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SuperMann: a superlinearly convergent algorithm
for finding fixed points of nonexpansive operators

Andreas Themelis and Panagiotis Patrinos

Abstract—Operator splitting techniques have recently gained
popularity in convex optimization problems arising in various
control fields. Being fixed-point iterations of nonexpansive oper-
ators, such methods suffer many well known downsides, which
include high sensitivity to ill conditioning and parameter selec-
tion, and consequent low accuracy and robustness. As universal
solution we propose SuperMann, a Newton-type algorithm for
finding fixed points of nonexpansive operators. It generalizes the
classical Krasnosel’skiı̌-Mann scheme, enjoys its favorable global
convergence properties and requires exactly the same oracle. It
is based on a novel separating hyperplane projection tailored for
nonexpansive mappings which makes it possible to include steps
along any direction. In particular, when the directions satisfy a
Dennis-Moré condition we show that SuperMann converges su-
perlinearly under mild assumptions, which, surprisingly, do not
entail nonsingularity of the Jacobian at the solution but merely
metric subregularity. As a result, SuperMann enhances and ro-
bustifies all operator splitting schemes for structured convex op-
timization, overcoming their well known sensitivity to ill condi-
tioning.

I. Introduction

Operator splitting techniques (also known as proximal al-
gorithms), introduced in the 50’s for solving PDEs and opti-
mal control problems, have been successfully used to reduce
complex problems into a series of simpler subproblems. The
most well known operator splitting methods are the alternating
direction method of multipliers (ADMM), forward-backward
splitting (FBS) also known as proximal-gradient method in
composite convex minimization, Douglas-Rachford splitting
(DRS) and the alternating minimization method (AMM) [1].
Operator splitting techniques pose several advantages over tra-
ditional optimization methods such as sequential quadratic
programming and interior point methods: (1) they can eas-
ily handle nonsmooth terms and abstract linear operators, (2)
each iteration requires only simple arithmetic operations, (3)
the algorithms scale gracefully as the dimension of the prob-
lem increases, and (4) they naturally lead to parallel and dis-
tributed implementation. Therefore, operator splitting methods
cope well with limited amount of hardware resources making
them particularly attractive for (embedded) control [2], signal
processing [3], and distributed optimization [4], [5].

The key idea behind these techniques when applied to con-
vex optimization is to reformulate the optimality conditions of
the problem at hand into a problem of finding a fixed point
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of a nonexpansive operator and then apply relaxed fixed-point
iterations. Although sometimes a fast convergence rate can
be observed, the norm of the fixed-point residual decreases, at
best, with Q-linear rate, and due to an inherent sensitivity to ill
conditioning oftentimes the Q-factor is close to one. Moreover,
all operator splitting methods are basically “open-loop”, since
the tuning parameters, such as stepsizes and preconditioning,
must be set before their execution. In fact, such methods are
very sensitive to the choice of parameters and sometimes there
is not even a concrete way of selecting them, as it is the case
of ADMM. All these are serious obstacles when it comes to
using such types of algorithms for real-time applications such
as embedded MPC, or to reliably solve cone programs.

As an attempt to solve the issue, people have considered
the employment of variable metrics to reshape the geometry
of the problem and enhance convergence rate [6]. However,
unless such metrics have a very specific structure, even for
simple problems the cost of operating in the new geometry
outweights the benefits.

Another interesting approach that is gaining more and more
popularity tries to exploit possible sparsity patterns by means
of chordal decomposition techniques [7]. These methods can
improve scalability and reduce memory usage, but unless the
problem comes with an inherent sparse structure they yield no
tangible benefit.

Alternatively, the task of searching fixed points of an oper-
ator T can be translated to that of finding zeros of the corre-
sponding residual R = id−T . Many methods with fast asymp-
totic convergence rates such as Newton-type exist that can be
employed for efficiently solving nonlinear equations, see, e.g.,
[8, §7] and [9]. However, such methods converge only when
close enough to the solution, and in order to globalize the con-
vergence there comes the need of a merit function to perform
a linesearch along candidate directions of descent. The typi-
cal choice of the square residual ‖Rx‖2 unfortunately is of no
use, as in meaningful applications R is nonsmooth.

A. Proposed methodology

In response to these issues, in this paper we propose a
universal scheme that globalizes Newton-type methods for
finding fixed points of any nonexpansive operator on real
Hilbert spaces. Admittedly with an intended pun, since it ex-
hibits superlinear convergence rates and generalizes the Kras-
nosel’skiı̌-Mann iterations we name our algorithm SuperMann.
The method is based on a novel hyperplane projection step tai-
lored for nonexpansive mappings.

Furthermore, we consider a modified Broyden’s scheme
which was first introduced in [10] and show how it fits into
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our framework enabling superlinear asymptotic convergence
rates. One of the most appealing properties of SuperMann
is that thanks to its quasi-Fejérian behavior, achieving super-
linear convergence does not necessitate nonsingularity of the
Jacobian at the solution, which is the usual requirement of
quasi-Newton schemes, but merely metric subregularity. This
property considerably widens the range of problems which can
be solved efficiently, in that, for instance, the solutions need
not be isolated for superlinear convergence to take place.

B. Contributions

Our contributions can be summarized as follows:

(1) In Section IV we design a universal algorithmic frame-
work (Algorithm 1) for finding fixed points of nonex-
pansive operators, which generalizes the classical Kras-
nosel’skiı̌-Mann scheme and possesses its same global
and local convergence properties.

(2) In Section V we introduce a novel separating hyperplane
projection tailored for nonexpansive mappings; based on
this, in Definition V.3 we then propose a generalized KM
iteration (GKM).

(3) We define a linesearch based on the novel projection,
suited for any nonexpansive operator and update direction
(Theorem V.4).

(4) In Section VI we combine these ideas and derive the Su-
perMann scheme (Alg. 2), an algorithm that
• globalizes the convergence of Newton-type methods

for finding fixed points of nonexpansive operators
(Theorem VI.1);

• reduces to the local method xk+1 = xk + dk when the
directions dk are superlinear, as it is the case for a
modified Broyden’s scheme (Theorems VI.4 and VI.8);

• has superlinear convergence guarantees even without
the usual requirement of nonsingularity of the Jacobian
at the limit point, but simply under metric subregular-
ity; in particular, the solution need not be unique!

C. Paper organization

The paper is organized as follows. Section II serves as an
informal introduction to highlight the known limitations of
fixed-point iterations and to motivate our interest in Newton-
type methods with some toy examples. The formal presenta-
tion begins in Section III with the introduction of some basic
notation and known facts. In Section IV we define the problem
at hand and propose a general abstract algorithmic framework
for solving it. In Section V we provide a generalization of
the classical KM iterations that is key for the global conver-
gence and performance of SuperMann, an algorithm which
is presented and analyzed in Section VI. Finally, in Section
VII we show how the theoretical findings are backed up by
promising numerical simulations, where SuperMann dramat-
ically improves classical splitting schemes. For the sake of
readability some of the proofs are deferred to the Appendix.

II. Motivating examples

Given a nonexpansive operator T : �n → �n, consider the
problem of finding a fixed point, i.e., a point x? ∈ �n such that
x? = T x?. The independent works of Krasnosel’skiı̌ and Mann
[11], [12] provided a very elegant solution which is simply
based on recursive iterations x+ = (1−α)x+αT x with α ∈ (0, ᾱ)
for some ᾱ ≥ 1. The method, known as Krasnosel’skiı̌-Mann
scheme or KM scheme for short, has been studied intensively
ever since, also because it generalizes a plethora of optimiza-
tion algorithms. It is well known that the scheme is globally
convergent with square-summable and monotonically decreas-
ing residual R = id − T (in norm), and also locally Q-linearly
convergent if R is metrically subregular at the limit point x?.
Metric subregularity basically amounts to requiring the dis-
tance from the set of solutions to be upper bounded by a mul-
tiple of the norm of R for all points sufficiently close to x?; it
is quite mild a requirement — for instance, it does not entail
x? to be an isolated solution — and as such linear convergence
is quite frequent in practice. However, the major drawback of
the KM scheme is its high sensitivity to ill conditioning of the
problem, and cases where convergence is prohibitively slow in
practice despite the theoretical (sub)linear rate are also abun-
dant. Illustrative examples can be easily constructed for the
problem of finding a point in the intersection of two closed
convex sets C1 and C2 with C1 ∩ C2 , ∅. The problem can
be solved by means of fixed-point iterations of the (nonexpan-
sive) alternating projections operator T = ΠC2 ◦ΠC1 .

In Figure 1a we consider the case of two polyhedral
cones, namely C1 =

{
x ∈ �2 | 0.1x1 ≤ x2 ≤ 0.2x1

}
and C2 ={

x ∈ �2 | 0.3x1 ≤ x2 ≤ 0.35x1

}
. Alternating projections is then

linearly convergent (to the unique intersection point 0) due to
the fact that R = id − T is piecewise affine and hence glob-
ally metrically subregular. However, the convergence is ex-
tremely slow due to the pathological small angle between the
two cones, as it is apparent in Figure 1a.

As an attempt to overcome this frequent phenomenon, [13]
proposes a foretracking linesearch heuristic which is particu-
larly effective when subsequent fixed-point iterations proceed
along almost parallel directions. Iteration-wise, in such in-
stances the linesearch does yield a considerable improvement
upon the plain KM scheme; however, each foretrack prescribes
extra evaluations of T and unless T has a specific structure
the computational overhead might outweight the advantages.
Moreover, its asymptotic convergence rates do not improve
upon the plain KM scheme. Figure 1b illustrates this fact rela-
tive to C1 =

{
x ∈ �2 | x2

1 + x2
2 ≤ 1

}
and C2 =

{
x ∈ �2 | x1 = 1

}
.

Despite a good performance on early iterations, the linesearch
cannot improve the asymptotic sublinear rate of the plain KM
scheme due to the fact that the residual is not metrically sub-
regular at the (unique) solution x? = (0, 1). In particular, it is
evident that medium-to-high accuracy cannot be achieved in
a reasonable number of iterations with either methods.

In response to this limitation there comes the need to include
some “first-order-like information”. Specifically, the problem
of finding a fixed point of T can be rephrased in terms of
solving the system of nonlinear (monotone) equations Rx = 0,
which could possibly be solved efficiently with Newton-type
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Figure 1: (a) Alternating projections on polyhedral cones. R = id −ΠC2 ◦ΠC1 is globally metrically subregular, however the Q-linear
convergence of the KM scheme is very slow.
(b) Alternating projections on ball and tangent line. With or without linesearch the KM scheme is not linearly convergent due to the
fact that the residual R is not metrically subregular at x?.
(c) Alternating projections on second-order cone and tangent plane. In contrast with the slow sublinear rate of KM both with and
without linesearch, and despite the non isolatedness of any solution, Broyden’s scheme exhibits an appealing linear convergence rate.

methods. In the toy simulations of this section, the purple lines
correspond to the semismooth Newton iterations

x+ = x −G−1Rx for some G ∈ ∂Rx,

where ∂R is the Clarke generalized Jacobian of R [8, Def.
7.1.1]. Interestingly, in the proposed simulations this method
exhibits fast convergence even when the limit point is a
non isolated solution, as in the case of the second-order
cone C1 =

{
x ∈ �3 | x3 ≥ 0.1

√
x2

1 + x2
2

}
and the tangent plane

C2 =
{
x ∈ �3 | x3 = 0.1x2

}
considered in Figure 1c.

However, computing the generalized Jacobian might be too
demanding and require extra information not available in close
form. For this reason we focus on quasi-Newton methods

x+ = x − HRx,

where the linear operator H is progressively updated with only
evaluations of R and direct linear algebra in such a way that
the vector HRx is asymptotically a good approximation of a
Newton direction G−1Rx. The yellow lines in the simulations
of this section correspond to H being selected with Broyden’s
quasi-Newton method.

The crucial issue is convergence itself. Though in these triv-
ial simulations it is not the case, it is well known that Newton-
type methods in general converge only when close to a solu-
tion, and may even diverge otherwise. In fact, globalizing the
convergence of Newton-type methods is a key challenge in
optimization, as the dedicated recent book [9] confirms.

In this paper we provide the SuperMann scheme, a global-
ization strategy for Newton-type methods (or any local scheme
in general) that applies to any (nonsmooth) monotone equa-
tion deriving from fixed-point iterations of nonexpansive oper-
ators. Our method covers almost all splitting schemes in con-

vex optimization, such as forward-backward splitting (FBS,
also known as proximal gradient method), Douglas-Rachford
splitting (DRS) and the alternating direction method of mul-
tipliers (ADMM), to name a few. We also provide sufficient
conditions at the limit point under which the method reduces
to the local scheme and converges superlinearly.

III. Notation and known results
With bdry A we denote the boundary of the set A, and given

a sequence (xk)k∈� we write (xk)k∈� ⊂ A to indicate that xk ∈ A
for all k ∈ �. For p > 0 we let

`p B
{
(xk)k∈� ⊂ � |

∑
k∈� |xk |p < ∞

}
denote the set of real-valued sequences with summable p-th
power, and with `

p
+ the subset of the positive-valued ones.

The positive part of x ∈ � is [x]+ B max {x, 0}.
A. Hilbert spaces and bounded linear operators

Throughout the paper, H is a real separable Hilbert space
endowed with an inner product 〈 · , · 〉 and with induced norm
‖ · ‖. The Euclidean norm and scalar product are denoted as
‖ · ‖2 and 〈 · , · 〉2 , respectively. For x̄ ∈ H and r > 0, the
open ball centered at x̄ with radius r is indicated as B(x̄; r) B
{x ∈ H | ‖x − x̄‖ < r}. For a closed and nonempty convex set
C ⊆ H we let ΠC denote the projection operator on C.

Given (xk)k∈� ⊂ H and x ∈ H we write xk → x and
xk ⇀ x to denote, respectively, strong and weak convergence
of (xk)k∈� to x. The set of weak sequential cluster points of
(xk)k∈� is indicated as W(xk)k∈�.

The set of bounded linear operators H → H is denoted as
B(H). The adjoint operator of L ∈ B(H) is indicated as L∗,
i.e., the unique operator in B(H) such that 〈Lx, y〉 = 〈x, L∗y〉
for all x, y ∈ H .
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B. Nonexpansive operators and Fejér sequences

We now briefly recap some known definitions and results of
nonexpansive operator theory that will be used in the paper.

Definition III.1. An operator T : H → H is said to be
(i) nonexpansive (NE) if ‖T x−Ty‖ ≤ ‖x−y‖ for all x, y ∈ H;

(ii) averaged if it is α-averaged for some α ∈ (0, 1), i.e., if
there exists a nonexpansive operator S : H → H such
that T = (1 − α)id + αS ;

(iii) firmly nonexpansive (FNE) if it is 1/2 − averaged.

Clearly, for any NE operator T the residual R = id − T is
monotone, in the sense that 〈Rx−Ry, x−y〉 ≥ 0 for all x, y ∈ H ;
if T is additionally FNE, then not only is R monotone, but
it is FNE as well. For notational convenience we extend the
definition of α-averagedness to the case α = 1 which reduces
to plain nonexpansiveness.

Given an operator T : H → H we let

zer T B {z ∈ H | Tz = 0} and fix T B {z ∈ H | Tz = z}
denote the set of its zeros and fixed points, respectively. For
λ ∈ � we define the λ-averaging of T as

Tλ B (1 − λ)id + λT.

Notice that

id − Tλ = λ(id − T ) for all λ ∈ �, (1)

and therefore fix Tλ = fix T for all λ , 0. Moreover, if T is
α-averaged and λ ∈ (0, 1/α], then

Tλ is αλ-averaged (2)

[14, Cor. 4.28] and in particular T1/2α is FNE.

Definition III.2. Relative to a nonempty set S ⊆ H , a se-
quence (xk)k∈� ⊂ H is

(i) Fejér (-monotone) if ‖xk+1 − s‖ ≤ ‖xk − s‖ for all k ∈ �
and s ∈ S ;

(ii) quasi-Fejér (monotone) if for all s ∈ S there exists a
sequence (εk(s))k∈� ∈ `1

+ such that

‖xk+1 − s‖2 ≤ ‖xk − s‖2 + εk(s) ∀k ∈ �.
This definition of quasi-Fejér monotonicity is taken from

[15] where it is referred to as of type III, and generalizes the
classical definition [16].

Theorem III.3. Let T : H → H be an NE operator with
fix T , ∅, and suppose that (xk)k∈� ⊂ H is quasi-Fejér with
respect to fix T. If (xk − T xk)k∈� → 0, then there exists x? ∈
fix T such that xk ⇀ x?.

Proof. From [15, Prop. 3.7(i)] we have W(xk)k∈� , ∅; in
turn, from [14, Cor. 4.18] we infer that W(xk)k∈� ⊆ fix T .
The claim then follows from [15, Thm. 3.8].

IV. General abstract framework

Unless differently specified, in the rest of the paper we work
under the following assumption.

Assumption I. T : H → H is an α-averaged operator for
some α ∈ (0, 1] and with fix T , ∅. With R B id−T we denote
its (2α-Lipschitz continuous) fixed-point residual.

We also stick to this notation, so that, whenever mentioned,
T , R, and α are as in Assumption I. Our goal is to find a fixed
point of T , or, equivalently, a zero of R:

find x? ∈ fix T = zer R. (3)
In this section we introduce Algorithm 1, an abstract proce-

dure to solve problem (3). The scheme is not implementable
in and of itself, as it gives no hint as to how to compute
each of the iterates, but it rather serves as a comprehensive
ground framework for a class of algorithms with global con-
vergence guarantees. In Section VI we will derive the Super-
Mann scheme, an implementable instance which also enjoys
appealing asymptotic properties.

The general framework prescribes three kinds of updates.
K0) Blind updates. Inspired from [17], whenever the residual
‖Rxk‖ at iteration k has sufficiently decreased with respect
to past iterates we allow for an uncontrolled update. For
an efficient implementation such guess should be some-
how reasonable and not completely a “blind” guess; how-
ever, for the sake of global convergence the proposed
scheme is robust to any choice.

K1) Educated updates. To encourage favorable updates, sim-
ilarly to what has been proposed in [9, §5.3.1] and [8,
§8.3.2] an educated guess xk+1 is accepted whenever the
candidate residual is sufficiently smaller than the current.

K2) Safeguard (Fejérian) updates. This last kind of updates
is similar to K1 as it is also based on the goodness of
xk+1 with respect to xk. The difference is that instead
of checking the residual, what needs to be sufficiently
decreased is the distance from each point in fix T . This
is meant in a Fejérian fashion as in Definition III.2.

Blind K0- and educated K1-updates are somehow complemen-
tary: the former is enabled when enough progress has been
made in the past, whereas the latter when the candidate up-
date yields a sufficient improvement. Progress and improve-
ment are meant in terms of a linear decrease of (the norm of)
the residual; at iteration k, K0 is enabled if ‖Rxk‖ ≤ c0‖Rxk̄‖,
where c0 ∈ [0, 1) is a user-defined constant and k̄ is the last
blind iteration before k; K1 is enabled if ‖Rxk+1‖ ≤ c1‖Rxk‖
where c1 ∈ [0, 1) is another user-defined constant and xk+1 is
the candidate next iterate. To ensure global convergence, edu-
cated updates are authorized only if the current residual ‖Rxk‖
is not larger than ‖Rxk̃+1‖ (up to a linearly decreasing error
qk̃); here k̃ denotes the last K1-update before k.

While blind K0- and educated K1-updates are in charge of
the asymptotic behavior, what makes the algorithm convergent
are safeguard K2-iterations.

A. Global weak convergence

To establish a notation, we partition the set of iteration in-
dices K ⊆ � as K0 ∪ K1 ∪ K2. Namely, relative to Algorithm
1, K0 K1 and K2 denote the sets of indices k passing the test
at steps 2, 3(a) and 3(b), respectively. Furthermore, we index
the sets K0 and K1 of blind and educated updates as

K0 = {k1, k2, · · ·}, K1 =
{
k′1, k

′
2, · · ·

}
. (5)

To rule out trivialities, throughout the paper we work under
the assumption that a solution is not found in a finite number
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Algorithm 1 General framework for finding a fixed point of the α-averaged operator T with residual R = id − T

Require x0 ∈ H , c0, c1, q ∈ [0, 1), σ > 0
Initialize η0 = rsafe = ‖Rx0‖, k = 0

1. If Rxk = 0, then stop.
2. If ‖Rxk‖ ≤ c0ηk, then set ηk+1 = ‖Rxk‖, proceed with a blind update xk+1 and go to step 4.
3. Set ηk+1 = ηk and select xk+1 such that

3(a) either the safe condition ‖Rxk‖ ≤ rsafe holds, and xk+1 is educated:
‖Rxk+1‖ ≤ c1‖Rxk‖

in which case update rsafe = ‖Rxk+1‖ + qk;
3(b) or it is Fejérian with respect to fix T :

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − σ‖Rxk‖2 ∀z ∈ fix T. (4)
4. Set k ← k + 1 and go to step 1.

of steps, so that the residual of each iterate is always nonzero.
As long as it is well defined, the algorithm therefore produces
an infinite number of iterates.

Theorem IV.1 (Global convergence of the general framework
Algorithm 1). Consider the iterates generated by Algorithm 1
and suppose that for all k it is always possible to find a point
xk+1 complying with the requirements of either step 2, 3(a) or
3(b), and further satisfying

‖xk+1 − xk‖ ≤ D‖Rxk‖ ∀k ∈ K0 ∪ K1 (6)

for some constant D ≥ 0. Then,
(i) (xk)k∈� is quasi-Fejér monotone with respect to fix T;

(ii) Rxk → 0 with (‖Rxk‖)k∈� ∈ `2;

(iii) (xk)k∈� converges weakly to a point x? ∈ fix T;

(iv) if c0 > 0 the number of blind updates at step 2 is infinite.

Proof. See Appendix A.

B. Local linear convergence

More can be said about the convergence rates if the mapping
R possesses metric subregularity. Differently from (bounded)
linear regularity [18], metric subregularity is a local property
and as such it is more general. For a (possibly multivalued)
operator R, metric subregularity at x̄ is equivalent to calmness
of R−1 at Rx̄ [19, Thm 3.2], and is a weaker condition than
metric regularity and Aubin property. We refer the reader to
[20, §9] for an extensive discussion.

Definition IV.2 (Metric subregularity at zeros). Let R : H →
H and x̄ ∈ zer R. R is metrically subregular at x̄ if there exist
ε, γ > 0 such that

dist(x, zer R) ≤ γ‖Rx‖ ∀x ∈ B(x̄; ε). (7)

γ and ε are (one) modulus and (one) radius of subregularity
of R at x̄, respectively.

In finite-dimensional spaces, if R is differentiable at x̄ ∈
zer R and x̄ is isolated in zer R (e.g., if it is the unique zero),
then metric subregularity is equivalent to nonsingularity of
JRx̄. Metric subregularity is however a much weaker prop-
erty than nonsingularity of the Jacobian, firstly because it does
not assume differentiability, and secondly because it can cope

with ‘wide’ regions of zeros; for instance, any piecewise linear
mapping is globally metrically subregular [21].

If the residual R = id − T of the α-averaged operator T is
metrically subregular at x̄ ∈ zer R = fix T with modulus γ and
radius ε, then

1
γ

dist(x,fix T ) ≤ ‖Rx‖ ≤ 2αdist(x,fix T ) (8)
for all x ∈ B(x̄; ε). Consequently, if ‖Rxk‖ → 0 for some se-
quence (xk)k∈� ⊂ H , so does dist(xk,fix T ) with the same
asymptotic rate of convergence, and viceversa. Metric subreg-
ularity is the key property under which the residual in the
classical KM scheme achieves linear convergence; in the next
result we show that this asymptotic behavior is preserved in
the general framework of Algorithm 1.

Theorem IV.3 (Linear convergence of the general framework
Algorithm 1). Suppose that the hypotheses of Theorem IV.1
hold, and suppose further that (xk)k∈� converges strongly to a
point x? (this being true if H is finite dimensional) at which
R is metrically subregular.

Then, (xk)k∈� and (Rxk)k∈� are R-linearly convergent.

Proof. See Appendix A.

C. Main idea

Being interested in solving the nonlinear equation (3), one
could think of implementing one of the many existing fast
methods for nonlinear equations that achieve fast asymptotic
rates, such as Newton-type schemes. At each iteration, such
schemes compute an update direction dk and prescribe steps
of the form xk+1 = xk + τkdk, where τk > 0 is a stepsize that
needs to be sufficiently small in order for the method to enjoy
global convergence; on the other hand, fast asymptotic rates
are ensured if τk = 1 is eventually always accepted. The step-
size is a crucial feature of fast methods, and a feasible τk is
usually backtracked with a linesearch on a smooth merit func-
tion. Unfortunately, in meaningful applications of the problem
at hand arising from fixed-point theory the residual mapping R
is nonsmooth, and the typical merit function x 7→ ‖Rx‖2 does
not meet the necessary smoothness requirement.

What we propose in this paper is a hybrid scheme that al-
lows for the employment of any (fast) method for solving
nonlinear equations, with global convergence guarantees that
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do not require smoothness, and which is based only on the
nonexpansiveness of T . Once fast directions dk are selected,
Algorithm 1 can be specialized as follows:

1) blind updates as in step 2 shall be of the form xk+1 =

xk + dk;
2) educated updates as in step 3(a) shall be of the form

xk+1 = xk + τkdk, with τk small enough so as to ensure
the acceptance condition ‖Rxk+1‖ ≤ c1‖Rxk‖;

3) safeguard updates as in step 3(b) shall be employed as
last resort both for globalization purposes and for well
definedness of the scheme.

Ideally, the scheme should eventually reduce to the local
scheme xk+1 = xk + dk when good directions dk are used.

In Section V we address the problem of providing explicit
safeguard updates that comply with the quasi-Fejér mono-
tonicity requirement of step 3(b). Because of the arbitrarity
of the other two updates, once we succeed in this task Al-
gorithm 1 will be of practical implementation. In Section VI
we will then discuss specific K0- and K1-updates to be used
at steps 2 and 3(a) that ensure global and fast convergence,
yet maintaining the simplicity of fixed-point iterations of T
(evaluations of T and direct linear algebra).

V. GeneralizedMann Iterations

A. The classical Krasnosel’skiı̌-Mann scheme

Starting from a point x0 ∈ H , the classical Krasnosel’skiı̌-
Mann scheme (KM) performs the following updates

xk+1 = Tλk xk = (1 − λk)xk + λkT xk (9)

and converges weakly to a fixed point of T provided that λk ∈
[0, 1/α] and (λk(1/α − λk))k∈� < `

1 [14, Thm. 5.14]. The key
property of KM iterations is Fejér monotonicity:

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − λk(1/α − λk)‖Rxk‖2 ∀z ∈ fix T.

In particular, in Algorithm 1 KM iterations can be used as safe-
guard updates at step 3(b). The drawback of such a selection is
that it completely discards the hypothetical fast update direc-
tion dk that blind and educated updates try to enforce. This is
particularly penalizing when the local method for computing
the directions dk is a quasi-Newton scheme; such methods are
indeed very sensitive to past iterations, and discarding direc-
tions is neither theoretically sound nor beneficial in practice.

In this section we provide alternative safeguard updates
that while ensuring the desirable Fejér monotonicity are also
amenable to taking into account arbitrary directions. The key
idea lies in intepreting KM iterations as projections onto suit-
able half-spaces (see Fig. 2), and then exploiting known prop-
erties of projections. These facts are shown in the next re-
sult. To this end, let us remark that the projection ΠC onto
a nonempty closed and convex set C is FNE [14, Prop. 4.8],
and that consequently its λ-averaging ΠC,λ is λ/2-averaged for
any λ ∈ (0, 2], as it follows from (2).

Proposition V.1 (KM iterations as projections). For x ∈ H ,
define

Cx =CT,α
x B

{
z∈H |‖Rx‖2−2α〈Rx,x−z〉≤0

}
. (10)

Then,

• •

•

z x

Tx

Figure 2: Mann iteration of a FNE operator T as projection
on Cx (the blue half-space, as defined in (10) for α = 1/2). The
outer circle is the set of all possible images of a nonexpansive
operator, given that z is a fixed point. The inner circle corre-
sponds to the possible images of firmly nonexpansive operators.
Notice that Cx separates x from z as long as T x is contained
in the small circle, which characterizes firm nonexpansiveness.

(i) x ∈ Cx iff x ∈ fix T;

(ii) fix T =
⋂

x∈H Cx;

(iii) for any λ ∈ [0, 1/α] it holds that Tλx = ΠCx,2αλ x =

(1 − 2αλ)x + 2αλΠCx x.

Proof. The set Cx can be equivalently expressed as
Cx =

{
z ∈ H | 〈x − T1/2αx, z − T1/2αx〉 ≤ 0

}
.

V.1(i) is of immediate verification, and V.1(ii) then follows
from [14, Cor. 4.16] combined with (2).

We now show V.1(iii). If Rx = 0, then x ∈ fix T and Cx = H ,
and the claim is trivial. Otherwise, notice that

Cx =
{
z ∈ H | 〈Rx, z〉 ≤ 〈Rx, x − 1

2αRx〉
}
, (11)

and the claim can be readily verified using the formula for the
projection on a halfspace Hv,β B {z ∈ H | 〈v, z〉 ≤ β}, namely

ΠHv,β x = x − [〈v, x〉 − β]+

‖v‖2 v, (12)

defined for v ∈ H \ {0} and β ∈ � [14, Ex. 28.16(iii)].

B. Generalized Mann projections

Though particularly attractive for its simplicity and global
convergence properties, the KM scheme (9) finds its main
drawback in its convergence rate, being it Q-linear at best
and highly sensitive to ill conditioning of the problem. In re-
sponse to these issues, Algorithm 1 allows for the integration
of fast local methods still ensuring global convergence prop-
erties. The efficiency of the resulting scheme, which will be
proven later on, is based on an ad hoc selection of safeguard
updates for step 3(b) which is based on the following gener-
alization of Proposition V.1.

Proposition V.2. Suppose that x,w ∈ H are such that
ρ B ‖Rw‖2 − 2α〈Rw,w − x〉 > 0. (13)

For λ ∈ [0, 1/α] let

x+ B x − λ ρ

‖Rw‖2 Rw. (14)

Then, the following hold:
(i) x+ = ΠCw,2αλ x where Cw = CT,α

w as in (10);

(ii) ‖x+ − z‖2 ≤ ‖x − z‖2 − λ(1/α − λ) ρ2

‖Rw‖2 ∀z ∈ fix T.
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Proof. V.2(i) easily follows from (11) and (12), since by con-
dition (13) the positive part in the formula may be omitted.
In turn, V.2(ii) follows from [14, Prop. 4.25(iii)] by observing
that ΠCw,2αλ is αλ-averaged due to [14, Prop.s 4.8] and (2),
and that fix T ⊆ Cw as shown in Prop. V.1(ii).

Notice that condition (13) is equivalent to x < Cw. There-
fore, Proposition V.2(ii) states that whenever a point x lies
outside the half-space Cw for some w ∈ H , since fix T ⊆ Cw

(cf. Prop. V.1) the projection onto Cw moves x closer to fix T .
This means that after moving from x along a candidate direc-
tion d to the point w = x + d, even though w might be farther
from fix T the point x+ = ΠCw x is not. We may then use this
projection as a safeguard step to prevent from diverging from
the set of fixed points. Based on this, we define a generalized
KM update along a direction d.

Definition V.3 (GKM update). A generalized KM update
(GKM) at x along d for the α-averaged operator T : H → H
with relaxation λ ∈ [0, 1/α] is

x+ B

{
x if w ∈ fix T
x − λ [ρ]+

‖Rw‖2 Rw othwerwise,

where w = x+d and ρ B ‖Rw‖2−2α〈Rw,w− x〉. In particular,
d = 0 yields the classical KM update x+ = Tλx.

C. Linesearch for GKM

It is evident from Definition V.3 that a GKM update trivi-
alizes to x+ = x if either w ∈ fix T or ρ ≤ 0. Having w ∈ fix T
corresponds to having found a solution to problem (3), and the
case deserves no further investigation. In this section we ad-
dress the remaining case ρ ≤ 0, showing how it can be avoided
by simply introducing a suitable linesearch. In order to re-
cover the same global convergence properties of the classical
KM scheme we need something more than simply imposing
ρ > 0. The next result addresses this requirement, showing
further that it is achieved for any direction d by sufficiently
small stepsizes.

Theorem V.4. Let x, d ∈ H and σ ∈ [0, 1) be fixed, and
consider

τ̄ =

{
1 if d = 0

1−σ
4α
‖Rx‖
‖d‖ otherwise.

Then, for all τ ∈ (0, τ̄] the point w = x + τd satisfies

ρ B ‖Rw‖2 − 2α〈Rw,w − x〉 ≥ σ‖Rw‖‖Rx‖. (15)

Proof. Let a constant c ≥ 0 to be determined be such that

τ‖d‖ = ‖w − x‖ ≤ c‖Rx‖.
Observe that ρ = 4α2〈w − T1/2αw, x − T1/2αw〉, and recall from
(1) and (2) that T1/2α is FNE with residual id − T1/2α = 1

2αR.
Then,

ρ = 4α2
(
‖w − T1/2αw‖2 + 〈w − T1/2αw, x − w〉

)
using Cauchy-Schwartz inequality,

≥ 4α2‖w − T1/2αw‖(‖w − T1/2αw‖ − ‖x − w‖)
the bound on ‖x − w‖,

≥ 2α‖Rw‖(‖w − T1/2αw‖ − 2αc‖x − T1/2αx‖)

the (reverse) triangular inequality,

≥ 2α‖Rw‖
(

(1 − 2αc)‖x − T1/2αx‖
− ‖(id − T1/2α)w − (id − T1/2α)x‖

)
the nonexpansiveness of id − T1/2α

≥ 2α‖Rw‖( 1−2αc
2α ‖Rx‖ − ‖w − x‖)

and again the bound on ‖w − x‖,
≥ (1 − 4αc)‖Rw‖‖Rx‖

equating σ = 1 − 4αc the assert follows.

Notice that if d = 0, then ρ = ‖Rx‖2 ≥ σ‖Rx‖2 for any
σ ∈ [0, 1), and therefore the linesearch condition (15) is always
satisfied; in particular, the classical KM step x+ = T x is always
accepted regardless of the value of σ.

Let us now observe how a GKM projection extends the clas-
sical KM depicted in Figure 2 and how the linesearch works.
In the following we use the notation of Theorem V.4, and for
the sake of simplicity we consider σ = 0 in (15) and a FNE
operator T . Suppose that the fixed point z and the points x, T x,
and w are as in Figure 3a; due to firm nonexpansiveness, the
image Tw of w is somewhere in the intersection of the orange
circles. We want to avoid the unfavorable situation depicted
in Figure 3b, where the couple (w,Tw) generates a halfspace
Cw that contains x, i.e., such that ρ ≤ 0: in fact, with simple
algebra it can be seen that ρ ≤ 0 iff Tw belongs to the dashed
circle of Figure 3b:

Bx,w B {w̄ | 〈w − w̄, x − w̄〉 ≤ 0}. (16)

Since the dashed orange circle (in which Tw must lie) is sim-
ply the translation by a vector T x − x of Bx,w, both having
diameter τ‖d‖, for sufficiently small τ the two have empty in-
tersection, meaning that ρ > 0 regardless of where Tw is.

VI. The SuperMann scheme

In this section we introduce the SuperMann scheme (Alg.
2), a special instance of the general framework of Algorithm
1 that employs GKM updates as safeguard K2-steps. While
the global worst-case convergence properties of SuperMann
are the same as for the classical KM scheme, its asymptotic
behavior is determined by how blind K0- and educated K1-
updates are selected. In Section VI-B we will characterize the
“quality” of update directions and the mild requirements under
which superlinear convergence rates are attained; in particu-
lar, Section VI-C is dedicated to the analysis of quasi-Newton
Broyden’s directions.

The scheme follows the same philosophy of the general ab-
stract framework. The main idea is globalizing a local method
for solving the monotone equation Rx = 0, in such a way
that when the iterates get close enough to a solution the fast
convergence of the local method is automatically triggered.
Approaching a solution is possible thanks to the generalized
KM updates (step 5(b)), provided enough backtracking is per-
formed, as ensured by Prop. V.2(ii) and Thm. V.4. When a
basin of fast (i.e., superlinear) attraction for the local method
is reached, the (norm of) Rx will decrease more than linearly,
and the condition triggering the educated updates of step 5(a)
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•

z x

Tx

w

Bx,wd

(a)

• •

•

•

•
z x

Tx

w

Tw

Bx,wd

(b)

• •

•

•

•

•

•

z x

Tx

w

w

Tw

x+

τd

(c)

Figure 3: SuperMann iteration of a FNE operator T as projection on Cw.
(a) the darker orange region represents the area in which Tw must lie given the points x, T x and the fixed point z as prescribed by
firm nonexpansiveness of T .
(b) if Tw lies (also) in the ball Bx,w as in (16), then the half-space Cw (shaded in orange) separates x from w, which is to be avoided.
(c) when w is close enough to x the feasible region for Tw has empty intersection with Bx,w and Cw does not contain x.

(which is checked first) will be verified without performing
any backtracking.

To discuss its global and local convergence properties we
stick to the same notation of the general framework of Algo-
rithm 1, denoting the sets of blind, educated, and safeguard
updates as K0, K1 and K2, respectively.

A. Global and linear convergence

To comply with (6), we impose the following requirement
on the magnitude of the directions (see also Rem. VI.9).

Assumption II. There exists a constant D ≥ 0 such that the
directions (dk)k∈� in the SuperMann scheme (Alg. 2) satisfy

‖dk‖ ≤ D‖Rxk‖ ∀k ∈ �. (17)

Theorem VI.1 (Global and linear convergence of the Super-
Mann scheme). Consider the iterates generated by the Super-
Mann scheme (Alg. 2) with (dk)k∈� selected so as to satisfy
Assumption II. Then,

(i) (xk)k∈� is quasi-Fejér monotone with respect to fix T;

(ii) τk = 1 if dk = 0, and τk ≥ min
{
β 1−σ

4αD , 1
}

otherwise.

(iii) Rxk → 0 with (‖Rxk‖)k∈� ∈ `2;
(iv) (xk)k∈� converges weakly to a point x? ∈ fix T;
(v) if c0 > 0 the number of blind updates at step 3 is infinite.

Moreover, if (xk)k∈� converges strongly to a point x? (this
being true if H is finite dimensional) at which R is metrically
subregular, then

(vi) (xk)k∈� and (Rxk)k∈� are R-linearly convergent.

Proof. See Appendix B.

B. Superlinear convergence

Though global convercence of the SuperMann scheme is
independent of the choice of the directions dk, its performance
and tail convergence surely does. We characterize the quality
of the directions dk in terms of the following definition.

Definition VI.2 (Superlinear directions for the SuperMann
scheme). Relative to the sequence (xk)k∈� generated by the
SuperMann scheme, we say that (dk)k∈� ⊂ H are superlinear
directions if the following limit holds

lim
k→∞
‖R(xk + dk)‖
‖Rxk‖ = 0.

Remark VI.3. Definition VI.2 makes no mention of a limit
point x? of the sequence (xk)k∈�, differently from the definition
in [8] which instead requires ‖xk+dk−x?‖

‖xk−x?‖ to be vanishing with no
mention of R. Due to 2α-Lipschitz continuity of R, whenever
the directions dk are bounded as in (17) we have

‖R(xk + dk)‖
‖Rxk‖ ≤ 2αD

‖xk + dk − x?‖
‖dk‖ .

Invoking [8, Lem. 7.5.7] it follows that Definition VI.2 is im-
plied by the one in [8] and is therefore more general.

Theorem VI.4. Consider the iterates generated by the Su-
perMann scheme (Alg. 2) with either c0 > 0 or c1 > 0, and
with (dk)k∈� being superlinear directions as in Definition VI.2.
Then,

(i) eventually, stepsize τk = 1 is always accepted and safe-
guard updates K2 are deactivated (i.e., the scheme re-
duces to the local method xk+1 = xk + dk);

(ii) (Rxk)k∈� converges Q-superlinearly;
(iii) if the directions dk satisfy Assumption II, then (xk)k∈�

converges R-superlinearly;
(iv) if c0 > 0, then the complement of K0 is finite.

Proof. See Appendix B.

Theorem VI.4 shows that when the directions dk are good,
then eventually the SuperMann scheme reduces to the local
method xk+1 = xk + dk and consequently inherits its local con-
vergence properties. The following result specializes to the
choice of semismooth Newton directions.

Corollary VI.5 (Superlinear convergence for semismooth
Newton directions). Suppose that H is finite dimensional, and
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Algorithm 2 SuperMann scheme for solving (3), given an α-averaged operator T with residual R = id − T

Require x0 ∈ H , c0, c1, q ∈ [0, 1), β, σ ∈ (0, 1), λ ∈ (0, 1/α).
Initialize η0 = rsafe = ‖Rx0‖, k = 0

1. If Rxk = 0, then stop.
2. Choose an update direction dk ∈ H
3. (K0) If ‖Rxk‖ ≤ c0ηk, then set ηk+1 = ‖Rxk‖, proceed with a blind update xk+1= wkB xk+dk and go to step 6.
4. Set ηk+1 = ηk and τk = 1.
5. Let wk = xk + τkdk.

5(a) (K1) If the safe condition ‖Rxk‖ ≤ rsafe holds and wk is educated:
‖Rwk‖ ≤ c1‖Rxk‖

then set xk+1 = wk, update rsafe = ‖Rwk‖ + qk, and go to step 6.
5(b) (K2) If ρk B ‖Rwk‖2 − 2α〈Rwk,wk − xk〉 ≥ σ‖Rwk‖‖Rxk‖
then set

xk+1 = xk − λ ρk

‖Rwk‖2 Rwk

otherwise set τk ← βτk and go to step 5.
6. Set k ← k + 1 and go to step 1.

that R is semismooth. Consider the iterates generated by the
SuperMann scheme (Alg. 2) with either c0 > 0 or c1 > 0 and
directions dk chosen as solutions of

(Gk + µkid)dk = −Rxk for some Gk ∈ ∂Rxk (18)

where ∂R denotes the Clarke generalized Jacobian of R and
0 ≤ µk → 0. Suppose that the sequence (xk)k∈� converges to
a point x? at which all the elements in ∂R are nonsingular.

Then, (dk)k∈� are superlinear directions as in Definition
VI.2, and in particular all the claims of Theorem VI.4 hold.

Proof. Any Gk ∈ ∂R is positive semidefinite due to the mono-
tonicity of R, and therefore dk as in (18) is well defined for
any µk > 0. The bound (17) holds due to [8, Thm. 7.5.2].
Moreover,

‖Rxk + Gkdk‖
‖dk‖ = µk → 0

as k → ∞, and the proof follows by invoking [8, Thm. 7.5.8(a)]
and Rem. VI.3.

Notice that since ∂R = id − ∂T , nonsingularity of the el-
ements in ∂R(x?) is equivalent to having ‖G‖ < 1 for all
G ∈ ∂T (x?), i.e., that T is a local contraction around x?.

Despite the favorable properties of semismooth Newton
methods, in this paper we are oriented towards choices of di-
rections that (1) are defined for any nonexpansive mapping,
regardless of the (generalized) first-order properties, and that
(2) require exactly the same oracle information as the original
KM scheme. This motivates the investigation of quasi-Newton
directions, whose superlinear behavior is based on the classi-
cal Dennis-Moré criterion, which we provide next. We first
recall the notions of semi- and strict differentiability.

Definition VI.6. We say that R : H → H is
(i) strictly differentiable at x̄ if it is differentiable there with

JR(x̄) satisfying

lim
(y,z)→(x̄,x̄)

y,z

‖Ry − Rx − JR(x̄)(y − x)‖
‖y − x‖ = 0; (19)

(ii) semidifferentiable at x̄ if there exists a continuous and
positively homogeneous function DR(x̄) : H → H ,
called the semiderivative of R at x̄, such that

Rx = Rx̄ + DR(x̄)[x − x̄] + o(‖x − x̄‖);
(iii) calmly semidifferentiable at x̄ if there exists a neigh-

borhood U x̄ of x̄ in which R is semidifferentiable and
such that for all w ∈ H with ‖w‖ = 1 the function
U x̄ 3 x 7→ DR(x)[w] is Lipschitz continuous at x̄.

There is a slight ambiguity in the literature, as strict differ-
entiability is sometimes referred to rather as strong differentia-
bility [22], [23]. We choose to stick the proposed terminology,
following [20]. Semidifferentiability is clearly a milder prop-
erty than differentiability in that the mapping DR(x̄) need not
be linear. More precisely, since the residual R of a nonexpan-
sive operator is (globally) Lipschitz continuous, then semid-
ifferentiability is equivalent to directional differentiability [8,
Prop. 3.1.3] and the semiderivative is sometimes called B-
derivative [22], [8]. The three concepts in Definition VI.6 are
related as (iii) ⇒ (i) ⇒ (ii) [23, Thm. 2] and neither requires
the existence of the (classical) Jacobian around x̄.

Theorem VI.7 (Dennis-Moré criterion for superlinear con-
vergence). Consider the iterates generated by the SuperMann
scheme (Alg. 2) and suppose that (xk)k∈� converges strongly
to a point x? at which R is strictly differentiable. Suppose fur-
ther that the update directions (dk)k∈� satisfy Assumption II
and the Dennis-Moré condition

lim
k→∞
‖Rxk + JR(x?)dk‖

‖dk‖ = 0. (20)

Then, the directions dk are superlinear as in Definition VI.2.
In particular, all the claims of Theorem VI.4 hold.

Proof.

0
(20)
= lim

k→∞

∥∥∥Rxk + JR(x?)dk + R(xk + dk) − R(xk + dk)
∥∥∥

‖dk‖

= lim
k→∞

∥∥∥R(xk + dk)
∥∥∥

‖dk‖
(17)
≥ 1

D
lim
k→∞

∥∥∥R(xk + dk)
∥∥∥

‖Rxk‖ ,
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where in the second equality we used strict differentiability of
R at x?.

C. A modified Broyden’s direction scheme

In practical application the Hilbert space H is finite dimen-
sional, and consequently it can be identified with �n. Then,
the computation of quasi-Newton directions dk in the Super-
Mann scheme amounts to selecting

dk = −B−1
k Rxk, (21a)

where Bk ∈ �n×n are recursively defined by low-rank updates
satisfying a secant condition, starting from an invertible ma-
trix B0. The most popular quasi-Newton scheme is the 2-rank
BFGS formula, which also enforces symmetricity. As such,
BFGS is well performing only when the Jacobian at the so-
lution JRx? possesses this property, a requirement that is not
met by the residual R of generic nonexpansive mappings.

For this reason we consider Broyden’s method as a univer-
sal alternative. We adopt Powell’s modification [10] to enforce
nonsingularity and make (21a) well defined: for a fixed param-
eter ϑ̄ ∈ (0, 1), matrices Bk are recursively defined as

Bk+1 = Bk + 1
‖sk‖22

(
ỹk − Bk sk

)
s>k, (21b)

where for γk B
〈B−1

k yk ,sk〉2
‖sk‖22

we have defined
sk = wk − xk

yk = Rwk − Rxk

ỹk = (1 − ϑk)Bk sk + ϑkyk

ϑk B

1 if |γk | ≥ ϑ̄
1−sgn(γk)ϑ̄

1−γk
if |γk |< ϑ̄ (21c)

with the convention sgn 0 = 1. Letting Hk B B−1
k and using

the Sherman-Morrison identity, the inverse of Bk is given by

Hk+1 = Hk + 1
〈Hk ỹk ,sk〉2

(
sk − Hkỹk

)(
s>kHk

)
. (21d)

Consequently, there is no need to compute and store the ma-
trices Bk and we can directly operate with their inverses Hk.

Theorem VI.8 (Superlinear convergence of the SuperMann
scheme with Broyden’s directions). Suppose that H is finite
dimensional. Consider the sequence (xk)k∈� generated by the
SuperMann scheme (Alg. 2), (dk)k∈� being selected with the
modified Broyden’s scheme (21) for some ϑ̄ ∈ (0, 1).

Suppose that (Hk)k∈� remains bounded, and that R is calmly
semidifferentiable and metrically subregular at the limit x?
of (xk)k∈�. Then, (dk)k∈� satisfies the Dennis-Moré condition
(20). In particular, all the claims of Theorem VI.7 hold.

Proof. See Appendix B.

Remark VI.9. It follows from Theorem VI.1(iv) that the Su-
perMann scheme is globally convergent as long as ‖dk‖ ≤
D‖Rxk‖ for some constant D. To enforce it we may select
a (large) constant D > 0 and as a possible choice truncate
dk ← D ‖Rxk‖

‖dk‖ dk whenever dk does not satisfy (17).

Let us observe that in order to achieve superlinear con-
vergence the SuperMann scheme does not require nonsingu-
larity of the Jacobian at the solution. This is the standard re-
quirement for asymptotic properties of quasi-Newton schemes,
which is needed to show first that the method converges at
least linearly. [24] generalizes this property invoking the con-
cepts of (strong) metric (sub)regularity (see also [19] for an

extensive review on these properties). However, if R is strictly
differentiable at x?, then strong subregularity, regularity and
strong regularity are equivalent to injectivity, surjectivity and
invertibility of JR(x?), respectively, these conditions being all
equivalent for mappings H → H with H finite dimensional.
In particular, contrary to the SuperMann scheme standard ap-
proaches require the solution x? at least to be isolated.

Restarted (modified) Broyden’s scheme: Broyden’s scheme
requires storing and operating with n× n matrices, where n is
the dimension of the optimization variable, and is consequently
feasible in practice only for small problems. Alternatively, one
can restrict Broyden’s update rule (21d) to only the most recent
pairs of vectors (si, yi). As detailed in Algorithm 3, this can be
done by keeping track of the last vectors si and some auxiliary
vectors s̃i =

si−Hi ỹi
〈si,Hi ỹi〉2 . These are stored in some buffers S and S̃ ,

which are initially empty and can contain up to m vectors. The
memory m is a small integer typically between 3 and 20; when
the memory is full, the buffers are emptied and Broyden’s
scheme is restarted. The choice of a restarted rather than a
limited-memory variant obviates the need of a nested for-loop
to account for Powell’s modification.

Algorithm 3 Restarted Broyden’s scheme with memory m
using Powell’s modification
Input: old buffers S , S̃ ; new pair (s, y); current Rx
Output: new buffers S , S̃ ; update direction d
1: d ← −Rx, s̃← y
2: for i = 1 . . . #S do

s̃← s̃ + 〈si, s̃〉2 s̃i, d ← d + 〈si, d〉2 s̃i

3: end for
4: compute ϑ as in (21c) with γ = 1

‖s‖22
〈s̃, s〉2

5: s̃← ϑ
(1−ϑ+ϑγ)‖s‖22

(s − s̃), d ← d + 〈s, d〉2 s̃
6: if #S = m then S , S̃ ← [ ] else S ← [S , s], S̃ ← [S̃ , s̃]

D. Parameters selection in SuperMann
As shown in Theorem VI.4, the SuperMann scheme makes

sense as long as either c0 > 0 or c1 > 0; indeed, safeguard K2-
steps are only needed for globalization, while it is blind K0-
and educated K1-steps that exploit the quality of the directions
dk. Evidently, K1-updates are more reliable than K0-updates in
that they take into account the residual of the candidate next
point. As such, it is advisable to select c1 close to 1 and use
small values of c0 if more conservatism and robustness are
desired. To further favor K1-updates, the parameter q used for
updating the safeguard rsafe at step 5(a) may be also chosen
very close to 1.

As to safeguard K2-steps, a small value of σ makes condi-
tion (15) easier to satisfy and results in fewer backtrackings;
the averaging factor λ may be chosen equal to 1 whenever
possible, i.e., if α � 1 (which is the typical case when, e.g.,
T comes from splitting schemes in convex optimization), or
any close value otherwise. In the simulations of Section VII
we used c0 = c1 = q = 0.99, σ = 0.1, λ = 1 and β = 1/2. For
a matter of scaling, we multiplied the summable term qk by
‖Rx0‖ in updating the parameter rsafe at step 5(a). The direc-
tions were computed according to the restarted modified Broy-
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den’s scheme (Alg. 3) with memory m = 20 and ϑ̄ = 0.2; we
applied the truncation rule as in Remark VI.9 with D = 104.
We also imposed a maximum of 8 backtrackings after which
a nominal fixed-point iteration would be executed.

E. Comparisons with other methods

1) Hybrid global and local phase algorithms: Blind K0-
updates in the SuperMann scheme are inspired from [17, Alg.
1], and so is the notation K0 = {k0, k1, . . .}.

Educated K1- and safeguard K2-updates instead play the
role of inner- and outer-phases in the general algorithmic
framework described in [9, §5.3] for finding a zero of a candi-
date merit function ϕ (e.g. ϕ(x) = 1

2 ‖Rx‖2 in our case). Differ-
ently from [9, Alg. 5.16] where all previous inner-phase itera-
tions are discarded as soon as the required sufficient decrease
is not met, the SuperMann scheme allows for an alternation
of phases that eventually stabilizes on the fast local one, pro-
vided the solution is sufficiently regular. Our scheme is more
in the flavor of [9, Alg. 5.19], although with less conserva-
tive requirements for triggering inner K1-updates (ϕ(xk+1) is
here compared with ϕ(xk), whereas in the cited scheme with
the smallest past value).

2) Inexact Newton methods for monotone equations: The
GKM updates are closely related to the extra-gradient steps
described in [25, Alg. 2.1]. This work introduces an inexact
Newton algorithm for solving systems of continuous monotone
equations Rx = 0, where id− R need not be nonexpansive. At
a given point x, first a direction d is computed as (possibly
approximate) solution of Gd = −Rx, where G is some positive
definite matrix; then, an intermediate point w = x + τd is
retrieved with a linesearch on τ that ensures the condition

‖Rw‖2 − 〈Rw, x − Tw〉 ≤ − στ‖d‖2 (22)
for some σ > 0; here, we defined T B id − R to highlight
the symmetry with (10). Finally, the new iterate is given by
x+ = ΠHw x, where

Hw B
{
z ∈ H | ‖Rw‖2 − 〈Rw, z − Tw〉 ≥ 0

}
. (23)

Letting Cw be the half-space as in Prop. V.2, so that x+
GKM

=

ΠCw x (for simplicity we set λ = 1), for the half-spaces (23) it
holds that

zer R ⊆ Cw ⊆ Hw,

the last inclusion holding as equality iff Rw = 0. This means
that in the GKM scheme, the same w yields an iterate x+

GKM

which is closer to any z ∈ zer R with respect to x+ (cf. Fig.
4). Notice further that the hyperplanes delimiting the two half-
spaces are parallel, with bdry Cw passing by Tw (or T1/2αw for
generic α’s) and bdry Hw by w.

The requirement of positive definiteness of matrix G in
defining the update direction d is due to the fact that [25]
addresses a broader class of monotone operators; we instead
exploited at full the nonexpansiveness of id − R and as a re-
sult have complete freedom in selecting d (Fig. 4a) and better
projections (Fig. 4c).

Moreover, it can be easily verified that the proposed extra-
gradient step does not extend the classical KM iteration unless
T has a very peculiar property, namely that Rx =

〈RT x,Rx〉
‖Rx‖2 RT x

for every x. (In particular, for such a T necessarily ‖Rx‖ =

‖RT x‖ for all x, and consequently there cannot exist α ∈ (0, 1)
for which T is α-averaged).

3) Line-search for KM: The recent work [13] proposes an
acceleration of the classical KM scheme for finding a fixed
point of an α-averaged operator T based on a linesearch on the
relaxation parameter. Namely, instead of the nominal update
x̄ = Tλx with λ ∈ [0, 1/α] as in (9), values λ′ > 1/α are first
tested and the update x+ = Tλ′ x is accepted as long as ‖Rx+‖ ≤
c1‖Rx̄‖ holds for some constant c1 ∈ (0, 1).

In the setting of the SuperMann scheme, this corresponds
to selecting dk = −Rxk, discarding blind updates (i.e., setting
c0 = 0), foretracking educated updates and using plain KM it-
erations as safeguard steps. Convergence can be enhanced and
the method is attractive when T = S 2 ◦ S 1 is the composition
of an affine mapping S 1 and a cheap operator S 2, in which
case the linesearch is inexpensive. However, though preserv-
ing the same theoretical convergence guarantees of KM (hence
of the SuperMann scheme), it does not improve its best-case
local linear rate.

Although other choices dk may also be considered, however
fast directions such as Newton-type ones would be discarded
and replaced by nominal KM updates every time the candi-
date point xk + dk does not meet some requirements. Avoiding
this take-it-or-leave-it behavior is exactly the primary goal of
GKM iterations, so that candidate good directions are never
discarded.

4) Smooth optimization with envelope functions: For solv-
ing nonsmooth minimization problems in composite form,
[26], [27] introduced forward-backward envelope (FBE) and
Douglas-Rachford envelope (DRE) functions. The original
nonsmooth problem is recast into the minimization of contin-
uous (possibly continuously differentiable) real-valued exact
penalty functions closely related to FBS and DRS, named en-
velopes due to their kinship with the Moreau envelope and the
proximal point algorithm. This paved the way for the employ-
ment of fast methods for smooth unconstrained minimization
problems [26], [27], [28], or for globalizing convergence of
fast methods for solving nonlinear equations [29], [30]. Al-
though they have the advantage of being suited for noncon-
vex problems, however their employment is limited to com-
posite operators as described above and they cannot handle,
for instance, saddle-point convex-concave optimization prob-
lems typically arising from primal-dual splittings such as Vũ-
Condat [31]. The SuperMann scheme instead offers a unifying
framework that is based uniquely on evaluations of the non-
expansive mapping T , regardless of their structure.

VII. Simulations – Linear optimal control

For matrices At and Bt of suitable size, t = 0, . . . ,N − 1,
consider a state-input dynamical system

xt+1 = At xt + Btut, t = 0, . . . ,N − 1, (24a)

where the x0 ∈ �nx is given, and the next states xt ∈ �nx are
determined by the user-defined inputs uτ ∈ �nu , τ = 0, . . . , t−1.
States x = (x1, . . . , xN) can be expressed in terms of the inputs
u = (u0, . . . , uN−1) through a linear operator L ∈ �Nnx×Nnu as
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Figure 4: The positive definiteness of G prevents the update directions d in the scheme of [25] to point in the gray-shaded area. As
a result, differently from the GKM scheme the cited algorithm is not robust to any choice of direction (e.g., it cannot accept the one
as in Figure 3). In any case, the half-space Cw onto which x is projected according to the GKM scheme is properly contained in the
half-space Hw corresponding to the update of [25]; consequently, the GKM update is always closer to any solution.

x = Lu + b for some constant b ∈ �Nnx . The goal is to choose
inputs that minimize a cost

`(u, x) =

N−1∑
t=0

`t(ut, xt) + `N(xN) (24b)

subject to some constraints
xt+1 ∈ Xt+1, ut ∈ Ut, t = 0, . . . ,N − 1. (24c)

A. Vũ-Condat splitting

The constraint sets in (24c) are typically simple and easy to
project onto (boxes, Euclidean balls. . . ). However, while sim-
ple input constraints can be easily handled, due to the coupling
enforced by the dynamics (24a) expressing Xt+1 in terms of
the optimization variable u results in much more complicated
sets (polyhedra, ellipsoids. . . ). To avoid this complication we
make use of the extremely versatile algorithm that Vũ-Condat
three-term splitting offers [31, Alg. 3.1]. In its general form,
the algorithm addresses problems of the form

minimize
x∈�n

f (x) + g(x) + h(Lx), (25)

where f : �n → � is convex with L f -Lipschitz continuous
gradient, g : �n → � and h : �m → � are convex, and
L ∈ �n×m, by iterating the following steps:{

x+ = proxτg
(
x − τ(∇f (x) + L>y)

)
y+ = proxτh∗

(
y + σL(2x+ − x)

)
.

(26)

Here, 0 < τ < 2
L f

and 0 < σ < 1
‖L‖2

( 1
τ
− L f

2
)

are stepsizes,
and y ∈ �m is a Lagrange multiplier. Vũ-Condat splitting is a
primal-dual method that generalizes FBS by allowing an extra
nonsmooth term h and a linear operator L (by neglecting h
and L one recovers the proximal gradient iterations of FBS).

The optimal control problem (24) can be cast into Vũ-
Condat splitting form (25) by letting f (u) = `(u, Lu), g = δU
and h = δX( · + b),1 where U = U0 × · · · × UN−1 and
X = X1 × · · · × XN (in particular, n = Nnu and m = Nnx).
Then, proxτg = ΠU and proxσh∗ (y) = y −σΠX(σ−1y + b) + b.

1δC denotes the indicator function of the nonempty closed convex set C,
namely δC(x) = 0 if x ∈ C and δC(x) = ∞ otherwise.

Notice that ΠU and ΠX are fully decoupled as the projection
of each input and state onto the corresponding constraint set.
Moreover, there is no need to compute the full matrix L, as
both L and L>can be treated as abstract operators that simulate
forward and backward dynamics.

Apparently, the appeal of Vũ-Condat splitting in addressing
the optimal control problem lies in the extreme simplicity of
its operations and low memory requirements, making it par-
ticularly suited for medium-to-large-scale problems in which
traditional interior point algorithms fail. However, like all first-
order methods it is extremely sensitive to ill conditioning,
which gets worse as the problem size increases. Fortunately,
this splitting fits into the SuperMann framework. The operator
T that maps (x, y) into (x+, y+) as in (26) is averaged in the
Hilbert space HP, where HP is defined as �n ×�m equipped
with the scalar product 〈z, z′〉P B 〈z, Pz′〉 with P B

(
τ−1I −L>

−L σ−1I

)
[31, proof of Thm. 3.1].

B. Oscillating masses experiment

We tried this approach on the benchmark problem of con-
trolling a chain of oscillating masses connected by springs and
with both ends attached to walls. The chain is composed of
2K bodies of unit mass subject to a viscous friction of 0.1,
the springs have elastic constant 1 and no damping, and the
system is controlled through K actuators, each being a force
acting on a pair of masses, as depicted in Figure 5. Therefore
nx = 4K (the states are the displacement from the rest posi-
tion and velocity of each mass) and nu = K. The inputs are
constrained in [−2, 2], while the position and velocity of each
mass is constrained in [−5, 5].

The continuous-time system was discretized with a sam-
pling time Ts = 0.1s. We considered quadratic stage costs
1
2 x>Qx for the states and 1

2 u>u for the inputs, where Q is diag-
onal positive definite with random diagonal entries, and gen-
erated a random (feasible) initial state x0. Notice that a QP
reformulation would require the computation of the full cost
matrix, differently from the splitting approach where only the
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Figure 5: Oscillating masses

Number of calls to L and L> (×103)
K = 8 N = 10 N = 20 N = 30 N = 40 N = 50

avg max avg max avg max avg max avg max
VC 19.0 337.1 15.0 174.4 25.0 400+ 21.0 136.5 16.0 61.9

SVC 1.0 5.5 1.0 4.3 2.0 19.3 2.0 10.9 2.0 6.6

K = 16 N = 10 N = 20 N = 30 N = 40 N = 50
avg max avg max avg max avg max avg max

VC 62.0 400+ 30.0 344.9 30.0 400+ 65.0 400+ 29.0 318.6
SVC 4.0 39.5 2.0 11.6 3.0 46.6 8.0 58.1 3.0 26.1

Table I: Comparison between Vũ-Condat algorithm (VC) and
its “super” enhancement (SuperVC) in solving the oscillating
masses problem with ‖Rxk‖ ≤ 10−4‖Rx0‖ as termination cri-
terion. Average and worst performances among 25 simulations
with randomly generated starting point x0 for each combination
of K ∈ {8, 16} and N ∈ {10, 20, 30, 40, 50}. The tables compare
the number of calls to the operators L and L>, which are the ex-
pensive operations (the rest are projections on boxes). In four
problems Vũ-Condat exceeded 4·105 many calls (corresponding
to 105 iterations) and was stopped prematurely.

small dynamics matrices A and B are needed, as L and L> can
be abstract operators.

We simulated different scenarios for all combinations of K ∈
{8, 16} and N ∈ {10, 20, 30, 40, 50}. We compared Vu-Condat
splitting (VC) with its ‘super’ enhancement (SuperVC); pa-
rameters were set as detailed in Section VI-D. Figure 6 shows
a comparison of the convergence rates for one problem in-
stance, while Table I offers an overview of the whole experi-
ment: SuperVC is roughly 13 times faster on average and 21
times better in worst-case performance than VC algorithm in
reaching the termination criterion ‖Rxk‖ ≤ 10−4‖Rx0‖.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

·104
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10−6
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10−4

10−3

10−2

10−1

100

101

#calls to L and L>

‖R
x‖

Vũ-Condat
Super Vũ-Condat

Figure 6: Random simulation of the spring-mass control prob-
lem with K = 8 and N = 30.

VIII. Conclusions

We proposed the SuperMann scheme (Alg. 2), a novel al-
gorithm for finding fixed points of a nonexpansive operator
T that generalizes and greatly improves the classical Kras-
nosel’skiı̌-Mann (KM) scheme, enjoying the same favorable
properties: global convergence with worst-case sublinear rate,
cheap iterations based solely on evaluations of T , and easy
codability. The SuperMann scheme is an extremely versatile
algorithm, its flexibility being twofold: on one hand it works
for any nonexpansive operator T by requiring only the ora-
cle x 7→ T x; on the other hand it allows for the integration of
any fast local method for solving nonlinear equations, leav-
ing much freedom for trading off cheap iterations or faster
convergence. The remarkable performance of the method is
supported both in practice with promising simulations and in
theory where the employment of quasi-Newton directions is
shown to yield asymptotic superlinear convergence rates pro-
vided a condition analogous to the famous result by Dennis
and Moré is satisfied. Most importantly, superlinear conver-
gence does not require nonsingularity of the Jacobian of the
residual at the solution but merely metric subregularity, and as
such can be achieved even when the solution is not isolated.

We encourage the employment of the SuperMann scheme to
improve and robustify convex splitting algorithms; in particu-
lar, we strongly believe that its integration in generic solvers
which are based on fixed-point iterations of nonexpansive op-
erators such as SCS [32] would be extremely beneficial.
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Appendix A
Proofs of Section IV

Proof of Theorem IV.1.

♠ IV.1(i): we start observing that because of (6) and the tri-
angular inequality, for all k ∈ K0 ∪ K1 we have

‖xk+1 − z‖ ≤ ‖xk − z‖ + D‖Rxk‖ ∀z ∈ fix T, (27)

and since R is 2α-Lipschitz continuous we also have that

‖Rxk+1‖ ≤ (1 + 2αD)‖Rxk‖. (28)

By combining [15, Prop. 3.2(i)] with (4) and (27), it follows
that in order to prove quasi-Fejér monotonicity it suffices to
show that the sequence (‖Rxk‖)k∈K0∪K1

is summable. Let K0 and

K1 be indexed as in (5). Since ηk is kept constant whenever
k < K0,

ηk` = ‖Rxk`−1‖ ≤ c0ηk`−1 · · · ≤ c`−1
0 ηk1 = c`−1

0 η0. (29)
In particular, (‖Rxk`‖)k`∈K0

is summable (regardless of whether
K0 is finite or not).
As for k′` ∈ K1, the safeguard parameter rsafe ensures that

‖Rxk′
`
‖ ≤ ‖Rxk′

`−1+1‖ + qk′`−1 ≤ c1‖Rxk′
`−1
‖ + qk′`−1

≤ c1‖Rxk′
`−1
‖ + q`−1.

By iterating the inequality, for any ρ ∈ (0, 1) such that ρ >
max {c1, q} we have

‖Rxk′
`
‖ ≤ ρ`−1‖Rxk′1‖ +

`−1∑
i=1

ci−1
1 ρ`−i ≤ Cρ`, (30)

where C B 1
ρ

(
‖Rxk′1‖ +

∑
i∈� (c1/ρ)i

)
< ∞. In particular, also

(‖Rxk‖)k∈K1
is summable.

♠ IV.1(ii): due to quasi-Fejér monotonicity, for all z ∈ fix T
there exists (εk(z))k∈� ∈ `+

1 such that
‖xk+1 − z‖2 ≤ ‖xk − z‖2 + εk(z).

By combining this with (4) and telescoping the inequalities,
we obtain that for all z ∈ fix T

‖x0 − z‖2 ≥ σ
∑
k∈K2

‖Rxk‖2 −
∑

k∈K0∪K1

εk(z). (31)

Since the sequence (εk(z))k∈K0∪K1
is summable, then so is

(‖Rxk‖2)k∈K2
. In turn, since (‖Rxk‖)k∈K0∪K1

is also summable
it follows that the whole sequence of residuals is square-
summable.
♠ IV.1(iii): follows by combining IV.1(ii) with Thm. III.3.
♠ IV.1(iv): trivially follows from the already proven point
IV.1(ii), together with the observation that since ηk is kept
constant whenever k < K0, the condition ‖Rxk‖ ≤ c0ηk will be
satisfied infinitely often if c0 > 0.

We now state two lemmas which will be needed in the proof
of Theorem IV.3.

Lemma A.1 (Asymptotic properties of K0 and K1). Suppose
the hypotheses of Theorem IV.1 hold and let (xk)k∈� be the
sequence generated by Algorithm 1. Then,

(i) (‖Rxk‖)k∈K0
is Q-linearly convergent;

(ii) (‖Rxk‖)k∈K1
is R-linearly convergent;

(iii) if c0 > 0 then for some % ∈ (0, 1] and β ∈ �
`0(k) ≥ % `1(k) − β ∀k ∈ �,

where ` j(k) B #
{
k′ ∈ K j | k′ ≤ k

}
, j = 0, 1, 2, is the num-

ber of times K j was visited up to iteration k.

Proof.
♠ A.1(i) and A.1(ii): already shown in (29) and (30).
♠ A.1(iii): if c1 = 0, then K1 = ∅ and the claim trivially holds
with % = 1 and β = 0. Otherwise, from (30) and due to the
definition of `1(k) there exist C > 0 and ρ ∈ (0, 1) such that

‖Rxk‖ ≤ Cρ`1(k) ∀k ∈ K1.

If k ∈ K1, then ‖Rxk‖ didn’t pass the test at step 2, therefore

Cρ`1(k) ≥ ‖Rxk‖ ≥ ηk

(29)
= ‖Rx0‖c`0(k)

0 .

The proof now follows by simply taking the logarithm on the
outer inequality.
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Lemma A.2. Let (uk)k∈� ⊂ [0,+∞) be a sequence, and let
K1,K2 ⊆ � be such that � = K1 ∪ K2. Let K1 be indexed
as K1 =

{
k′0, k

′
1 . . .

}
, and suppose that there exist a, b > 0 and

ρ ∈ (0, 1) such that
uk+1 ≤ auk for all k ∈ �,

uk′
`
≤ bρ` for all k′` ∈ K1,

uk+1 ≤ ρuk for all k ∈ K2.

Then, there exists σ ∈ (0, 1) such that uk ≤ abσk.

Proof. To exclude trivialities we assume that K1 and K2 are
both infinite. To arrive to a contradiction, for all σ ∈ (0, 1) let
k = k(σ) be the minimum such that uk > abσk. Let σ ≥ ρ be
fixed. If k − 1 ∈ K2, then

ρuk−1 ≥ uk > abσk ≥ abρσk−1

and therefore uk−1 > abσk−1 which contradicts minimality of
k. It follows that necessarily k− 1 ∈ K1, hence k− 1 = k′` ∈ K1
for some ` ∈ �. For all n ∈ �, let k′`n

= k(ρ1/n) − 1, i.e., the

minimum such that uk′
`n

+1 > abρ
k′
`n

+1

n . By combining with the
property of K1 we obtain

abρ
k′
`n

+1

n < uk′
`n

+1 ≤ auk′
`n
≤ abρ`n , (32)

and in particular `n ≤ k′`n
n . This means that up to k = k′`n

there
are at most k/n elements in K1, and consequently at least k− k/n

in K2. Therefore,

bρ
k+1

n
(32)
< uk ≤ ak/nρk−k/nu0.

After taking the k-th square root on the outer inequality we
are left with

(1/ρ)1−2/n−1/nk < (u0/b)1/ka1/n.

By letting n → +∞, so that also k → +∞, we arrive to the
contradiction ρ ≥ 1.

Proof of Theorem IV.3. Letting ek B dist(xk,fix T ), because
of (28) and (8) there exists B > 1 such that

‖Rxk+1‖ ≤ B‖Rxk‖ and ek+1 ≤ Bek ∀k ∈ �. (33)
Suppose that R is metrically subregular at x? with radius
ε > 0 and modulus γ > 0; since xk → x?, up to an in-
dex shifting without loss of generality we may assume that
(xk)k∈� ⊂ B(x?; ε). Let zk = Πfix T xk, so that ek = ‖xk − zk‖;
by combining (4) and (8) we obtain that for all k ∈ K2

e2
k+1 ≤ ‖xk+1 − zk‖2 ≤ ‖xk − zk‖2 − σ‖Rxk‖2 ≤ ρ2e2

k , (34)
where ρ B

√
1 − σ/γ2 ∈ (0, 1). By possibly enlarging ρ we may

assume ρ ≥ max {c0, c1}.
If c0 = 0, then K0 = ∅ and using Lem. A.1(ii) and (33)

we may invoke Lem. A.2 to infer R-linear convergence of the
sequence (ek)k∈� and conclude the proof.

Therefore, let us suppose that c0 > 0, so that by Thm.
IV.1(iv) the set K0 contains infinite many indices. We now
show that there exists n ∈ � such that every n consecutive in-
dices at least one is in K0. Let k ∈ K0 be fixed and suppose
that k + 1 . . . k + n + 1 < K0.
• If c1 = 0 then K1 = ∅ and all such indices belong to K2.

Then,

‖Rxk+n+1‖
(8)
≤ 2αek+n+1

(34)
≤ 2αρnek+1

(33)
≤ 2αBρnek

(8)
≤ 2αγBρn‖Rxk‖.

Since k + n + 1 < K0, then ‖Rxk+n+1‖ failed the test at step
3 and therefore

c0‖Rxk‖ = c0ηk+n+1 < ‖Rxk+n+1‖ ≤ 2αγBρn‖Rxk‖,
which proves that n cannot be arbitrarily large.

• If instead c1 > 0, let n1 be the number of indices among
k + 1 . . . k + n that belong to K1, and n2 = n − n1 those
belonging to K2. Then, from iteration k + 1 to k + n + 1
the distance from the fixed set has reduced n2 times (at
least) by a factor ρ and, due to (33), increased at most
by a factor B the remaining n1 times:

‖Rxk+n+1‖
(8)
≤ 2αek+n+1 ≤ 2αρn2 Bn1 ek+1

(33)
≤ 2αρn2 Bn1+1ek

(8)
≤ 2αγρn2 Bn1+1‖Rxk‖.

Again, since k + n + 1 < K0 we have c0‖Rxk‖ <
2αγρn2 Bn1+1‖Rxk‖, and therefore

n1 >
ln c0/2αγ

ln B − 1 +
ln 1/ρ
ln B n2.

In particular, for large n the number n1 of indices in K1
grows proportionally with respect to n, and from Lem.
A.1(iii) we conclude once again that n cannot be arbi-
trarily large (since the number of visits to K0 does not
change from k + 1 to k + n).

So far we proved that there exists n ∈ � such that every
n indices at least one belongs to K0. In particular, indexing
K0 = {k0, k1 · · ·} we have that k` ≤ n`, hence for all k` ∈ K0

‖Rxk`‖ ≤ c`0‖Rx0‖ ≤ (
c1/n

0
)k`‖Rx0‖. (35)

Moreover, any k ∈ � is at most n − 1 indices away from
the nearest previous index k` ∈ K0; combined with (35) and
invoking (33) we obtain

‖Rxk‖ ≤ Bn−1‖Rx0‖(c1/n

0
)k` ≤ Bn−1‖Rx0‖(c1/n

0
)k
,

proving the sought R-linear convergence of (‖Rxk‖)k∈�. It fol-
lows that for some b > 0 and r ∈ (0, 1) we have ‖Rxk‖ ≤ brk

for all k ∈ �; then,
‖xk − x?‖ ≤

∑
j≥k

‖x j+1 − x j‖ ≤ D
∑
j≥k

‖Rx j‖ ≤ bD
∑
j≥k

r j

=
bD

1 − r
rk,

where in the second inequality we used the bound (6), which
also holds for k ∈ K2 (up to possibly enlarging D) due to the
fact that for k ∈ K2 under metric subregularity we have

‖xk+1 − xk‖ ≤ ‖xk+1 − zk‖ + ‖xk − zk‖ ≤ 2ek

(8)
≤ 2γ‖Rxk‖.

This shows that (xk)k∈� is R-linearly convergent too.

Appendix B
Proofs of Section VI

Proof of Theorem VI.1. Because of Thm. V.4 we know that
for any direction dk a feasible stepsize τk complying with
the requirements of step 5(b) will eventually be found, lower
bounded as in VI.1(ii) due to Thm. V.4 and Assumption II. In
particular, the scheme is well defined. Moreover, from Prop.
V.2(ii) we have that there exists a constant σ > 0 such that

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − σ‖Rxk‖2
for all k ∈ K2 and z ∈ fix T . It follows that the SuperMann
scheme is a special case of Alg. 1 and the proof entirely fol-
lows from Thm.s IV.1 and IV.3.
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Proof of Theorem VI.4.

♠ VI.4(i): let w0
k B xk +dk. Superlinear convergence of (dk)k∈�

then reads ‖Rw0
k‖

‖Rxk‖ → 0. In particular, if c1 > 0 then there exists
k̄ ∈ � such that ‖Rw0

k‖ ≤ c1‖Rxk‖ for all k ≥ k̄, i.e., the point
w0

k = xk + dk will always pass condition at step 5(a) resulting
in xk+1 = w0

k = xk + dk for all k ≥ k̄.
Similarly, if c0 > 0 then K0 is infinite as shown in Thm.
VI.1(v); moreover, for ` ∈ �

‖Rxk`+1‖
ηk`+1

=
‖Rxk`+1‖
‖Rxk`‖

=
‖R(xk` + dk` )‖
‖Rxk`‖

→ 0

as ` → ∞, and therefore the ratio eventually is always smaller
than c0, resulting in k` + 1 ∈ K0 for ` large enough. Conse-
quently, the sequence will eventually reduce to xk+1 = xk + dk.
♠ VI.4(ii) and VI.4(iii): Q-superlinear convergence of the se-
quence (Rxk)k∈� follows from the fact that xk+1 = xk + dk for
k ≥ k̄. In particular, (‖Rxk‖)k∈� is summable and there exists
a sequence (δk)k∈� → 0 such that ‖Rxk+1‖ ≤ δk‖Rxk‖ for all k.
If ‖dk‖ ≤ D‖Rxk‖ for some D > 0, then∑

k≥k̄

‖xk+1 − xk‖ ≤ D
∑
k≥k̄

‖Rxk‖ < ∞,

which implies that (xk)k∈� is a Cauchy sequence, and hence
converges to a point, be it x?. Moreover, by possibly enlarging
D so as to account for the iterates k < k̄, we have

‖xk − x?‖ ≤
∑
j≥k

‖x j+1 − x j‖ ≤ D
∑
j≥k

‖Rx j‖

≤ Dδ0δ1 · · · δk−1

∑
j∈�
‖Rx j‖ C ∆k.

This shows that (xk)k∈� is R-superlinearly convergent, since
∆k+1/∆k = δk → 0.
♠ VI.4(iv): already shown in the proof of VI.4(i).

Proof of Theorem VI.8. Let G? B JRx? ∈ �n×n and let ‖ · ‖
denote the Euclidean norm. From [22, Lem. 2.2] we have that
there exist a constant L and a neighborhood Ux? of x? such
that

‖yk −G?sk‖
‖sk‖ =

‖Rwk − Rxk −G?(wk − xk)‖
‖wk − xk‖

≤ L max {‖xk − x?‖, ‖wk − x?‖}.
Because of (17), the fact that τk ≤ 1, and the triangular in-
equality we have ‖wk − x?‖ ≤ ‖xk − x?‖ + D‖Rxk‖ and conse-
quently∑

k∈�

‖yk −G?sk‖
‖sk‖ ≤ L

∑
k∈�

(‖xk − x?‖ + D‖Rxk‖) < ∞,
where the last inequality follows from Thm. VI.1(vi).

Let Ek B Bk −G? and let ‖ · ‖F denote the Frobenius norm.
With a simple modification of the proofs of [22, Thm. 4.1] and
[24, Lem. 4.4] that takes into account the scalar ϑk ∈ [ϑ̄, 2− ϑ̄]
we obtain

‖Ek+1‖F ≤
∥∥∥∥∥Ek

(
id − ϑk

sk s>k
‖sk‖2

)∥∥∥∥∥
F

+ ϑk
‖yk −G?sk‖
‖sk‖

≤ ‖Ek‖F −
ϑ̄(2 − ϑ̄)
2‖Ek‖F

‖Ek sk‖2
‖sk‖2 + (2 − ϑ̄)

‖yk −G?sk‖
‖sk‖ .

The last term on the right-hand side, be it σk, is summable
and therefore the sequence (Ek)k∈� is bounded. Let Ē B
sup(‖Ek‖F)k∈�, then

‖Ek+1‖F − ‖Ek‖F ≤ σk − ϑ̄(2 − ϑ̄)
2Ē

(‖(Bk −G?)sk‖
‖sk‖

)2
.

Telescoping the above inequality, summability of σk ensures
that of ‖(Bk−G?)sk‖2

‖sk‖2 proving in particular the claimed Dennis-
Moré condition (20).
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