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Analysis and Synthesis of MIMO Multi-Agent
Systems Using Network Optimization

Miel Sharf and Daniel Zelazo

Abstract—This work studies analysis and synthesis problems
for diffusively coupled multi-agent systems. We focus on networks
comprised of multi-input multi-output nonlinear systems that
posses a property we term maximal equilibrium-independent
cyclically monotone passivity (MEICMP), which is an extension of
recent passivity results. We demonstrate that networks comprised
of MEICMP systems are related to a pair of dual network
optimization problems. In particular, we show that the steady-
state behavior of the multi-agent system correspond to the mini-
mizers of appropriately defined network optimization problems.
This optimization perspective leads to a synthesis procedure for
designing the network controllers to achieve a desired output. We
provide detailed examples of networked systems satisfying these
properties and demonstrate the results for a network of damped
planar oscillators.

I. INTRODUCTION AND MOTIVATION

Multi-agent systems have been extensively studied in recent
years, mainly due to their applications in various fields in
the sciences and engineering, e.g. robotics, neural networks,
and power grids [1]–[3]. The study of graphs and their
algebraic representations have emerged as an important tool
in the modeling and analysis of these systems [4]. When
the agents are considered as dynamical systems, then the
notion of passivity theory brings a powerful framework to
analyze the dynamic behavior of these interconnected systems.
Passivity theory enables an analysis of the networked system
that decouples the dynamics of the agents in the ensemble,
the structure of the information exchange network, and the
protocols used to couple interacting agents [5]. Passivity for
multi-agent systems was first pursued in [6], where it was
used to study group coordination problems. Several variants of
passivity theory were used in various contexts like coordinated
control of robotic systems [7], synchronization problems [8],
[9], port-Hamiltonian systems on graphs [10], and distributed
optimization [11].

One important variant of passivity particularly useful for
the analysis of multi-agent systems is equilibrium-independent
passivity (EIP), introduced in [12]. For EIP systems, passivity
is verified with respect to any steady-state input-output pair, al-
lowing one to show convergence results without specifying the
limit beforehand [13]. A generalization of this result known as
maximal monotone equilibrium-independent passivity (MEIP)
was introduced in [14] for SISO systems, allowing to prove
convergence using energy methods for a much wider class of
systems, including, for example, integrators, that are not EIP.
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These passivity extensions have proved very powerful in
the analysis of networked systems. Of interest to this work,
[14] used the MEIP notion to establish an equivalence be-
tween the steady-state behavior of networked systems and
the solution of a pair of dual network optimization problems.
Thus, the analysis of networks comprised of MEIP passive
agents and controllers could be accomplished by studying
an associated static optimization problem. These results were
recently extended in [15] to provide a synthesis procedure for
the interaction protocols between agents to enforce a desired
relative state configuration between the agents. In [16], an
equivalence between feedback passivation of passivity short
systems was made with a regularization of the corresponding
network optimization problems.

The main shortcoming of these works building upon MEIP
systems is that they are only applicable to single-input single-
output (SISO) agents; this is a consequence of the monotonic-
ity requirement of the steady-state input-output relations that
cannot be easily generalized to systems with more than one
input or output. This shortcoming motivates the current work,
where we aim to extend the notion of MEIP passivity for both
the analysis and synthesis of networked systems comprised of
multi-input multi-output (MIMO) systems.

The main analytic tool required to study MIMO systems
in this context is the notion of cyclically monotone (CM)
relations, originally introduced in [17]. Cyclically monotone
relations provide the correct generalization of monotonicity of
scalar functions to vector functions. The key result due to [17]
shows that CM relations are contained in the sub-gradient of a
convex function. With this tool in hand, we are able to extend
the SISO results from [14] to square MIMO systems. The main
contributions of this work can now be stated as follows:
• We develop a MIMO counterpart of monotone equilib-

rium independent passivity using the notion of cyclically
monotone relations, which we term maximal equilibrium-
independent cyclically monotone passivity (MEICMP).

• We show that a diffusively coupled network comprised
of MIMO systems that are (output-strictly) MEICMP
with controllers that are also MEICMP converge to an
output agreement steady-state. Moreover, we show that
the steady-states of the system are the optimal solutions
of a dual pair of network optimization problems.

• We propose a synthesis procedure for designing network
controllers assuring global asymptotic convergence to a
desired output. We present conditions for when such a
synthesis is feasible. If a synthesis is not feasible, we
present a practically-justifiable method for plant augmen-
tation assuring the synthesis problem can be solved for
any desired steady-state output.
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We also provide numerous examples of systems that can be
classified as MEICMP including convex-gradient dynamical
systems with oscillatory terms and damped oscillators.

The remainder of the paper is organized as follows. Section
II reviews the network model and results on passivity in
multi-agent coordination. In Section III, we present the main
results in three subsections. The first studies steady-states of
the closed loop system. The second introduces the notion
of cyclically monotone relations and shows how they can
be understood via network optimization problems. The third
shows that if the agents and the controllers are all assumed
to be MEICMP, then the closed-loop system converges to
the steady-states. The remaining subsections provide analysis
results for networks comprised of MEICMP systems and their
relation to a class of dual network optimization problems.
Section IV deals with the synthesis problem, providing a
characterization for solvable cases and a corresponding syn-
thesis procedure. Section V presents examples of systems with
cyclically monotone input-output relations.

Preliminaries: A graph G = (V,E) consists of a node
set V and edge set E. Each edge k consists of two vertices
i, j ∈ V, and we orient it arbitrarily, say from i to j; we write
k = (i, j) in this case. We define the incidence matrix E of
G as a |V| × |E| matrix such that for any edge k = (i, j),
Eik = −1, Ejk = 1 and all other entries in k’s column
are zero. Given some integer d, thought of as the input- and
output- dimensions of the dynamical system of each of the
agents, we define the incidence operator as E = E ⊗ Idd,
where Idd is the identity operator Rd → Rd and ⊗ is the
Kronecker product. It is important to note that the null-space of
E consists of all vectors of the form [uT , uT , . . . , uT ]T . Also,
if f : Rr → R is a convex function, its Legendre transform
is defined as f? : Rr → R by f?(y) = − infu{f(u) − yTu}
[18]. Furthermore, consider the indicator function for the set
C, denoted IC , defined by IC(x) = 0 whenever x ∈ C, and
IC(x) = ∞ otherwise. Of particular interest is when the set
C = {0}, and we denote the indicator function in that case
as I0(x). For a map T , we denote its image by IM(T ). If
T is a linear map, the kernel of T is denoted by Ker(T ).
From now on, we will use italicized letters (e.g., yi(t) or yi )
to denote time-dependent signals, and normal font letters (e.g.
yi) to denote constant vectors. Finally, for sets A,B ⊂ RN ,
we define A+B = {x ∈ RN |x = a+ b, a ∈ A, b ∈ B}.

II. DIFFUSIVELY COUPLED NETWORKS AND THE
ROLE OF PASSIVITY IN COOPERATIVE CONTROL

In this section, we introduce the network dynamic model
used in this work and present an overview of the role of
passivity in cooperative control.

A. The Diffusively Coupled Network Model

We consider a population of agents that interact over a
network, described by the graph G = (V,E). The agents
are represented by the vertices V, and pairs of interacting
agents are represented by edges E. Each specific edge contains
information about the coupling (i.e., the controllers), which

Σ

Π

E ET

u(t) y(t)

µ(t) ζ(t)

Fig. 1. Block-diagram of the network system (Σ,Π,G).

are allowed to be dynamic. We assume a diffusive coupling
structure, where the input to the edge controllers are the
difference between the output of the adjacent agents, and the
control input of each agent is the (directed) sum of the edge
controller outputs.

Each agent in the network is modeled as a square multiple-
input multiple-output dynamic system of the form

Σi :

{
ẋi(t) = fi(xi(t), ui(t),wi)

yi(t) = hi(xi(t), ui(t),wi)
i ∈ V, (1)

where xi(t) ∈ Rpi is the state, ui(t) ∈ Rd the input,
yi(t) ∈ Rd the output, and wi a constant exogenous input.
Note that each agent need not have the same state dimension,
but we require all agents have the same number of inputs
and outputs (d). Let u(t) = [u1(t)T , . . . , u|V|(t)

T ]T and
y(t) = [y1(t)T , . . . , y|V|(t)

T ]T be the concatenation of the
input and output vectors. Similarly, x(t) ∈ R

∑|V|
i=1 pi is the

stacked state vector, and w the stacked exogenous input.
The agents are diffusively coupled over the network also by

a dynamic system that we consider as the network controllers.
For the edge e = (i, j), we denote the difference between
the output of the adjacent nodes as ζe(t) = yj(t) − yi(t).
The stacked vector ζ(t) can be compactly expressed using the
incidence operator of the graph as ζ(t) = ET y(t). These, in
turn, drive the edge controllers described by the dynamics

Πe :

{
η̇e(t) = φe(ηe(t), ζe(t)),

µe(t) = ψe(ηe(t), ζe(t))
e ∈ E. (2)

The output of these controllers will yield an input to the node
dynamical systems as u(t) = −Eµ(t), with µ(t) the stacked
vector of controller outputs. We denote the complete network
system by the triple (Σ,Π,G), where Σ and Π are the parallel
interconnection of the agent and controller systems, and G the
underlying network; see Figure 1.

B. The Role of Passivity in Cooperative Control

Passivity theory has taken an outstanding role in the analysis
of cooperative control systems, and in particular those with
the diffusive coupling structure of Figure 1. We dedicate this
section to consider a few variants of passivity used to prove
various analysis results for multi-agent systems. The main
advantage of using passivity theory is that it allows to decouple
the system into three different layers - namely the agent
dynamics, the coupling dynamics, and the network connecting
the two. This concept is clearly seen in the following theorem:
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Theorem 1 ( [14]). Consider the network system (Σ,Π,G)
comprised of agents and controllers. Suppose that there are
constant vectors ui, yi, ζe and µe such that

i) the systems Σi are output strictly-passive with respect to
ui and yi;

ii) the systems Πe are passive with respect to ζe and µe;
iii) the stacked vectors u, y, ζ and µ satisfy u = −Eµ and

ζ = ETy.
Then the output vector y(t) converges to y as t→∞.

Indeed, the first condition involves the agent dynanics, the
second the controllers, and the third the underlying network.

The first paper to fully embrace passivity theory to analyse
cooperative control problems was [6]. This led to many
variants of passivity in the literature proven to be useful for the
analysis of cooperative control problems. Incremental passivity
(IP), introduced in [19], allows one to consider the passivity
property with respect to certain trajectories, rather than fixed
equilibria. Indeed, incremental passivity was used in [8], [9]
to prove various synchronization and analysis results in multi-
agent system. However, IP is restrictive, as it demands the
passivation inequality to hold for any two trajectories.

Other variants of passivity focus on the collection of all
equilibria of a system. In this direction, the notion of steady-
state input-output maps is useful. In the following, we focus
on dynamical systems of the form

Σ :

{
ẋ(t) = f(x(t), u(t))

y(t) = h(x(t), u(t))
. (3)

Definition 1. Consider the dynamical system (3) with input
u ∈ U and output y ∈ Y . The steady-state input-output set
associated with (3) is the set ky ⊂ U×Y consisting of steady-
state input-output pairs (u, y) of the system.

With this definition, we now introduce the next variant of
passivity termed equilibrium-independent passivity (EIP) [12].
A key feature of EIP is the assumption that for any steady-
state input u there is exactly one steady-state output y. This
implies that the steady-state output y can be expressed as a
continuous function of the steady-state input u. Thus, with
a slight abuse of notation we can consider the the set ky as
a function ky : u 7→ y, i.e. y = ky(u). In general, this is
less restrictive than IP, and allows to prove analysis results
for MIMO systems. However, there are IP systems which are
not EIP. The epitome of these kind of systems is the simple
integrator, which can be verified to be IP, but not EIP. The
steady-state input u = 0 has multiple different steady-state
outputs (depending on the initial condition of the system), and
thus the input-output map is no longer a function.

The last variant of passivity we review is maximal
equilibrium-independent passivity (MEIP) [14]. It is a variant
of EIP that attempts to remedy the exclusiveness of the simple
integrator and similar systems. However, it is only defined
in the case of SISO systems, as it relies on the notion of
monotone relations:

Definition 2 ( [14]). Consider a relation R ⊆ R × R. We
say that R is a monotone relation if for every two elements
(u1, y1) and (u2, y2), we have that (u2 − u1)(y2 − y1) ≥ 0.

We say that R is maximally monotone if it is monotone and
is not contained in a larger monotone relation.

In other words, increasing the first element u implies that
the second element y cannot decrease. We now present the
definition of MEIP.

Definition 3 ( [14]). The SISO system (3) is said to be maximal
equilibrium-independent passive (MEIP) if:

i) The system is passive with respect to any steady-state
pair (u, y) it has.

ii) The collection ky of all steady-state input-output pairs
(u, y) is maximally monotone.

This is indeed a generalization of EIP, as the function ky
of an EIP system is monotone ascending [12]. It can also be
shown that the simple SISO integrator is MEIP. However, the
problem of finding a MIMO analogue of MEIP, or a variant of
EIP that will include marginally-stable systems like the simple
integrator, has not been addressed in the literature.

In the following section, we present a generalization of
MEIP and of EIP to MIMO systems which include integrators
and other marginally-stable systems. The key notion that we’ll
use is one possible generalization of monotonic relations from
subsets of R×R to subsets of Rd×Rd. This generalization is
called cyclic monotonicity, and was first considered in [17].

III. CYCLICALLY MONOTONE RELATIONS
AND COOPERATIVE CONTROL

In [14], the concept of monotone relations is used to provide
convergence results for a network system (Σ,Π,G) comprised
of SISO agents. However, many applications deal with MIMO
systems, necessitating a need to extend this work for network
systems consisting of MIMO agents. We begin by considering
the steady-states of the system.

A. Steady-States and Network Consistency

Consider a steady-state (u, y, ζ, µ) of the closed loop system
in Fig. 1. We know that for every i = 1, ..., |V|, (ui, yi) is a
steady-state input-output pair of the i-th agent Σi. Similarly,
for every e ∈ E, (ζe, µe) is a steady-state input-output pair of
the e-th controller Πe. The network interconnection between
the systems Σ and Π imposes an additional consistency
constraint between these steady-state values. This motivates
us to consider the steady-state input-output relations for each
of the agents and the controllers.

In this direction, we denote the steady-state input-output
relation of the i-th agent by ki, and the relation for the e-th
controller by γe. That is, ki ⊂ Rd × Rd and γe ⊂ Rd × Rd.
We denote the stacked relation for the agents and controllers
as k and γ, respectively.

Remark 1. Suppose that k is a steady-state input-output rela-
tion. We can consider a set-valued map, also denoted by k, tak-
ing a steady-state input u to the set k(u) = {y : (u, y) ∈ k}.
Similarly, one can consider the inverse set-valued map taking
a steady-state output y to the set k−1(y) = {u : (u, y) ∈ k}.
Thus, with a slight abuse of notation we refer to k (γ) as both
a relation and a set-valued map.
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Proposition 1. Let u ∈ Rd|V|, y ∈ Rd|V|, ζ ∈ Rd|E|, µ ∈ Rd|E|
be any four constant vectors. Then (u, y, ζ, µ) is a steady-state
of the closed-loop system (Σ,Π,G) if and only if

(u, y) ∈ k, (ζ, µ) ∈ γ,
ζ = ETy, u = −Eµ. (4)

Proof. Follows directly from the interconnection of the net-
work, and from the definitions of k and γ.

We wish to manipulate the conditions in (4) to reduce
the steady-state characterization from a system with four
constraints to one.

Proposition 2. Let y ∈ Rd|V| be any vector. Then the following
conditions are equivalent:

i) The zero vector 0 belongs to the set k−1(y) + Eγ(ETy).
i) There exists vectors u, ζ, µ such that (u, y, ζ, µ) is a

steady-state of the closed-loop network (Σ,Π,G).

Proof. First, assume the existence of u, ζ, µ. By Proposition
1, it follows that u ∈ k−1(y), ζ = ETy, µ ∈ γ(ζ), and u =
−Eµ. Thus,

0 = u + Eµ ∈ k−1(y) + Eγ(ζ) = k−1(y) + Eγ(ETy).

Conversely, if 0 ∈ k−1(y)+Eγ(ETy), then we know that there
are some u ∈ k−1(y) and µ ∈ γ(ETy) such that u + Eµ = 0.
Thus, by Proposition 1, the 4-tuple (u, y, ζ = ETy, µ) is a
steady-state of the closed-loop system.

By the same methods, we can also reduce the conditions
(4) to an inclusion in the edge-variables µ.

Proposition 3. Let µ ∈ Rd|E| be any vector. Then the following
conditions are equivalent:

i) The zero vector 0 belongs to the set γ−1(µ)−ET k(−Eµ).
ii) There exists vectors u, y, ζ such that (u, y, ζ, µ) is a

steady-state of the closed-loop network (Σ,Π,G).

Proof. Same as the proof of Proposition 2.

B. Connecting Steady-States to Network Optimization

So far, we showed that the steady-states of the closed-loop
system can be understood using the following two conditions:{

0 ∈ k−1(y) + Eγ(ETy)

0 ∈ γ−1(µ)− ET k(−Eµ).
(5)

However, these conditions are highly nonlinear, and would
be difficult to solve even if they were equations instead of
inclusions. One method of dealing with nonlinear equations
of the form g(x) = 0 for some function g, is to consider
its integral function instead. Suppose there is a function G
such that g = ∇G. In that case, we can find a solution to
g(x) = 0 by solving the unconstrained minimization problem
min G(x). If, in addition, the function G is convex, the
solution to the minimization problem can often be computed
efficiently (i.e. in polynomial time).

In general, convex functions need not be smooth, or even
differentiable. In this case, the notion of the subdifferential
of a convex function can be employed. The subdifferential of

the convex function G at the point x is denoted ∂G(x), and
consists of all vectors v such that

G(y) ≥ G(x) + vT (y − x), ∀y.

See [20] for more on subdifferentials. Note that the subdif-
ferential ∂G is a set-valued map. Also, analogously to the
differentiable case, x is a minimum point of G if and only if
0 ∈ ∂G(x). Thus, if we are able to require that ki and γe are
gradients of convex functions (i.e., their integral functions are
convex), then the nonlinear inclusions in (5) may be solved
using convex optimization. In fact, these functions have been
characterized due to Rockafellar [17]:

Definition 4 (Cyclic Monotonicity). Let d ≥ 1 be an integer,
and consider a subset R of Rd × Rd. We say that R is a
cyclically monotonic (CM) relation if for any N ≥ 1 and any
pairs (u1, y1), . . . , (uN , yN ) ∈ R of d-vectors, the following
inequality holds,

N∑
i=1

yTi (ui − ui−1) ≥ 0. (6)

Here, we use the convention that u0 = uN . We say that R
is strictly cyclically monotonic (SCM) if the inequality (6) is
sharp whenever at least two ui’s are distinct. We term the
relation as maximal CM (or maximal SCM) if it is not strictly
contained in a larger CM (SCM) relation.

This is a generalization of the concept of monotone relations
for SISO system, which we elaborate upon later.

Theorem 2 ( [17]). A relation R ⊂ Rn×Rn is the subgradient
of a convex function if and only if it is maximal CM. Moreover,
it is the sub-gradient of a strictly convex function if and only
if it is maximal SCM. The convex function is unique up to an
additive scalar.

Remark 2. If R is maximally CM, and f is a convex function
such that R = ∂f , then f is the integral function of R.

Rockafellar’s Theorem gives us a way to check that a
relation is the subdifferential of a convex function. If we
want to state the conditions in (5) as the solutions of convex
minimization problems, we need to assume that the input-
output relations appearing are CM. This, together with (1),
motivates the following system-theoretic definition:

Definition 5. A system Σ is maximal equilibrium-independent
cyclically monotone (output strictly) passive (MEICMP) if

i) for every steady-state input-output pair (u, y), the system
Σ is (output strictly) passive with respect to u and y;

ii) the set of all steady-state input-output pairs, R, is maxi-
mally (strictly) cyclically monotonic.

If R is strictly cyclically monotone, we say that Σ is maximal
equilibrium-independent strictly cyclically monotone (output
strictly) passive (MEISCMP).

Remark 3. It can be shown that when d = 1, a relation is
cyclically monotone if and only if it is monotone. Thus, a SISO
system is MEIP if and only if it is MEICMP [20].
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Now, suppose that the agents Σi and the controllers Πe are
all MEICMP with steady-state input maps ki and γe. We let Ki

and Γe be the associated integral functions, which as a result
of Theorem 2, are convex functions. We let K =

∑
iKi and

Γ =
∑
e Γe be their sum, so that ∂K = k and ∂Γ = γ. As

these are convex functions, we can look at the dual convex
functions K? and Γ?, namely

K?(y) = − inf
u
K(u)− yTu,

and similarly for Γ? [20]. These are convex functions that
satisfy ∂K? = k−1 and ∂Γ? = γ−1 [20]. The functions
K,K?,Γ,Γ? allows us to convert the conditions (5) to the
unconstrained minimization problems of K?(y)+Γ(ETy) and
K(−Eµ)+Γ?(µ). Recalling that u = −Eµ and that ζ = ETy,
we can state the minimization problems in the following form:

Optimal Potential Problem Optimal Flow Problem
(OPP) (OFP)

min
y,ζ

K?(y) + Γ(ζ)

s.t. ETy = ζ

min
u,µ

K(u) + Γ?(µ)

s.t. u = −Eµ.
These static optimization problems, known as the Optimal
Potential Problem and Optimal Flow Problem, are two funda-
mental problems in the field of network optimization, which
has been widely studied in computer science, mathematics,
and operations research for many years [20]. A well-known
instance of these problems is the maximum-flow/minimum-
cut problems, which are widely used by algorithmists and by
supply chain designers [21].

We conclude this section by stating the connection between
the steady-states of the closed-loop network and the network
optimization problems.

Theorem 3. Consider a network system (Σ,Π,G) and sup-
pose that both the agents and controllers are maximally
equilibrium-independent cyclically-monotone passive. Let K
and Γ be the sum of the integral functions for the agents and
for the controllers, respectively. For any 4-tuple of vectors
(u, y, ζ, µ), the following conditions are equivalent:

i) (u, y, ζ, µ) is a steady-state of the closed-loop;
ii) (u, µ) and (y, ζ) are dual optimal solutions of (OFP) and

(OPP) respectively.

Proof. We know that a convex function F is minimized at
a point x if and only if 0 ∈ ∂F (x). Applying this to the
objective functions of (OPP) and (OFP) implies that they are
minimized exactly when the following inclusions hold,{

0 ∈ k−1(y) + Eγ(ETy)

0 ∈ γ−1(µ)− ET k(−Eµ).
(7)

Thus, Propositions 2 and 3 imply that if (u, y, ζ, µ) is a steady-
state of the closed-loop, then (u, µ) and (y, ζ) are optimal so-
lutions of (OPP) and (OFP). The duality between them follows
from y = k(u), µ = γ(ζ). Conversely, if (u, µ) and (y, ζ) are
dual optimal solutions, then y minimizes K?(y)+Γ(ET y) and
µ minimizes K(−Eµ) + Γ?(µ). Again, a convex function is
minimized only where 0 is in its subdifferential, so we get
the same inclusions (7). By Propositions 2 and 3 we get that
(u, y, ζ, µ) must be a steady-state of the closed-loop.

Remark 4. The problems (OPP) and (OFP) are special as
they are convex duals of each other; the cost functions K?(y)+
Γ(ζ) and K(u) +Γ?(µ) are dual [20]. Consequently, if (y, ζ)
is an optimal solution of (OPP), then (u, µ) is an optimal
solution of (OFP) if and only if µ ∈ γ(ζ), u ∈ k−1(y) and
u = −Eµ. Thus, solving (OPP) and (OFP) on their own gives
a viable method to understand the steady-states (Σ,Π,G).

C. Convergence to the Steady-State

Up to now, we dealt with the steady-states of the closed-
loop system, but we did not prove that the system converges
to the steady-state. We now address this point.

Theorem 4. Consider the network system (Σ,Π,G), and
suppose all node dynamics are maximally equilibrium-
independent cyclically monotone output-strictly passive and
that the controller dynamics are maximally equilibrium-
independent cyclically monotone passive. Then there exists
constant vectors u, y, µ, η such that limt→∞ u(t) = u,
limt→∞ y(t) = y, limt→∞ µ(t) = µ, and limt→∞ η(t) = η.
Moreover, (u, ζ) and (y, ζ) form optimal dual solutions to
(OPP) and (OFP).

We will give a proof of Theorem 4 for the case in which
the controllers are given by the following form:

Πe :

{
η̇e = ζe

µe = ψe(ηe).
(8)

The proof for the general case is analogous but more involved
and is therefore not considered here.

Proof. Our assumption implies that the optimization prob-
lems (OPP) and (OFP) have dual optimal solutions solutions,
meaning that a steady-state solution exists. The equilibrium-
independent passivity assumption implies that there are storage
functions Si (for i ∈ V) and We (for e ∈ E), such that{

Ṡi ≤ −ρi||yi(t)− yi||2 + (yi(t)− yi)
T (ui(t)− ui)

Ẇe ≤ (µe(t)− µe)T (ζe(t)− ζe)
. (9)

Theorem 1 implies that y(t) converges to y, implying that
ζ(t) converges to 0 = ζ = ETy. Integrating implies that η(t)
converges to some η, as η̇ = ζ. In turn, this implies that µ(t)
converges to µ = ψ(η) and that u(t) converges to u = −Eµ. It
is clear that (u, y) is a steady-state pair, and furthermore that
(u, y, ζ, µ) satisfy the conditions in Proposition 1, meaning
that it is also a steady-state of the closed-loop and thus it
gives rise to an optimal solution of (OPP) and (OFP). This
concludes the proof of the theorem.

Remark 5. As a consequence of Remark 3, Theorem 4 also
holds for output-strictly MEIP SISO agents and MEIP SISO
controllers. This is the analysis result that was achieved in
[14]. The result presented here is therefore more general,
and the proof derivation, relying on integrating steady-state
equations (or inclusions), provides a different approach than
what was presented in [14].
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IV. SYNTHESIS OF MULTI-AGENT SYSTEMS USING
NETWORK OPTIMIZATION THEORY

Up to now, the established connection between network
optimization and passivity-based cooperative control only gave
us analysis results, and did not help us derive a synthesis
procedure. We now deal with the problem of forcing a certain
steady-state on the closed-loop system. This is done by an
appropriate design of the edge controllers Πe.

We assume the agent dynamics are given and are MEICMP.
The synthesis problem can now be formulated.

Problem 1. Let y? ∈ (Rd)|V| be some vector.
1) Find a computationally feasible criterion assuring the

existence of controllers {Πe}e∈E, such that the output
of the system (Σ,Π,G) has y? as a steady-state.

2) In case y? satisfies the criterion, find a construction for
{Πe}e∈E, that makes the system converge to y?.

This section has four parts. Subsection IV-A deals with
solving part 1 of the Problem 1. Subsection IV-B deals with
solving the second part of the same problem. Subsection
IV-C deals with different control objectives y?, namely by
prescribing a procedure which uses a solution for some y?1 to
find a solution for y?2 by augmenting the controller. Finally,
subsection IV-D addresses outputs that do not satisfy the
desired synthesis criteria.

As before, we denote the input-output steady-state relations
of the nodes by ki, and their integral functions by Ki. We
choose the controllers to be output-strictly MEICMP, so we
can discuss their input-output steady-state relations γe and
their integral functions by Γe.

A. Characterizing Forcible Steady-States

The result of Theorem 4 helps us predict the steady-state
outputs of the closed loop by solving the optimal potential
problem (OPP). The outline to the solution of Problem 1 is
given by studying the minimizers of the optimization problem
(OPP). We first prove the following proposition.

Proposition 4. Let y? ∈ (Rd)|V| and let ζ? = ETy?. The pair
(y?, ζ?) is a minimizer of (OPP) if and only if

0 ∈ k−1(y?) + Eγ(ζ?). (10)

Note that we demand inclusion instead of equality because
the subdifferential set might include more than one element.

Proof. The network optimization problem (OPP) can be writ-
ten as an unconstrained optimization problem in terms of the
variable y alone; we ask to minimize F (y) = K?(y)+Γ(ET y).
This is a convex function of y, so it is minimized only
where the zero vector lies in its subdifferential [17]. Thus,
by subdifferential calculus (see [17]) we obtain that 0 ∈
k−1(y?) + Eγ(ETy?) is equivalent to (y?, ζ?) being a mini-
mum. Plugging in ζ? = ETy? gives the desired criterion.

Corollary 1. Let y? ∈ (Rd)|V|. Then one can choose output-
strictly MEICMP controllers {Πe}e∈E so that y? is a steady
state of the closed-loop system if and only if k−1(y?) ∩
IM(E) 6= ∅.

Proof. If y? is a steady state (for some choice of controllers),
then (10) proves that k−1(y?) ∩ IM(E) 6= ∅. Conversely, if
k−1(y?) ∩ IM(E) 6= ∅, then we can take some vector ξ such
that −Eξ ∈ k−1(y?). If MEICMP controllers Πe are chosen
so that γ(ζ?) = γ(ETy?) 3 −ξ, then Proposition 4 implies
that y? is a steady state of the closed-loop system. There are
many ways to choose these controllers, one of them being

Πe :

{
η̇e = −ηe + ζe − (ξe + ζ?e )

µe = ηe
. (11)

Remark 6. The chosen controllers have a special structure
- these are linear controllers with constant exogenous inputs
that make the system converge to y?, but their dependence on
y? is only through the constant ξe + ζ?e . This small change
in the controller will make the entire system converge to a
different point. We’ll emphasize this point in subsection IV-C.

It is well-known that the set IM(E), called the cut-space of
the graph G, consists of all vectors u such that

∑|V|
i=1 ui =

0 [22]. Thus, the first part of Problem 1 is solved by the
following result.

Corollary 2. The vector y ∈ (Rd)|V| is forcible as a steady-
state if and only if 0 ∈∑|V|i=1 k

−1
i (yi).

B. Forcing Global Asymptotic Convergence
We now solve part 2 of Problem 1, giving criteria for

controllers to provide global asymptotic convergence and
constructing controllers that satisfy these criteria. By Theorem
4, if we take output-strictly MEICMP controllers, then the
closed-loop system converges to some y?, so that (y?, ζ? =
ETy?) are a solution of (OPP).

Corollary 3. If the chosen controllers are output-strictly
MEICMP, and (OPP) has only one solution (ŷ, ζ̂), then the
closed-loop system globally asymptotically converges to ŷ.

The minimization of the function K?(y) + Γ(ζ) appearing
in (OPP) can be divided into two parts:

min
ET y=ζ

[K?(y) + Γ(ζ)] = min
ζ∈IM(E)

min
y:ET y=ζ

[K?(y) + Γ(ζ)]

= min
ζ∈IM(E)

[Γ(ζ) + min
y:ET y=ζ

K?(y)]. (12)

Our goal is to have (y?, ζ? = ETy?) as the sole minimizer of
this problem. Thus we have two goals - the outer minimization
problem needs to have ζ? as a sole minimizer, and the inner
minimization problem needs to have y? as a sole minimizer.
The main tool we employ is the one of strict convexity. We
note that if the systems {Πe}e∈E are output-strictly MEIS-
CMP, then the input-output relation γ is strictly cyclically
monotone, and therefore Γ is strictly convex. Let us first deal
with the outer minimization problem in (12).

Definition 6. The minimal potential function is a function
G = GG,K : IM(ET ) → R, depending on the graph G and
the integral functions of the agents’ steady-state input-output
maps, K, defined by

G(ζ) = min{K?(y)| ET y = ζ}.
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Proposition 5. Suppose that (10) is satisfied by the pair
(y?, ζ? = ETy?). Suppose further that the function Γe is
strictly convex in the neighborhood of ζ?e for all e ∈ E. Then
ζ? is the unique minimizer of the outer optimization problem
in (12), i.e., ζ? is the unique minimizer of Γ(ζ) +G(ζ).

Proof. Because the function K? is convex, the function G is
also convex (see [23]). Thus Γ(ζ)+G(ζ) is convex as a sum of
convex functions, and it is strictly convex near ζ?. Let M be
the collection of (G+Γ)’s minima. It follows from Proposition
4 that ζ? ∈M . Furthermore, the set M is convex, since G+Γ
is a convex function. Finally, there is some small neighborhood
U of ζ? such that M ∩U contains no more than one point, as
G + Γ is strictly convex in a neighborhood of ζ?. We claim
that these facts imply that M contains the single point ζ?,
concluding the proof. Indeed, suppose that there’s some other
ζ ∈M . By convexity, we have ζt = tζ+(1−t)ζ? ∈M for all
t ∈ (0, 1), and in particular, for small t > 0. If t > 0 is small
enough then ζt ∈ U , as U is open, meaning that ζt ∈M ∩ U
for t > 0 small. But this is impossible as M ∩ U cannot
contain more than one point. Thus ζ? is the unique minimizer
of G+ Γ.

Now for the inner minimization problem of (12). We wish
that y? would be the unique minimizer of K?(y) on the set
{ET y = ζ?} = {y?+β⊗1 |β ∈ Rd}. We consider A : Rd →
R defined by A(β) = K?(y?+β⊗1), and we wish that β = 0
will be the unique minimizer of A.

Minimizing A is the same as finding β such that 0 ∈ ∂A(β).
By subdifferential calculus [17], [23], we have ∂A(β) =
ProjKerET k

−1(y?+β⊗1), where we use {β⊗1 : β ∈ Rd} =

KerET . We already saw that ProjKerET u =

(
1
|V|
∑|V|

1 ui

)
⊗

1, so we conclude that 0 ∈ ∂A(β) is equivalent to 0 ∈∑|V|
1 k−1i (y?i +β⊗1). Note that plugging β = 0 gives the exact

same condition appearing in Corollary 2, thus if y? satisfies
the condition in Corollary 2, then it is a solution to the inner
minimization problem of (12). We want to make sure that it
is the only minimizer. By similar methods, we can prove the
following result.

Proposition 6. Consider the function A(β) = K?(y?+β⊗1).
If y? satisfies the condition in Corollary (2) and A is strictly
convex near 0, then y? is the unique minimizer of K?(y) on
the set {ET y = ζ?}.

The proof is exactly the same as the proof of Proposition
(5). We conclude with the main synthesis result.

Theorem 5 (Synthesis Criterion of MEICMP systems). Con-
sider a networked system (Σ,Π,G),, and let y? be the desired
steady-state output. Suppose that {Πe}e∈E are output-strictly
MEICMP controllers, and denote their input-output relations
by γe, and the corresponding integral functions by Γe. Assume
that the following conditions hold:

i) the equation (10) is satisfied by the pair (y?, ζ? =
ETy?);

ii) for any e ∈ E, the function Γ?e is strictly convex in a
neighborhood of ζe;

iii) the function A : Rd → R, defined by A(β) =∑|V|
i=1K

?
i (y?i + β ⊗ 1), is strictly convex near β = 0;

iv) the vector 0 is in the subdifferential set
∑|V|
i=1 k

−1
i (y?i ).

Then the output of the closed-loop system globally asymptot-
ically converges to y?. Furthermore, if the agents are output-
strictly MEICMP, we can relax our demand and require the
controllers {Πe}e∈E to only be MEICMP.

Proof. The MEICMP assumptions imply that the closed-
loop system always converges to some solution of (OPP).
The equation (12), together with conditions i)-iv) show that
(y?, ζ? = ETy?) are the unique minimizers of (OPP), imply-
ing that the system always converges to y?. This completes
the proof.

Remark 7. If we only assume condition i) and ii), we get
that the system converges to some ŷ which satisfies ET ŷ =
ETy? = ζ?. This can be important in problems in which y?

is less important than ζ?, e.g. when we care about relative
outputs (like in formation control) [15].

Example 1. Consider the controllers constructed in (11):

Πe :

{
η̇e = −ηe + ζe − (ξe + ζ?e )

µe = ηe
,

for some {ξe}e∈E which are a function of y?, and chosen so
that condition (1) of Theorem 5 is satisfied. In that case, we
can compute and see that γe(ζe) = ζe − ξe − ζ?e , so that
Γe(ζe) = 1

2 ||ζe||2 − ζTe (ξe + ζ?e ) is a strictly convex function,
yielding that condition (2) is satisfied. Thus these controllers
always yield the correct relative output ζ? = ETy?.

Remark 8. Note that the conditions iii) and iv) in Theorem
5 are controller independent, meaning that we can always
find the correct relative output, but not always converge to
y?. This is the same phenomenon appearing in consensus
protocols, in which agreement is achieved, but its convergence
point is completely determined by the initial conditions of
the agents and cannot be controlled. In other words, we can
always synthesize for the relative outputs vector ζ?, and if y?

is achievable using synthesis, the system will converge to it.

C. Changing the Objective and “Formation Reconfiguration”

In practical applications, we may want to change the desired
output y? after some time. However, we wish to avoid a change
in the controller design scheme. Note that in Example 1, we
used the desired output y? to define the vector ξ + ζ?. Other
than that vector, the controller is independent of y?. In [15],
a partial solution to this problem, named “Formation Recon-
figuration”, was introduced for SISO agents and controllers,
allowing to solve the synthesis problem for arbitrary desired
relative output vector ζ? ∈ R|E| using controller augmentation.
In this section, we expand this solution in two manners - we
exhibit it for MIMO systems, as well as focus on the synthesis
problem for an arbitrary desired output vector y?.

We wish to implement a similar mechanism for general
controllers. We take a stacked controller of the form (2), and
add a constant exogenous input ω = (α, β),
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Σ

E ET

u(t) y(t)

µ(t) ζ(t)
α

β
Π#

ω

Fig. 2. The formation reconfiguration scheme.

Π#
ω :

{
η̇ = φ(η, ζ − α)

µ = ψ(η, ζ − α) + β.

This design allows us to alter the design of the system by
changing ω = (α, β), yielding different steady-state outputs.
We denote the steady-state output of the closed-loop system
with the controller Π#

ω as y0, i.e., Π#
ω solves the synthesis

problem for y0.
The following result implies that it is enough to solve

the synthesis problem for a single output or relative output
(e.g., consensus), applying the “formation reconfiguration”
procedure to force any other desired formation.

Theorem 6 (Formation Reconfiguration). Consider a net-
worked system (Σ,Π,G), and suppose that its output con-
verges to y0. Then there is a function g : y 7→ ω such that
for any desired achievable output y?, satisfying conditions iii)
and iv) of Theorem 5, if one defines α = ETy? − ETy0 and
β = g(y?) − g(y0), then the output of the networked system
(Σ,Π#

ω ,G) converges to y?.

The controllers produced by the formation reconfiguration
scheme are illustrated in Figure 2.

Proof. The steady-state input-output relation γ#ω of Π#
ω can

be computed from γ using the equation

γ#ω (ζ) = γ(ζ − α) + β.

Given any achievable y, we know from condition (4) of
Theorem 5 that k−1(y) ∩ IM(E) 6= ∅, so we take some µy ∈
(Rd)|E| such that −Eµy ∈ k−1(y); we define g(y) = µy.

Now, take some achievable y?. We denote ζ0 = ETy0, and
ζ? = ETy?, so that α = ζ? − ζ0, and β = µy? − µy0

. Then,

k−1(y?) = k−1(y0) + [k−1(y?)− k−1(y0)]

= −Eγ(ζ0)− E(µy? − µy0) = −E (γ(ζ0)− µy0 + µy?)

= −E(γ(ζ0) + β) = −E(γ(ζ0) + β) = −Eγ#ω (ζ0 + α)

= −Eγ#ω (ζ?).

which proves our claim.

D. Plant Augmentation and Leading Agents for Non-
achievable Steady States

We saw in Section IV-A that y can be forced as a steady-
state of the system if and only if 0 ∈∑i∈V k

−1
i (yi). This can

be troublesome in applications, in which a certain steady-state
can be desired for various reasons.

One method of coping with this problem is slightly aug-
menting the plant. This is done by introducing a constant
external reference signal z to some of the nodes. In this
direction, we consider a generalized notion of the nodal
dynamical systems,

Σ′i :

{
ẋi = fi(xi, ui + zi,wi)

yi = hi(xi, ui + zi,wi),
(13)

Note that if a node is forced to have zi = 0, it is of the
unaugmented form we studied earlier. We say that a node is a
follower if we force it to have zi = 0, and we call it a leader
otherwise. We focus on the case in which there is only one
leading node, i0 ∈ V. Our interest in leading nodes can be
summarized by the following definition.

Definition 7. Let y ∈ (Rd)|V|. We say that the leading node
i0 ∈ V can force y if there is some constant vector zi0 , such
that the closed-loop system, with exogenous input zi0 to the
node i0 and zero exogenous output for all nodes j 6= i0, has
y as a steady-state. We say that the leading node i0 ∈ V is
omnipotent if it can force any vector y ∈ IM(k).

Theorem 7. Consider the network system (Σ′,Π,G) and
suppose all agents are MEICMP. Furthermore let i0 ∈ V be
the only leading node (i.e., zi = 0 for all i 6= i0). Then i0 is
omnipotent.

Proof. Recall that the steady-state input-output relations for
the i-th node with zero exogenous input were denoted by
ki, and denote the steady-state input-output relation for the
constant exogenous input zi0 by ki0,zi0 . Then

ki0,zi0 (ui0) = ki0(ui0 + zi0), k−1i0,zi0
(yi0) = k−1i0 (yi0)− zi0 .

Thus, we obtain that i0 ∈ V can force y ∈ Rd if there is
some zi0 ∈ Rd such that

0 ∈
∑
i 6=i0

k−1i (yi) + k−1i0,zi0
(yi0) =

∑
i∈V

k−1i (yi)− zi0 .

Hence, if we pick zi0 to be some vector in
∑
i∈V k

−1
i (yi), then

we get that indeed 0 ∈∑i 6=i0 k
−1
i (yi)+k−1i0,zi0

(yi0), allowing
to force y as a steady-state. Thus i0 is omnipotent.

V. EXAMPLES OF MEICMP SYSTEMS

In this section, we focus on giving examples for MEICMP
systems, showing that this property holds for many systems
found in literature. We focus on two classes of examples,
the first being convex-gradient systems with oscillatory terms,
generalizing reaction-diffusion systems, gradient descent al-
gorithms and more, and the second being oscillatory systems
with damping, which are a natural extension of oscillators
like springs and pendulums. We conclude the section with a
simulation of a network of oscillatory systems with damping,
exemplifying the results of sections III and IV.
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A. Convex-Gradient Systems with Oscillatory Terms

Many systems can be divided into two parts - an oscillatory
term and a damping term. These include physical systems
such as reaction-diffusion systems, Euler-Lagrange systems
and port-Hamiltonian systems, as well as examples coming
from optimization theory, in which gradient descent algorithms
play a vital role [18], [24]–[26]. Incremental passivity of these
system has been studied in [27]. Mathematically, these systems
can be represented as

ẋ = −∇ψ(x) + Jx+Bu, (14)

where ψ : Rn → R is a function representing the gradient
part (and the sign is chosen to give ψ a potential-energy
interpretation), J is a skew-symmetric matrix representing the
oscillatory part, and Bu is the control input to the system,
representing various forces (both control and exogenous ones)
acting on the system. Our goal is to show that for a wide
class of measurements y = h(x, u), this system is MEICMP.
We first focus on stability of this system.

On many occasions, the function ψ is convex, and even
strictly convex. For example, ψ = ζ

2x
2 gives a linear damping

term.

Theorem 8. Assume that the system (14) is given, and that
ψ is a strictly convex function such that for lim

||x||→∞
ψ(x)
||x|| =

∞. Suppose furthermore that u is constant. Then there exists
some unique x0, which depends on u, such that all solutions
converge to x0 as t→∞.

The proof of the theorem is available in the appendix. We
now deal with the question of cyclic monotonicity. Consider
the system {

ẋ = −∇ψ(x) + Jx+Bu

y = Cx+ ρ(u),
(15)

where ψ is a strictly convex function such that lim
‖x‖→∞

ψ(x)
‖x‖ =

∞ and J is a skew-symmetric matrix. By Theorem 8, the state
of the system converges as t→∞ whenever u is constant, so
the steady-state input-output relation can be defined.

Theorem 9. Consider a system of the form (15). Suppose that
B and C are invertible. Then the input-output relation is CM if
the function (B−1∇ψC−1−B−1JC−1)−1+ρ is the gradient
of a convex function. Furthermore, if this map is the gradient
of a strictly convex function, then the input-output relation is
SCM.

Proof. In steady state, we have ẋ = 0. Thus, if the steady-
state input is uss and the state is xss, then they relate by
∇ψ(xss)− Jxss = Buss. As B is invertible, we have

B−1∇ψ(xss)−B−1Jxss = uss.

However, if ρ = 0 we have yρ=0
ss = Cxss, so we have the

relation

B−1∇ψ(C−1yρ=0
ss )−B−1JC−1yρ=0

ss = uss.

Thus,

yρ=0
ss = (B−1∇ψC−1 −B−1JC−1)−1(uss).

In the case of general ρ, we have the input/output relation

yss = (B−1∇ψC−1 −B−1JC−1)−1(uss) + ρ(uss). (16)

Corollary 4. Consider a system of the form (15). If C =
BT = I and ρ satisfies (∇ψ − J)−1 + ρ = ∇χ for some
convex function χ, then the steady-state input-output relation
is CM.

Proof. This follows directly from (16) and C = BT = I .

Corollary 5. Consider a system of the form (15). If J = 0 and
ρ(u) is the gradient of a convex function, then the steady-state
input-output relation is CM.

Proof. The only thing that needs to be shown is that
B−1∇ψ(C−1u) is the gradient of a convex function. Note
that this is enough, as the inverse of the gradient function of
a convex function is itself the gradient of a convex function
(due to duality of convex functions). To do this, we define
µ(x) = ψ(C−1x). Then µ is convex as ψ is, and the gradient
of µ is given by the chain rule. The i-th entry of it is given
by

∂µ

∂xi
=

n∑
j=1

∂ψ

∂xj
(C−1x) · ∂(C−1x)j

∂xi

=

n∑
j=1

∂ψ

∂xj
(C−1x) · (C−1)ji =

n∑
j=1

(C−1)ji
∂ψ

∂xj
(C−1x)

= [(C−1)T∇ψ(C−1x)]i = [B−1∇ψ(C−1x)]i,

meaning that ∇µ(x) = B−1∇ψ(C−1x), proving the last part.

Remark 9. Theorem 9, can be stated more easily for linear
systems. Suppose that B,C and J are as above. Suppose
further that ψ has the form ψ(x) = xTAx where A > 0, and
suppose we only seek for linear maps ρ of the form ρ(u) = Tu
for some matrix T . The dynamical system now has the form,{

ẋ = −(A− J)x+Bu

y = Cx+ Tu
. (17)

We now require ρ to satisfy

(B−1∇ψC−1 −B−1JC−1)−1 + ρ = ∇χ,
for some convex function χ. If we again seek linear ρ(u) =
Tu, then the left-hand side of the equation is a linear map,
so ∇χ must also be a linear map. Due to convexity of χ, this
is only possible if ∇χ(u) = Du for some D ≥ 0. We end up
with following equation, (B−1AC−1−B−1JC−1)−1+T ≥ 0.
After some algebraic manipulation, we obtain

C(A− J)−1B + T ≥ 0, (18)

Thus we conclude that a linear system{
ẋ = Ax+Bu

y = Cx+ Tu
, (19)

where A is Hurwitz, is MEICMP if and only if −CA−1B+T
is a positive-definite symmetric matrix.
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B. Oscillatory Systems with Damping

We consider a damped oscillator with a linear forcing term
of the form ẍ+ζẋ+ω2x = Bu where B is a constant matrix,
u is the input vector, ζ > 0 is the damping factor. This system
can also be represented via the first order ODE:{

q̇ = ωp

ṗ = −ωq − ζp−Bu . (20)

One can easily generalize this formulation to more complex
methods of damping:{

q̇ = Mp

ṗ = −MT q −∇ψ(p) +Bu
. (21)

We are usually interested in the position as the output, i.e.,
y = q for this system. We wish to find a condition that will
assure this system is stable and MEICMP. We first prove the
following result.

Theorem 10. Consider a system of the form (21), and
suppose that M is invertible. Suppose furthermore that ψ
is a strictly convex function such that lim

‖x‖→∞
ψ(x)
‖x‖ = ∞.

Then the system is stable for constant inputs. Furthermore,
if the system is injected with the constant input signal u,
then there is some q0 such that all trajectories of the system
satisfy q → q0, p → p0 = 0 as t → ∞. Even further,
q0 = (MT )−1Bu− (MT )−1∇ψ(p0)

Proof. As above, the assumption on ψ allows us to absorb
the linear term inside ψ, so we can assume Bu = 0. Now, we
take p0 = 0 and q0 = −(MT )−1 · ∇ψ(p0). We note that the
following relations hold:

Mp0 = 0, MT q0 = −∇ψ(p0), pT0∇ψ(p0) = 0. (22)

Now, consider the following Lyapunov function candidate,

F (p, q) =
1

2
(p− p0)T (p− p0) +

1

2
(q − q0)T (q − q0). (23)

It’s clear that F ≥ 0 and that F = 0 if and only if p = p0 and
q = q0. Furthermore, the derivative of F along the trajectories
is given by:

Ḟ = (p− p0)T ṗ+ (q − q0)T q̇

= (p− p0)T (−MT q −∇ψ(p)) + (q − q0)TMp

= −(p− p0)T∇ψ(p)− (Mpo)
T q − (MT q0)T p

(22)
= −(p− p0)T∇ψ(p) + pT∇ψ(p0)− pT0∇ψ(p0)

= −(p− p0)T (∇ψ(p)−∇ψ(p0)).

The last expression is non-positive, and furthermore is strictly
negative if p 6= p0 (as ψ is strictly convex). Thus, it’s clear
that p → p0 = 0 as t → ∞. Now, the equation driving p is
ṗ = −MT q −∇ψ(p), Which can be rewritten as

q = −(MT )−1(ṗ+∇ψ(p)). (24)

When the time grows infinite, the right hand side tends to
−(MT )−1(∇ψ(p0)) = q0, concluding the proof of the claim.

Fig. 3. The graph used for the example.

Not only have we proved that the system is stable, we also
found the input-output steady-state relation, which turns out
to be linear. Thus, we can apply Remark 9 to conclude the
following corollary.

Corollary 6. The system (21) is MEICMP if and only if the
matrix (MT )−1B is positive semi-definite. Furthermore, it is
MEISCMP if and only if this matrix is positive definite.

We now demonstrate these results for oscillatory systems
with damping by a simulation.

Example 2. We consider a network of four damped MIMO
oscillators,

Σi


[
ẋ1

ẋ2

]
=

[
Ωix2

−Dix2 − ΩTi (x1 − xi) + Ω−1i u

]
y = x1

where xi is the equilibrium point of the oscillator, Ωi is a
matrix consisting of the self frequencies, and Di is a damping
matrix, which is positive-definite. The exact values of the
matrices and xi-s were randomly chosen. The underlying
graph is given in Figure 3.

The steady-state input-output relation if Σi can be computed
to be ki(ui) = (ΩiΩ

T
i )−1u + xi, whose inverse is k−1i (y) =

(ΩiΩ
T
i )(y − xi). This gives us the convex function K?

i (yi) =
1
2y
TΩiΩ

T
i y − yTΩiΩ

T
i xi, which is strictly convex.

We wish to solve the synthesis problem for y?, where the
controllers are taken to be identical and equal to{

η̇e = −ηe + ζe

ζe = ψ(ηe).

The function ψ is given as

ψ(x) = arcsin

(
log2

(
ex+1

2

)
sgn(x)

log2
(
ex+1

2

)
+ 1

)
,

where sgn(x) is the sign function. One can verify that ψ(0) =
0 and that ψ is a monotone ascending function. The associated
integral function is given by:

Γe(ζe) =

∫ ζe

0

arcsin

(
log2

(
ex+1

2

)
sgn(x)

log2
(
ex+1

2

)
+ 1

)
dx.

We then use the formation reconfiguration scheme to create
an augmented controller, where we use the first node as a
leading node. The control objective was changed every 30
seconds according to the following desired steady-states,

y?1 = [0, 0, 0, 0, 0, 0, 0, 0]T , y?2 = [1, 1, 2, 2, 3, 3, 4, 4]T ,

y?3 = [1, 2, 3, 4, 5, 6, 7, 8]T , y?4 = [−1, 0, 0, 0, 1, 0, 2, 2]T ,

y?5 = [2, 2, 2, 2, 2, 2,−10,−10]T ,

where the first two entries refer to the first agent, the next two
refer to the second agent, and so on. The output of the system
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Fig. 4. Formation control of damped MIMO oscillators.

can be seen in Figure 4, exhibiting the positions of the agents
y(t). The blue line represents first coordinate, and the red one
represents the second coordinate. We can see that the agents
act as expected, converging to the desired formations.

VI. CONCLUSION

We have found a profound connection between passivity-
based cooperative control and network optimization theory in
the spirit of Rockafellar [17]. This was done by introduc-
ing the notion of maximal equilibrium-independent cyclically
monotone passive systems, and showing that such systems
converge to a solution of a collection of network optimization
problems, bonded by duality. Furthermore, we have shown
that in the case of output-agreement problems, the output
agreement steady-state is optimal with respect to the optimal
flow and optimal potential problems. This connection creates
a dictionary between system signals (like outputs and inputs)
and network optimization variables (potentials and node di-
vergences, respectively). We have established analogous in-
verse optimality and duality results for general networks of
maximal equilibrium-independent cyclically monotone passive
systems. Using methods from subgradient theory and convex
optimization, we have established clear criteria for solvability
of the synthesis problem for a diffusive coupling of maximal
equilibrium-independent cyclically monotone passive systems,
and a practically-justifiable plant augmentation procedure to
solve the synthesis problem if it is not feasible for the desired
output. We have shown a synthesis for the controllers, and
exhibited a controller augmentation procedure that allows any
set of maximally equilibrium-independent cyclically monotone
passive controllers to be used. This theory was exemplified
by simulating a system of damped planar oscillators and
correctly predicted the asymptotic state of the system, using
both the minor controller and plant augmentation procedures.
We believe that this strong connection between passivity-based
cooperative control and network optimization theory can lead
to new analysis methods for cooperative control problems,
through the means of network optimization problems.

This is a significant extension of the framework connecting
multi-agent systems and cooperative control to network opti-
mization, first presented in [14] and later developed in [15].
Possible further research directions can include extensions of
the framework (e.g., to directed graphs, passivity-short sys-
tems, and systems with different input and output dimension),
or applications of the framework to yield various results in
multi-agent systems (e.g. fault detection and isolation, network
identification, robustness, etc.).
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APPENDIX

This appendix deals with the proof of Theorem 8. The proof
is rather lengthy, and requires two lemmas The idea is to
try and construct a quadratic Lyapunov function of the form
V (x) = 1

2 (x − x0)T (x − x0), where the point x0 is a fixed
point of the flow. Thus, we need to find a point x0 which
satisfies ∇ψ(x0) − Bu = Jx0. The following two lemmas
will assure that such a point exists.

Lemma 1. Let χ be a strictly convex function, and suppose
that χ(x)

||x|| → ∞ as ||x|| → ∞. Then there exists some ρ >
0, such that for every point x ∈ R satisfying ‖x‖ = ρ, the
inequality 〈x,∇χ(x)〉 ≥ 0 holds.

Proof. Fix some arbitrary unit vector θ ∈ Rn, and consider
the convex function fθ(r) = χ(rθ) and its derivative dfθ

dr =
∇χ(rθ)T θ. Note that because χ grows faster than any linear
function, the same can be said about fθ, and in particular,
it’s derivative tends to infinity. Furthermore, the function fθ
is strictly convex, so dfθ

dr is strictly ascending, Thus there is
some rθ such that dfθ

dr > 0 if r > rθ and dfθ
dr < 0 if r < rθ.

Our task now is to show that rθ is a bounded function of θ.
Suppose not, and let θn be a sequence of unit vectors such that
rθn →∞. Passing to a subsequence, we may assume without
loss of generality that θn → θ for some unit vector θ ∈ Rn.
There is some N such that if n ≥ N then rθn > rθ + 1 = t.
In particular, dfθn

dr |r=t ≤ 0 for n ≥ N but dfθ
dr |r=t > 0. This

is impossible, as the first expression is equal to ∇χ(tθn)T θn,
which converges to the second expression, which is∇χ(tθ)T θ.
Thus, there is some ρ > 0 such that rθ < ρ for all unit vectors
θ, meaning that if x is a vector of norm ρ, then for θ = x

||x|| :

〈∇χ(x), x〉 = ρ〈∇χ(ρθ), θ〉 = ρ
dfθ
dr

(ρ) ≥ 0. (25)

Lemma 2. Let Q : Rn → Rn be a continuous vector field, and
let ρ > 0. Suppose that for any vector x satisfying ‖x‖ = ρ,
the inequality 〈Q(x), x〉 ≥ 0 holds. Then there exists some
point y satisfying ‖y‖ ≤ ρ such that Q(y) = 0.

In order to prove the lemma, we use a theorem from
algebraic topology.

Theorem 11 (Brouwer’s Fixed Point Theorem [28]). Let D be
a closed ball inside Rn, and let f : D → D be a continuous
map. Then f has a fixed point.

Now, we prove the lemma.

Proof. Suppose, heading toward contradiction, that Q does not
vanish at any point in the ball D = {‖x‖ ≤ ρ}. We define a
map F : D → D by

F (x) = −ρ Q(x)

‖Q(x)‖ . (26)

This is a continuous map (as Q never vanishes), and the
norm of F (x) is always equal to rho, so F (x) is indeed in
D. Thus, we can apply Brouwer’s fixed point theorem to F
and get a fixed point, called y.

We know that y satisfies F (y) = y, i.e., −ρ Q(y)
‖Q(y)‖ = y.

On one hand, taking the norm of the last equation implies
that ‖y‖ = ρ. On the other hand, rearranging it implies that
Q(y) = −‖Q(y)‖

ρ y = λy where λ is some negative scalar (as
Q(y) 6= 0). Thus, we found a point y of norm ρ such that
〈Q(y), y〉 = λ‖y‖2<0 for some λ < 0, which contradicts our
assumption. Thus Q has a zero inside the ball D = {||x|| <
ρ}.

We are now ready to prove Theorem 8.

Proof. First, because u is constant, we can absorb the constant
term Bu inside the gradient ∇ψ(x) by adding the linear term
(Bu)Tx to ψ(x). This does not change the fact that ψ is
strictly convex, nor the fact that it ascends faster than any
linear function. Thus we may assume that Bu = 0 for the
remainder of the proof.

Now, we define the vector field Q(x) = ∇ψ(x)−Jx. Note
that because J is skew-symmetric, for all x ∈ R,

〈∇ψ(x)− Jx, x〉 = 〈∇ψ(x), x〉. (27)

Thus, by the Lemma 1, there’s some ρ > 0 such that
〈Q(x), x〉 ≥ 0 for any vector x satisfying ‖x‖ ≤ ρ, and by
Lemma 2 we can find some point x0 ∈ R such that Q(x0) = 0,
or equivalently, Jx0 = ∇ψ(x0). We claim that any solution
to the ODE converges to x0.

Indeed, define F (x) = 1
2‖x−x0‖2. Then F is non-negative,

and vanishes only at x0, and furthermore,

Ḟ = (x− x0)T ẋ = (x− x0)T (−∇ψ(x) + Jx)

= (x− x0)T (−∇ψ(x) +∇ψ(x0) + J(x− x0))

= −(x− x0)T (∇ψ(x)−∇ψ(x0)) ≤ 0, (28)

where the last inequality is true because ψ is convex and
Theorem 2. Furthermore, Ḟ is negative if x 6= x0 because ψ is
strictly convex and Theorem 2. The uniqueness of x0 follows
from the fact that the flow globally asymptotically converges
to x0. This completes the proof.
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