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Average Consensus by Graph Filtering: New
Approach, Explicit Convergence Rate, and
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Abstract—This paper revisits the problem of multiagent
consensus from a graph signal processing perspective. De-
scribing a consensus protocol as a graph spectrum filter, we
present an effective new approach to the analysis and de-
sign of consensus protocols in the graph spectrum domain
for the uncertain networks, which are difficult to handle by
the existing time-domain methods. This novel approach has
led to the following new results: 1) explicit connection be-
tween the time-varying consensus protocol and the graph
filter; 2) new necessary and sufficient conditions for both
finite-time and asymptotic average consensus of multiagent
systems (MASs); 3) direct link between the consensus con-
vergence rate and periodic consensus protocols, and con-
version of fast consensus problem to the polynomial design
of the graph filter; 4) two explicit design methods of the pe-
riodic consensus protocols with a predictable convergence
rate for MASs on uncertain graphs; and 5) explicit formu-
las for the convergence rate of designed protocols. Several
numerical examples are given to demonstrate the validity,
effectiveness, and advantages of these results.

Index Terms—Average consensus, graph filter, graph sig-
nal processing (GSP), multiagent systems (MASs).

I. INTRODUCTION

CONSENSUS of multiagent systems (MASs) is a funda-
mental problem in collective behaviors of autonomous

individuals, which has been extensively studied in the last
decades [1]–[5]. The key problem is to design appropriate
distributed protocols (control sequences) such that each agent
only get information from its local neighbors, and the whole
network of agents may coordinate to reach an agreement on
certain quantities of interest eventually. Many results have been
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published for MASs, considering different physical phenomena
such as network communication delay [6], [7], switching
topology [8], [9], communication channel noise [10], [11],
quantized data [12], [13], and nonlinear dynamics [14], [15].

The convergence rate of consensus is crucial to practical ap-
plications. Many scholars have studied the fast consensus prob-
lem of MASs [16]–[22]. Xiao and Boyd [16], [17] cast the
fastest distributed linear averaging and least-mean-square con-
sensus problems into the optimal weight design problems to
minimize the asymptotic convergence rate or the total mean-
square deviation, and proposed computational methods to solve
the corresponding convex optimization problems. Olfati-Saber
[18] adopted the “random rewiring” procedure to increase the
algebraic connectivity of small-world networks and solved the
ultrafast consensus. Aysal et al. [19] accelerated the conver-
gence rate of the distributed average consensus by changing the
state update to a convex combination of the standard consen-
sus iteration and a linear prediction. Erseghe et al. [20] utilized
the alternating direction multipliers method to provide an effec-
tive indication on how to choose a network matrix for optimized
consensus performance. Kokiopoulou and Frossard [21] applied
a polynomial filter on the network matrix to shape its spectra
and, hence, increase the convergence rate and used a semidefi-
nite program to optimize the polynomial coefficients. Montijano
et al. [22] proposed a fast and stable distributed algorithm based
on the Chebyshev polynomials to solve the consensus problem
and accelerate the convergence rate.

For fixed and known graph topologies, the MASs can reach
consensus in finite time under delicately designed control strate-
gies. Sundaram and Hadjicostis [23] presented a simple lin-
ear iteration to calculate the consensus value and proposed a
finite-time consensus algorithm using the notion of the min-
imal polynomial of each node. Hendrickx et al. [24] utilized
the matrix factorization approach to investigate the finite-time
consensus and obtained the algebraic conditions for the mini-
mum polynomial and eigenvalues of the weight matrix to satisfy
the “definitive consensus conjecture.” Kibangou [25] proposed
the minimum polynomial approach to design finite-time aver-
age consensus protocols and showed that the smallest possi-
ble number of steps to reach consensus is equal to the diame-
ter of the graph. Using the finite-time Lyapunov stability the-
ory, the authors of [26]–[28] studied the finite-time consensus
problem and provided some discontinuous or nonlinear consen-
sus protocols.

Graph signal processing (GSP) has recently been emerged
as a powerful new paradigm for high-dimensional data analy-
sis and processing [29]–[34]. Fundamental operations, such as
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graph Fourier transform, translation, modulation, filtering, and
convolution, have been defined for graph signals based on the
graph topology described by the adjacency or Laplacian matrix,
and some effective design methods have been developed [29]–
[35]. Some of these new techniques have been applied to the
analysis and design of MAS consensus in the last few years.

Sandryhaila et al. [36] designed a matrix polynomial as a
graph filter to solve the average consensus in finite time. By
solving a semidefinite program, some approximation algorithms
were obtained to guarantee the finite-time consensus. Segarra
et al. [37] proposed an optimal design of graph filters to imple-
ment arbitrary linear transformations between graph signals and
showed its application to the finite-time consensus and analog
network coding. Izumi et al. [38] showed that the multiagent
consensus corresponds to the low-pass filtering of the graph
signal and designed a low-pass filter by polynomial approxi-
mation of an exponential function. These results have provided
new insights into MASs and opened a new avenue to solving
the consensus problem of MASs.

Despite the excellent works discussed above, there are still
some fundamental problems unsolved in MAS consensus.

1) The explicit connection between the graph filter and the
time-varying control protocol has not been revealed.

2) The designs of graph filters for MAS consensus are only
for the MASs with known graph spectra and are mostly
numerical and approximate, lacking analytical and ex-
plicit solutions.

3) The analysis and design of control protocols are still lim-
ited. There are few necessary and sufficient conditions on
the average consensus of MASs.

4) The convergence rate of consensus protocols is yet to be
fully understood.

5) The Lyapunov-function-based analysis of finite-time con-
sensus only provides sufficient conditions that can be
conservative, and the resulting discontinuous or nonlin-
ear consensus protocols are difficult to realize.

To address the above problems, in this paper, we study sys-
tematically the consensus problem using the recent results of
GSP theory and present the following new results:

1) the explicit connection between the general time-varying
control protocol and the graph filter;

2) the new necessary and sufficient conditions for both
finite-time and asymptotic average consensus, in terms of
the corresponding graph filter of control sequence. These
conditions are simple and encompass, as special cases,
the MAS consensus under the constant control sequence
[1], [16], [17], the MAS consensus under the time-varying
control sequence [8], [39], and the finite-time consensus
[24], [25], [36], [38];

3) the direct link between the exact convergence rate of con-
sensus and the maximum magnitude of the graph filter
of an M-periodic control sequence. This result converts
the fast consensus problem to a polynomial design prob-
lem of graph filter and gives the exact convergence rate
instead of the upper bound of the convergence rate given
in the existing literature;

4) for any uncertain graphG, with the second smallest eigen-
value λ2 and the largest eigenvalue λN of the graph Lapla-
cian [λ2 , λN ] ⊆ [α, β], the consensus can be achieved

by simply using the control sequence ε(jM + k) = 1
rk

,
k = 0, . . . , M − 1, j ∈ N, with rk distributed uniformly
on [α, β]. The upper bound of the convergence rate of this
protocol is smaller than that of the existing result in [16];

5) the explicit formulas for designing the unique M-periodic
control sequence {ε∗(k + jM)} to attain the optimal
worst-case convergence rate for any uncertain graph G
with [λ2 , λN ] ⊆ [α, β], the explicit formula for calcu-
lating the optimal worst-case convergence rate resulting
from {ε∗(k + jM)}, and the explicit formula for calcu-
lating the worst-case convergence rate under the general
time-varying control sequences. All the formulas are ana-
lytical and the design and calculations are precise, without
the iterative approximation used in the existing literature.

Part of these results was presented in [45] as a conference
paper without full proof and interpretation. This paper is a sub-
stantial extension of [45] with extended new results, full proof
and interpretation, and extensive new examples.

The rest of this paper is organized as follows. Section II
introduces some background about spectral graph theory and
GSP. Section III presents necessary and sufficient conditions
for average consensus from a graph signal filtering perspective.
Upon casting the problem of average consensus to a graph filter
design, Section IV investigates the convergence rate of asymp-
totic consensus on the known networks under periodic control
sequences. For the uncertain networks, Section V presents a
Lagrange polynomial (LP) interpolation method to design the
periodic control sequences and compares the convergence per-
formance with the existing result. To pursue the optimal con-
sensus on uncertain networks, Section VI proposes a worst-case
optimal (WO) interpolation method to obtain the explicit for-
mulas for the design and convergence rate evaluation of periodic
control sequences. The validity and performance of the proposed
methods are demonstrated in Section VII by extensive simula-
tion and numerical experiment results. Section VIII concludes
this paper with remarks on the presented results and future work.

II. PRELIMINARIES

A. Spectral Graph Theory

Let G = (V, E ,A) be a weighted undirected graph with the
set of vertices V = {ν1 , ν2 , . . . , νN }, the set of edges E ⊆ V ×
V , and a weighted adjacency matrix A = [aij ] ∈ RN ×N . The
vertex indices belong to a finite index set I = {1, 2, . . . , N}. An
edge of G is denoted by eij = (νi, νj ) ∈ E if and only if there
exist information exchanges between vertex νi and vertex νj .
The adjacency elements corresponding to the edges of the graph
are positive, i.e., eij ∈ E ⇔ aij = aji > 0. Assume aii = 0 for
all i ∈ I. The set of neighbors of vertex νi is denoted by Ni =
{νj ∈ V : (νi, νj ) ∈ E}. For any νi, νj ∈ V , aij > 0 ⇔ j ∈ Ni .
The degree of vertex νi is represented by di =

∑N
j=1 aij . The

Laplacian matrix of G is defined as L = D −A, where D :=
diag{d1 , . . . , dN }.

Lemma 1 (see[40]): For an undirected graph G = (V, E ,A),
the Laplacian matrix L satisfies the following properties.

1) L is symmetric matrix and positive semidefinite.
2) All the eigenvalues of L are real in an ascending order as

0 = λ1 ≤ λ2 ≤ · · · ≤ λN ≤ 2d̄ (1)
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where d̄ = max
i

{di} is the maximum degree of the graph.

3) L has the following singular value decomposition:

L = V ΛV T (2)

where Λ = diag{λ1 , λ2 , . . . , λN }, and V = [v1 , v2 , . . . ,
vN ] ∈ RN ×N is an unitary matrix.

4) Zero is a simple eigenvalue of L if and only if G is
connected, and the associated eigenvector is v1 = 1√

N
�1,

where �1 ∈ RN is the vector of all ones.

B. Graph Signal Processing

Consider an undirected graph G = (V, E ,A) with Laplacian
matrix L; the graph signal x is the collection of the signal values
on the vertices of the graph, i.e., x = [x1 , x2 , . . . , xN ]T ∈ RN .
The graph Fourier transform x̂ of x ∈ RN on G is defined as the
expansion of x in terms of eigenfunctions of the graph Laplacian
[29], [30], [32]

x̂λi
:= 〈x, vi〉 =

N∑

�=1

x�v
(�)
i (3)

where {vi}1,2,...,N are orthonormal eigenvectors of L. The in-
verse graph Fourier transform is then given by

x� =
N∑

i=1

x̂λi
v(�)

i . (4)

Note that x̂ = [x̂λ1 , x̂λ2 , . . . , x̂λN
]T = V T x, where V is the uni-

tary matrix defined in (2). The inverse graph Fourier transform
is then given by x = V x̂. In graph Fourier analysis, the graph
Laplacian eigenvalues correspond to the frequency in the spa-
tial frequency domain. The eigenvectors associated with smaller
eigenvalues (low frequency) vary slowly across the graph, while
those with larger eigenvalues oscillate more rapidly.

Denote a graph spectral filter h(·) as a real-valued function
on the spectrum of graph Laplacian; the graph spectral filtering
is defined as [32]

ŷλi
= h(λi)x̂λi

(5)

and ŷ = [ŷλ1 , ŷλ2 , . . . , ŷλN
]T is the filtered graph signal repre-

sented in the frequency domain.
Taking the inverse graph Fourier transform, we have

y = V

⎡

⎢
⎣

h(λ1)
. . .

h(λN )

⎤

⎥
⎦V T x (6)

where y = [y1 , y2 , . . . , yN ]T is the filtered graph signal in the
spatial domain. When the graph spectral filter (5) is an M th-
order polynomial h(λi) =

∑M
k=0 bkλk

i , where {bk}k=0,1,...,M

are real coefficients, the filtered signal y� at vertex � is a linear
combination of the components of the input signal at agents
within an M -hop local neighborhood of agent � [32]

y� =
N∑

i=1

h(λi)x̂λi
v(�)

i =
N∑

j=1

xj

M∑

k=0

bk (Lk )�,j . (7)

III. GRAPH-FILTER-BASED NECESSARY AND SUFFICIENT

CONDITIONS FOR AVERAGE CONSENSUS

This section presents the explicit connection between general
time-varying consensus protocol and graph filtering and uses
this connection to derive the necessary and sufficient conditions
of average consensus in terms of a graph filter.

Let G = (V, E ,A) be an undirected graph of N nodes with
the adjacency matrix A = [aij ]N ×N . Suppose each vertex of
the graph is an agent described by

xi(k + 1) = xi(k) + ui(k), i = 1, . . . , N (8)

where xi(k) ∈ R is the state and ui(k) ∈ R is the control input.
We consider a general time-varying control protocol

ui(k) = ε(k)
∑

j∈Ni

aij (xj (k) − xi(k)) (9)

where ε(k) > 0 is the control gain at time k, and denote x(k) =
[x1(k), . . . , xN (k)]T ∈ RN .

Lemma 2: The control protocol (9) for the MAS (8) func-
tions as a graph filter of the system initial state x(0), and the
corresponding graph filter can be written as

h(λ, T ) :=
T −1∏

k=0

(1 − ε(k)λ) (10)

where λ is the eigenvalue of the graph Laplacian matrix L.
Proof: It follows from (8) and (9) that

x(T ) = (I − ε(T − 1)L)x(T − 1)

=
T −1∏

k=0

(I − ε(k)L)x(0) (11)

where I is the identity matrix and L = D −A is the graph
Laplacian matrix. From (2), (11) can be written as

x(T ) = V

(
T −1∏

k=0

(I − ε(k)Λ)

)

V T x(0)

with Λ = diag{λ1 , λ2 , . . . , λN }. Using (10), we get

x(T ) = V diag{h(λ1 , T ), . . . , h(λN , T )}V T x(0). (12)

Comparing (12) with (6), it is obvious that x(T ) can be viewed
as the output of the graph filter h(λ, T ) with the input x(0), and
the h(λ, T ) given in (10) is the corresponding graph filter of the
control protocol (9) that does the filtering. �

Lemma 2 is an extension of [38, Th. 1] for the constant control
protocol to the general time-varying control protocol (9). It has
revealed in (10) the explicit connection between the general
time-varying control protocol and the graph filter, which plays
a key role in the analysis of MAS dynamics. Theorem 1 shows
that it characterizes the necessary and sufficient conditions of
consensus. To present the theorem, the following definition is
introduced.

Definition 1: The average consensus of MAS (8) under the
control protocol (9 ) is said to be reached asymptotically if

lim
k→∞

xi(k) =
1
N

N∑

j=1

xj (0) := x̄(0), i = 1, 2, . . . , N
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for any initial state x(0) ∈ RN . The average consensus is said
to be reached at time T if

xi(k) = x̄(0), i = 1, 2, . . . , N

for any k ≥ T.
Theorem 1: For the MAS (8) on a connected graph G under

the control sequence ε(k) in (9), let 0 = λ1 < λ2 ≤ · · · ≤ λN

be the eigenvalues of the graph Laplacian matrix and h(λ, T )
be the corresponding graph filter defined in (10). Then, we have
the following.

i) The MAS reaches average consensus at time T < ∞ if
and only if h(λi , T ) = 0 for i = 2, . . . , N.

ii) The MAS reaches average consensus asymptotically if
and only if

h(λi ,∞) := lim
T →∞

h(λi , T )

= lim
T →∞

{
T −1∏

k=0

(1 − ε(k)λi)

}

= 0 (13)

for i = 2, . . . , N.
iii) Assume that the control sequence satisfies

limk→∞ ε(k) = 0, and the MAS cannot reach
consensus in finite time. Then, the consensus is reached
asymptotically if and only if

∑∞
k=0 ε(k) = ∞.

Proof: i) Using (12) with λ1 = 0 and the fact that V is
unitary and v1 = 1√

N
�1, we have

x(T ) = Vdiag{1, h(λ2 , T ), . . . , h(λN , T )}V T x(0)

= x̄(0)�1 + h(λ2 , T )v2vT
2 x(0)

+ · · · + h(λN , T )vN vT
N x(0). (14)

The “if” part is obvious from (14). Now, suppose
h(λi , T ) 
= 0 for some i. Setting x(0) = vi , we know
from the orthogonality �1T vi = 0 that the average of
vi is zero. However, it follows from (14) that x(T ) =
h(λi , T )vi is not zero. This contradiction proves the “only
if” part.

ii) It follows from (14) that

lim
T →∞

x(T ) = x̄(0)�1

+ lim
T →∞

(
h(λ2 , T )v2vT

2 + · · · + h(λN , T )vN vT
N

)
x(0).

(15)

Then, the “if” part follows from (15) and the “only if”
part can be proved by contradiction similar to that in (i).

iii) It follows from limk→∞ ε(k) = 0 that there ex-
ists K > 0 such that ε(k)λN < 1 for any k ≥ K.
Then, we have 0 < ε(k)λi < 1 for 2 ≤ i ≤ N and
k ≥ K. Let z(k) = ε(k)λ. Then, using the fact that
1 − z(k) < e−z (k) for any z(k) > 0 and the assumption∑∞

k=0 ε(k) = ∞, we have

∞∏

k=K

(1 − ε(k)λ) ≤ e−(λ
∑∞

k = K ε(k)) = 0. (16)

Therefore, h(λi ,∞) = 0 for i = 2, . . . , N, and ac-
cording to (ii), the MAS reaches average consensus
asymptotically.

We use contradiction to prove the “only if” part. Suppose
that the MAS system reaches average consensus asymptotically
but not at any finite time under a control protocol satisfying∑∞

k=0 ε(k) < ∞. Note that ε(k) > 0 and
∑∞

k=0 ε(k) < ∞ im-
ply that limK→∞

∑∞
k=K ε(k) = 0. Hence, there exists an inte-

ger K2 > 0 such that
∑∞

k=K 2
ε(k) < 1

2λN
. Then, for 0 < λ ≤

λN , we have
∞∏

k=K 2

(1 − ε(k)λ) > 1 −
∞∑

k=K 2

ε(k)λ >
1
2
.

Since the system cannot reach finite-time average consensus,
we know from (i) that there exists an i, 2 ≤ i ≤ N , such
that h(λi ,K2) 
= 0. Then, h(λi ,∞) = h(λi ,K2)

∏∞
k=K 2

(1 −
ε(k)λi) 
= 0. This contradicts the result of (ii) that h(λi ,∞) = 0
for i = 2, . . . , N , since it is supposed that the system reaches
consensus asymptotically. �

Remark 1: Theorem 1 shows that the MAS reaches consen-
sus if and only if the graph filter h(λ, T ) (or h(λ,∞)) is a
“low-pass” filter, which annihilates “high-frequency” compo-
nents at λ2 , . . . , λN . In particular, we can set ε(k) = 1

λk + 2
, k =

0, . . . , N − 2, to achieve consensus at time N − 1, since the cor-
responding graph filter h(λ, N − 1) =

∏N −2
k=0 (1 − λ

λk + 2
) = 0

at λi , i = 2, . . . , N .
Remark 2: The infinite product h(λi ,∞) = 0 is called “di-

verge to zero,” which isolates the case there is an exact zero term.
The infinite product h(λi ,∞) = 0 not only provides novel in-
sights into the asymptotic consensus, but also turns out to be
instrumental in the analysis of convergence rate, as shown in
the next section. The Lyapunov-based methods for asymptotic
consensus usually provide sufficient conditions only [8]–[10],
which are somewhat conservative. To our knowledge, (13) is the
simplest necessary and sufficient condition for asymptotic con-
sensus that has established the direct link between the control
sequence and the graph topology.

Remark 3: Time-varying control protocols with limk→∞
ε(k) = 0 are used to address the time-varying topologies and
stochastic communication noises in [8], where

∑∞
k=0 ε(k) = ∞

is an assumption. Here, we show that it is a necessary condition
in the fixed topology and noise-free scenarios.

When the Laplacian matrix L has multiple eigenvalues, the
consensus time can be shorter than N − 1. This is stated in the
following corollary, which follows directly from Theorem 1(i).

Corollary 1: For a connected graph G with N vertices, as-
sume that its Laplacian matrix has K distinct nonzero eigenval-
ues λpk

, k = 0, . . . , K − 1. Then, K is the minimum time for
the MAS to reach consensus. Moreover, by applying

ε(k) =
1

λpk

, 0 ≤ k ≤ K − 1 (17)

the MAS (8) can reach average consensus at time K to obtain
x(K) = x̄(0)�1.

Based on Corollary 1, we summarize below some results of
finite-time consensus for the MAS on special graphs.

1) For a complete graph G with N vertices, the eigenvalues
of its Laplacian matrix are

λi =
{

0, i = 1
N, 2 ≤ i ≤ N

.
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Hence, the MAS can reach consensus at the finite time
T = 1 by choosing ε(0) = 1

N , that is,

ui(0) =
1
N

∑

j∈Ni

aij (xj (0) − xi(0)).

2) For a complete bipartite graph G with M + N vertices,
the eigenvalues of its Laplacian matrix are

λi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, i = 1

M, 2 ≤ i ≤ N

N, N + 1 ≤ i ≤ M + N − 1

M + N, i = M + N

.

Hence, the MAS can reach consensus at the finite time
T = 3 by choosing the consensus protocol as follows:

ui(0) =
1
M

∑

j∈Ni

aij (xj (0) − xi(0))

ui(1) =
1
N

∑

j∈Ni

aij (xj (1) − xi(1))

ui(2) =
1

M + N

∑

j∈Ni

aij (xj (2) − xi(3)).

3) For a star graph G with N vertices, the eigenvalues of its
Laplacian matrix are

λi =

⎧
⎪⎨

⎪⎩

0, i = 1

1, 2 ≤ i ≤ N − 1

N, i = N

.

Hence, the MAS can reach consensus at the finite time
T = 2 by choosing the consensus protocol as

ui(0) =
∑

j∈Ni

aij (xj (0) − xi(0))

ui(1) =
1
N

∑

j∈Ni

aij (xj (1) − xi(1)).

4) For a cycle graph G with N vertices, the eigenvalues of
its Laplacian matrix are λ1 = 0, λi = 2 − 2 cos 2π (i−1)

N ,
i = 2, . . . , floor(N +1

2 ) with multiplicity 2, and λN = 4
with multiplicity 1 if N is even. Hence, the MAS can
reach consensus at the finite time T = ceil(N −1

2 ) by
choosing ε(k) = 1

λk + 2
, k = 0, . . . , floor(N +1

2 ) − 2, and

ε(N
2 − 1) = 1

4 if N is even.
5) For a path graph G with N vertices, the eigenvalues of

its Laplacian matrix are λ1 = 0, λi = 2 − 2 cos π (i−1)
N ,

i = 2, . . . , N . Hence, the MAS can reach consensus at
the finite time T = N − 1 by choosing ε(k) = 1

λk + 2
, k =

0, . . . , N − 2.
Remark 4: The fact that finite-time consensus can be

achieved by choosing control gains equal to the reciprocal of
eigenvalues of the Laplacian matrix is not new. It has been
obtained by using different methods, for example, matrix fac-
torization method [24], minimal polynomial method [25], and

graph filter method [36]. However, by using the notion of the
graph filter h(λ, T ), Theorem 1(i) and Corollary 1 have estab-
lished the explicit connection between the average consensus
and the graph filter. That is, average consensus is reached if and
only if h(λ, T ) = 0 at λ2 , . . . , λN .

Corollary 1 has shown that finite-time consensus can be
achieved by the control strategy (17) using the eigenvalue infor-
mation of the graph Laplacian matrix. This result not only gives
a new interpretation of average consensus, but also provides a
systematic method to characterize the convergence rate explic-
itly. In particular, we can show that the exact convergence rate is
equal to ρ = max{λi } |h(λi , ·)| for periodic control sequences.
Following this, we can further convert the fast consensus design
problem to a polynomial interpolation problem, which can be
readily solved by various methods. The polynomial interpola-
tion problem will be discussed in Section V in detail.

IV. EXACT CONVERGENCE RATE OF PERIODIC

CONTROL SEQUENCES

This section analyzes the convergence rate of asymptotic
consensus under the M -periodic control sequence ε(k + M) =
ε(k), ∀k ∈ Z, with the aid of the following definitions.

For an M -periodic control sequence ε(k), define

h(λ,M) =
M −1∏

k=0

(1 − ε(k)λ) (18)

as its corresponding graph filter, e(k) := x(k) − x̄(0)�1 as its
error of consensus at time k, and

ρM := sup
‖x(0)‖2 =1

‖e(M)‖2

‖e(0)‖2
(19)

as its per-period convergence rate, which is an extension of
per-step convergence rate in [16].

Theorem 2: For the MAS (8) on a connected graph G under
the control of an M -periodic control sequence ε(k), let 0 =
λ1 < λ2 ≤ · · · ≤ λN be the eigenvalues of the graph Laplacian
matrix and h(λ,M) be as given by (18). Then, the MAS reaches
consensus asymptotically if and only if the exact convergence
rate ρ∗ < 1, where

ρ∗ := max
{λi }

|h(λi ,M)| . (20)

Moreover, the per-period convergence rate ρM equals the exact
convergence rate ρ∗, that is,

ρM = sup
‖x(0)‖2 =1

‖e(M)‖2

‖e(0)‖2
= max

{λi }
|h(λi ,M)| = ρ∗. (21)

Proof: Since ε(k) is M -periodic

h(λ, jM) =
jM −1∏

k=0

(1 − ε(k)λ) =

(
M −1∏

k=0

(1 − ε(k)λ)

)j

= (h(λ,M))j . (22)

From |h(λi , jM)| ≤ (ρ∗)j and ρ∗ < 1, limj→∞ h(λi , jM +
l) = 0 for l = 0, . . . , M − 1, i = 2, . . . , N. Then, the average
consensus is guaranteed by the “if” part of Theorem 1(ii).
Contrarily, if the MAS reaches average consensus, then by
Theorem 1(ii), limj→∞ h(λi , jM) = limj→∞(h(λi ,M))j = 0
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for i = 2, . . . , N. This holds only if ρ∗ = max{λi } |h(λi ,M)| <
1.

From (14) and the unitariness of V , we have

ρM = sup
‖x(0)‖2 =1

∥
∥
∥x(M) − x̄(0)�1

∥
∥
∥

2∥
∥
∥x(0) − x̄(0)�1

∥
∥
∥

2

= sup
‖x(0)‖2 =1

∥
∥
∥
∑N

i=2 h(λi ,M)vivT
i x(0)

∥
∥
∥

2∥
∥
∥
∑N

i=2 vivT
i x(0)

∥
∥
∥

2

≤ sup
‖x(0)‖2 =1

max
{λi }

|h(λi ,M)|
∥
∥
∥
∑N

i=2 vivT
i x(0)

∥
∥
∥

2
∥
∥
∥
∑N

i=2 vivT
i x(0)

∥
∥
∥

2

= max
{λi }

|h(λi ,M)| = ρ∗. (23)

Assume that λj is the eigenvalue such that |h(λj ,M)| =
max{λi } |h(λi ,M)|. Setting x(0) = vj , we have ‖vj‖2 = 1,
vj

�1 = 0, x(M) = h(λj ,M)vj , and

‖e(M)‖2

‖e(0)‖2
=

‖h(λj ,M)vj‖2

‖vj‖2
= |h(λj ,M)| . (24)

It then follows from the definition (19) that

ρM ≥ |h(λj ,M)| . (25)

Combining (23) and (25) proves (21). �
Remark 5: The ρM in (21) represents the exact conver-

gence rate in the sense that ρM ≤ γ for any γ satisfying
‖e(jM)‖2 ≤ γj‖e(0)‖2 , whereas many results based on the
Lyapunov function [8], [9], [11], [12] can only give the upper
bound of the convergence rate, which is usually much larger
than ρM .

Remark 6: Theorem 2 turns the problem of finding a faster
consensus algorithm to the problem of designing a polyno-
mial h(λ,M) such that ρM (or ρ∗) in (21) is small. Various
polynomial interpolation techniques can be employed to solve
this problem, as detailed in Sections V and VI.

V. CONSENSUS ON UNCERTAIN NETWORKS BY

LP INTERPOLATION

In practical applications, it is usually difficult, if not impos-
sible, to obtain the exact eigenvalues of the Laplacian matrix,
especially when the network is large and complex. However,
there are efficient methods to estimate λ2 and λN [41]. It is,
therefore, sensible to consider the MAS on an uncertain graph
in {G}[α,β ] , where {G}[α,β ] is the set of all connected graphs
with [λ2 , λN ] ⊆ [α, β], α the lower bound of the algebraic con-
nectivity, and β the upper bound of the Laplacian spectral radius.

Define the worst-case convergence rate as

γM := sup
{G}[α , β ]

ρM (26)

where ρM is the per-period convergence rate defined in (19).
Then, the following lemma is immediate.

Lemma 3: The worst-case convergence rate satisfies

γM = sup
{G}[α , β ]

ρ∗ = max
λ∈[α,β ]

|h(λ,M)| (27)

where ρ∗ is the exact convergence rate defined in (20).
Since the eigenvalues of graph Laplacian are unknown, we

may naively assume them distributed uniformly on [α, β] and
hence choose an M -periodic control sequence by distributing

1
ε(k) , k = 0, 1, . . . , M − 1, uniformly on [α, β]. The graph filter
can then be obtained by LP interpolation as described in the
following.

Choose sequentially M points in [α, β] with equal distance

rk = α +
β − α

M + 1
(k + 1), k = 0, . . . , M − 1. (28)

Set the M -periodic control sequence as

ε(k + jM) =
1
rk

=
1

α + β−α
M +1 (k + 1)

(29)

for k = 0, 1, . . . ,M − 1, j = 0, 1, . . . , which gives the corre-
sponding graph filter in the form of LP

h(λ,M) =
M −1∏

k=0

(

1 − λ

rk

)

. (30)

Theorem 3 shows that the M -periodic control sequence (29)
does provide consensus. It also presents an explicit expression
of the worst-case convergence rate ρM , which asserts the better
performance of (29) as compared to the existing result [16].

Theorem 3: For any MAS (8) on a connected graph G ∈
{G}[α,β ] , let the control sequence be given by (29) with the cor-
responding graph filter (30) and rk given by (28). Then, the MAS
reaches average consensus, and the per-period convergence rate
satisfies ρM ≤ γM < 1, where

γM =
M !

∏M
k=1(k + M +1

β−α α)
. (31)

Proof: For any λ ∈ [α, β], there exists an integer i, 0 ≤ i ≤
M , such that λ ∈ [α + β−α

M +1 i, α + β−α
M +1 (i + 1)]. From (30), we

have

|h(λ,M)|

=
i−1∏

k=0

(
λ

rk
− 1
)

·
M −1∏

k=i

(

1 − λ

rk

)

≤
i−1∏

k=0

α + β−α
M +1 (i + 1) −

(
α + β−α

M +1 (k + 1)
)

α + β−α
M +1 (k + 1)

·
M −1∏

k=i

α + β−α
M +1 (k + 1) −

(
α + β−α

M +1 i
)

α + β−α
M +1 (k + 1)

=
i−1∏

k=0

β−α
M +1 (i − k)

α + β−α
M +1 (k + 1)

M −1∏

k=i

β−α
M +1 (k + 1 − i)

α + β−α
M +1 (k + 1)k

=
i−1∏

k=0

(i − k)
(k + 1 + M +1

β−α α)

∏M −1

k=i

(k + 1 − i)
(k + 1 + M +1

β−α α)

=
i!(M − i)!

∏M
k=1(k + M +1

β−α α)
≤ M !
∏M

k=1(k + M +1
β−α α)

= γM
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and the equality holds if and only if λ = α or λ = β. It then
follows from (21) that

ρM = max
{λi }

|h(λi ,M)| ≤ max
λ∈[α,β ]

|h(λ,M)|

≤ M !
∏M

k=1(k + M +1
β−α α)

= γM

and γM < 1 since M +1
β−α α > 0. By Theorem 2, the MAS reaches

average consensus asymptotically. �
Remark 7: In [16], it is proved that the fastest convergence

rate by constant control sequence is ρ = β−α
β+α , with ε(k) ≡ εc =

2
α+β . This is a special case of M = 1 in (29). Because

γM =
M !

∏M
k=1 (k + M +1

β−α α)
=

M∏

k=1

k(β − α)
k(β − α) + (M + 1)α

=
M∏

k=1

β − α

β + M +1−k
k α

and
∏M

k=1 (β + M +1−k
k α) > (β + α)M , we have

γM ≤
(

β − α

β + α

)M

=
(

1 − 2α

β + α

)M

and the equality holds if and only if M = 1. Therefore, for
M > 1, the convergence performance of M -periodic control
sequence (29) is better than that of the fastest constant control
gain in [16].

When the algebraic connectivity α and the Laplacian spectral
radius β are uncertain, we have the following result.

Corollary 2: For the MAS (8) on an uncertain connected
graph G with λN < β̄, set the M -periodic control sequence as

ε(k + jM) =
M + 1

β̄(k + 1)
(32)

for k = 0, 1, . . . , M − 1, j = 0, 1, . . .. Then, the MAS reaches
average consensus asymptotically. Furthermore, if M is large
enough such that all the nonzero eigenvalues of the graph Lapla-
cian are located in the interval [ β̄

M +1 , M β̄
M +1 ], then the conver-

gence rate satisfies ρM ≤ γM = 1
M .

Proof: For the M -periodic control gain in (32), the corre-
sponding graph filter can be obtained as

h(λ,M) =
M −1∏

k=0

(

1 − (M + 1)λ
β̄(k + 1)

)

.

For any λ ∈ [ β̄
M +1 , β̄M

M +1 ], there exists an integer i, 1 ≤ i ≤
M − 1, such that λ ∈ [ β̄

M +1 i, β̄
M +1 (i + 1)]. Thus, we have

|h(λ,M)|

=
i−1∏

k=0

(
(M + 1)λ
β̄(k + 1)

− 1
)

·
M −1∏

k=i

(

1 − (M + 1)λ
β̄(k + 1)

)

≤
i−1∏

k=0

β̄(i + 1) − β̄(k + 1)
β̄(k + 1)

·
M −1∏

k=i

β̄(k + 1) − β̄i

β̄(k + 1)

=
i−1∏

k=0

i − k

k + 1

M −1∏

k=i

k + 1 − i

k + 1

=
i!(M − i)!

M !
< 1.

For λ ∈ (0, β̄
M +1 ),|h(λ,M)| =

∏M −1
k=0 (1 − (M +1)λ

β̄ (k+1) ) < 1. For

λ ∈ ( β̄M
M +1 , β̄), we have

|h(λ,M)| =
M −1∏

k=0

(
(M + 1)λ
β̄(k + 1)

− 1
)

<
M −1∏

k=0

(
(M + 1)
(k + 1)

− 1
)

= 1.

Therefore, we have

ρM ≤ max
λ∈(0,β̄ )

|h(λ,M)| < 1.

From Theorem 2, we know that the MAS reaches average con-
sensus asymptotically.

For λ ∈ [ β̄
M +1 , M β̄

M +1 ], it is easy to verify that

γM = max
i∈{1,··· ,M −1}

i!(M − i)!
M !

=
1
M

.

It follows from Theorem 2 that ρM = max{λi } |h(λi ,M)| ≤
γM = 1

M . �

VI. EXPLICIT SOLUTIONS OF THE OPTIMAL CONSENSUS ON

UNCERTAIN NETWORKS

This section studies the design of optimal M -periodic con-
trol sequence ε(k) with the optimal worst-case convergence rate
γM for any graph G ∈ {G}[α,β ], where γM is defined in (26).
Specifically, we will solve the following polynomial interpola-
tion problem:

min
ε(k)

γM = min
ε(k),0≤k≤M −1

max
λ∈[α,β ]

∣
∣
∣
∣
∣

M∏

k=1

(1 − ε(k)λ)

∣
∣
∣
∣
∣

(33)

to obtain the optimal M -periodic control sequence {ε∗(k)} and
derive the analytic formula for the optimal value γ∗

M .
The authors of [42] have used Chebyshev polynomial as

the orthogonal bases to construct the least-squares approxima-
tion h(λ) = ΣM

i=0hiλ
i for a desired filter. However, different

from [42], (33) is a uniform interpolation problem that can-
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TABLE I
CHEBYSHEV POLYNOMIALS

not be solved by orthogonal basis approximation. A possi-
ble fix to this problem is to solve (33) numerically by linear
programming. Besides computational complexity, this numer-
ical approach has at least two drawbacks: 1) it does not al-
low direct computation of γ∗

M from α, β,M , and cannot re-
veal the essential relationship between γ∗

M and α, β,M ; and
2) the optimal polynomial thus computed might have com-
plex roots, giving complex valued ε(k). Such a solution can-
not be implemented by the control protocol (9), which re-
quires ε(k) > 0. In fact, all the polynomial-approximation-
based methods in the literature [21], [22], [36]–[38] cannot
guarantee the designed polynomial to have only positive real
roots.

To overcome the above difficulties, we use Chebyshev poly-
nomial interpolation to derive the explicit and analytical solution
to the problem (33). We first construct the polynomial h(λ,M)
and then prove that it is the unique and optimal solution of (33).

For χ ∈ [−1, 1], the Chebyshev polynomials TM (χ), M =
0, 1, 2, . . ., are defined as [43], [44]

TM (χ) :=

⎧
⎪⎨

⎪⎩

1, M = 0

χ, M = 1

2χTM −1(χ) − TM −2(χ), M ≥ 2

(34)

which have the following properties.
i) TM (χ) = cos(M arccos χ) for χ ∈ [−1, 1].

ii) TM (cos 2i+1
2M π) = 0 for i = 0, 1, . . . ,M − 1.

iii) maxx∈[−1,1] |TM (χ)| = 1, and TM (χ) = ±1 alternately
at χi = cos i

M π, i = 0, 1, . . . ,M .
Setting χ = 2

β−α λ− β+α
β−α in TM (χ) yields a new polynomial

gM (λ) on λ ∈ [α, β]

gM (λ) :=TM (χ)=cos
[

M arccos
(

2
β − α

λ− β + α

β − α

)]

. (35)

Six example pairs of TM (χ) and gM (λ), derived using χ =
2

β−α λ− β+α
β−α and (34) and (35), are shown in Table I.

Lemma 4: The polynomial gM (λ) has the following proper-
ties.

i) gM ( β−α
2 cos 2i+1

2M π + β+α
2 ) = 0 for i = 0, 1, . . . ,

M − 1.

ii) maxλ∈[α,β ] |gM (λ)| = 1 and gM (λi) = ±1 alternatively
at λi = β−α

2 χi + β+α
2 , i = 0, 1, . . . M.

iii) gM (0) can be written as

gM (0) =
1
2
(−1)M

(√
β/α − 1

√
β/α + 1

)M

+
1
2
(−1)M

(√
β/α + 1

√
β/α − 1

)M

(36)

and limM →∞ |gM (0)| = ∞ monotonically.
Proof: (i) and (ii) follow immediately from the relation λ =

β−α
2 χ + β+α

2 . We now prove (iii). Note that gM (λ) can be
written as

gM (λ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, M = 0
2λ

β−α − β+α
β−α , M = 1

22λ−(β+α)
β−α gM −1(λ)

−gM −2(λ),
M ≥ 2

. (37)

Hence, we have

gM (0) =

⎧
⎪⎪⎨

⎪⎪⎩

1, M = 0

− β+α
β−α , M = 1

− 2(β+α)
β−α gM −1(0) − gM −2(0), M ≥ 2

. (38)

By direct verification, gM (0) in (36) is the explicit for-
mula of iteration (38). It then follows directly from (36)
that

|gM (0)| =
1
2

(

1 − 2
√

β/α + 1

)M

+
1
2

(

1 +
2

√
β/α − 1

)M

(39)
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and

|gM +1(0)| − |gM (0)|

=
1
2

(

1 − 2
√

β/α + 1

)M +1

+
1
2

(

1 +
2

√
β/α − 1

)M +1

− 1
2

(

1 − 2
√

β/α + 1

)M

− 1
2

(

1 +
2

√
β/α − 1

)M

=
1
2

(

1 +
2

√
β/α − 1

)M
2

√
β/α − 1

−

1
2

(

1 − 2
√

β/α + 1

)M
2

√
β/α + 1

>
1

√
β/α − 1

− 1
√

β/α + 1

=
2

β/α − 1
> 0.

Therefore, the sequence |gM (0)| approaches infinity monoton-
ically as M tends to infinity. �

Theorem 4: The optimal solution to the problem (33) is given
by

ε∗(k) =
1
rk

where

rk =
β − α

2
cos

2k + 1
2M

π +
β + α

2
, k = 0, 1, . . . , M − 1

(40)

are the roots of the unique M th-order polynomial

1
gM (0)

gM (λ) =
M −1∏

k=0

(

1 − 1
rk

λ

)

=: h(λ,M) (41)

with gM (λ) and gM (0) defined in (35) and (36), respectively.
This optimal solution yields the optimal worst-case convergence
rate

γ∗
M =

1
|gM (0)| .

Proof: From Lemma 4, h(λ,M) is an M th-order poly-
nomial with roots as given in (40). Hence, it can be writ-
ten as (41). Since maxλ∈[α,β ] |gM (λ)| = 1 and gM (λi) = ±1
alternatively at λi = β−α

2 χ + β+α
2 , i = 0, 1, . . . M , the poly-

nomial h(λ,M) satisfies maxλ∈[α,β ] |h(λ,M)| = 1
|gM (0)| and

h(λ,M) = ± 1
|gM (0)| alternatively at M + 1 points in [α, β]. By

the Chebyshev alternation theorem (see [44, p. 30]), we known
that this h(λ,M) is the unique M th-order polynomial that solves
the optimal interpolation problem (33). Finally, the optimality
of γ∗

M = 1
|gM (0)| is obvious. �

Combining Theorems 2 and 4, we immediately obtain the
following result.

Theorem 5: For any MAS (8) on a connected graph G ∈
{G}[α,β ] , set the M -periodic control sequence as

ε∗(k + jM) =
1
rk

, k = 0, 1, . . . , M − 1, j = 0, 1, . . .

(42)

where rk is defined in (40). Then, the MAS reaches average
consensus asymptotically, and the exact convergence rate ρM

satisfies

ρM ≤ γ∗
M =

1
|gM (0)| . (43)

Moreover, for any other M -periodic control sequence ε(k),
there always exists a connected graph G̃ ∈ {G}[α,β ] such that its
convergence rate under the ε(k) is ρε(k) > γ∗

M .
Remark 8: Although the proof is simple, the implication of

Theorem 5 is important. It means that γ∗
M is the fastest conver-

gence rate for the worst-case scenario if α and β are the only
information we know about the network. γ∗

M = 1
|gM (0)| also pro-

vides the direct relation between the bound of convergence rate

and the graph topology. It is obvious that γ∗
M ≈ 2(

√
β/α−1√
β/α+1

)M

for large M .
Next, we present the performance limitation of the optimal

worst-case convergence rate under the general time-varying con-
trol sequences.

For a given graph G, the asymptotic convergence rate is de-
fined as

ρasym := sup
‖x(0)‖2 =1

lim
M →∞

(
‖e(M)‖2

‖e(0)‖2

)1/M

. (44)

For a set of graphs {G}[α,β ] , the worst-case asymptotic conver-
gence rate is defined as

γasym := sup
{G}[α , β ]

ρasym. (45)

It is easy to verify that ρasym = limM →∞ρM
1/M and γasym =

limM →∞γM
1/M , where ρM is defined in (19) and γM is defined

in (26).
Theorem 6: For the MAS (8) on the set of connected graphs

{G}[α,β ] and under the control of a general time-varying proto-
col (9), we have

min
{ε(k)}

γasym =

√
β/α − 1

√
β/α + 1

. (46)

Proof: It is obvious that
(√

β/α + 1
√

β/α − 1

)M

≥ |gM (0)| ≥ 1
2

(√
β/α + 1

√
β/α − 1

)M

. (47)

Therefore, we have
√

β/α + 1
√

β/α − 1
≥ lim

M →∞
|gM (0)|

1
M

≥ lim
M →∞

(
1
2

) 1
M
√

β/α + 1
√

β/α − 1
=

√
β/α + 1

√
β/α − 1
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Fig. 1. Frequency responses of graph filters designed by the listed methods. (a) Designed filters with M = 2. (b) Designed filters with M = 3.
(c) Designed filters with M = 4. (d) Designed filters with M = 5.

which implies

lim
M →∞

|gM (0)|
1

M =

√
β/α + 1

√
β/α − 1

. (48)

Let γ∗
asym be the optimal value of min{ε(k)} γasym. Then, we have

γ∗
asym = lim

M →∞
(γ∗

M )
1

M = lim
M →∞

∣
∣
∣
∣

1
gM (0)

∣
∣
∣
∣

1
M

=

√
β/α − 1

√
β/α + 1

.

�

VII. ILLUSTRATIVE EXAMPLES

In this section, we evaluate our methods by simulation and nu-
merical experiments. Experiments have been designed to study
the behavior of the graph filters (30) in Theorem 3 and (41) in
Theorem 4, respectively. We also evaluate the convergence rates
on different networks and compare the two proposed methods
with the best constant control gain proposed in [16]. We use the
evaluation results to draw the guidelines for the proper choices
of the design method and design parameters of graph filters,
irrespective of the network structures.

A. Worst-Case Convergence Rate

We start with MASs on connected graphs in the set
{G}[0.2,12.8] . According to Theorems 3 and 4, the graph fil-

ters designed by LP interpolation method (30) and the WO
interpolation method (41) are, respectively,

hLP(λ,M) =
M∏

k=1

(

1 − 1
0.2 + 12.6

M +1 k
λ

)

(49)

and

hWO(λ,M) =
M∏

k=1

(

1 − 1
6.3 cos 2k−1

2M π + 6.5
λ

)

. (50)

It is proved in [16] that the best constant control gain is
ε(k) ≡ εc = 2

0.2+12.8 = 1
6.5 , which can be regarded as a first-

order graph filter hX S (λ, 1) = (1 − λ
6.5 ) giving

hX S (λ,M) =
(

1 − λ

6.5

)M

. (51)

For M = 2, 3, 4, 5, Fig. 1 shows the frequency responses
of the graph filters (49)–(51), and Table II gives their worst-
case convergence rates computed by (27). For the LP interpo-
lation method and the fast linear iteration approach, it can be
seen that the exact values of γM = maxλ∈[0.2,12.8] |h(λ,M)|
are taken from λ = 0.2. For the WO interpolation method, the
frequency responses are equal amplitude oscillations in inter-
val [0.2, 12.8], and the first peaks are still taken from λ = 0.2,
i.e., γM = hWO(0.2,M). Comparing the amplitudes at λ = 0.2,
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TABLE II
WORST-CASE CONVERGENCE RATE γM OF THREE METHODS FOR DIFFERENT M ({G}[0 .2 ,12 .8] )

Fig. 2. Worst-case convergence rate γM by different methods.

it is clear that the WO interpolation method attains the fastest
worst-case convergence rate γM .

The worst-case convergence rates for M ∈ [1, 50] are plotted
in Fig. 2. As seen from Fig. 2, for all these three filters, γM

decreases monotonically as M increases, and the decreasing
rates become slower when M exceeds some values. Since a
smaller γM means a faster worst-case convergence rate, the
convergence rates resulting from our methods are faster than
that of the best constant control gain proposed in [16]. And the
WO interpolation method gives the optimal control strategy in
the worst case, with the fastest convergence rate.

B. Per-Period Convergence Rate on Some Sample
Graphs

Consider the MASs on four sample graphs: (a) the star graph
G1 with 12 agents, (b) the cycle graph G2 with 12 agents, (c) the
graph G3 generated by a small-world network model shown in
Fig. 3, and (d) the path graph G4 with six agents. It is easy to
verify that the four sample graphs are in the set G[0.2,12.8] . We
now investigate the per-period convergence rate ρM of the three
filters (49)–(51) on these four graphs.

1) Star Graph G1 : The nonzero eigenvalues of the graph
Laplacian LG1 are {λi}G1

= {1, 12} . The per-period conver-
gence rates of MAS on G1 , calculated by (21), are shown in
Fig. 4(a). It can be seen that as M increases, the per-period con-
vergence rates resulting from the LP interpolation method (30)
and the best constant control gain in [16] both monotonically
decrease to zero, but that of the WO interpolation method (41)
oscillating to zero. It appears that the LP interpolation method

Fig. 3. Small-world graph G3 .

is always better than the fast linear iterations approach, but the
WO interpolation method may be worse than the latter, or even
the worst of all the three methods when M = 5.

The per-period convergence rate ρM resulting from the WO
interpolation method drops very fast when M = 3 because the
corresponding roots of the graph filter hWO(λ, 3) are {rk} =
{1.044, 6.5, 11.956}, which are close to the nonzero eigenvalues
{λi}G1 . Thus, for the star graph G1 , there is no need to increase
M to accelerate the convergence rate. One only needs to select
the 3-periodic control sequence ε(k) = { 1

11.956 , 1
6.5 , 1

1.044 } to
achieve fast consensus.

2) Cycle Graph G2 : The nonzero eigenvalues of the graph
Laplacian matrix LG2 are {λi}G2

= {0.2679, 1, 2, 3, 3.7321, 4}.
The per-period convergence rates of MASs on G2 calculated by
(21) are shown in Fig. 4(b). As the eigenvalues are distributed
uniformly on [0, 4] and λ2 = 0.2679, which is close to α = 0.2,
the curves of ρM by the three methods are similar to those of the
worst-case convergence rate γM shown in Fig. 2, and the WO
interpolation method gives the fastest per-period convergence
rate.

3) Graph G3 Generated by a Small-World Network
Model: We randomly generated 50 small-world networks
with 12 agents and choose a rare case G3 to demon-
strate that the WO interpolation method may not show
its advantages for specific graphs. The nonzero eigen-
values of the graph Laplacian matrix LG3 are {λi}G3

=
{0.655, 1.2694, 1.9964, 2.8578, 3.6319, 3.8860, 5.0364, 5.2884,
5.7759, 6.4118, 7.1909}. The per-period convergence rates of
the MAS on G3 , calculated by (21), are shown in Fig. 4(c).
It can be seen that the control sequence designed by the LP
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Fig. 4. Per-period convergence rate ρM by different methods. (a) Per-period convergence rate for G1 . (b) Per-period convergence rate for G2 .
(c) Per-period convergence rate for G3 . (d) Per-period convergence rate for G4 .

TABLE III
PER-PERIOD CONVERGENCE RATE ρM OF THREE METHODS ON FOUR SAMPLE GRAPHS

interpolation method has the fastest convergence rate, and for
M ≤ 5, the control sequence designed by the WO interpolation
method has the slowest convergence rate. This shows that for a
given graph, the convergence rates resulting from interpolation
methods are closely related to the spectral distribution of the
graph Laplacian matrix.

4) Path Graph G4 : The nonzero eigenvalues of the graph
Laplacian matrix LG4 are {λi}G4

= {0.2679, 1, 2, 3, 3.7321}.
It can be seen that {λi}G4

= {λi}G2
\{4}. This means that al-

though the network structure and the number of agents are dif-
ferent, the Laplacian spectral distributions of the graph G4 and
the graph G2 are nearly the same. Hence, the per-period con-
vergence rates of the MAS on G4 calculated by (21) are similar
to those on G2 , as shown in Fig. 4(d). This shows that for dif-
ferent graphs with similar Laplacian spectral distributions, the
convergence performance of the three methods is almost the
same.

Table III gives the exact values of the per-period conver-
gence rate ρM on the four sample graphs for the control period
M = 2, 3, 4, 5. Compared to the best constant control gain pro-

posed in [16], the LP interpolation method always has a faster
convergence rate, which corroborates the analysis in Remark
7. For most cases, the WO interpolation method can attain the
fastest convergence rate.

C. Consensus Performance

To compare the evolution of the MAS states of the three
methods on the four sample graphs, we take the control period
M = 3 as an example. Then, the graph filters (49)–(51) become

hLP(λ, 3) =
(

1 − λ

3.35

)(

1 − λ

6.5

)(

1 − λ

9.65

)

hWO(λ, 3) =
(

1 − λ

1.044

)(

1 − λ

6.5

)(

1 − λ

11.956

)

hX S (λ, 3) =
(

1 − λ

6.5

)3

.



YI et al.: AVERAGE CONSENSUS BY GRAPH FILTERING: NEW APPROACH, EXPLICIT CONVERGENCE RATE, AND OPTIMAL DESIGN 203

Fig. 5. Agent state trajectories for sample graphs by the designed graph filters with M = 3. (a) Consensus for the star graph G1 . (b) Consensus
for the cycle graph G2 . (c) Consensus for the small-world graph G3 . (d) Consensus for the path graph G4 .

For the initial states of the agents randomly taken from the
interval [0, 10], Fig. 5 shows that the MASs on the four sam-
ple graphs reach average consensus asymptotically under the
control protocols designed by the above graph filters.

For the star graph G1 , the MAS under the control protocol
designed by the WO interpolation method converges very fast,
whereas for the cycle graph G2 and the path graph G4 , the
convergence rates are much slower due to the distributions of
Laplacian spectra. For the graph G3 , the consensus performance
of the WO interpolation method is the worst of all the three
methods. The curves shown in Fig. 5 are consistent with the
exact convergence rates calculated in Table III.

D. Consensus on Large-Scale Networks

This subsection illustrates the effectiveness and performance
of the graph filters given in Theorems 3 and 4 on large-scale
networks.

First, we consider the MAS (8) with 100 agents on a con-
nected graph GL ∈ {G}[0.2,12.8] shown in Fig. 6(a). The graph
GL is generated by a small-world network model, which is con-
structed by a 4-regular network under a random rewiring prob-
ability p = 0.6. The second smallest eigenvalue and the largest
eigenvalue are λ2 = 0.4761 and λ100 = 9.1865, respectively.
Take the control period M = 5 as an example; the graph filters

(49)–(51) [with the frequency responses shown in Fig. 1(d)] can
be derived as

hLP(λ, 5) =
(

1 − λ

10.7

)(

1 − λ

8.6

)(

1 − λ

6.5

)

(

1 − λ

4.4

)(

1 − λ

2.3

)

hWO(λ, 5) =
(

1 − λ

12.492

)(

1 − λ

10.203

)(

1 − λ

6.5

)

(

1 − λ

2.797

)(

1 − λ

0.508

)

hX S (λ, 5) =
(

1 − λ

6.5

)5

.

For the initial states of the agents randomly taken from the inter-
val [0, 10], the states of the closed-loop systems under the control
of these three protocols are plotted in Fig. 6(b). It can be seen that
all the three protocols asymptotically achieve the average con-
sensus on the large-scale networks. The per-period convergence
rates of the three methods are ρ5{LP} = 0.5916, ρ5{WO} = 0.5266,
and ρ5{X S } = 0.6837, respectively. As expected, the per-period
convergence rates of our methods are faster than that of the
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Fig. 6. Graph topology for the MAS with 100 agents and the agent state trajectories under control protocols designed by different methods.
(a) Small-world graph GL with 100 agents. (b) Agent state trajectories of the MAS on GL .

Fig. 7. Per-period convergence rate ρM for 80 random graphs by dif-
ferent methods with M = 5.

fast linear iteration approach in [16], and the WO interpolation
method has the fastest per-period convergence rate.

Next, we generate again 80 random connected graphs of 100
nodes in the set {G}[0.2,12.8] . To verify the effectiveness of the
graph filters shown above, we plot in Fig. 7 the per-period con-
vergence rates ρM resulting from these filters. It can be seen
that the per-period convergence rate ρM of the LP interpolation
method is always smaller than that of the fast linear iteration ap-
proach. This indicates that the periodic control sequence from
the LP interpolation method has better consensus performance
compared with the best constant control gain proposed in [16].
For the WO interpolation method, the per-period convergence
rate ρ5{WO} is almost a straight line around the worst-case con-
vergence rate γ5{WO} = 0.5268, with very little fluctuation. It is
noted that in about 15% of the 80 graphs, the exact values of ρM

for the WO interpolation method are larger than those of the LP
interpolation method. This shows that the WO approximation
method is optimal in the worst case, but not always good for
some specific examples.

E. Relation Between the Worst-Case Convergence Rate
and α, β,M

We analyze how to use the graph filter to find better design pa-
rameters or the performance limitation regardless of the network
structure.

In Fig. 2, we have evaluated the worst-case convergence rate
γM for the given α = 0.2 and β = 12.8, and have shown that
γM decreases monotonically as the control period M increases.
Setting the ratios of the spectral radius and the algebraic con-
nectivity, β/α, at different values, we compare in Fig. 8(a) and
(b) the worst-case convergence rate γM of the LP interpolation
method and that of the WO interpolation method.

First, we inspect the effect of the control period M . Although
γM of both methods always decreases as M increases, the de-
ceasing rate reduces when M exceeds a certain threshold. This
means that beyond a certain threshold, there is little gain in im-
proving the consensus performance by increasing M . Thus, we
need to choose the control period M properly to achieve a fast
convergence rate.

Next, we inspect the effect of β/α. As seen from Fig. 8,
with the increase of β/α, the worst-case convergence rate
γM of both methods becomes larger for a given control pe-
riod M . This indicates that the more dispersed the distribu-
tion of the graph Laplacian spectra are, the harder it is to
achieve the average consensus. Therefore, for graphs with large
spectral radius and small algebraic connectivity, we should
choose a larger control period M to get a faster convergence
rate and use the WO interpolation method to get a much
faster decreasing rate of γM than that of LP interpolation
method.

With M = 10 and β = 12.8, Fig. 9(a) and (b) depicts the fre-
quency responses of the graph filters from the two interpolation
methods at different values of β/α. It can be seen that when β/α
is small, such as β/α = 2, 4, the frequency responses of both
graph filters are similar. As β/α increases, the graph filter de-
signed by the WO interpolation method exhibits obvious equal
amplitude oscillations in the interval [α, β], while the graph fil-
ter designed by the LP interpolation method has large amplitude
at both ends of the interval [α, β].
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Fig. 8. Worst-case convergence rate γM for different M and β/α based on (a) the graph filter hLP(λ, M ) by the LP interpolation method and (b)
the graph filter hWO(λ, M ) by the WO interpolation method.

Fig. 9. Frequency responses of the designed graph filters with M = 10. (a) LP interpolation method. (b) WO interpolation method.

VIII. CONCLUSION

The direct and explicit connection between MAS consen-
sus and spectral filtering of graph signals has been established.
Based on this connection, a novel approach has been pre-
sented to analyze MAS consensus and design effective con-
trol protocols in the graph spectrum domain. This novel ap-
proach has led to the new analysis results and design meth-
ods listed in the Abstract for the consensus of MASs on
the uncertain graphs. Numerical examples have demonstrated
the validity, effectiveness, and advantages of these results and
methods.

The presented approach can overcome the difficulties of ex-
isting time-domain methods in handling uncertain MASs and,
hence, can offer more precise analysis, deeper insights, more
effective design methods, and better performance for MAS con-
sensus.

For simplicity and also due to space limit, the presented results
are only for the first-order deterministic MAS on undirected
graphs. All the results presented in this paper can be extended
to the high-order and stochastic MASs on the directed graphs,
which will be reported elsewhere.
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