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Tracking consensus of general nonlinear multi-agent
systems with external disturbances under directed

networks
He Wang, Wenwu Yu, Senior Member, IEEE, Zhengtao Ding, Senior Member, IEEE, Xinghuo Yu, Fellow, IEEE

Abstract—This paper considers the fully distributed tracking
consensus problem for general nonlinear multi-agent systems
with a leader whose control input is nonzero and bounded.
First, a new class of distributed state observer for the leader
is proposed without the knowledge of the upper bound of the
leader’s input. Then, the situations that followers are affected by
disturbances with unknown upper bound or disturbances gener-
ated by exosystems are investigated. Specifically, two distributed
control protocols based on the distributed state observer, neural
networks, and adaptive laws are proposed. Finally, simulation
examples are provided to illustrate the theoretical results.

Index terms— tracking consensus, general nonlinearity,
external disturbances, unknown upper bound.

I. INTRODUCTION

In the past few decades, collective behaviors of multi-agent
systems have been ascending into a hot issue because of its
widespread application in many fields, such as robotic teams
[1], satellite clusters [2], unmanned air vehicles [3], distributed
sensor networks [4], and so on. The focal point of the study
on the collective behaviors of multi-agent systems lies in
analyzing the essence that local information interaction among
agents leads to globally collective behaviors.

Consensus problem of multi-agent systems is one of the
most widely studied topics about collective behaviors of multi-
agent systems [5]-[23]. Consensus problem means that, for
a group of agents, design some proper distributed control
protocols for each agent relying only on local information of
the agent and its neighbors, so that these agents can reach
an agreement. Generally, consensus problem can be divided
into two categories, one is the leaderless consensus problem
(without a leader) [5] [13] [14], the other is the leader-follower
consensus (with one or more leaders) problem [30]-[34]. One
generally studied model in multi-agent systems is the integral
chain systems. [5] and [22] considered the consensus and
bipartite consensus problems of first-order multi-agent systems
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with both undirected and directed communication topologies,
respectively. [9] analyzed the tracking consensus problem for
first-order multi-agent systems. [19] and [20] further consid-
ered the finite-time and fixed-time consensus problems for
first-order multi-agent systems, respectively. [13] provided
some necessary and sufficient conditions for achieving second-
order asymptotical consensus. A further consideration on
the consensus problem of second-order nonlinear multi-agent
systems was given in [14]. [15]-[17] considered the finite-time
consensus and tracking consensus problems for second-order
multi-agent systems, respectively. One can refer to [24]-[27]
for more consensus results about integral chain multi-agent
systems.

Another extensively researched model for multi-agent sys-
tems is the general linear time-invariant systems. During the
last decade, plentiful works about the consensus problem of
linear multi-agent systems have been reported [28]-[35]. [30]
and [31] studied the fully distributed tracking consensus prob-
lem for a class of linear multi-agent systems under undirected
and directed graphs, respectively. In these two works, the
leader was assumed having no input. The situation that the
leader has bounded input under general directed graphs was
further investigated in [32] and [33]. The relative state and
output information were utilized in designing fully distributed
control protocols in [32] and [33], respectively. [35] considered
the distributed containment control problem for a class of
linear multi-agent systems with more than one leader under
directed graphs. However, in most real control systems, nonlin-
earity is ubiquitous. In view of this, the consensus problem of
general nonlinear multi-agent systems was discussed in [36]-
[39]. [36] and [37] investigated the tracking consensus problem
of general nonlinear multi-agent systems under undirected
and general directed graphs, respectively. Both [36] and [37]
assumed that the leader had bounded input, and the nonlin-
earity existed in followers. Neural network was introduced to
estimate and counteract nonlinearities, which resulted in that
the tracking errors were uniformly ultimately bounded. While
in [38] and [39], both the leader and the followers could have
Lipschitz-type nonlinearities and the leader had no input, and
no disturbance existed.

As discussed above, there are few works concerning about
the tracking consensus problem of general nonlinear multi-
agent systems that the leader could have unknown bounded
input, and the followers have general nonlinear dynamics
and could be affected by external disturbances. The difficulty
of such kind problems mainly lies in the coupling between
external disturbances and nonlinearity, and the unknown upper
bound of leader’s input and disturbances. The main contri-
butions of this work are two-fold. First, a fully distributed
state observer for the leader under general directed commu-
nication topologies is addressed, where the upper bound of
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the leader’s input is unknown to all the followers. To the
best of the authors’ knowledge, there are very few works
having solved such kind of problem. Second, for each follower
with disturbances (disturbances with unknown upper bound
or disturbances generated by exosystems) and nonlinearity,
neural networks are introduced to estimate and compensate
the nonlinearity. Even the disturbances and nonlinearity are
coupled together, the tracking problem can still be solved with
the help of the proposed distributed state observer.

The rest of this paper is arranged as follows. In Section II,
some preliminaries and the tracking problem are introduced.
In Section III, a new class of distributed state observer for
the leader is proposed. The tracking consensus problem with
bounded disturbances and disturbances generated by exosys-
tems are studied in Section IV and V, respectively. Some
simulations are presented to verify the theoretical results in
Section VI, and Section VII concludes this paper.

Notations: λmin(E)
(
λmax(E)

)
means the minimal (maxi-

mal) eigenvalue of the symmetric real matrix E. || · || denotes
the Euclidean norm and || · ||1 denotes the 1-norm. For any
matrix A ∈ Rm×n, let ||A||F =

√
tr(ATA), where tr(·)

denotes the trace of a square matrix. Besides, for a vector
x = [x1, ..., xn]T ∈ Rn, denote ||x||∞ = maxi=1,...,N{|xi|}.
Furthermore, 1N means an N -dimensional column vector with
all elements being 1. 0 is used to represent the matrix block
of appropriate dimensions with all elements being 0. Denote
sym(H) = H + HT with H being a square matrix. For a
real symmetric matrix E, E > 0 means that E is positive
definite. sign function is defined as: sign(x) = 1, if x > 0;
sign(x) = −1, if x < 0; and sign(0) = 0.

II. PRELIMINARIES AND MODEL DESCRIPTION

A. Preliminaries

In this subsection, some basic concepts about graph theory
and some useful lemmas are introduced.

A directed graph (or digraph) G = (V, E , G) involves a
set of nodes which is defined by V = {v1, v2, ..., vN}, a
set of edges E ⊆ V × V and a weighted adjacency matrix
G = (aij)N×N . Here, an edge Eij in G means a pair of
nodes (vi, vj) representing that the information flow goes from
node vj to node vi. G records the coupling configuration
information of all the edges in G. The weight aij is defined
as: aij > 0 ⇔ (vi, vj) ∈ E . In this paper, self loop is not
considered, i.e. aii = 0, i = 1, 2, ..., N .

Definition 1: [6][14] A directed path from node vj to vi is
a sequence of directed edges (vi,vi1 ), (vi1 ,vi2 ), ..., (vil ,vj) in
the directed network with distinct nodes vik , k = 1, 2, ..., l.
A directed network G is strongly connected if between any
pair of distinct nodes vi and vj in G, there exists a directed
path from vi to vj , i, j = 1, 2, ..., N . A directed network G is
said to contain a directed spanning tree, if there exists a node
named root that, this node has directed paths to all the other
nodes of this network G.

The Laplacian matrix L = (lij)N×N for a directed graph G
is denoted by [6]:

lii =
N∑

j=1,j 6=i

aij ; lij = −aij , i 6= j.

Lemma 1: [41] For any matrices A ∈ Rm×n and B ∈
Rn×m, it holds that |tr(AB)| ≤ ||A||F · ||B||F . Besides,
||A|| ≤ ||A||F .

B. Model Description
In this subsection, the tracking problem will be formulated.

Consider a group of N+1 agents with unknown heterogeneous
nonlinear dynamics, consisting of one leader and N followers.
Suppose that each agent has the following general nonlinear
dynamics:

ẋ0(t) = Ax0(t) +Bu0(t),

ẋi(t) = Axi(t) +B
[
ui(t) + fi(xi(t)) + di(t)

]
,

i = 1, 2, ..., N, (1)

where x0(t) ∈ Rn and u0(t) ∈ Rm represent the leader’s state 
and control input, xi(t) ∈ Rn, ui(t) ∈ Rm, fi : Rn → Rm, and 
di(t) ∈ Rm represent the state, the control input, the 
heterogeneous smooth nonlinearity, and the disturbance of the 
ith follower, respectively, i = 1, ..., N . A ∈ Rn×n, B ∈ Rn×m 

are constant matrices. In the following, xi and ui are used for 
simplification.

Definition 2: The t racking consensus i s said to be achieved 
if and only if there exist some proper control inputs ui, i = 
1, 2, ..., N , such that:

lim
t→∞

||xi − x0|| = 0, i = 1, ..., N. (2)

III. A CLASS OF FULLY DISTRIBUTED STATE OBSERVER
FOR THE LEADER

In this section, a new class of fully distributed observer
will be constructed to estimate the state of the leader. First of
all, some assumptions about the dynamics of the leader and
the communication network among the agents are given as
follows.

Assumption 1: The pair (A,B) is controllable.
Lemma 2: [47][40] With Assumption 1, ∀β̄ > 0, there exists

a solution P > 0 to the following Riccati inequality

PA+ATP − 2β̄PBBTP + β̄In < 0. (3)

Assumption 2: There exists a constant ω > 0 such that
||u0|| ≤ ω. Besides, the upper bound ω is unknown to all the
followers.

Assumption 3: The state of the leader is bounded.
Remark 1: The leader could be a real agent or a vitual

signal with predefined trajectory so as to render the multi-agent
system to fulfill specific control objectives. In real applications,
the workspace is usually with limited space, hence it could be
reasonable to ensure that the leader has bounded state (by
designing u0 in advance). However, each follower still has no
knowledge about u0.

Assumption 4: The communication network of the N + 1
agents contains a directed spanning tree with the leader as the
root node.

Let Lf be the Laplacian matrix corresponding to the
subgraph among all the followers, and denote Ψ =
diag(a10, ..., aN0). Define L̄ = Lf +Ψ. The following lemma
provides an useful property of L̄.

Lemma 3: [7] Suppose that Assumption 4 is satisfied,
then there exists a diagonal matrix Ξ such that Ξ =
diag(ξ1, ..., ξN ) > 0 and ΞL̄+ L̄TΞ > 0.

Before showing the distributed state obsever design, the
structure of the dynamics of the leader needs to be further
analyzed.

Definition 3: [42] The pairs (A,B) and (A′, B′) are said
feedback equivalent (or F-equivalent) iff there exist matrices
C ∈ Rm×m, D ∈ Rn×n, and Q ∈ Rm×n, with C and D
being nonsingular, such that A′ = C−1(A+BQ)C, and B′ =
C−1BD.
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Lemma 4: [42] Suppose that (A,B) is controllable. Denote
r0 = rank(B). Then, there exist m integers p1, ..., pm,
satisfying 0 ≤ pi ≤ n, p1 ≥ p2 ≥ ... ≥ pr0 > 0, pi = 0,
for i > r0, and

∑m
i=1 pi = n, such that (A,B) is F-equivalent

with a decoupled system of r0 integrators:

ẏki+1 = yki+2, ..., ẏki+1−1 = yki+1
, ẏki+1

= vi+1,

i = 0, ..., r0 − 1, k0 = 0, ks =
s∑
j=1

pj , s = 1, ..., r0. (4)

According to Lemma 4, there exist matrices C, D, and Q,
with the state transformation y0 = C−1x0, such that

ẏ0 = A′y0 +B′uy0

has the form

ẏ0,kl+1 = y0,kl+2, ..., ẏ0,kl+1−1 = y0,kl+1
, ẏ0,kl+1

= d0,l+1,

l = 0, ..., r0 − 1, k0 = 0, ks =
s∑
j=1

pj , s = 1, ..., r0, (5)

where y0 = [y01, ..., y0n]T , A′ = C−1(A + BQ)C,
B′ = C−1BD, uy0 = D−1(−Qx0 + u0), and B′uy0 =
[01×p1−1, d01, 01×p2−1, d02, ..., 01×pr0−1, d0r0 ]T . With As-
sumptions 2 and 3, one has d01, ..., d0r0 are all bounded, and
the upper bounds are unknown to all the followers. Suppose
that |d0l| ≤ D0, l = 1, ..., r0, with D0 being a finite positive
number.

To this end, it is ready to present the construction of the fully
distributed state observer. Specifically, for follower i, consider
the following distributed state observer:

ẏi,kl+1 = yi,kl+2 − ei,kl+1,

...

ẏi,kl+1−1 = yi,kl+1
− ei,kl+1−1,

ẏi,kl+1
= −(αi,l+1 + βi,l+1)

[
ei,kl+1

+ sign(ei,kl+1
)
]
,

l = 0, ...,r0 − 1, k0 = 0, ks =
s∑
j=1

pj , s = 1, ..., r0, (6)

where eik =
∑N
j=1 aij(yik−yjk)+ai0(yik−y0k), k = 1, ..., n,

βi,l+1 = 1
2e

2
i,kl+1

+ |ei,kl+1
|, and αi,l+1 is an adaptive control

gain designed as follows:

α̇i,l+1 =
∣∣ei,kl+1

+ sign(ei,kl+1
)
∣∣,

αi,l+1(0) > 0, l = 0, ..., r0 − 1. (7)

Theorem 1: Suppose that Assumptions 1-4 are satisfied.
Then the distributed state observer (6) and (7) can estimate
the state of the leader asymptotically.

Proof: Observing that in (6), the r0 integrator-like com-
ponents are decoupled from each other, one only needs to
prove that each component in (6) can cooperatively estimate
the states of the corresponding integrator in (5). Without loss
of generality, only the first component (first p1 rows) of (6)
will be analyzed in the following.

Denote ek = [e1k, ..., eNk]T , α1 = diag(α11, ..., αN1),
β1 = diag(β11, ..., βN1). Then one can obtain the dynamics
of [eT1 , ..., e

T
p1 ]T by subtracting (5) from (6):

ė1 = e2 − L̄e1

...

ėp1−1 = ep1 − L̄ep1−1

ėp1 = −L̄(α1 + β1)
(
ep1 + sign(ep1)

)
− L̄1Nd01. (8)

Consider the following Lyapunov function

Vo =
N∑
i=1

ξiαi1βi1 +
1

2

N∑
i=1

ξi
[
β2
i1 + (αi1 − ᾱ)2

]
, (9)

where ξi is defined in Lemma 3, and ᾱ is a positive constant
to be designed.

Taking the derivative of Vo, one gets

V̇o =
N∑
i=1

ξi(αi1 + βi1)β̇i1 +
N∑
i=1

ξiβi1α̇i1 +
N∑
i=1

ξi(αi1 − ᾱ)α̇i1

=1TN (α1 + β1)Ξdiag
(
ep1 + sign(ep1)

)
·[

− L̄(α1 + β1)
(
ep1 + sign(ep1)

)
− L̄1Nd01

]
+

N∑
i=1

ξi(αi1 + βi1)α̇i1 − ᾱ
N∑
i=1

ξiα̇i1

≤− λ0

(
ep1 + sign(ep1)

)T
(α1 + β1)2

(
ep1 + sign(ep1)

)
+

N∑
i=1

D0ai0ξi(αi1 + βi1)
∣∣eip1 + sign(eip1)

∣∣
+

N∑
i=1

ξi(αi1 + βi1)
∣∣eip1 + sign(eip1)

∣∣
− ᾱ

N∑
i=1

ξi
∣∣eip1 + sign(eip1)

∣∣
=− λ0

N∑
i=1

(αi1 + βi1)2
∣∣eip1 + sign(eip1)

∣∣2
+

N∑
i=1

ξi(D0ai0 + 1)(αi1 + βi1)
∣∣eip1 + sign(eip1)

∣∣
− ᾱ

N∑
i=1

ξi
∣∣eip1 + sign(eip1)

∣∣, (10)

where λ0 = λmin

(
1
2 (L̄TΞ+ΞL̄)

)
, and the facts that 1TN (α1 +

β1)Ξdiag
(
ep1 + sign(ep1)

)
=
(
ep1 + sign(ep1)

)T
(α1 + β1)Ξ

, L̄1N = [a10, ..., aN0]T , and the boundedness of d01 are
applied.

Choose ᾱ such that ᾱ ≥ maxi=1,...,N

{
ξi

2λ0
(D0ai0 + 1)2

}
.

Noticing that |eip1 + sign(eip1)| ≥ 1 whenever |eip1 | > 0, it
follows that

∣∣eip1 +sign(eip1)
∣∣ 32 ≥ ∣∣eip1 +sign(eip1)

∣∣. In view
of this property as well as invoking the basic inequality, one
has

V̇o ≤−
λ0

2

N∑
i=1

(αi1 + βi1)2
∣∣eip1 + sign(eip1)

∣∣2
−

N∑
i=1

√
2λ0ᾱξi(αi1 + βi1)

∣∣eip1 + sign(eip1)
∣∣ 32

+

N∑
i=1

ξi(D0ai0 + 1)(αi1 + βi1)
∣∣eip1 + sign(eip1)

∣∣
≤− λ0

2

N∑
i=1

(αi1 + βi1)2
∣∣eip1 + sign(eip1)

∣∣2
≤− λ0

2

N∑
i=1

αi1(0)
∣∣sign(eip1)

∣∣2, (11)
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where the last inequality is resulted by the facts that 1) αi1(t)

is nondecreasing; 2) βi1 ≥ 0; 3)
∣∣eip1 + sign(eip1)

∣∣2 = e2
ip1

+

2|eip1 |+
∣∣sign(eip1)

∣∣2 ≥ ∣∣sign(eip1)
∣∣2.

As long as the tracking consensus is not achieved, there
must exist j ∈ {1, ..., N}, such that ejp1 6= 0. Here, j could
vary from time. Denote αo = λ0

2 mini=1,...,N{αi1(0)}. Then,
before the tracking consensus is achieved, one has

V̇o ≤ −αo, (12)

which follows that eip1 , i = 1, ..., N , would reach to zero no
later than To = Vo(0)

αo
, which means that yip1 can estimate the

real value of y0p1 as t→∞.
On the other hand, since −L̄ is Hurwitz, one can observe

from (8) that, the system of ep1−1 is input-to-state stable (ISS)
with respect to ep1 . Then, one has ep1−1 → 0 as ep1 → 0,
which means that yi,p1−1 → y0,p1−1 as t→∞. With similar
arguments, one can conclude that yik → y0k, k = 1, ..., p1, as
t→∞. This completes the proof.

Remark 2: With the differential inequality (12), one can
only claim that the tracking error yip1 − y0p1 will reach
zero asymptotically. In fact, the evolution of each follower
depends on how d01 evolves. For one thing, Vo is possible to
stop decreasing before reaching to zero if the tracking error
yip1 − y0p1 has reached zero before To. This statement can be
observed from the discussion of V̇o. For another, if d01 evolves
very slowly and its absolute value reaches maximum after a
long time. While αi1, the main component of the coefficient of
sign(eip1), increases quickly. Then (αi1 + βi1)sign(eip1) can
dominate the effect caused by d01. During this time interval,
the tracking error will reach zero fast. When d01 evolves above
the domination of (αi1 +βi1)sign(eip1), αi1 increases quickly
and makes the followers track the leader. So (12) should be
understood as that the distributed observer (6) and (7) has a
fast response with respect to the leader’s evolution.

Remark 3: Theoretically, αi,l+1 is bounded. While it is not
the truth in real applications. To ensure the boundedness of
adaptive gains in practical implementations, one can use a
sufficiently small value ι to adjust the ideal adaptive law to
practical one:

α̇i,l+1 =

{ ∣∣ei,kl+1
+ sign(ei,kl+1

)
∣∣, |ei,kl+1

| ≥ ι,
0, |êvi| < ι.

Remark 4: One should notice that if the leader is originally
a higher-order integrator, then the boundedness requirement of
the leader’s state is no more needed.

IV. TRACKING CONSENSUS OF GENERAL NONLINEAR
MULTI-AGENT SYSTEMS WITH BOUNDED DISTURBANCES

In this section, consider the tracking problem of a group of
N + 1 agents described by (1), where the disturbance di(t) is
bounded.

Assumption 5: The disturbance of each follower is bounded,
i.e.:

||di(t)||∞ ≤ ωi, i = 1, 2, ..., N, (13)

where ωi > 0 are some finite but unknown constants.
First of all, take a further look at the distributed state

observer (6). Noticing the special structure of A′ = C−1(A+
BQ)C, B′ = C−1BD, (6) can be written as

ẏi = A′yi +B′ûi + τi, (14)

where yi = [yi1, ..., yin]T , ûi = −
[
(αi1 + βi1)[eik1 +

sign(eik1)], ..., (αir0 + βir0)[eikr0 + sign(eikr0 )], 0, ..., 0
]T

with m − r0 zeros, τi = [τTi1, ..., τ
T
ir0

]T , and τi,l+1 =
−[ei,kl+1, ..., ei,kl+1−1, 0]T , l = 0, ..., r0 − 1. Let x̂i = Cyi,
one has

˙̂xi = Ax̂i +B(Qx̂i +Dûi) + Cτi. (15)

Then, consider the dynamics of each follower. Owing to
the approximation property of neural networks (NNs) [43], the
smooth function fi(xi) can be approximated on a compact set
as

fi(xi) = WT
i φi(xi) + εi, (16)

where φi(·) : Rn → Rs is a known activation function,
Wi ∈ Rs×m is a constant real matrix representing the ideal
NN weight matrix, and εi is the bounded approximation error
vector satisfying ||εi||∞ ≤ ε̄i. Usually, ε̄i is unknown and
hence it will not be used in the following controller design.
Suppose that φi(·) is bounded on compact sets.

For each follower, design the controller as follows:

ui = Qx̂i +Dûi − Ŵiφi(xi)−Kx̃i − µisign(Kx̃i), (17)

of which Ŵi is the estimation of Wi and is utilized to
compensate the nonlinearity fi(xi), K = BTP with P being
the solution of (3) (β̄ = 1), x̃i = xi− x̂i, and µi is an adaptive
gain designed as

µ̇i = ||Kx̃i||1. (18)

Furthermore, Ŵi is designed as

˙̂
Wi = miφi(xi)x̃

T
i PB −mihi(Ŵi − W̄i),

˙̄Wi = nihi(Ŵi − W̄i), (19)

where mi, ni, and hi are positive factors.
Theorem 2: Suppose that Assumptions 1-5 are satisfied.

Then, with the controller (17)-(19), each follower can track
the trajectory of the leader asymptotically.

Proof: Noticing (1), (15), and (17), one obtains the
dynamics of x̃i:

˙̃xi =Ax̃i +B
[
W̃T
i φi(xi) + d̄i −Kx̃i − µisign(Kx̃i)

]
− Cτi, (20)

where W̃i = Wi−Ŵi and d̄i = εi+di. Then one has ||d̄i||∞ ≤
ωi + ε̄i.

Consider the following Lyapunov function candidate

Vi = x̃Ti Px̃i +
1

mi
tr(W̃T

i W̃i) +
1

ni
tr(W̆T

i W̆i) + (µi − µ)2,

(21)

of which W̆i = Wi − W̄i, µ is a parameter to be designed.
Taking the derivative of Vi gives

V̇i =2x̃Ti P

{
Ax̃i +B

[
W̃T
i φi(xi) + d̄i −Kx̃i − µisign(Kx̃i)

]
− Cτi

}
− 2

mi
tr(W̃T

i
˙̂
Wi)−

2

ni
tr(W̆T

i
˙̄Wi) + 2(µi − µ)µ̇i.

On the one hand,
1

mi
tr
(
W̃T
i

˙̂
Wi

)
= tr

(
W̃T
i φi(xi)x̃

T
i PB − hiW̃T

i (Ŵi − W̄i)
)

= x̃Ti PBW̃
T
i φi(xi)− hitr

(
W̃T
i (Ŵi − W̄i)

)
.
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On the other hand,
1

ni
tr(W̆T

i
˙̄Wi) = hitr

(
W̆T
i (Ŵi − W̄i)

)
.

It follows that

V̇i =x̃Ti (PA+ATP − 2PBBTP )x̃i + 2x̃Ti PBd̄i

− 2µ||Kx̃i||1 − 2x̃Ti PCτi

− 2hitr
(
(Ŵi − W̄i)

T (Ŵi − W̄i)
)

≤− ||x̃i||2 + 2(ωi + ε̄i − µ)||Kx̃i||1 − 2x̃Ti PCτi, (22)

where x̃Ti PBsign(Kx̃i) = ||Kx̃i||1 and W̃i−W̆i = −Ŵi+W̄i

are applied in the first equality. Choose µ > ωi + ε̄i. Noticing
that −2x̃Ti PCτi ≤ ϕ||x̃i||2 + 1

ϕ ||PCτi||
2 with 0 < ϕ < 1,

one further has

V̇i ≤ −(1− ϕ)||x̃i||2 +
1

ϕ
||PCτi||2. (23)

According to Theorem 1, τi → 0 as t → ∞. Ob-
serving from (11), one can also obtain that V̇o ≤
−λ0

2

∑N
i=1 αi1(0)||eip1 ||2, which follows that

∫∞
0
||eip1 ||2dt

exists and is finite. Furthermore, one can conclude
from (8) that

∫∞
0
||ei1||2dt, ...,

∫∞
0
||ei,p1−1||2dt exist and

are finite. With similar arguments, one can claim that∫∞
0
||ei1||2dt, ...,

∫∞
0
||ei,n||2dt exist and are finite. Noticing

the definition of τi, one can further get that
∫∞

0
||PCτi||2dt

exists and is finite. It follows that Vi is bounded and∫∞
0
||x̃i||2dt exists and is finite. By invoking (21), x̃i, W̃i,

µi are bounded. Then x̃Ti ˙̃xi is bounded by noticing (20).
According to Barbalat Lemma [46], one has x̃i → 0, as
t→∞. This completes the proof.

Remark 5: Inspired by [44] and [45], the so-called
σ−modification method can be applied for the adaptive gain
µi to avoid high amplitude. Specifically, (18) can be modified
as:

µ̇i = ||Kx̃i||1 − h̄i(µi − µ̂i),
˙̂µi = h̄i(µi − µ̂i),

where h̄i is a positive factor. In fact, the design of (19) has
similar effects. Different from the work in [44], the upper
bound of the neural network approximation error as well as
the disturbance is not required to be known.

V. TRACKING CONSENSUS OF GENERAL NONLINEAR
MULTI-AGENT SYSTEMS WITH DISTURBANCES GENERATED

BY EXOSYSTEM

In this section, consider the tracking problem of a group of
N + 1 agents described by (1), and the disturbance di(t) is
generated by an exosystem:{

ξ̇i = Wξi,

di = V ξi,
(24)

of which ξi is the state of the exosystem (24), W and V are
with appropriate dimensions.

Assumption 6: The pair (BV,W ) is observable.
In the last section, the general smooth nonlinearity was

considered. In this section, another class of nonlinearity will
be discussed.

Assumption 7: Assume that fi(xi) = HT
i υi(xi), where

Hi ∈ Rs×m is the unknown constant coefficient matrix, and
υi(·) : Rn → Rs is a known bounded function.

In the following, a class of disturbance-observer-based
tracking control protocols is proposed to solve the tracking
problem:

żi =(W + FBV )(zi − Fxi) + FAxi + FBui

+ FBĤT
i υi(xi),

d̂i =V ξ̂i, ξ̂i = zi − Fxi,
ui =Qx̂i +Dûi − ĤT

i υi(xi)−Kx̃i − d̂i, (25)

of which zi and d̂i are the state and output of the disturbance
observer for (24), F is chosen such that W+FBV is Hurwitz,
K = BTP with P being the solution of (3) (β̄ = 1), x̃i, ûi and
x̂i are defined the same as the previous section. Assumption 6
ensures the existence of F . Furthermore, Ĥi is the estimation
of Hi with the following dynamics:

˙̂
Hi = giυi(xi)x̃

T
i PB − giεiĤi, (26)

of which gi and εi are positive factors.
Theorem 3: Suppose that Assumptions 1-4, 6 and 7 are

satisfied. Then with the controller design (25) and (26), each
follower can track to a bounded neighborhood of the leader’s
state.

Proof: Denote eξi = ξi − ξ̂i, and H̃i = Hi − Ĥi. By
invoking (15), (24), and (25), one can obtain the dynamics of
eξi and x̃i:

ėξi =(W + FBV )eξi + FBH̃T
i υi(xi)

˙̃xi =Ax̃i +BH̃T
i υi(xi)−BKx̃i +BV eξi − Cτi. (27)

Consider the following Lyapunov function candidate

Vei = x̃Ti Px̃i +
1

gi
tr(H̃T

i H̃i) + λeTξiP1eξi , (28)

where P1 is a positive definite matrix satisfying X = (W +
FBV )TP1 + P1(W + FBV ) < 0 and λ > 0 is a parameter
to be designed.

Taking the derivative of Vei, one has

V̇ei =x̃Ti (PA+ATP − 2PBBTP )x̃i

+ 2x̃Ti PBV eξi − 2x̃Ti PCτi + 2εitr(H̃
T
i Ĥi)

+ λeTξiXeξi + 2λeTξiP1FBH̃
T
i υi(xi). (29)

Noticing that ||H̃i||2F = tr(H̃T
i H̃i), one has

2x̃Ti PBV eξi ≤
1

4
||x̃i||2 + 4η1||eξi||2,

2x̃Ti PCτi ≤
1

4
||x̃i||2 + 4||PCτi||2,

2εitr(H̃
T
i Ĥi) =− 2εitr(H̃

T
i H̃i) + 2εitr(H̃

T
i Hi)

≤ −εi||H̃i||2F + εi||Hi||2F ,
eTξiXeξi ≤− η2||eξi||2,

2eTξiP1FBH̃
T
i υi(xi) ≤

2

η2
||υi(xi)||2||P1FB||2||H̃i||2

+
η2

2
||eξi||2

≤η2

2
||eξi||2 + η3||H̃i||2F ,

where η1 = λmax(V TBTP 2BV ), η2 = λmin(−X), η3 =
η2
2 ||P1FB||2ῡ, and ῡ is the upper bound of ||υi(xi)||2. Choose
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λ = (8η1 + 2δ)/η2, εi = λη3 + δ̄, where δ and δ̄ are two
positive numbers. It follows that

V̇ei ≤−
1

2
||x̃i||2 − δ||eξi||2 − δ̄||H̃i||2F + θ

≤− κVei + θ, (30)

of which κ = min{1/2,δ,δ̄}
max{λmax(P ),1/gi,λ·λmax(P1)} and θ =

4||PCτi||2 + εi||Hi||2F . Since τi → 0 as t → ∞. It follows
from (30) that x̃i will converge to the compact set Ω = {x̃i :
Vei ≤ θ̄

κ}, where θ̄ = εi||Hi||2F . This completes the proof.

VI. SIMULATION EXAMPLES

In this section, two simulations are provided to verify
the theoretical results. Consider that there are 5 agents
with 1 leader labeled as 0, and 4 followers labeled
from 1 to 4. The directed communication topology is de-
picted in Fig. 1 with all the weights indicated on the
communication edges. The corresponding Laplacian ma-

trix is L =


0 0 0 0 0
−2 2 0 0 0
0 −1.5 1.5 0 0
0 0 −1.5 1.5 0
−2 0 0 0 2

, and L̄ =


2 0 0 0
−1.5 1.5 0 0

0 −1.5 1.5 0
0 0 0 2

. For each agent, denote xi =

xi1xi2
xi3

, i = 0, 1, ..., 4. Take A =

0 1 0
0 0 1
0 0 0

, and B =

0
0
1

.

In both examples, the leader’s input is chosen as u0(t) =
tanh(x01 + 2x02) + sin(x03 − 1). The initial values of the
agents’ states are generated randomly.

0 1

4 2

3
2

1.52
1.5

Fig. 1. Communication topology of 1 leader and 4 followers.

A. Example 1: followers with bounded disturbance
In this example, the followers are assumed to be influenced

by bounded disturbances and general nonlinear dynamics:

fi(xi) = xi1 · cos(xi2) + xi2 cos(xi3),

di(t) = sin(xi1 + xi3) + 2 cos(1 + xi2).

The distributed observer and the tracking controller are given in 
(6) and (17), respectively. The adaptive gain αi is designed 
according to Remark 3, and the adaptive control gain µi is 
designed according to Remark 5 with h̄i = 1. It is easy to see 
that r0 = 1. Hence, randomly set the initial value of the 
adaptive gain such that αi(0) > 0. In the simulation, a one-
layer NN with 50 neurons is used for each follower. Sigmoid 
basis function σ(z) = (1 + e−z)−1 is employed and the NN
weights Ŵ 

i are initialized as zero. Besides, the parameters in 
(19) are chosen as mi = 1000, hi = 0.1, ni = 20. The initial

states of each agent and observer are generated randomly.
Furthermore, solving the LMI (3) with β̄ = 1 by using LMI

toolbox of Matlab gives P =

5.1201 5.7017 2.1169
5.7017 10.4176 4.3302
2.1169 4.3302 3.0545

.

It follows that K = BTP = [2.1169, 4.3302, 3.0545].
Fig. 2 depicts the estimation error between the distributed

observer and the leader, which shows that the proposed
distributed observer has good performance. Fig. 3 shows the
tracking error among each follower and the leader. One can
see that with the observer based controller (17), each follower
can track the leader’s state eventually. Figs. 4 and 5 depict the
evolution of the adaptive gains αi and µi.

0 5 10

time

0

0.2

0.4

0.6

0.8

0 5 10

time

0

0.1

0.2

0.3

0.4

0.5

0 5 10

time

0

0.2

0.4

0.6

0.8

Fig. 2. Example 1: The trajectories of the estimation error x̂i − x0, i =
1, ..., 4.

0 5 10 15

time

0

2

4

6

0 5 10 15

time

0

0.5

1

0 5 10 15

time

0

0.5

1

Fig. 3. Example 1: Trajectories of the tracking error xi − x0, i = 1, ..., 4.

B. Example 2: followers with disturbance generated by ex-
osystems

In this example, each follower is assumed to be influenced
by heterogeneous nonlinearity and external disturbances (24),
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0 5 10 15time

0

0.5

1

1.5

2

2.5
i

1

2

3

4

Fig. 4. Example 1: Evolution of the adaptive gain αi, i = 1, ..., 4.

0 5 10 15

time

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

i

1

2

3

4

Fig. 5. Example 1: Evolution of the adaptive gain µi, i = 1, ..., 4.

where

Hi = [i/2, i− 1/2, 3]T ,

υi(xi) = [sin(xi1 ∗ xi3), tanh(xi1 − xi3), cos(xi3) + 1]T ,

W =

0 1 1
0 1 0
1 0 0

 , V = [0, 0, 1].

The observer-based control protocol is designed as (25).

Choose F =

0 0 −19
0 0 −24
0 0 −7

. solving LMI X = (W +

FBV )TP1 + P1(W + FBV ) < 0 gives P1 =3.3160 3.9092 0.2766
3.9092 8.0513 0.4082
0.2766 0.4082 0.1137

.

The tracking error for each follower is described in Fig. 6
. One can observe that each follower can track to a bounded
neighbor of the leader eventually.

VII. CONCLUSION

In this paper, the tracking consensus problem of general
nonlinear multi-agent systems with external disturbances has
been discussed. The leader is assumed to have bounded

0 5 10 15

time

0

5

10

0 5 10 15

time

0

5

10

0 5 10 15

time

0

2

4

6

0 5 10 15

time

0

5

10

15

Fig. 6. Example 2: Evolution of the tracking error of each follower.

input. A new class of fully distributed state observer for the
leader has been proposed under the assumption that the upper
bound of the leader’s input is unknown to all the followers.
Furthermore, two distributed observer-based control protocols
have been designed for solving the tracking problems where
each follower may be influenced by bounded disturbances (the
upper bound is assumed unknown) or disturbances generated
by exosystems, respectively. Neural networks and adaptive
laws have been applied for each follower to compensate
their own nonlinearity. One further work is to consider the
fully distributed problems with both general nonlinearity
and mismatched disturbances under directed communication
topologies.

REFERENCES

[1] D. Fox, W. Burgard, H. Kruppa, and S. Thrun, “A probabilistic approach
to collaborative multi-robot localization,” Auton. Robots, vol. 8, no. 3,
pp. 325-344, 2000.

[2] M. Campbell, “Planning algorithm for multiple satellite clusters,” J.
Guidance Control Dynam., vol. 26, no. 5, pp. 770-780, 2003.

[3] R. Beard, T. McLain, M. Goodrich, and E. Anderson, “Coordinated
target assignment and intercept for unmanned air vehicles,” IEEE
Robotic. Autom., vol. 18, no. 6, pp. 911-922, 2002.

[4] L. Eschenauer and V. Gligor, “A key-management scheme for distributed
sensor networks,” in Proc. ACM CCS, 2002, pp. 41-47.

[5] R. Olfati-Saber and R. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Trans. Autom.
Control, vol. 49, no. 9, pp. 1520-1533, 2004.

[6] A. Fax and R. M. Murray, “Information flow and cooperative control
of vehicle formations,” IEEE Trans. Autom. Control, vol. 49, no. 9, pp.
1465-1476, 2004.

[7] Z. Qu, Cooperative Control of Dynamical Systems: Applications to
Autonomous Vehicles. London, U.K.: Springer-Verlag, 2009.

[8] C. Li, X. Yu, T. Huang, and X. He, “Distributed optimal consensus over
resource allocation network and its application to dynamical economic
dispatch,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 6, pp.
2407-2418, 2018.

Limited circulation. For review only
IEEE-TAC Submission no.: 18-1184.2

Preprint submitted to IEEE Transactions on Automatic Control. Received: September 27, 2018 14:37:55 PST



8

[9] Y. Hong, J. Hu, and L. Gao, “Tracking control for multi-agent consensus
with an active leader and variable topology,” Automatica, vol. 42, no. 7,
pp. 1177-1182, 2006.

[10] W. Ren and R. W. Beard, “Consensus seeking in multiagent systems
under dynamically changing interaction topologies,” IEEE Trans. Autom.
Control, vol. 50, no. 5, pp. 655-661, 2005.

[11] Z. Ding, “Consensus disturbance rejection with disturbance observers,”
IEEE Trans. Ind. Electron., vol. 62, no. 9, pp. 5829-5837, 2015.

[12] W. Yu, G. Wen, G. Chen, and J. Cao, Distributed Cooperative Control
of Multi-agent Systems, Wiley&Higher Education Press, 2016.

[13] W. Yu, G. Chen, and M. Cao, “Some necessary and sufficient con-
ditions for second-order consensus in multi-agent dynamical systems,”
Automatica, vol. 46, no. 6, pp. 1089-1095, 2010.

[14] W. Yu, G. Chen, M. Cao, and J. Kurths, “Second-order consensus for
multi-agent systems with directed topologies and nonlinear dynamics,”
IEEE Trans. Syst., Man, Cybern., Cybern., vol. 40, no. 3, pp. 881-891,
2010.

[15] W. Yu, H. Wang, F. Cheng, X. Yu, and G. Wen, “Second-order consensus
in multiagent systems via distributed sliding mode control,” IEEE Trans.
Cybern., vol. 47, no. 8, pp. 1872-1881, 2017.

[16] S. Yu and X. Long, “Finite-time consensus for second-order multi-agent
systems with disturbances by integral sliding mode,” Automatica, vol.
54, no. 4, pp. 158-165, 2015.

[17] Z. Guan, F. Sun, Y. Wang, and T. Li, “Finite-time consensus for leader-
following second-order multi-agent networks,” IEEE Trans. Circuits
Syst. I. Regul. Pap., vol. 59, no. 11, pp. 2646-2654, 2012.

[18] H. Hong, W. Yu, X. Yu, G. Wen, and A. Alsaedi, “Fixed-time
connectivity-preserving distributed average tracking for multi-agent sys-
tems,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 64, no. 10, pp.
1192-1196, 2017.

[19] M. Franceschelli, A. Pisano, A. Giua, and E. Usai, “Finite-time con-
sensus with disturbance rejection by discontinuous local interactions in
directed graphs,” IEEE Trans. Autom. Control, vol. 60, no. 4, pp. 1133-
1138, 2015.

[20] H. Hong, W. Yu, G. Wen, and X. Yu, “Distributed robust fixed-time
consensus for nonlinear and disturbed multiagent systems,” IEEE Trans.
Syst., Man, Cybern., Syst., vol. 47, no. 7, pp. 1464-1473, 2017.

[21] W. Ren and R. W. Beard, “Consensus seeking in multiagent systems
under dynamically changing interaction topologies,” IEEE Trans. Autom.
Control, vol. 50, no. 5, pp. 655-661, 2005.

[22] C. Altafini, “Consensus problems on networks with antagonistic inter-
actions,” IEEE Trans. Autom. Control, vol. 58, no. 4, pp. 935-946, 2013.

[23] X. Wang and Y. Hong, “Finite-time consensus for multi-agent networks
with second-order agent dynamics,” in Proc. the 17th World Congress,
IFAC, Korea: Seoul, pp. 15185-15190, Jul. 2008.

[24] W. Yu, G. Chen, W. Ren, J. Kurths, and W. Zheng, “Distributed higher
order consensus protocols in multiagent dynamical systems,” IEEE
Trans. Circuits Syst. I. Regul. Pap., vol. 58, no. 8, pp. 1924-1932, 2011.

[25] W. Ren, K. Moore, and Y. Chen, “High-order and model reference
consensus algorithms in cooperative control of multivehicle systems,”
J. Dynam. Systems Measurement Control, vol. 129, no. 5, pp. 678-688,
2007.

[26] J. Fu and J. Wang, “Adaptive consensus tracking of high-order nonlinear
multi-agent systems with directed communication graphs,” Internat. J.
Control, Autom. and Systems, vol. 12, no. 5, pp. 919-929, 2014.

[27] S. Khoo, L. Xie, S. Zhao, and Z. Man, “Multi-surface sliding control for
fast finite-time leader-follower consensus with high order SISO uncertain
nonlinear agents,” Internat. J. Robust Nonlinear Control, vol. 24, no. 16,
pp. 2388-2404, 2014.

[28] C. Ma and J. Zhang, “Necessary and sufficient conditions for consen-
susability of linear multi-agent systems,” IEEE Trans. Autom. Control,
vol. 55, no. 5, pp. 1263-1268, 2010.

[29] G. Wen, Z. Li, Z. Duan, and G. Chen, “Distributed consensus control for
linear multi-agent systems with discontinuous observations,” Internat. J.
Control, vol. 86, no. 1, pp. 95-106, 2013.

[30] Z. Li, X. Liu, W. Ren, and L. Xie, “Distributed tracking control for
linear multiagent systems with a leader of bounded unknown input,”
IEEE Trans. Autom. Control, vol. 58, no. 2, pp. 518-523, 2013.

[31] Z. Li, G. Wen, Z. Duan, and W. Ren, “Designing fully distributed
consensus protocols for linear multi-agent systems with directed graphs,”
IEEE Trans. Autom. Control, vol. 60, no. 4, pp. 1152-1157, 2015.
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[33] Y. Lü, Z. Li, Z. Duan, and J. Chen, “Distributed adaptive output feedback
consensus protocols for linear systems on directed graphs with a leader
of bounded input,” Automatica, vol. 74, no. 12, pp. 308-314, 2016.

[34] Z. Li, and Z. Duan, “Distributed tracking control of multi-agent systems
with heterogeneous uncertainties,” in Proc. 10th IEEE Int. Conf. Control
Autom., 2013, pp. 1956-1961.

[35] G. Wen, Y. Zhao, Z. Duan, W. Yu, and G. Chen, “Containment of higher-
order multi-leader multi-agent systems: a dynamic output approach,”
IEEE Trans. Autom. Control, vol. 61, no. 4, pp. 1135-1140, 2016.

[36] Z. Peng, D. Wang, H. Zhang, and Y. Lin, “Cooperative output feedback
adaptive control of uncertain nonlinear multi-agent systems with a
dynamic leader,” Neurocomputing, vol. 149, Part A, pp. 132-141, 2015.
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