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Abstract—We describe a nonlinear generalization of dual dy-
namic programming theory and its application to value function
estimation for deterministic control problems over continuous
state and action spaces, in a discrete-time infinite horizon
setting. We prove, using a Benders-type argument leveraging
the monotonicity of the Bellman operator, that the result of a
one-stage policy evaluation can be used to produce nonlinear
lower bounds on the optimal value function that are valid over
the entire state space. These bounds contain terms reflecting the
functional form of the system’s costs, dynamics, and constraints.
We provide an iterative algorithm that produces successively
better approximations of the optimal value function, and prove
under certain assumptions that it achieves an arbitrarily low
desired Bellman optimality tolerance at pre-selected points in
the state space, in a finite number of iterations. We also describe
means of certifying the quality of the approximate value function
generated. We demonstrate the efficacy of the approach on
systems whose dimensions are too large for conventional dynamic
programming approaches to be practical.

I. INTRODUCTION

Dynamic Programming (DP) facilitates the selection of opti-
mal actions for multi-stage decision problems, by representing
future rewards or costs via a value function, or cost-to-go
function. This allows the next action to be computed using a
smaller “one-stage” optimization parameterized by the current
system state, without considering the series of future decisions
that will follow. This article is concerned with the estimation
of value functions for deterministic infinite-horizon problems
in discrete time, with continuous state and action (or control
input) spaces. This common subclass of Markov decision
processes (MDPs) [10] is often used to model problems in
optimal control [6] and reinforcement learning [8].

The canonical DP algorithm was originally developed for
problems on discrete state and action spaces [2]. For continu-
ous state and action spaces it is typical to discretize, or “grid”
these spaces, and revert to the same algorithmic approach as
for discrete problems. This causes two computational issues.
Firstly, under quite general assumptions the cost is exponential
in the state and action dimensions, O([(1 − γ)δ]−(2n+m)),
where γ is the discount factor, δ is the desired value function
approximation accuracy, and n and m are the continuous state
and action dimensions respectively [10, eq. (7.13)]. Secondly,
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to compute an optimal action one must interpolate between
grid points of the successor state to estimate the cost-to-go.

One therefore seeks more practical DP approaches for
continuous problems. In rare cases, the most famous being
the unconstrained linear-quadratic regulator (LQR) [22], the
optimal value function and control policy can be calculated
exactly. The value function for constrained LQR is also com-
putable, and is piecewise quadratic [9], [16]. Algorithms exists
for computing its polyhedral “critical regions,” in each of
which the optimal control action is a different affine function
of the state [3]. This computation can also be performed for
piecewise linear cost functions. However, the solutions quickly
become expensive to compute and store, as the number of
regions grows combinatorially with the number of state and
input constraints, and with the trajectory length considered.
Approximations exist, but can generally be applied only after
the full control law has been computed [20]. For almost any
other problem, the critical regions are far harder to characterize
and compute, and no mature algorithms exist.

A group of methods known as approximate DP (ADP)
has arisen for continuous problems where the above methods
fail. ADP is closely related to reinforcement learning [29],
in that both fields are concerned with finding approximate
value functions and policies for MDPs [8] using more or
less model information. A number of recent ADP methods
relevant to the present article build on the so-called linear
programming (LP) approach of de Farias and Van Roy [12]. In
this approach one maximizes a candidate value function (over
some restricted function class) subject to a so-called Bellman
inequality constraint, guaranteeing that the result lower-bounds
the optimal value function. We critique existing methods in
this category after describing our contributions below.

The second DP method of relevance to this article is dual
DP (DDP), first used to solve finite-horizon optimization
problems in the area of hydro power planning [23], and
since applied in finance [11], economics [14], and power
system optimization [32]. DDP splits a multi-stage problem
into single-stage problems, each connected to its successor
by an estimate of its value function. The algorithm generates
a forward trajectory through the planning horizon, in which
control decisions are made by solving the single-stage prob-
lems, and then performs a backward pass in which Benders’
decomposition [4], [15], is used to generate tighter lower-
bounding hyperplanes for each stage’s value function. At
convergence one obtains a locally-exact representation of the
value function around the optimal trajectory [24], [27].
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A. Contributions

In this article we propose an infinite-horizon, nonlinear
generalization of DDP theory, using duality arguments and
the properties of the Bellman operator to construct provably-
increasing analytical lower bounds on an optimal value func-
tion. We refer to this as generalized DDP (GDDP). To the best
of our knowledge, duality arguments of this kind have not been
used to estimate value functions in an infinite-horizon setting
before. Specifically, we make the following contributions:

1) We show, using a Benders decomposition argument,
that a globally-valid lower bound on the optimal value
function can be parameterized by the dual solution of a
single one-stage control problem, in which the “current”
system state appears as a fixed parameter. The lower
bound contains terms reflecting the problem’s stage cost,
dynamics, and constraints. It is also reflexive, in that
it can immediately be used within the same one-stage
problem, with the same or a different state parameter, to
obtain a new bounding function. This is possible thanks
to the monotonicity property of the Bellman operator
and the existence of a single value function for the
infinite-horizon problem.

2) We provide an iterative algorithm for improving the
value function estimate, which is represented as the
pointwise maximum of all lower bounds generated so
far. Each algorithm iteration has, under certain assump-
tions on the problem data, polynomial complexity in
the state and action dimension. We prove that under a
strong duality assumption, an iteration of this algorithm
causes strict improvement in the value function estimate
at any value of the state where a so-called Bellman error
[8, §3.6.1] is present. This is reminiscent of the well-
known improvement property of value function iteration
for discrete reinforcement learning problems [29, §4.1].

3) We provide a generic guarantee that the value function
estimate converges pointwise over the region of the state
space where the optimal value function is finite. If strong
duality holds in the one-stage problem, the Bellman
error converges to zero for all points in the state space
revisited with positive probability at each iteration. The
GDDP algorithm we define achieves a given strictly
positive Bellman error tolerance at all of a finite number
of pre-selected state space points, within finite iterations.

4) We apply GDDP to linear and nonlinear control prob-
lems for which conventional direct DP approaches fail.

GDDP offers several potential attractions. Each lower-
bounding function generalizes an estimate of the value func-
tion away from the single point in the state space where it
was derived, efficiently exploiting the dual result of the one-
stage problem. In contrast, “gridding” approaches to DP for
continuous-state problems do not generate global lower bounds
at all, and have an unattractive up-front exponential cost [10].
Although we do not claim to have overcome the so-called
curse of dimensionality in this manner – in particular we do
not bound the number of iterations required – the algorithm
at least avoids the need to interpolate between points on a
grid [10], or in the case of local approximation techniques, to

identify approximate value functions around nearby sampled
points [1].1

GDDP can be compared with the LP approach to ADP,
as both methods maximize a value function while respecting
a Bellman inequality condition. Our pointwise maximum
representation of the value function is more expressive than
the single polynomial employed in [28], and as such we do
not rely on high-order parameterizations to obtain a good-
quality approximation. It is also clearly more expressive than
the earlier quadratic bound [30]. Pointwise maximum repre-
sentations exist within the LP-approach literature [7], [31].
In [31] an iterated Bellman inequality is derived, enlarging
the set of feasible parameterizations. However in that formu-
lation one must optimize over all value function “iterations”
simultaneously, and the option to take a pointwise maximum
is essentially a by-product of the approach. The authors of
[7] avoid this simultaneous optimization by converting the
result of each iteration into fixed input data for the next.
However all of [28], [31], and [7] are difficult to extend
beyond polynomial dynamics due to the way they reformulate
the Bellman inequality constraint. Another example of an
approach accommodating a pointwise maximum represen-
tation is [21], in which the Bellman condition is relaxed
by a predetermined multiplicative factor. Inner- and outer-
approximate value functions are then constructed to satisfy
the relaxed condition. Although the algorithmic principle is
general, the parameterization of these bounding functions
requires application-specific insight. Our Benders argument is
distinct from existing ADP literature, leads to implementable
algorithms for a wide range of problems, and requires no a
priori knowledge of the form of the optimal value function.
For linear systems, GDDP involves solving more scalable
optimization problems than the semidefinite programs of [28],
[31], and [7].

B. Article structure

Section II states the infinite-horizon control problem to be
studied, and reviews standard results on value functions and
the Bellman equation. Section III derives the proposed algo-
rithm for producing successive approximations to the optimal
value function, and proves some of its key properties. Section
IV discusses implementation choices. Section V presents nu-
merical simulations for linear systems of various sizes as well
as a nonlinear example, and Section VI concludes.

C. Notation

The symbol Rn (Rn+) represents the space of (non-negative)
n-dimensional vectors, and Sn++ (Sn+) represents the cone of
symmetric positive (semi-)definite n × n matrices. Inequality
a ≤ b for n-dimensional vectors means b−a ∈ Rn+, A � B for
n×n matrices means B−A ∈ Sn+, and A ≺ B means B−A ∈
Sn++. The spectral radius (magnitude of the largest-magnitude
eigenvalue) of a square matrix A is denoted σ(A). Notation

1In some circumstances with a discrete action set, random sampling of
the state can lead to a DP algorithm for which the solution time remains
polynomial in the state dimension [25]. However to our knowledge there are
no such results for problems with continuous state and action spaces.
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max{a, b, ...} represents the maximum of scalars a, b, and
so on. When max{. . .} is used with a subscript parameter
below the symbol max, it denotes the maximum attained value
of the parameterized quantity in the braces. The symbol 0
represents a vector or matrix of zeroes of appropriate size,
and 1 represents a vector of ones. Symbol In denotes the
n× n identity matrix. The notation diag{a, b, . . .} signifies a
diagonal matrix whose entries are a, b, and so on.

II. PROBLEM STATEMENT

A. Infinite-horizon control problem

We consider the solution of an infinite-horizon deterministic
optimal control problem in which the stage cost function,
dynamics, and constraints are time-invariant:

V ?(x) := inf
u0,u1,...

∞∑
t=0

γt`(xt, ut) (1a)

s. t. xt+1 = f(xt, ut), t = 0, 1, . . . , (1b)
Eut ≤ h(xt), t = 0, 1, . . . , (1c)
x0 = x . (1d)

The state at time t is denoted xt ∈ X ⊆ Rn, and the action,
or input, is denoted ut ∈ U ⊆ Rm. Constant γ ∈ (0, 1] is
a discount factor for costs encountered later in the horizon,
` : X × U → R is the stage cost function, and the dynamics
are characterized by f : X × U → X . The sets X and U are
the continuous state and action spaces respectively. The state-
input constraints (1c) are parameterized by E ∈ Rnc×m, where
nc is the number of such constraints present, and a mapping
h : X → Rnc from the state to a vector of right-hand-side
quantities. The function V ?(x) is the parametric infimum of
problem (1) as x is varied.

B. Optimal value function

We define the Bellman operator T on a proper function
V : X → R ∪ {+∞} in terms of the optimal objective value
of a one-stage problem related to (1):

T V (x) := inf
u∈U(x)

{`(x, u) + γV (f(x, u))} , (2)

where
U(x) := {u ∈ U : Eu ≤ h(x)} . (3)

We refer to function V as an approximate value function, as
its purpose in (2) is to represent all costs incurred from time
t+ 1 onwards along the trajectory. Where the infimum in (2)
is attained, one can define a control policy satisfying

u = π(x) ∈ arg min
u∈U(x)

{`(x, u) + γV (f(x, u))} . (4)

In accordance with other DP literature [8, §2.2], we refer to
π(x) as the greedy policy for V , since only the stage cost
for the immediate time step is modelled explicitly in the
calculation.

An optimal value function V ? for problem (1) satisfies the
well-known Bellman optimality condition,

V ?(x) = T V ?(x) , ∀x ∈ X . (5)

We make the following assumption:

Assumption 1. The stage cost function `(·, ·) is non-negative
on its domain, and a unique, time-invariant, optimal value
function satisfying (5) exists.

This existence condition is satisfied in various settings. For
example, a straightforward guarantee of a unique V ? is that
the stage cost be bounded on X , and the discount factor γ be
strictly less than 1. If in addition U(x) is non-empty for all
x ∈ X , then V ? is also finite on X [5, Prop. 1.2.3]. Alterna-
tively, unbounded stage costs such as quadratic functions over
a non-compact domain may be accommodated under different
assumptions, such as those of Hernández-Lerma and Lasserre
[18, §4.2]. Our later results are generic enough to rely only on
Assumption 1 itself holding, and not on specific settings such
as these.

An additional, obvious property of V ? follows:

Lemma II.1 (Non-negative optimal value function). Under
Assumption 1, V ?(x) ≥ 0 ∀x ∈ X .

Proof. The stage costs summed in (1) are non-negative, thus
their infimum over control decisions is also non-negative.

If the limit under repeated value iteration limN→∞
T NV (x) exists at x, then V ?(x) is finite and equal to this lim-
iting value [5, Prop. 1.2.1]. Otherwise, we say V ?(x) = +∞
and that V ?(x) = T V ?(x) there by convention.

C. Restriction of problem class

In addition to assuming that the stage cost is non-negative,
we restrict it to the following form, which ensures it will be
compatible with our use of epigraph variables in Section III.

Restriction 1. The stage cost `(x, u) consists of K ≥ 1 terms,
each of which is the pointwise maximum of general functions
of x plus linear and quadratic terms in u:

`(x, u) =

K∑
k=1

`k(x, u) , (6)

where

`k(x, u) := max
l

{
φkl(x) + r>klu+

1

2
u>Rklu

}
(7)

and the maximum is over a finite number of indices l for each
k. Each function φkl(x) is finite-valued for any given x ∈ X .

Restriction 1 accommodates, but is not limited to, affinely-
scaled p-norms for p ∈ {1, 2,∞}, and convex piecewise affine
functions of x and u.

In fact, to aid developments from Section III onward, we
will model the stage cost as the sum of K epigraph variables,
`(x, u) = 1>β for β ∈ RK , and replace the K terms of the
form (7) with a single list of J constraints on β,

e>j β ≥ φj(x) + r>j u+
1

2
u>Rju , j = 1, . . . , J .

All indices kl have been rolled into a single index j, and ej
is a unit vector selecting the element of β to which the jth

constraint applies.
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We also restrict the dynamics:

Restriction 2. The dynamics f(x, u) take one of the following
input-affine forms:

(a) If in (7) we have Rkl � 0 for each index kl, then
f(x, u) = fx(x) + Fu(x)u, where Fu(x) has finite
entries for any given x ∈ X .

(b) Otherwise, the dynamics take the form f(x, u) =
fx(x) +Bu, where B ∈ Rn×m.

In both (a) and (b), fx(x) has finite entries for any given
x ∈ X .

The reasons for Restriction 2 will become clear in the
derivation of lower bounds on V ?(x) in Section III-B.

D. Unconstrained LQR

A special tractable case of problem (1) is the unconstrained
LQR problem, in which f(x, u) = Ax + Bu with (A,B)
stabilizable, and `(x, u) = 1

2x
>Qx + 1

2u
>Ru with Q � 0

and R � 0. For this problem the optimal value function is
V ?(x) = 1

2x
>Px, where P is the solution of the (discounted)

discrete algebraic Riccati equation [22]. The discount factor γ
is handled via the substitutions Ã :=

√
γA and B̃ :=

√
γB.

III. LOWER BOUNDING ALGORITHM

We now describe an algorithm for producing successively
better approximations of V ?(x) from below.

A. Epigraph form of one-stage problem (2)

Let an approximation of the optimal value function be
denoted V̂I , taking the form

V̂I(x) = max
i=0,...,I

gi(x) (8)

where gi : X → R ∪ {+∞} are proper functions and I is
finite. We define g0(x) = 0, which from Lemma II.1 is always
a valid lower bound on V ?(x).

Under Restrictions 1 and 2 the one-stage problem in (2)
can be rewritten using epigraph variables β ∈ RK and α ∈ R
to represent the stage cost and cost-to-go respectively. Using
dynamics of form (a) from Restriction 2 – the derivation is
the same for form (b) – one obtains the following:

inf
u,x+,β,α

1>β + γα (9a)

s. t. x+ = fx(x̂) + Fu(x̂)u , (9b)
Eu ≤ h(x̂) , (9c)

e>j β ≥ φj(x̂) + r>j u+ 1
2u
>Rju ,

j = 1, . . . , J , (9d)
α ≥ gi(x+) , i = 0 , . . . , I . (9e)

This is a parametric optimization problem in which the current
state of the system x̂ is the (fixed) parameter. Vector x+ has
been introduced to model explicitly the successor state to x̂
when input u is applied.

The following lemma establishes equivalence between (9)
and (2).

Lemma III.1. If problem (9) is feasible and an optimal
solution (û?, x̂?+, β̂

?, α̂?) is attained for parameter x̂,

1>β̂? + γα̂? = min
u∈U(x̂)

{
`(x̂, u) + γV̂I(f(x̂, u))

}
= T V̂ (x̂) .

Proof. The condition u ∈ U(x̂) is reflected in constraint
(9c), and constraint (9b) can be eliminated by substituting
the definition of x+ into constraint (9e). It must hold that
1>β̂? =

∑K
k=1 β̂

?
k = `(x̂, û?), and that γα̂? = γV̂I(f(x̂, û?)),

otherwise the epigraph constraints (9d) and (9e) are either
violated, or are not binding.

B. Lower-bounding lemma

We now derive the dual of problem (9) in order to support
the lemma that follows. Assign the multipliers ν ∈ Rn to
constraint (9b), λc ∈ Rnc+ to constraint (9c), λβ ∈ RJ+ to
constraint (9d), and λα ∈ RI+1

+ to constraint (9e). We use
λβ,j to denote the jth element of λβ , and λα,i to denote the
ith element of λα. The Lagrangian of (9) is, after grouping
terms,

L(u, x+, β, α, ν, λc, λβ , λα) :=

(1− L>λβ)>β + (γ − 1>λα)α− ν>x+ +

I∑
i=0

λα,igi(x+)

+ (ν>Fu(x̂) + λ>c E + λ>βR)u+
1

2
u>

 J∑
j=1

λβ,jRj

u

+ ν>fx(x̂)− λ>c h(x̂) + λ>β φ(x̂) , (10)

where for compactness we have introduced the additional
symbols L ∈ RJ×K , R ∈ RJ×m and φ(x̂) ∈ RJ , whose
jth rows contain e>j , r>j , and φj(x̂) respectively. The dual of
problem (9) is:

sup
ν,λc,λβ ,λα

φ(x̂)>λβ − h(x̂)>λc + fx(x̂)>ν

+ ζ1(ν, λα) + ζ2(x̂, ν, λc, λβ) (11a)

s. t. L>λβ = 1 , (11b)

1>λα = γ , (11c)
λc ≥ 0, λβ ≥ 0, λα ≥ 0 , (11d)

where

ζ1(ν, λα) := inf
x+∈X

{
−ν>x+ +

I∑
i=0

λα,igi(x+)

}
(12)

and

ζ2(x̂, ν, λc, λβ) :=

inf
u∈U

(ν>Fu(x̂) + λ>c E + λ>βR
)
u+

1

2
u>

 J∑
j=1

λβ,jRj

u
.

(13)

Terms ζ1 and ζ2 appear in the dual objective as a standard con-
sequence of minimizing the Lagrangian over primal variables.
The requirement for the two minimizations to be bounded from
below (which ensures the dual function is meaningful) may
place additional implicit constraints on the dual variables in
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(11). We do not write these constraints out explicitly, because
they do not always apply and their form is not in fact relevant.

It will, however, be crucial for the Benders-type argument
of Lemma III.2 below that any extra implicit constraints in
(11) are invariant to x̂. Thus (13) could be problematic if the
minimization is unbounded for some x̂. If all matrices Rj
are strictly positive definite then ζ2(x̂, ν, λc, λβ) has a finite
analytic value for any x̂, and no extra constraint coupling
the variables x̂, ν, λc, and λβ is needed. If there is an
Rj which is not strictly positive definite, then one needs
Fu(x̂)>ν+E>λc+R

>
λβ to lie in the span of the eigenvectors

of
∑J
j=1 λβ,jRj with strictly positive eigenvalues. This span

constraint must then be invariant to x̂, which is satisfied if
Fu(x̂) is a constant. These issues justify Restriction 2, which
is sufficient to ensure that constraint invariance holds.

Let JP (x̂) denote the optimal objective value of problem (9)
as a function of the parameter x̂, and similarly define JD(x̂)
as the optimal objective value of problem (11). We now state
the lemma on which our proposed algorithm is based.

Lemma III.2 (Lower-bounding lemma). Suppose gi(x) ≤
V ?(x), ∀x ∈ X , for i = 0, . . . , I . Assume that optimal dual
variables exist for problem (11) with parameter x̂, and denote
these (ν̂?, λ̂?c , λ̂

?
β , λ̂

?
α). Then the following relationship holds:

gI+1(x) := λ̂?>β φ(x)− λ̂?>c h(x) + ν̂?>fx(x)

+ ζ1(ν̂?, λ̂?α) + ζ2(x, ν̂?, λ̂?c , λ̂
?
β)

≤ V ?(x) , ∀x ∈ X . (14)

Proof. Consider solving problem (11) for some other x 6= x̂.
If the supremum is attained there, let (ν?, λ

?

c , λ
?

β , λ
?

α) denote
an optimal solution. Then

JD(x) = φ(x)>λ
?

β − h(x)>λ
?

c + fx(x)>ν?

+ ζ1(ν?, λ
?

α) + ζ2(x, ν?, λ
?

c , λ
?

β) (15a)

≥ φ(x)>λ̂?β − h(x)>λ̂?c + fx(x)>ν̂?

+ ζ1(ν̂?, λ̂?α) + ζ2(x, ν̂?, λ̂?c , λ̂
?
β) , (15b)

where line (15a) is simply the definition of an optimal dual
solution, and (15b) follows trivially as (ν̂?, λ̂?c , λ̂

?
β , λ̂

?
α) cannot

be better than any optimal solution. Under Restriction 2 the
feasible sets of problem (11) are the same for parameters x̂
and x, and therefore this inequality always holds.

Even if the supremum in (11) for parameter x is not attained,
or the optimal objective value is infinite, i.e. JD(x) = +∞,
then the inequality between JD(x) and (15b) still holds.

Now for any x, the following relationships also hold:

JP (x) = T V̂I(x) ≤ T V ?(x) = V ?(x) , (16)

where the left-hand equality arises from Lemma III.1, the
central inequality comes from monotonicity of the Bellman
operator [5, Lemma 1.1.1] and the fact that V̂I(x) ≤ V ?(x),
and the right-hand equality comes from the Bellman optimality
condition (5).

Furthermore, from weak duality, JD(x) ≤ JP (x). There-
fore, referring to any x simply as x, and combining (15b),
(15a), weak duality, and (16), the result follows. Note that
definition (14) is the same as (15b); we have transposed the

first three terms as the fixed Lagrange multipliers appear as
coefficients for functions of x in the algorithm.

Remark 1 (Alternative form of gI+1(x)). An equivalent def-
inition of gI+1(x), using JD(x̂) and difference terms between
x and x̂, is

gI+1(x) = JD(x̂) + λ̂?>β (φ(x)− φ(x̂))− λ̂?>c (h(x)− h(x̂))

+ ν̂?>(fx(x)− fx(x̂))

+ ζ2(x, ν̂?, λ̂?c , λ̂
?
β)− ζ2(x̂, ν̂?, λ̂?c , λ̂

?
β) .

(17)

In case strong duality holds between problems (9) and (11),
JP (x̂) can be used in place of JD(x̂), and the new function
can be expressed in terms of the optimal objective value and
Lagrange multipliers from problem (9).

C. Generalized DDP algorithm

Lemma III.2 states that if functions gi(x) for i = 0, . . . , I
are all known to be global lower bounds on V ?(x), then a new
lower bound gI+1(x) can be generated from the solution of
dual problem (11) with parameter x̂, as long as that problem
attains a finite optimum. Algorithm 1 constructs a series of
valid lower-bounding functions based on this result, starting
with g0(x) = 0, by solving the one-stage problem at multiple
pre-selected points in the state space X , the set of which we
denote XAlg := {x1, . . . , xM}. Defining the Bellman error
ε(x;V ) for any approximate value function V and state x as

ε(x;V ) := T V (x)− V (x) , (18)

the algorithm systematically approaches the condition
ε(xm, V̂I) = 0 for all xm ∈ XAlg. Denoting εI ∈ RM the
vector of such Bellman errors at iteration I , the algorithm ter-
minates when ||εI ||∞ ≤ δ, and outputs a final approximation
V̂ (x).2

In the algorithm listing, the function XPicker(XAlg, εI)
chooses an element of XAlg to use as the parameter x̂ when
solving the one-stage problem (9) (or its explicit dual (11)).
Strategies for selecting x̂ are described in Section IV-A.
The function OneStage(x̂; V̂I) performs this optimization and
returns, if optimal dual variables are available, the new lower-
bounding function gI+1(x) as described in Lemma III.2.

We now prove some key properties of Algorithm 1.

Lemma III.3 (Positive Bellman error). For the value function
under-approximator V̂I(x) generated by Algorithm 1 at each
iteration I ,

ε(x; V̂I) ≥ 0 , ∀x ∈ X . (19)

Proof. For I = 0, the result holds trivially since V̂0(x) =
g0(x) = 0, and T V̂0(x) is non-negative for any x by virtue of
non-negative stage costs `(x, u).

For any I > 0 we have, from definition (8), V̂I(x) ≥
V̂I−1(x) for all x ∈ X , and therefore, by monotonicity of
the Bellman operator, T V̂I(x) ≥ T V̂I−1(x) for all x ∈ X .

2For the purpose of assessing convergence, we let ε(xm, V̂I) = 0 by
convention for any xm where the one-stage problem is infeasible.
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Algorithm 1 Generalized Dual Dynamic Programming algo-
rithm for M fixed state space points

1: Generate samples XAlg := {x1, . . . , xM}
2: Set I = 0
3: Set g0(x) = 0
4: while TRUE do
5: V̂I(x)← maxi=0,...,I gi(x)
6: for xm ∈ XAlg do
7: ε(xm; V̂I)← T V̂I(xm)− V̂I(xm)
8: end for
9: if ||εI ||∞ ≤ δ then

10: break
11: end if
12: x̂← XPicker(XAlg, εI)
13: if OneStage(x̂; V̂I) is feasible then
14: gI+1(x)← OneStage(x̂; V̂I) according to (14)
15: else
16: V ?(x̂) = +∞; do not revisit x̂
17: end if
18: I ← I + 1
19: end while
20: Output V̂ (x) := maxi=0,...,I gi(x)

Applying the proof of Lemma III.2 to iteration I − k, for any
k = 0, . . . , I − 1, we have

gI−k(x) ≤ JD(x) ≤ JP (x) = T V̂I−k−1(x), ∀x ∈ X .

Since T V̂I−k−1(x) ≤ T V̂I−k(x) ≤ . . . ≤ T V̂I(x) we have

T V̂I(x) ≥ gi(x) , ∀x ∈ X , ∀i = 0, . . . , I,

from which the result is immediate by the definitions of V̂I(x)
and ε(x; V̂I).

Lemma III.4 (Strict increase in value function approximator).
Suppose V̂I(x̂) < T V̂I(x̂) for some x̂ ∈ X , and that x̂ is
chosen as the evaluation point in iteration I+1 of Algorithm 1.
If strong duality holds between problems (9) and (11), then this
iteration brings about a strict increase in the value function
approximation at x̂, i.e., V̂I+1(x̂) > V̂I(x̂). The increase is
equal to T V̂I(x̂)− V̂I(x̂), i.e.,

V̂I+1(x̂)− V̂I(x̂) = T V̂I(x̂)− V̂I(x̂) > 0 . (20)

Proof. From definition (8) we have

V̂I+1(x) = max
{
V̂I(x), gI+1(x)

}
.

If strong duality holds between problems (9) and (11), i.e.,
JP (x̂) = JD(x̂), it follows from (17) that JP (x̂) = T V̂I(x̂) =
gI+1(x̂). Since we suppose V̂I(x̂) < T V̂I(x̂), we will have
gI+1(x̂) > V̂I(x̂), and hence V̂I+1(x̂) > V̂I(x̂). Equation (20)
follows immediately.

We use Lemmas III.2 to III.4 to prove two convergence
results for Algorithm 1.

Theorem III.5 (Pointwise convergence of V̂I(x) as I →∞).
For each x ∈ X for which V ?(x) is finite, there exists a
limiting value V̂lim(x) ≤ V ?(x) such that limI→∞ V̂I(x) =
V̂lim(x).

Proof. From Lemma III.2 and (8), we have that for any x with
finite optimal value, the sequence {V̂I(x)}∞I=0 is bounded from
above by V ?(x). Its value is non-decreasing each time a new
lower-bounding function gI+1(x) is generated, and therefore
the limit V̂lim(x) exists by the Monotone Convergence Theo-
rem.

Theorem III.6 (Finite termination of Algorithm 1). Suppose
the following conditions are met:

(i) Strong duality holds for the one-stage problem (9) with
parameter xm each time it is solved, for all xm ∈ XAlg.

(ii) In the limit as I → ∞ each xm ∈ XAlg is picked by
XPicker(XAlg, εI) with strictly positive probability at
each iteration.

(iii) Each V ?(xm) is finite.
Then Algorithm 1 converges in a finite number of iterations
with probability 1 for any tolerance δ > 0.

Proof. Application of Theorem III.5 to any xm ∈ XAlg

shows that limI→∞ V̂I(xm) exists. Each time xm is picked
by XPicker(XAlg, εI), from Lemma III.4 the value function
estimate at xm increases by an amount equal to ε(xm; V̂I), as
long as strong duality holds in problem (9).

The convergent sequence (V̂0(xm), V̂1(xm), . . .) satisfies
necessary conditions for a Cauchy sequence, even though
xm is not chosen by XPicker(XAlg, εI) at every iteration of
the algorithm. Thus, let N(xm, δ) denote the finite iteration
number beyond which all differences between later elements
of the sequence have magnitude less than δ. By assumption,
xm will, with probability 1, be picked at some iteration
I > N(xm, δ), at which stage we will have

ε(xm; V̂I) = V̂I+1(xm)−V̂I(xm) = |V̂I+1(xm)−V̂I(xm)| < δ

where the first equality comes from Lemma III.4, the second
comes from Lemma III.3, and the inequality comes from
the definition of a Cauchy sequence. The constant N(xm, δ)
is different but finite for each xm ∈ XAlg. Applying this
argument to the largest such value over all points xm ∈ XAlg,
one deduces that the termination criterion of Algorithm 1 will
be satisfied in finite iterations.

D. Suboptimality of GDDP output

Convergence to a final value function approximation V̂
does not imply V̂ (x̂) = V ?(x̂) for any given x̂, even if one
manages to achieve ε(x̂; V̂ ) = 0. It is therefore desirable to
be able to relate V̂ , the output of Algorithm 1, to the optimal
value function V ?. We now state a lemma which allows us to
derive bounds on the difference, supported by the following
definition.

For a vector y reachable from x (i.e., for which problem (9)
with parameter x remains feasible when augmented with the
constraint x+ = y), let θ(x, y; V̂ ) be the increase in optimal
cost when the constraint x+ = y is added, relative to the
original problem (9). In other words, θ(x, y; V̂ ) is the (non-
negative) cost of artificially constraining the successor state to
be y rather than letting it be chosen freely.
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Lemma III.7. The optimal value function V ? and approxi-
mate value function V̂ are related by the following inequality,
for any vector pair (x, y) where y is reachable from x:

V ?(x)−γV ?(y) ≤ V̂ (x)−γV̂ (y)+θ(x, y; V̂ )+ε(x; V̂ ) (21)

Proof. Let u?(x; V̂ ) be a minimizer in (4) for value function
V̂ , and let ux→y be an input that brings about successor state
y at minimum stage cost. From definition (18) we have

V̂ (x) = T V̂ (x)− ε(x; V̂ ) (22a)

= `(x, u?(x; V̂ )) + γV̂ (f(x, u?(x; V̂ ))− ε(x; V̂ )
(22b)

= `(x, ux→y) + γV̂ (y)− ε(x; V̂ )

+ `(x, u?(x; V̂ )) + γV̂ (f(x, u?(x; V̂ ))

−
(
`(x, ux→y) + γV̂ (y)

)
(22c)

= `(x, ux→y) + γV̂ (y)− θ(x, y; V̂ )− ε(x; V̂ ) (22d)

For the optimal value function, similarly defining u(x;V ?) to
be a minimizer in (4) for value function V ?, we have

V ?(x) = T V ?(x)

= `(x, u?(x;V ?)) + γV ?(f(x, u?(x;V ?)))

≤ `(x, ux→y) + γV ?(y) ,

where the last line follows from suboptimality of ux→y and
y in the one-stage problem. Hence `(x, ux→y) ≥ V ?(x) −
γV ?(y). Substitution into equation (22d) completes the proof.

Corollary III.8. Suppose there exists a state y for which it is
known that V̂ (y) = V ?(y). Then from inequality (21),

V ?(x) ≤ V̂ (x) + θ(x, y; V̂ ) + ε(x; V̂ ) . (24)

Now suppose there exists a feasible state trajectory
(x0, x1, . . . , xT ) where xT = y. Then, applying Lemma III.7
recursively from any step t < T :

V ?(xt) ≤ γV ?(xt+1) + V̂ (xt)− γV̂ (xt+1)

+ θ(xt, xt+1; V̂ ) + ε(xt; V̂ )

≤ γ
(
γV ?(xt+2) + V̂ (xt+1)− γV̂ (xt+2)

+θ(xt+1, xt+2; V̂ ) + ε(xt+1; V̂ )
)

+ V̂ (xt)− γV̂ (xt+1) + θ(xt, xt+1; V̂ ) + ε(xt; V̂ )

≤ γT−tV ?(xT ) +

T−1∑
τ=t

γτ−t
(
V̂ (xτ )− γV̂ (xτ+1)

+θ(xτ , xτ+1; V̂ ) + ε(xτ ; V̂ )
)

= γT−t
(
V ?(xT )− V̂ (xT )

)
+ V̂ (xt)

+

T−1∑
τ=t

γτ−t
(
θ(xτ , xτ+1; V̂ ) + ε(xτ ; V̂ )

)

Since V ?(x) ≥ V̂ (x) for any x ∈ X , and V ?(xT )− V̂ (xT ) =
V ?(y)−V̂ (y) = 0, the optimal value function can be bounded
from below and above:

V̂ (xt) ≤ V ?(xt) ≤ V̂ (xt) +

T−1∑
τ=t

γτ−t
(
θ(xτ , xτ+1; V̂ )

+ ε(xτ ; V̂ )
)
. (25)

An example of a suitable y is an equilibrium that can be
maintained while incurring zero stage cost, so that V̂ (y) =
V ?(y) = 0. Note that the state trajectory used in Corollary
III.8 can be unrelated to XAlg used in Algorithm 1. This leads
to the following observation.

Remark 2 (Certifying V̂ (x) = V ?(x)). For any x, the value
function estimate is exactly correct, i.e. V̂ (xt) = V ?(xt), for
each step t along any state trajectory starting at x0 = x,
satisfying the following conditions:

1) The Bellman error ε(xt; V̂ ) equals zero at each step t;
2) Each state xt+1 is an optimal successor state of

xt (i.e., an optimal x+ in problem (9)), and hence
θ(xt, xt+1; V̂ ) = 0;

3) The final state is y.

Unfortunately it is in general difficult to achieve this certifi-
cation for an arbitrary point x. Even if Algorithm 1 terminates
with ||εI ||∞ = 0 for the M elements of XAlg, these will have
been generated when the algorithm was initialized, and will
not in general contain the required greedy policy sequence
satisfying θ(xt, xt+1; V̂ ) = 0 for each t. If the states in the
sequence are not elements of XAlg, then in general we will
have ε(xt; V̂ ) > 0 as the algorithm was not tailored to those
points. Moreover, optimal state trajectories for many infinite
horizon problems are themselves infinitely long, in which case
there does not even exist a finite-time check for the conditions
in Remark 2.

We therefore seek more practical interpretations of Corol-
lary III.8. The following observation suggests that a bound can
be derived either by playing forward the greedy policy, or by
following a pre-constructed feasible trajectory.

Remark 3 (Bounding suboptimality at a point). The following
two methods bound |V ?(x)− V̂ (x)| for an arbitrary point x ∈
X , assuming V ?(x) and V̂ (x) are both finite and that there
exists a y ∈ XAlg for which it is known that V̂ (y) = V ?(y).

M1. Generate a sequence (x0, x1, . . .) by iteratively applying
the greedy policy (4) from an initial state x0 = x.
Suppose that at some time T − 1 the state xT−1 is in a
neighbourhood of y, whence there exists a feasible input
that brings about xT = y. Then, for each step τ except
τ = T − 1, we have θ(xτ , xτ+1; V̂ ) = 0, since xτ+1

is the optimal successor state of xτ under the greedy
policy. Then from relationship (25),

V̂ (x) ≤ V ?(x) ≤ V̂ (x) + γT−1θ(xT−1, y; V̂ )

+

T−1∑
τ=0

γτε(xτ ; V̂ ) . (26)
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M2. Suppose a feasible trajectory (x0, x1, . . . , xT ) can be
constructed where x0 = x, xT = y, and x1, . . . , xT−1
are elements of XAlg. Then in the limit where Algorithm
1 terminates with δ = 0, we have ε(xτ ; V̂ ) = 0 for
each xτ ∈ XAlg, and only x0, which in general is not
an element of XAlg, will have ε(x0; V̂ ) > 0. Then from
relationship (25),

V̂ (x) ≤ V ?(x) ≤ V̂ (x) + ε(x; V̂ )

+

T−1∑
τ=0

γτθ(xτ , xτ+1; V̂ ) . (27)

Methods M1 and M2 are two extreme varieties of bound
suggested by (25). In M1, contributions to suboptimality arise
primarily from the Bellman errors ε(xτ ; V̂ ) along the “greedy
policy trajectory”. This is in effect the common practice
of obtaining an upper bound by simulating the policy and
measuring the incurred costs [23], but with more precise
treatment of the tail end of the trajectory. In M2, which could
be appropriate in a motion planning or reachability setting,
contributions arise primarily from the terms θ(xτ , xτ+1; V̂ ).
These terms reflect the added cost of forcing a state transition
from xτ to xτ+1 in preference to the greedy policy.

In practice a mixture of these methods can be used to
construct a bound (see footnote 4 in §V).

Remark 4 (Alternative convergence criterion). The Bellman
error convergence criterion in Algorithm 1 could be replaced
by one base on the upper bounding procedures described in
Remark 3. In particular, the upper bound in M1, obtained by
using V̂I to simulate the evolution of the system forward from
each of the states x ∈ XAlg is conventional in other DP and
DDP literature [7], [23]. However, it is more costly to compute
than the one-stage Bellman error, and does not directly inherit
the termination guarantee provided by Theorem III.6.

E. Expressiveness of lower bounds gi(x)

Algorithm 1 produces lower bounding functions only of the
specific form (14), and it may not be possible to represent
V ?(x) as their pointwise maximum. One may therefore ask,

(i) What is the lowest number of points M = |XAlg|
required to obtain |V ?(x) − V̂ (x)| ≤ δ for all x in a
compact subset of X , for some δ > 0?

(ii) What is the minimum number of iterations required
to achieve this, when these M points are used in the
algorithm?

Consider the case of LQR, where V ?(x) = 1
2x
>Px (see

§II-D). Inspection of (14) shows that the lower bounds are of
the form gi(x) = 1

2x
>Qx+ p>i x+ si for some pi ∈ Rn and

si ∈ R, where Q is the quadratic state cost parameter. It is
also straightforward to show that P −Q � 0, i.e., that V ?(x)
has strictly higher curvature in all directions than the functions
gi(x).

To meet the condition in (i), one must generate enough
lower-bounding functions for maxi gi(x) to stay within δ
of V ?(x) everywhere, regardless of the performance of the
algorithm. It becomes clear that this is equivalent to covering
the state space with ellipsoids characterized by matrix P −Q.

The number required is generally exponential in the state di-
mension. Answering (ii), since each of the lower bounds arises
from a GDDP iteration, the number of iterations required is
also exponential. Hence, GDDP does not overcome this aspect
of the well-known curse of dimensionality [10].

IV. IMPLEMENTATION

We now discuss how the several degrees of freedom offered
by Algorithm 1 might be treated.

A. Choice of set XAlg

Algorithm 1 is agnostic to how the set XAlg is generated.
One natural choice is to sample the points independently from
a performance (or state relevance) weighting P0, which defines
states x where one wishes to minimize the parametric cost of
problem (1). The rationale for this is that by running Algorithm
1 on these points, one obtains a small Bellman error there; one
might then assume from the Bellman optimality condition (5)
that this leads to a good approximation of V ? at the same
points.

However, it may be beneficial to generate XAlg in other
ways. For example, if the priority is to ensure that the subop-
timality of the value function can always be upper-bounded as
in method M2 above, states could be generated systematically
using a reachability criterion or planned trajectory.

B. Sampling from XAlg

The function XPicker(XAlg, εI) chooses which element of
XAlg to use to derive the next bound gI+1(x). For example:

1) Return a random (equiprobable or with strictly positive
weights) element of XAlg at each iteration.

2) Loop sequentially through all elements of XAlg in order,
returning to x1 after finishing an iteration with x̂ = xM .

3) Select the element with the largest Bellman error.
4) Iterate on the same x̂ until its Bellman error ε(x̂; V̂I) has

reduced to tolerance δ. Then cycle through all points in
this manner.

Note that strictly speaking Choices 2 and 4 additionally require
XPicker(XAlg, εI) to be supplied with knowledge of previous
iterations.

Choice 1 fulfils the conditions of Theorem III.6, and Choice
2 also converges under a trivial adaptation of the same
theorem. Choices 3 and 4 are clearly inappropriate if the strong
duality condition of Theorem III.6 is not satisfied, as this will
cause a persistent Bellman error. Results for Choices 1 and 3
are reported in Section V.

C. Convergence check

Measurement of the Bellman error in lines 6-8 need not be
performed at every iteration I . A measurement for all elements
of XAlg requires M solutions of problem (9) or (11), each of
which could just as well be used to generate a new lower-
bounding function. It may be more attractive to spend a greater
share of computation time creating lower-bounding functions,
and check convergence less frequently.
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D. Convexity and solver compatibility

Because Algorithm 1 relies on repeated solution of problem
(9) or its dual (11), one may wish to minimize solution time
by considering convexity, problem class, or the accumulation
of lower-bounding functions.

1) Convexity of problem (9): On initialization of the algo-
rithm with g0(x) = 0, the one-stage problem has a convex
objective and constraints for any parameter x̂ if Rj � 0
for all constraints j in (9d). Therefore the only potential
source of non-convexity as the algorithm progresses is the
introduction of a non-convex lower bound gi(x). Inspection of
(14) indicates that to preserve convexity it is sufficient, but not
necessary, for all of φ(x)>λ̂?β , fx(x)>ν̂?, and h(x)>λ̂?c to be
convex. This holds in many cases, e.g. h(x) and fx(x) affine
and φ(x) convex. Even if gI+1(x) is not globally convex, it
may still be convex in the region where it is “active”, i.e. where
gI+1(x) = maxi gi(x) = V̂I+1(x). Lastly, one may choose not
to add a lower-bounding function that fails a convexity test.

2) Simplified lower-bounding functions: If in line 14 the
new lower bound (14) can be approximated from below by its
first- or second-order Taylor expansion around x̂, the simpler
functions may usefully restrict problem (9) or its dual (11)
to a class for which more efficient solvers exist, for example
a linear or quadratically-constrained program. These simpler
functions will however be less tight a lower bound on V ?(x).

3) Redundant lower-bounding functions: The GDDP al-
gorithm adds a constraint (9e) to the one-stage problem at
each iteration, which may make an existing one redundant,
i.e. gi(x) ≤ maxj 6=i gj(x) ∀x ∈ X . As in conventional DDP,
it may be desirable to “prune” these redundant lower-bounding
functions [13] where they can be identified efficiently.

V. NUMERICAL RESULTS

We now present simulated results for constrained linear
systems of various sizes, as well as a nonlinear example.

A. Random linear systems

Random asymptotically stable, controllable linear systems
(controllable pairs (A,B) with σ(A) ≤ 0.99) were created
for different state and input dimensions n and m. The state
and input spaces were X = Rn and U = Rm respectively.
Constraint (1c) was used to bound the input with ||u||∞ ≤ 1,
the stage cost was `(x, u) = 1

2x
>x+ 1

2u
>u, and the discount

factor was γ = 1.
The elements of XAlg were drawn from a normal distribu-

tion P0 = N (0, 52 · In). This distribution can be viewed as a
weighting of the states for which we wish to solve problem
(1); see Section IV-A.

For these systems, each lower-bounding function gi(x)
generated by GDDP is a convex quadratic, and the one-stage
problems (9) are quadratically-constrained linear programs.
These were solved in Gurobi 7.0.2, on a computer with a 2.6
GHz Intel Core i7 processor and 16 GB of RAM.

TABLE I
GDDP ITERATIONS, δ = 10−3 , SINGLE SYSTEM INSTANCE

States Inputs M (number of elements in XAlg)
n m 1 2 5 10 20 50 100
1 1 2 2 6 20 40 110 180
2 1 2 3 7 13 45 123 269
3 1 3 6 13 30 65 160 354
4 2 2 3 6 13 26 66 130
5 2 3 4 14 32 56 167 326
8 3 2 3 6 16 41 115 263

10 4 2 3 8 14 36 100 213

1) Iterations to termination: For a given dimension (n,m),
the algorithm was run for an illustrative random system to
a tolerance of δ = 10−3. The XPicker(XAlg, εI) function
used Choice 3 described in Section IV-B.3 Table I shows
the iterations required as a function of M in each instance.
Although the computational cost of solving the one-stage
problem increases with system size, the number of iterations
appears to be roughly linear in M and unrelated to n and m.

2) Approximation quality: The quality of the value function
V̂ output by the GDDP algorithm can be measured by taking
an expectation of the infinite-horizon cost over initial states
x0 ∼ P0. For any sample x0, we used inequality (25) to bound
the suboptimality of this infinite-horizon cost with respect to
the solution of (1).4

Table II compares Bellman errors and the suboptimality
bounds in percentage terms for
(a) Set XAlg, consisting of M = 200 points drawn from P0.
(b) An “out-of-sample” evaluation set of 1,000 points drawn

independently from the same distribution.
Choice 1 was used for XPicker(XAlg, εI), i.e. an equiprobable
random choice of xm at each iteration. The quantities reported
were measured after 200 iterations, such that each element
of XAlg was visited once on average. Each row of the table
reports mean values over 20 random systems.

The algorithm fits a lower-bounding function at the points
in XAlg, and as a result the suboptimality bounds computed
are a little worse at the out-of-sample points (17.5% vs. 12.0%
for the largest system studied). Fig. 1 shows a representative
plot of convergence of the suboptimality bound in the case of
a 5-state, 2-input system.

In addition, Table II includes comparisons with two other
DP methods.

Value iteration: Standard repeated application of the Bell-
man operator [5, §1.2], was used to derive gridded value
function approximations over the compact region −10 · 1 ≤
x ≤ 10 · 1, i.e., two standard deviations of P0 from the

3Although this requires a relatively costly measurement of all Bellman
errors at each iteration, it arguably gives a fairer illustration of the best-case
number of iterations required than a random choice of xm.

4In these tests, we simulated the system for 30 time steps from each sampled
starting state (50 time steps for the last two rows). To avoid any kind of
truncation effect at the end of the horizon, method M1 in Remark 3 was used
until k steps before the end of the horizon, where k ≤ n is the number
of steps needed to form a full-rank matrix [B,AB, . . . , Ak−1B]. An input
sequence, which (due to proximity to the origin) was in all cases feasible with
respect to the box constraint on the input, was then generated for the last k
steps, in the sense of the reachability argument made for method M2.
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TABLE II
GDDP SOLUTION QUALITY AFTER 200 ITERATIONS; AVERAGES ACROSS 20 RANDOM LINEAR SYSTEMS PER ROW

States Inputs M = 200 elements of XAlg 1,000 independent samples from P0 P0/XAlg GDDP Val. it. MPT
n m RBE (%)1 Subopt. bd. (%)2 RBE (%)1 Subopt. bd. (%)2 subopt. ratio time (s)3 time (s) time (s)
1 1 0.04038 0.3197 0.05931 0.3584 1.12 17.06 0.8652 0.8943
2 1 0.3958 2.104 0.5860 2.666 1.27 19.10 113.3 3.185
3 1 1.160 6.102 1.807 7.324 1.20 19.34 12,890 19.20
4 2 1.080 4.357 2.068 5.934 1.36 23.68 —4 1989
5 2 2.095 7.894 4.192 10.61 1.34 24.70 —4 —4

8 3 4.695 12.20 10.45 17.49 1.43 34.83 —4 —4

10 4 5.386 11.96 12.76 17.53 1.47 47.14 —4 —4

1Relative Bellman error, (T V̂ (x)− V̂ (x))/V̂ (x), averaged across all samples and systems. 2Suboptimality bound obtained via closed-loop simulation,
weighted by V̂ (x). 3Mean total time taken to generate all lower bounds gi(x) for systems in each row. 4Mean time above 6 hours or out of memory.

Fig. 1. Representative convergence behaviour of GDDP for a randomly-
generated 5-state, 2-input system, in terms of the suboptimality implied by
inequality (25) measured from closed-loop simulations. The two lines are
V̂ (x)-weighted averages for the M = 200 elements of XAlg and the 1000
samples generated independently from P0. Convergence was evaluated every
5 iterations.

origin in each coordinate. The state was discretized to 50
equal intervals (51 grid points) in each coordinate, and the
input was discretized to 10 equal intervals (11 grid points)
in each coordinate. The iterations were terminated when the
maximum absolute change in value fell below 10−3. Average
total times are reported in the penultimate column of Table II.
The computation time grew dramatically with system size, and
while a more efficient implementation would likely reduce the
times shown, the poor scaling behaviour of this approach is
well known and would remain essentially unchanged.

Parametric solution: For systems of this class, an explicit
representation of the optimal value function can be obtained
using the Multi-Parametric Toolbox [17] for a given finite op-
timization horizon. As an illustrative comparison, we provide
the mean computation time required to generate this optimal
value function for a horizon of 10 steps. We note that the
region in which the explicit value function is calculated in
this manner overlaps only partially with the compact region
used for value iteration, and that calculating the number of
steps required to cover the same region entirely is itself a
computationally expensive exercise. Average times are given
in the last column of Table II. As with value iteration, the
computation time increased dramatically with system dimen-
sion, although we note that for systems small enough for the
explicit controller to be computed, the online effort to evaluate
the resulting policy [19] would be substantially lower than

solving (4) with the approximate value function returned by
GDDP.

B. Nonlinear system

We demonstrate GDDP for the 4-state simplified ball-and-
beam example from [26, §10.2]. The state vector is x =
[r, ṙ, θ, θ̇]> where r is the position in metres along the beam
from the pivot, and θ is the angle in radians from horizontal
measured counter-clockwise. The simplification we adopt from
[26] is to model the rolling of the ball as frictionless sliding,
to avoid having to include rolling and contact interactions
between the ball and beam.

The single input is a torque τ in Newtons applied at the
pivot, constrained to an interval −τmax ≤ u ≤ τmax. The
Euler-discretized dynamics are x+ = fx(x) + Fu(x)u, with

fx(x) = x+


ṙ

rθ̇2 − g sin θ

θ̇

− 2mrṙ+mgr cos θ
mr2+Jb

∆t , Fu(x) =


0
0
0
1

mr2+Jb

∆t ,
(28)

where m is the mass of the ball, Jb is the moment of inertia
of the beam, g is gravitational acceleration, and ∆t is the time
discretization interval.

The parameters used were m = 0.1 kg, Jb = 0.5 kg m2,
g = 9.81 m s−2, and ∆t = 0.1 s. The cost function was
`(x, u) = 1

2x
>Qx + 1

2u
>Ru, with Q = diag{10, 1, 1, 1}

and R = 0.01, and the input constraint was τmax = 3.
The set XAlg contained M = 500 samples, half of which
were drawn from a normal distribution N (0,Ξ1) with co-
variance matrix Ξ1 = diag{0.52, 0.52, 0.52, 0.52}, and the
other half of which were samples from N (0,Ξ2) with Ξ2 =
diag{0.12, 0.12, 0.12, 0.12}. This choice attached relatively
high weight to behaviour around the equilibrium position. The
one-stage problems were solved by brute force, with no special
adaptations to account for the problem structure.

Fig. 2 shows regulation of the system to the origin from
x0 = [1, 0,−0.1745, 0]> (the ball 1 m to the right of the pivot
in a position 10 degrees below horizontal) under the derived
control policy. Results are plotted for 100, 200, 300, and
400 GDDP iterations, which took 299, 723, 1206, and 1705
seconds respectively. The control policy after 100 iterations
caused the state trajectory to diverge, whereas the control was
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Fig. 2. State and input trajectory from x0 = [1, 0,−0.1745, 0]> under
the greedy policy obtained after 100, 200, 300, and 400 iterations. Small
residual state offsets after the transient are due to the inexact value function
approximation around the origin.

stabilizing with improving transient performance after higher
numbers of iterations.

A linear feedback controller based on the Riccati solution
for the system linearized about the origin (see §II-D) was not
able to stabilize the system from this initial condition.

VI. CONCLUSION

This article proposed a means of constructing a series of
lower bounding functions whose pointwise maximum achieves
progressively tighter approximations of the optimal value
function for an infinite-horizon control problem. In the linear
examples tested, good closed-loop bounds on performance
were achieved in only a few dozen iterations.

A number of potential extensions present themselves.
Firstly, a stronger connection to the finite-horizon DDP al-
gorithm could be made by considering sequences of states,
for example by solving a multi-stage problem in place of
the one-stage problem at each iteration of the algorithm. In
a finite horizon setting, the conventional DDP algorithm [23]
works by refining such a sequence from a known initial state
until an upper and lower bound on the optimal trajectory cost
have converged, whereas in the GDDP algorithm presented
here, the successor states x+ are not used as sample states
for the construction of subsequent lower-bounding functions.
The notion of refining policies along state trajectories is well-
known in the reinforcement learning literature, where on- and
off-policy learning are often contrasted [8]. It may be that a
mixture of the two can achieve improvements in our setting.

Secondly, it would be attractive to be able to extend the class
of lower-bounding functions present in definition (14) to be
effective for a wider range of problems with highly non-convex
value functions, for example those encountered in complex
reinforcement learning problems. Presently, a strict increase in
the value function lower bound is only guaranteed at a state x̂
if strong duality holds in the one-stage problem (9). However,
this problem and its dual can be defined in numerous ways

starting from the original statement (1), and it is not clear
whether an alternative formulation might have attractions over
the one we have presented.

Thirdly, although we have proven finite convergence of the
algorithm (to a desired Bellman tolerance) in the case of strong
duality in each one-stage problem instance, we do not derive a
priori bounds on the number of iterations, or the cardinality of
XAlg, required to achieve a desired value function approxima-
tion accuracy in the sense of the discussion in Section III-E.
These appear to be difficult problems whose solutions rely on
characterizing the accumulating lower-bounding constraints as
a function of the original problem data.
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