
relying on an auxiliary monotone system obtained by using
Jacobian bounds to compensate the non-monotone components
of the initial system. For generality of the hierarchical frame-
work to continuously differentiable systems, an implementa-
tion for layer 3 is proposed using this new reachability analysis
result within an abstraction refinement algorithm.

The main goal for future work is to strengthen the cohesion
in the implementation of the three control layers to distribute
this framework as a coherent and publicly available tool.
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