
1

Synthesizing communication plans for reachability
and safety specifications

Kazumune Hashimoto, Dimos V. Dimarogonas, Senior Member, IEEE

Abstract—We propose control and communication strategies
for nonlinear networked control systems subject to state and
input constraints. The objective is to steer the state of the system
towards a prescribed target set in finite time (reachability), while
at the same time remaining inside a safety set for all time (safety).
By leveraging the notion of δ-ISS control Lyapunov function,
we derive a sufficient condition to generate a communication
scheduling, such that the resulting state trajectory guarantees
reachability and safety. Moreover, in order to alleviate computa-
tional burden we present a way to find a suitable communication
scheduling by implementing abstraction schemes and standard
graph search methodologies. Simulation examples validate the
effectiveness of the proposed approach.

Index Terms—Event and self-triggered control, constrained
control, reachability and safety.

I. INTRODUCTION

W ITH the advent of communication technologies, there
has been a growing trend of introducing communica-

tion networks in many control applications, such as manu-
facturing plants, autonomous robots, traffic systems, and so
on [1]. Typically, a control system whose sensors, actuators,
and controllers are spatially distributed and connected over
communication channels is referred to as a Networked Con-
trol System (NCS). On one hand, the introduction of NCSs
has many advantages, such as the elimination of redundant
wirings, the availability to control a plant remotely in distant
areas, and so on [2]. On the other hand, the introduction of
NCSs has raised new technological challenges that remain to
be solved. In particular, one of the crucial challenges lies in
the fact that NCSs are subject to limited resources, such as
limited life-time of battery powered devices and a limited
communication bandwidth. For example, sensors and relay
nodes are typically battery driven and are equipped with a
frugal battery capacity. Thus, designing appropriate feedback
controllers to save energy consumption is a crucial problem
to be solved. In order to reduce redundant utilizations of such
limited resources, two relevant control schemes have been
proposed, namely, event-triggered control and self-triggered
control [3]. In both strategies, the objective is to reduce the
communication frequency between the plant and the controller.

Kazumune Hashimoto is with the School of Electrical Engineering and
Computer Science, KTH Royal Institute of Technology, 10044 Stockholm,
Sweden (e-mail: kazumune.hashimoto@z5.keio.jp). His work is supported by
the Knut and Alice Wallenberg Foundation.

Dimos V. Dimarogonas is with the ACCESS Linnaeus Center, School
of Electrical Engineering and Computer Science, KTH Royal Institute of
Technology, 10044 Stockholm, Sweden (e-mail : dimos@ee.kth.se). His work
was supported by the Swedish Research council (VR) and the Knut and Alice
Wallenberg Foundation.

Specifically, sensor data and control signals are exchanged
over a communication network only when they are needed,
so that communication is given aperiodically. Such aperiodic
scheme can potentially lead to energy savings of battery
powered devices, since the communication over the network
is known to be one of the crucial energy consumers.

So far, event and self-triggered control strategies have been
analyzed for many different types of systems, including linear
systems [4]–[8], nonlinear systems [9], [10], and distributed
control systems [11]. In addition, more sophisticated ap-
proaches to reduce sensing and communication costs have
been provided, such as periodic event-triggered control [12],
[13] and dynamic event-triggered control [14]. Some exper-
imental validations of applying the event-triggered and self-
trigered control schemes have also been provided, see e.g., in
[15], [16]. For more different formulations and approaches,
see [17] for a recent survey paper.

In this paper, we consider the following problem: “design
control and communication strategies, such that the state of the
system is steered towards a given target region (reachability),
while at the same time remaining inside a given safety set
for all times (safety)”. In other words, we present aperiodic
control strategies for achieving reachability and safety, in
contrast to the afore-cited approaches in which the control
objective is mostly stabilization (of the origin) or output regu-
lation. Reachability and safety controller synthesis have been
active areas of research in various control applications, such
as flight control systems [18], motion planning of dynamic
robots [19], safe platooning or control of maneuvers [20],
to name a few, and many different theoretical foundations
and problem formulations have been already proposed, see
e.g., [21]–[25]. For example, in [21], reachability analysis is
given for continuous-time linear systems on a set of full-
dimensional polytopes (or simplices) that are partitioned in
a state-space. A piece-wise affine control law is designed as
a set of vector fields to steer the state to exit a prescribed
facet in finite time to enter an adjacent polytope. Another
approach to controller synthesis problem is based on approx-
imately bisimilar abstractions [24], [25]. In this approach, a
symbolic model that approximately simulates the behavior of
the original control system is constructed through the notion
of approximate bisimilar relations, and a safety controller is
synthesized based on finding appropriate paths by solving
symbolic optimal control problems.

While many control strategies to achieve reachability and
safety have been proposed as illustrated above, only a few
works have been provided to accommodate communication
strategies, aiming at reducing the communication load for

ar
X

iv
:1

90
2.

07
46

1v
1

 [
m

at
h.

O
C

]
 2

0
Fe

b
20

19

2

NCSs, see e.g., [7], [26]. For example, in [7] an aperiodic
control scheme was proposed by using the notion of control
invariant set, which guarantees the existence of a controller
such that the state remains inside the safety set for all time.
However, a fundamental assumption required in that paper
is that the safety set is convex; essentially, this assumption
is required to obtain the invariant set as well as to make
the optimal control problem convex. Thus, designing suitable
control and communication strategies for a non-convex safety
set may still be a challenging problem, which is the case
considered in this paper.

The approach presented here differs from the existing event
and self-triggered control strategies in the following way. We
start by defining the notion of δ-ISS control Lyapunov function,
which is a variant of δ-ISS Lyapunov functions [27], [28] that
are defined for systems without controls. This function is a
useful tool to analyze contractive behaviors between any pair
of the state trajectories, and has been attracted much attention
in various analysis and control design applications, see, e.g.,
[25], [29]. Based on this function, we next introduce the notion
of an error propagation model, which quantifies how a closed
loop state trajectory can track a given reference according to
the occurrence or non-occurrence of communication. The error
propagation model is a key ingredient to derive a sufficient
condition to generate a communication scheduling that guar-
antees reachability and safety. Moreover, in order to alleviate
the computational burden to find a suitable communication
scheduling, we next translate the error propagation model into
a symbolic error system, which is a variant of transition sys-
tems. By this translation, a suitable communication scheduling
to achieve reachability and safety can be efficiently found by
implementing standard graph search algorithms.

The proposed approach builds upon our previous work [26].
In [26], we construct a collection of polyhedral contractive
sets with different inter-event times and control updates. Then,
these sets are translated into the corresponding symbolic sys-
tem, and the communication scheduling is generated by graph
search algorithms. However, the previous approach is only
applicable to linear discrete-time systems with a convex safety
set, and, moreover, the control objective is the stabilization
to the origin. In the approach presented in this paper, we
deal with nonlinear discrete-time systems and a non-convex
safety set and the control objective is to achieve reachabil-
ity and safety. Thus the proposed approach establishes the
novelty with respect to the previous approach in [26]. As
we will see later, the key ideas to achieve this novelty is
the utilization of several trajectory generation tools, such as
RRT [30], RRT* [31], which allows to generate a nominal
state trajectory towards a target region in a non-convex safety
set (see Section III-A), and the utilization of δ-ISS control
Lyapunov functions, which allows to analyze how the actual
state trajectory differs from the nominal one according to the
occurrence of communication (see Section IV-A).

The rest of the paper is organized as follows. We provide
some premilinaries and the problem formulation in Section II.
The control and communication strategies are proposed in
Section III and IV, respectively. In Section V, simulation
results are given to validate the effectiveness of the proposal

Plant

Sensor

Network

Actuator

Controller

Fig. 1. Networked Control Systems

including linear and nonlinear systems. Finally, conclusions
and future works are provided in Section VI.

Notations. Let R, R+, N, N+ be the non-negative real, positive
real, non-negative integers, and positive integers, respectively.
We denote Na:b as the set of integers in the interval [a, b].
A function α : R → R is called a class K-function if it is
continuous, strictly increasing, and α(0) = 0. It is called a
class K∞-function if it is a class K-function and α(r) → ∞
as r → ∞. We denote by Id : R → R the identity function,
i.e., Id(r) = r, ∀r ≥ 0. The notation α1 ◦α2 is used to denote
the composition of the two functions α1 and α2. The notation
σmax(A) is used to denote the maximum singular value of the
matrix A. We denote by ‖x‖ the Euclidean norm of vector x.

II. PROBLEM FORMULATION

A. Plant dynamics, free-space

Let us consider a networked control system depicted in
Fig. 1, where the plant and the controller are connected over a
communication network. We assume that the dynamics of the
plant is given by the following nonlinear system:

xk+1 = f(xk, uk, wk), (1)

where xk ∈ Rn is the state at time step k ∈ N, uk ∈ Rm is the
control input, and wk ∈ Rn is the disturbance. The control and
the disturbance variables are constrained as uk ∈ U , wk ∈ W ,
∀k ∈ N, where

U = {u ∈ Rm : ‖u‖ ≤ umax}, (2)
W = {w ∈ Rn : ‖w‖ ≤ wmax}, (3)

for given positive constants umax, wmax. In addition, the state
is constrained as xk ∈ X , ∀k ∈ N, where X is a bounded
polygonal set that can be either a convex or non-convex
region. The set X represents the free-space, in which the state
is allowed to move. Inside X , there exists an initial region
XI ⊂ X in which the state is initiated at k = 0, i.e., x0 ∈ XI ,
and a target region XF ⊂ X to which the state aims to move.
For simplicity, we assume that the regions are disjoint and are
both represented by polytopes. Moreover, let xI ∈ XI denote
the Chebyshev center [32] of the polytope XI . The Chebyshev
center is the center of the maximum ball that is included in
the polytope and is obtained by solving a linear program (for
details, see Section 5.4.5 in [32]).

For the function f : Rn ×Rm ×Rn → Rn, we assume the
following:

Assumption 1. The function f : Rn × Rm × Rn → Rn is
Lipschitz continuous in x ∈ X and w ∈ W , i.e., there exist

3

positive constants Lx and Lw, such that for all x1, x2 ∈ X ,
w1, w2 ∈ W , and u ∈ U ,

‖f(x1,u, w1)− f(x2, u, w2)‖
≤ Lx‖x1 − x2‖+ Lw‖w1 − w2‖. (4)

�

B. δ-ISS control Lyapunov function

With respect to the control system (1), we introduce the
following function as the key ingredient to design appropriate
control and communication strategies.

Definition 1. A smooth function V : Rn × Rn → R is said
to be a δ-ISS control Lyapunov function, if for all x, y ∈ Rn,
u ∈ Rm and w1, w2 ∈ Rn, there exist a smooth function
κ : Rn × Rn × Rm → Rm, class K∞-functions α, α, α, and
a class K-function ρ, such that:

α(‖x− y‖) ≤ V (x, y) ≤ α(‖x− y‖), (5)

V (x+
κ,w1

,y+
u,w2

)− V (x, y)

≤ −α(‖x− y‖) + ρ(‖w1 − w2‖), (6)

where x+
κ,w1

= f(x, κ(x, y, u), w1), y+
u,w2

= f(y, u, w2). �

The closest notion to Definition 1 is a δ-ISS Lyapunov
function [27], [28] that is defined for systems without controls.
As stated in [27], [28], a δ-ISS Lyapunov function is a useful
tool to analyze incremental input-to-state stability, which
captures the contractive behaviors between any pair of the state
trajectories. Moreover, the function has been also utilized to
obtain finite abstractions for nonlinear control systems in (1),
see, e.g., [25], [29]. In contrast to the afore-cited analysis, in
this paper we make use of Definition 1 in order to design not
only a control strategy such that the resulting state trajectory
achieves reachability and safety, but also a communication
strategy such that the communication reduction is achieved
for the NCSs. Note that as shown in (6), the state-feedback
controller κ is applied to only one of the two states (i.e., x).
The intuition behind here is that we will analyze contractive
behaviors between a closed-loop state trajectory with the
control law κ and an open-loop state trajectory that will be
generated offline, as we will see in later sections.

Throughout the paper, we assume the existence of the δ-ISS
control Lyapunov function:

Assumption 2. For system (1), there exist smooth functions
V : Rn × Rn → R and κ : Rn × Rn × Rm → Rm, such
that V is a δ-ISS control Lyapunov function with respect to κ
satisfying (5), (6). Moreover, for any x, y ∈ Rn and u ∈ Rm,
there exist a class K∞-function αu and a class K-function ρu,
such that

‖κ(x, y, u)‖ ≤ αu(‖x− y‖) + ρu(‖u‖). (7)

�

For example, consider the linear system: xk+1 =
f(xk, uk, wk) = Axk + Buk + wk, where the pair (A,B)
is assumed to be stabilizable. Let V (x, y) = ‖x − y‖ be a

candidate δ-ISS control Lyapunov function and κ(x, y, u) =
−K(x − y) + u be the corresponding control law, where K
is given such that Acl := A − BK is Hurwitz. Indeed, the
condition (5) trivially holds and we also have

V (x+
κ,w1

, y+
u,w2

) = ‖Acl(x− y) + w1 − w2‖
≤ σmax(Acl)‖x− y‖+ ‖w1 − w2‖, (8)

so that we have V (x+
κ,w1

, y+
u,w2

) − V (x, y) ≤ −(1 −
σmax(Acl))‖x − y‖ + ‖w1 − w2‖ with 0 < σmax(Acl) < 1.
Thus, the function V is a δ-ISS control Lyapunov function
with respect to κ(x, y, u) = −K(x − y) + u. Moreover, (7)
holds with αu(r) = σmax(K)r and ρu(r) = r.

C. Overview of the communication strategy

During the implementation, the plant interacts with the
controller over the communication network to update the
control inputs in real time. To indicate the communication
times, let ck ∈ {0, 1}, k ∈ N be given by

ck =

{
1, if communication occurs at k, (9)
0, otherwise. (10)

That is, if ck = 1 the plant transmits the state information xk
to the controller, based on which the control input is updated
and transmitted back to the plant. On the other hand, if ck = 0
no communication occurs at k. Instead, as we will see later,
the plant makes use of a control input that is obtained before
the online implementation.

In this paper, we will present two ways to generate a
suitable communication scheduling. The first one is an offline
approach, in which we preliminary define the communication
scheduling ck, k ∈ N before the online implementation. In
other words, the communication times are fixed for all state
trajectories from XI to XF . The offline approach is beneficial
in the sense that it does not require any computational effort to
generate communication scheduling during online execution.
On the other hand, the offline communication strategy tends to
be conservative, which means that it yields more communica-
tion times than the one that is actually (minimally) required to
guarantee reachability and safety. In view of this, we further
provide an online approach as the second communication strat-
egy, in which the controller assigns suitable communication
schedulings during online execution. The online communica-
tion strategy is given in a self-triggered manner, meaning that
for each communication time the controller determines the
next communication time based on the state information that
is received from the plant.

D. Problem formulation

To formulate the problem, we define the validity of a state
trajectory as follows:

Definition 2. For given x0 ∈ XI , L ∈ N+, and disturbance se-
quence w0, w1, . . . , wL−1 ∈ W , the trajectory x0, x1, . . . , xL
is called valid if the following conditions hold:

1) (Dynamics): there exist uk ∈ U , k ∈ N0:L−1, such that
xk+1 = f(xk, uk, wk), ∀k ∈ N0:L−1;

2) (Safety): xk ∈ X , ∀k ∈ N0:L;

4

3) (Reachability): xL ∈ XF . �

That is, the trajectory is valid if there exists a controller
such that the state can reach XF in finite time, while at
the same time always remaining inside X for guaranteeing
safety. Based on the above, the goal of this paper is to design
suitable control and communication strategies, such that the
corresponding trajectory becomes valid:

Problem 1. For a given x0 ∈ XI , design both control and
communication strategies, such that the resulting trajectory is
valid for all wk ∈ W , k ∈ N. �

III. CONTROL STRATEGY

In this section, we provide a control strategy as a solution
to Problem 1. First, we provide an offline procedure to design
the control strategy (Section III-A). Then, we describe how the
control strategy is implemented online (Section III-B).

A. Offline procedure

In the offline step, we generate a nominal state trajectory
from XI to XF . Specifically, we aim to produce a state
trajectory x̂0, x̂1, . . . x̂L ∈ X and the corresponding control
û0, û1, . . . ûL−1 ∈ U for some L ∈ N+, such that x̂0 = xI ,

x̂k+1 = f(x̂k, ûk, 0) ∈ X , ∀k ∈ N0:L−1, (11)

and x̂L ∈ XF . Recall that xI represents the Chebyshev center
of XI . Roughly speaking, the trajectory represents a reference
that the actual state should follow to move from XI to XF .

So far, numerous techniques have been proposed to generate
the reference trajectory as described above. Popular ones are
the well-known sampling-based algorithms, such as RRT [30],
RRT* [31] and their variants such as g-RRT [33]. Sampling-
based algorithms are powerful techniques to find feasible state
trajectories even in a complex (non-convex) state-space X ,
and have been demonstrated successfully in many control
applications, especially in robotics. An alternative method is
the cell-decomposition approach [21], [22]. For example, in
[22] the state-space is decomposed into a set of polytopes, and
a piece-wise affine control law is designed for each polytope to
steer the state towards the neighboring polytopes. Moreover,
we can also utilize optimization-based approaches, such as
those solving constrained optimal control problems [34], [35].
In view of the many different techniques as illustrated above,
the way that the trajectory is derived is beyond the scope of
this paper; we can utilize any of the above techniques to obtain
the reference state and control trajectories.

B. Control strategy

Suppose that we have found reference state and con-
trol trajectories x̂0, x̂1, . . . , x̂L, û0, û1, . . . , ûL−1 in an offline
manner according to the procedure presented in the previous
subsection. Then, starting from any x0 ∈ XI , the following
control strategy is provided during online implementation: for
all k ∈ N0:L−1,

uk =

{
κ(xk, x̂k, ûk), if ck = 1, (12)
ûk, if ck = 0. (13)

That is, if the communication is taking place at k, the
controller applies the state-feedback control law κ defined
in Assumption 2 by using the actual state that is received
from the plant. Intuitively, from Definition 1 the occurrence
of the communication (ck = 1) implies that the error between
the actual state xk and the reference x̂k potentially becomes
smaller. Thus, the occurrence of communication allows the
actual state trajectory to track the given reference, which
increases the possibility to achieve reachability and safety. On
the other hand, if the communication is not given the plant
applies the reference ûk. Although the error may propagate in
this case, we can instead reduce the communication frequency
by not providing the communication. In the next section, we
provide a more quantitative analysis for the above intuition
and propose a detailed communication strategy.

IV. COMMUNICATION STRATEGY

Based on the control strategy provided in the previous
subsection, we now provide a detailed procedure to generate
a communication scheduling ck, k ∈ N0:L−1, as well as an
implementation algorithm of the communication strategy.

A. Deriving error propagation model

Let vk ∈ R, k ∈ N0:L be given by an error between the
actual state and the reference with respect to V at time step
k, i.e., vk = V (xk, x̂k), where V is given in Assumption 2. In
the following, we describe how this error behaves according
to whether communication is given (ck = 1) or not given
(ck = 0). For a given k ∈ N0:L−1, suppose that ck = 1 and
the control law in (12) is applied. Let uk = κ(xk, x̂k, ûk).
From (6), we obtain

V (xk+1,x̂k+1)− V (xk, x̂k)

≤ −α2(V (xk, x̂k)) + ρ(‖wk‖),

where xk+1 = f(xk, uk, wk), x̂k+1 = f(x̂k, ûk, 0) and α2 =
α ◦ α−1. Thus, we obtain

vk+1 ≤(Id− α2)(vk) + ρ(‖wk‖),

where Id : R → R denotes the identity function. Without
loss of generality, we assume that the function (Id − α2) is
a class K∞-function1). In addition to the error propagation
of the states, it is required that the control input satisfies
the constraint, i.e., uk ∈ U . To derive the condition for this,
observe that from (7) we obtain

‖κ(xk, x̂k, ûk)‖ ≤ αu ◦ α−1(vk) + ρu(‖ûk‖), (14)

where we have used ‖xk − x̂k‖ ≤ α−1(V (xk, x̂k)) from (5).
Thus, uk = κ(xk, x̂k, ûk) ∈ U if αu ◦α−1(vk) + ρu(‖ûk‖) ≤
umax.

Suppose now that ck = 0 and the control law in (13)
is applied. Let uk = ûk. From the Lipschitz continuity in
Assumption 1, it follows that

‖xk+1 − x̂k+1‖ ≤ Lx‖xk − x̂k‖+ Lw‖wk‖,

1)This is due to the fact that for any K∞-function α2, there exists a class
K∞-function α̂2 such that: (i) α̂2(r) ≤ α2(r), ∀r ≥ 0; (ii) Id − α̂2 is a
class K∞-function, see [36].

5

where xk+1 = f(xk, uk, wk) and x̂k+1 = f(x̂k, ûk, 0) (with
uk = ûk). Moreover, from (5) we obtain ‖xk − x̂k‖ ≤
α−1(V (xk, x̂k)) and α−1(V (xk+1, x̂k+1)) ≤ ‖xk+1− x̂k+1‖.
Thus, we obtain

vk+1 ≤ α
(
Lxα

−1(vk) + Lw‖wk‖
)
.

Note that the input constraint is satisfied for this case, i.e.,
uk = ûk ∈ U . Consequently, for both ck = 1 and 0, we
obtain

vk+1 ≤ g(vk, ck, ‖wk‖), (15)

where the function g : R× {0, 1} × R→ R is defined by

g(v, c, ‖w‖) = c ((Id− α2)(v) + ρ(‖w‖))
+ (1− c)

{
α
(
Lxα

−1(v) + Lw‖w‖
)}
. (16)

The inequality (15) indicates that if the communication is
given at k (i.e., ck = 1), the error between the actual state
and the reference potentially becomes smaller. Indeed, if vk
is large enough to satisfy α2(vk) > ρ(wmax), it holds that
vk+1 ≤ vk−α2(vk)+ρ(‖wk‖) < vk and the error gets strictly
smaller at the next time. On the other hand, the error may grow
according to (15) (with ck = 0) if the communication is not
given. Thus, we can quantitatively evaluate the propagation
of the error according to the relation given in (15). Note that
since α, α, Id − α2, and ρ are class K∞ (or K)-functions,
the function g is monotone [37] with respect to v ∈ R and
‖w‖ ∈ R, i.e., for any c ∈ {0, 1}, v, v′ ∈ R with v ≤ v′, and
w,w′ ∈ W with ‖w‖ ≤ ‖w′‖, it holds that

g(v, c, ‖w‖) ≤ g(v′, c, ‖w‖) ≤ g(v′, c, ‖w′‖). (17)

As will be shown below, the monotonicity property plays an
important role to derive suitable conditions to guarantee the
validity of the state trajectory.

For given ck ∈ {0, 1}, k ∈ N0:L−1 and v0 ∈ R, let vk ∈ N,
k ∈ N0:L be recursively given by

vk+1 = g(vk, ck, wmax). (18)

That is, vk represents the upper bound of vk by setting the
disturbance sequence as the maximal (worst case) one ‖wk‖ =
wmax and considering the equality in (15) for all k ∈ N0:L−1.
In addition, let vk,max ∈ R+, k ∈ N0:L be given by

vk,max = max{ε ∈ R : Bε(x̂k) ⊆ X}, (19)

where Bε(x̂) = {x ∈ Rn | V (x, x̂) ≤ ε}. The set Bε(x̂)
indicates the set of all states around x̂ such that the error
value is less than ε. From (19) it follows that

V (xk, x̂k) ≤ vk,max =⇒ xk ∈ Bvk,max
(x̂k) ⊆ X . (20)

Thus, vk,max represents the maximum value of the error at k
such that the actual value of the state at k guarantees safety.
Finally, let vinit, vfinal ∈ R be given by

vinit = min{ε ∈ R : XI ⊆ Bε(x̂0)} (21)

vfinal = max{ε ∈ R : Bε(x̂L) ⊆ XF }. (22)

Based on the above notations, we obtain the following result:

Lemma 1. Suppose that the communication scheduling ck ∈
{0, 1}, k ∈ N0:L−1 is designed such that:

(C.1) v0 = vinit;
(C.2) vk ≤ vk,max, ∀k ∈ N1:L;
(C.3) vL ≤ vfinal;
(C.4) ck = 1 =⇒ αu ◦ α−1(vk) + ρu(‖ûk‖) ≤ umax,

∀k ∈ N0:L−1,
where v1, . . . , vL are computed according to (18). Then, for
any x0 ∈ XI and w0, w1, . . . , wL−1 ∈ W , the state trajectory
x0, x1, . . . , xL becomes valid by applying the control strategy
in (12) and (13). �

Proof. Suppose that ck ∈ {0, 1}, k ∈ N0:L−1 is designed such
that the conditions (C.1)–(C.4) are fulfilled. For any x0 ∈ XI ,
let x0, x1, . . . , xL and u0, u1, . . . , uL−1 be the (actual) state
and the corresponding control trajectories according to (12)
and (13). From (21), it holds that x0 ∈ XI ⊆ Bv̄0(x̂0) and so
we have v0 = V (x0, x̂0) ≤ v̄0. Thus, for any w0 ∈ W we
obtain

v1 ≤ g(v0, c0, ‖w0‖) ≤ g(v0, c0, wmax) = v̄1,

where we have used the monotonicity property in (17). Since
v1 ≤ v1, we obtain

v2 ≤ g(v1, c1, ‖w1‖) ≤ g(v1, c1, wmax) = v̄2,

for any w1 ∈ W . Using the same procedure, we recursively
obtain vk ≤ vk, ∀k ∈ N0:L for any w0, w1, . . . , wL−1 ∈ W .
From (C.2), it then holds that vk ≤ vk,max, ∀k ∈ N1:L, which
means from (20) that

xk ∈ Bvk,max
(x̂k) ⊆ X , (23)

∀k ∈ N1:L. Thus, the state trajectory guarantees safety. More-
over, it follows from (C.3) and (22) that xL ∈ Bvfinal

⊆ XF ,
which means that the state trajectory guarantees reachability.
In addition, from (C.4) and (14), ck = 1 implies that

‖uk‖ ≤ αu ◦ α−1(vk) + ρu(‖ûk‖)
≤ αu ◦ α−1(vk) + ρu(‖ûk‖) ≤ umax, (24)

and ck = 0 implies ‖uk‖ = ‖ûk‖ ≤ umax. Thus, it holds
that uk ∈ U , ∀k ∈ N0:L−1. Therefore, it is shown that
the trajectory x0, x1, . . . , xL becomes valid. Since this holds
for any x0 ∈ XI and w0, w1, . . . , wL−1 ∈ W the proof is
complete.

Lemma 1 indicates that if the communication scheduling ck,
k ∈ N0:L−1 is given such that the sequence of errors with
v0 = vinit becomes small enough to satisfy (C.2) and (C.3),
as well as that the condition (C.4) holds in order to satisfy
the input constraint, then every state trajectory starting from
x0 ∈ XI becomes valid.

Remark 1 (On the computation of vk,max). Note that in order
to check (C.1)–(C.3) one is required to compute vk,max, ∀k ∈
N1:L (as well as vinit, vfinal). For the linear case, a δ-ISS
control Lyapunov function can be chosen as the error norm
V (x, y) = ‖x − y‖ (see Section II-B) and thus the set Bε(x̂)
is defined as a ball with center x̂ and radius ε. Let Bε(x̂) be
a polytope with Bε(x̂) ⊆ Bε(x̂). The set Bε(x̂) can be of any

6

0

1

k = 0
1

0

1 1

0 1

k = 1

k = 2

k = 3…

…

Fig. 2. Illustration of generating a binary tree as a naive approach to find the
communication scheduling. In the figure, gray nodes and edges are eliminated
since the safety (reachability) conditions are violated. For instance, the node
with v2,1 is eliminated since v2,1 ≤ v2,max does not hold.

shape (e.g., square, hexagon) but is selected to include the ball
Bε(x̂). Since any polygonal set X can be cell-decomposed as
X =

⋃Nx

n=1 Xn (Nx denotes the number of polytopes obtained
by the decomposition), it holds that Bε(x̂) ⊆ X if

Nx⋃
n=1

Xε,n = Bε(x̂),

where Xε,n = Xn∩Bε(x̂). Since Xn and Bε(x̂) are both poly-
topes, Xε,n is a polytope that can be computed by vertex op-
erations. Thus, vk,max can be obtained (under-approximated)
by searching the maximum value of ε with the property that
the union of all Xε,n, n ∈ N1:Nx

is equal to Bε. For general
nonlinear systems, however, it may be difficult to compute
vk,max since the function V (x, y) is in general not given by
the error norm. In this case, we can make use of property in
(5) in the following way. For a given ε > 0, let Bα,ε(x̂k)
be the ball set characterized as Bα,ε(x̂k) = {xk ∈ Rn :
‖x − x̂k‖ ≤ α−1(ε)}, where the function α is defined in
(5). Since V (xk, x̂k) ≤ ε =⇒ α(‖xk − x̂k‖) ≤ ε for any
ε > 0, it holds that Bε(x̂k) ⊆ Bα,ε(x̂k) for any ε > 0.
Therefore, vk,max can be under-approximated by searching
the maximum value of ε with Bα,ε(x̂k) ⊆ X , which can be
done by employing the same procedure as for the linear case
described above. �

B. A naive approach to generate communication scheduling

From Lemma 1, if we assign ck, ∀k ∈ N0:L such that
the conditions (C.1)–(C.4) are satisfied, the resulting state
trajectory guarantees both safety and reachability. At the same
time, we can achieve the communication reduction as much as
possible by finding the minimum number of communication
instants (i.e., min

∑L−1
k=0 ck). In what follows, we present ideas

to achieve such communication scheduling. As a starting point,
this subsection provides a naive approach as a motivation to
derive our proposed solution in the next subsections.

Suppose that we obtain x̂0, x̂1, . . . , x̂L and û0, û1, . . . , ûL−1

as, respectively, the reference state and control trajectories as
described in Section III-A, as well as vk,max, ∀k ∈ N0:L as de-
scribed in Section IV-A (see in particular Remark 1). The most
straightforward approach to obtain the desired communication
scheduling ck, ∀k ∈ N0:L may be to consider all possible
(feasible) communication schedulings satisfying all conditions

(C.1)–(C.4), and then find the optimal one providing the
minimum number of communication instants. The overview of
this approach is illustrated in Fig. 2. As shown in the figure,
the problem is translated into the construction of a binary tree
with the depth L. That is, starting from v̄0 = vinit we first
compute the next error for the two cases, according to whether
the communication is given (v̄1,1 = g(v0, 1, wmax)) or not
given (v̄1,2 = g(v0, 0, wmax)). For each case, we check if the
corresponding error value is below the safety (or reachability if
L = 1) bounds, i.e., check if v̄1,1 ≤ v1,max and v̄1,2 ≤ v1,max

(or v̄1,1 ≤ vfinal and v̄1,2 ≤ vfinal if L = 1), as well as check
if it satisfies the input constraint according to (C.4). If the
conditions are satisfied, we add the node and the corresponding
edge to the tree. If the condition does not hold, no further
nodes and edges are added. The above procedure is iterated
until the terminal time step k = L is reached. Once the tree
has been constructed, we seek the optimal path from the initial
node to the ones at k = L, which provides the minimum
number of communication instants.

By using the above procedure, we can find a communication
scheduling such that the conditions (C.1)–(C.4) are rigorously
satisfied, and thus the resulting state trajectory achieves reach-
ability and safety. However, the main drawback of the above
procedure is its computational complexity; the number of total
nodes for the constructed binary tree (as well as the number
of feasible paths) for the worst case is 2L. Thus, the number
of total nodes grows exponentially with respect to the total
time steps, which makes the construction of a binary tree
intractable.

Motivated by the above issue, in the following subsections
we provide an alternative approach that makes the problem of
finding the communication scheduling scale well with respect
to the time step L. In particular, we propose to construct a
symbolic error system, which represents an abstracted behavior
of the upper bound of the error propagation model in (18). The
symbolic system is abstracted in the sense that it deals with
only a finite number of non-negative reals that are selected
from the domain of R, in contrast to the original model in (18)
that is defined over all non-negative reals in R. The symbolic
system is constructed by making use of the monotonicity
property in (17), and it allows us to generate desired commu-
nication schedulings with the computational complexity being
much more tractable than the naive approach.

C. Abstracting the behavior of the error propagation model

In this subsection we provide an approach to construct a
symbolic model representing an abstracted behavior of (18).
To this end, we first partition the domain of R into a finite
number of segments. That is, for given M ∈ N+ with M ≥ 2
and ν ∈ R+, define a set of scalars 0 < ν1 < ν2 < · · · < νM
given by

νm = νm/(M − 1), ∀m ∈ N1:M−1 (25)

and νM = ∞. Here, ν = νM−1 represents the maximum
finite value among the set of scalars ν1, . . . , νM−1, and M
represents the number of cells in the partition of the domain R.
How these parameters should be given is described later in this

7

section. The sequence ν1, . . ., νM represents the upper bound
of the errors that will be treated to generate the communication
schedulings. Namely, instead of using the original model (18)
that is defined over all non-negative reals in R, we use here
an abstracted model that consists of only a finite number of
positive reals {ν1, . . . , νM}. We refer to this abstracted model
as the symbolic error system, which is formally defined below:

Definition 3. A symbolic error system T is a tuple

T = (S, γ, δ), (26)

where

• S = {s1, s2, . . . , sM} is a set of symbols;
• γ : S → R is a labeling function given by γ(si) = νi,
∀i ∈ N1:M ;

• δ ⊆ S × {0, 1} × S is a transition relation defined as
follows: for given si ∈ S and c ∈ {0, 1}, let sj ∈ S be
given by

sj = arg min
s∈S

γ(s), s.t. g(γ(si), c, wmax) ≤ γ(s). (27)

Then, (si, c, sj) ∈ δ. �

The system T mainly consists of a finite set of symbols
S = {s1, . . . , sM} and their transitions defined in δ. Each
symbol si ∈ S is related to the scalar νi through the
mapping γ. In other words, the symbol si indicates that the
upper bound of the error is νi. The transition relation δ is
defined by solving (27). Here, g(γ(si), c, wmax) represents
the upper bound of the error at the next time from the
one associated with si with (or without) the occurrence of
communication indicated by c. Thus, the next symbol to be
transitioned is determined by taking the closest upper bound to
g(γ(si), c, wmax). Roughly speaking, the transition indicates
that the upper bound of the error becomes smaller (or larger)
by providing (or not providing) the communication. For
example, (s2, c, s1) ∈ δ with c = 1 indicates that the upper
bound of the error decreases from ν2 to ν1 by the occurrence
of communication. On the other hand, (s1, c, s2) ∈ δ with
c = 0 indicates that the upper bound of the error grows from
ν1 to ν2 by not providing the communication. Note that the
transition system T is deterministic and non-blocking (see,
e.g., [38]), which means that for every s ∈ S and c ∈ {0, 1}
there exists one transition from s.

(Example 1): Consider the linear system xk+1 =
f(xk, uk, wk) = Axk + Buk + wk, where the pair (A,B) is
assumed to be stabilizable. As described in Section II-B, define
V (x, y) = ‖x − y‖ as the δ-ISS control Lyapunov function
with respect to κ(x, y, u) = −K(x−y)+u, where K is given
such that Acl = A−BK is Hurwitz. The corresponding upper
bound of the error model is given by (18) with

g(v, c, ‖w‖) =c (σmax(Acl) + ‖w‖)
+ (1− c) (σmax(A) + ‖w‖) . (28)

Suppose that we have σmax(Acl) = 0.6, σmax(A) = 1.2,
and wmax = 0.1, and the parameters for the partition of the
domain R are ν = 5, M = 6 (i.e., νm = m, m ∈ N1:5 and

1

11

0

1

01

0 0 0 0

1

Fig. 3. Symbolic error system obtained for Example 1.

ν6 = ∞). The symbolic error system T is illustrated as a
graph in Fig. 3. For example, we have g(γ(s5), 1, wmax) =
5 · 0.6 + 0.1 = 3.1 < 4 and so (s5, 1, s4) ∈ δ. Also, we
have g(γ(s5), 0, wmax) = 5 · 1.2 + 0.1 = 6.1 > 5 and
so (s5, 0, s6) ∈ δ. Note that we have (s2, 1, s2) ∈ δ since
g(γ(s2), 1, wmax) = 2 · 0.6 + 0.1 = 1.3 < 2. This means
that the rate of decrease of the error is not large enough to
transition to s1. Thus, the state that the upper bound of the
error is 1 (i.e., s1) can never be reached in T . In the original
system (18), on the other hand, it holds that vk+1 ≤ 1.0 for
all vk ≤ 1.5, which means that there exists some vk that can
become smaller than 1 at the next time. Thus, the symbolic
system provides a somewhat conservative behavior in the sense
that the error cannot be further reduced in comparison to the
original system in (18). �

Remark 2 (On the selection of ν). When constructing T ,
one needs to define the parameters ν and M in order to
characterize the partition of R. In this remark, we provide
a way to determine the parameter ν; regarding M , please
refer to Section IV-E for details as well as the illustrative
analysis in the simulation section (Section V-B). Let us recall
that we compute vk,max, ∀k ∈ N0:L in (19). Here, each vk,max

represents the maximum allowable error that can be taken at
k, which means that the error does not take values more than
vk,max. Since ν determines the maximum finite error value
associated with the symbol in T , one way to select ν is to
take the maximum value among vk,max, k ∈ N0:L, i.e.,

ν = max
k∈N0:L

vk,max. (29)

Note that since X is a bounded polygonal set, vk,max, k ∈
N0:L as well as ν are finite. �

D. Generating the communication plan: an offline approach

Based on the symbolic system provided in the previous sub-
section, we now provide a framework to generate the desired
communication scheduling. As described in Section II-C, we
present both an offline and an online framework to generate
the communication scheduling; in this subsection we derive the
former approach. In order to assign a suitable communication
scheduling in an offline manner, we further construct the
following symbolic system:

Definition 4. A timed symbolic error system is a tuple

TA = (SA, δA, sA,init, SA,final), (30)

where
• SA = S × N0:L is a set of symbols;

8

Algorithm 1: Derivation of δA.
input : T (transition system), vk,max, ∀k ∈ N0:L,

ûk, ∀k ∈ N0:L−1

output : δA (transition relation for TA)
1 set δA = {} (initialization);
2 for 0 ≤ k ≤ L− 1 do
3 for each (si, c, sj) ∈ δ do
4 if (D.2)–(D.4) are satisfied then
5 δA ← δA ∪ ((si, k), c, (sj , k + 1));
6 end
7 end
8 end

• δA ⊆ SA × {0, 1} × SA is a transition relation, and
((si, k), c, (sj , k + 1)) ∈ δA for all k ∈ N0:L−1 if the
following conditions hold:

(D.1) (si, c, sj) ∈ δ;
(D.2) γ(si) ≤ vk,max;
(D.3) γ(sj) ≤ vk+1,max;
(D.4) c = 1 =⇒ αu ◦ α−1(γ(si)) + ρu(‖ûk‖) ≤ umax;
• sA,init = (sinit, 0) ∈ SA is an initial state, where sinit ∈
S is given by

sinit = arg min
s∈S

γ(s), s.t. XI ⊆ Bγ(s)(x̂0); (31)

• SA,final ⊂ SA is a set of terminal states given by

SA,final =
{

(s, L) ∈ SA : Bγ(s)(x̂L) ⊆ XF
}
. (32)

�

A timed symbolic system TA is provided as an extension
to the original one T , in the sense that the time step domain
in the symbolic states as well as an initial state and a set
of terminal states are additionally defined in the symbolic
system. As shown in the definition, a transition is allowed
from (si, k) to (sj , k + 1) only if the conditions (D.1)–
(D.4) are satisfied. Condition (D.1) indicates that the transition
from si to sj is allowed in the original transition system T .
Conditions (D.2), (D.3) indicate that the upper bounds of the
error associated with si and sj are respectively below the
safety bounds vk,max and vk+1,max that are defined in (19).
Condition (D.4) is essentially required in order for the control
input to satisfy the input constraint. Overall, the procedure
to derive δA is presented in Algorithm 1. As shown in the
algorithm, for each time step and for each transition in T , we
check if the conditions (D.2) – (D.4) are satisfied. Only if the
conditions are satisfied, we add the corresponding transition
in δA. As we will see in the next subsection, the complexity
for implementing Algorithm 1 is shown to be linear with
respect to L, which is thus much more tractable than the
construction of a binary tree for the naive approach described
in Section IV-B.

We proceed to define the accepting run for TA by recalling
the standard definitions from automata theory (see, e.g., [38]):

Definition 5. For given ck ∈ {0, 1}, ∀k ∈ N0:L−1, the
sequence (s(0), 0), (s(1), 1), . . . , (s(L), L) is called an accept-
ing run for ck, k ∈ N0:L−1 in TA, if (s(0), 0) = sA,init,
((s(k), k), ck, (s(k + 1), k + 1)) ∈ δA, ∀k ∈ N0:L−1, and

(s(L), L) ∈ SA,final. Moreover, ck ∈ {0, 1}, ∀k ∈ N0:L−1 is
called accepted by TA, if there exists an accepting run for ck,
k ∈ N0:L−1. �

Based on the above definitions, we obtain the following
result:

Theorem 1. Suppose that the communication scheduling ck ∈
{0, 1}, k ∈ N0:L−1 is designed such that it is accepted by
TA. Then, for any x0 ∈ XI and w0, w1, . . . , wL−1 ∈ W , the
resulting state trajectory x0, x1, . . . , xL is valid by applying
the control strategy in (12) and (13). �

Proof. Suppose that ck, k ∈ N0:L−1 is accepted by TA, and
let (s(0), 0), (s(1), 1), . . . , (s(L), L) be the accepting run for
ck, k ∈ N0:L−1. Based on ck, k ∈ N0:L−1 and for a given
v0 = vinit, let v1, · · · , vL be the sequence computed according
to (18). In addition, let ṽk = γ(s(k)), ∀k ∈ N0:L. From (21),
we obtain

v0 = min{ε ∈ R : XI ⊆ Bε(x̂0)}
≤ min{γ(s) : s ∈ S,XI ⊆ Bγ(s)(x̂0)}
= ṽ0,

and thus v0 ≤ ṽ0. Since (s(0), c0, s(1)) ∈ δ, it holds from
the definition of the transition relation in Definition 3 that
g(ṽ0, c0, wmax) ≤ ṽ1. Thus, we obtain

v1 = g(v0, c0, wmax) ≤ g(ṽ0, c0, wmax) ≤ ṽ1,

where we have used the monotonicity property of the function
g in (17). Using the same procedure, we recursively obtain
vk ≤ ṽk, ∀k ∈ N0:L. Moreover, from conditions (D.2), (D.3)
in Definition 4 it holds that ṽk = γ(s(k)) ≤ vk,max, ∀k ∈
N0:L, and thus vk ≤ ṽk ≤ vk,max, ∀k ∈ N0:L. Also, from
s(L) ∈ SA,final and (22), it holds that

ṽL ≤ max{ε ∈ R : Bε(x̂L) ⊆ XF } = vfinal.

Thus, we obtain vL ≤ ṽL ≤ vfinal. From condition (D.4),
ck = 1 implies that

αu ◦ α−1(vk) + ρu(‖ûk‖) ≤ αu ◦ α−1(ṽk) + ρu(‖ûk‖)
≤ umax,

for all k ∈ N0:L−1. As a consequence, the sequence v0, v1,
. . ., vL fulfills conditions (C.1)–(C.4) in Lemma 1. Therefore,
from Lemma 1, by implementing the control strategy in (12)
and (13) according to ck, k ∈ N0:L−1, the resulting state
trajectory x0, . . . , xL becomes valid for any x0 ∈ XI and
w0, . . . , wL−1 ∈ W . The proof is complete.

Theorem 1 states that the existence of an accepting run of
TA implies that any state trajectory starting from XI achieves
reachability and safety. In order to provide online execution,
we generate the communication scheduling in the following
way. First, we assume c0 = 1 (i.e., communication occurs at
the initial time), which is required since the plant does not
know any information about the control inputs to be applied
at the initial time k = 0. Second, in order to reduce the
number of communication times as much as possible, we
find the accepting run that leads to the smallest number of

9

Algorithm 2: Implementation of offline communication
scheduling.

input : x̂0, . . . , x̂L, û0, . . . , ûL−1 (reference state and
control trajectories),
c0, c1, . . . , cL−1 (communication scheduling),

output : x0x1x2 · · ·xL (state trajectory)
1 k = 0 (initialization);
2 while k ≤ L do
3 if ck = 0 then
4 The plant applies uk (no communication is given) and

k := k + 1;
5 end
6 if ck = 1 then
7 The controller receives xk from the plant;
8 uk = κ(xk, x̂k, ûk);
9 if k < L− 1 and ck+1 = 0 then

10 `∗k = zeropref(ck+1, . . . , cL−1);
11 uk+` = ûk+`, ∀` ∈ N1:`∗

k
;

12 end
13 The controller transmits uk, . . . , uk+`∗

k
to the plant;

14 The plant applies uk and k := k + 1;
15 end
16 end

communication instants. That is, we find ck, k ∈ N0:L−1 (with
c0 = 1) by solving the following problem:

min

L−1∑
k=0

ck, (33)

subject to (s(0), 0) = sA,init, (s(L), L) ∈ SA,final, and
((s(k), k), ck, (s(k + 1), k + 1)) ∈ δA, ∀k ∈ N0:L−1. The
above optimal run can be obtained as follows. First, for each
sA,final ∈ SA,final we look for an accepting run from
sA,init to sA,final by implementing standard graph search
methodologies (e.g., Dijkstra algorithm [39]). Then, among all
the accepting runs we further select the one with the minimum
number of communication instants.

In summary, the implementation algorithm based on the
offline communication scheduling obtained above is illustrated
in Algorithm 2. In the algorithm, the function zeropref :
{0, 1}L−k−1 → N (line 10) is defined by

zeropref(ck+1, . . . , cL−1) = max `, s.t.
∑̀
`′=1

ck+`′ = 0, (34)

i.e., the function outputs the number of zero-elements ap-
pearing at the beginning of the sequence ck+1, . . . , cL−1. As
shown in the algorithm, for each communication time the
controller updates the current control input (line 8) by utilizing
xk and a set of control inputs for the non-communication
time steps (i.e., uk, . . . , uk+`∗k

). Then, the control inputs are
transmitted to the plant and no communication is given until
the next communication time. This procedure is iterated until
the terminal step k = L is reached. From Theorem 1, it is
shown that any state trajectory starting from x0 ∈ XI becomes
valid by applying Algorithm 2.

E. Discussion on the computational complexity

Recall that in the naive approach presented in Section IV-A,
the number of total nodes and edges of a binary tree for the
worst case are exponential with respect to the time step L.
Thus, the binary tree construction can be intractable especially
for a large value of L. In the proposed approach, on the
other hand, we aim at constructing the timed symbolic error
system TA, in which the complexity heavily depends on the
implementation of Algorithm 1 (i.e., the derivation of δA). In
the algorithm, it is required to check the conditions (D.2)–
(D.4) for each k ∈ N0:L−1 and each transition in T . Since the
total number of transitions in T is 2M (since there exist two
transitions from each s ∈ S), the total number of iterations
in Algorithm 1 is 2ML. Since the parameter M is determined
independently from L, the construction of TA is linear with
respect to L and is thus much more tractable than the naive
approach. Once TA is constructed, it is required to find an
offline communication scheduling by finding the accepting
run with the minimum number of communication instants.
The complexity to find an accepting run from sA,init to each
sA,final ∈ SA,final is O(ML lnML+2ML), if we apply the
Dijkstra algorithm [39]. Thus, the complexity of finding the
optimal communication scheduling is O(Mf (ML ln(ML) +
2ML)), where Mf denotes the total number of symbols in
SA,final.

Note that the total number of iterations in Algorithm 1
as well as complexity to find the communication scheduling
also depend on the tuning parameter M , which represents
the number of partitions of the domain R. Here, if M is
selected smaller, we can reduce the complexity to obtain both
TA and the offline communication scheduling. However, if M
is selected smaller and the partition of R becomes sparser,
the corresponding transition system TA may not approximate
precisely enough the error propagation model in (18). More
specifically, it is possible that the symbol can transition to
another one associated with a much larger value than the
original behavior in (18) (i.e., for some (si, c, sj) ∈ δ, we may
have g(γ(si), c, wmax) � γ(sj)). Due to such mismatch, the
offline communication scheduling tends to be more conserva-
tive as M is chosen smaller, i.e., the communication frequency
tends to be higher as the partition becomes sparser. Therefore,
the parameter M should be carefully chosen by taking into
account the trade-off between the computational complexity
and the conservativeness of the communication scheduling.

F. Generating communication plan: an online approach

In the previous subsection we provided an offline framework
to generate the communication strategy. This approach is bene-
ficial in terms of the computational load, since communication
scheduling does not need to be generated during the online
implementation. However, the drawback of this approach may
be that the communication scheduling is conservative; the
generated scheduling may require a higher number of com-
munications than the one that is actually (minimally) required
to guarantee reachability and safety. This conservativeness
is due to the fact that the error between the actual state
and the reference during the online implementation may be

10

Algorithm 3: Implementation of an online communication
scheduling.

input : x̂0, . . . , x̂L, û0, . . . , ûL−1 (reference state and
control trajectories),

output : c0, c1, . . . , cL−1 (communication scheduling)
x0x1x2 · · ·xL (state trajectory)

1 c0 = 1, k = 0 (initialization);
2 for k ≤ L do
3 if ck = 0 then
4 The plant applies uk (no communication is given) and

k := k + 1;
5 end
6 if ck = 1 then
7 The controller receives xk from the plant;
8 Let s(k) = sym(xk) and

c∗k+1|k, . . . , c
∗
L−1|k = optcom(s(k)); (35)

9 uk = κ(xk, x̂k, ûk);
10 if k < L− 1 and c∗k+1|k = 0 then
11 `∗k = zeropref(c∗k+1|k, . . . , c

∗
L−1|k);

12 uk+` = ûk+`, ∀` ∈ N1:`∗
k

;
13 ck+` = 0, ∀` ∈ N1:`∗

k
;

14 if k + `∗k < L− 1 then
15 ck+`∗

k
+1 = 1;

16 end
17 else
18 ck+1 = 1;
19 end
20 The controller transmits uk, . . . , uk+`∗

k
to the plant;

21 The plant applies uk and set k := k + 1;
22 end
23 end

much smaller than the one assumed by the optimal run
generated offline. For example, suppose that the accepting run
includes the symbol (s(k), k) ∈ SA for some k ∈ N0:L.
This implies, from the proof of Theorem 1, that the error
between the actual state and the reference is below γ(s(k)),
i.e., vk = V (xk, x̂k) ≤ γ(s(k)). However, since the accepting
run is obtained offline, vk can be much smaller than the
upper bound γ(s(k)). This means that there may exist another
(s′(k), k) ∈ SA such that vk ≤ γ(s′(k)) < γ(s(k)), i.e., there
can exist a symbol that provides a more rigorous upper bound
for vk. In this case, there may exist another run from (s′(k), k)
providing a smaller number of communication instants than
the one from (s(k), k).

Motivated by the above, this subsection provides an online
communication scheduling algorithm that has the potential to
provide a less conservative result than the offline communica-
tion case. The proposed strategy is illustrated in Algorithm 3.
In the algorithm, the function sym : X → S (line 8) is defined
by

sym(xk) = arg min
s∈S

γ(s), s.t. V (xk, x̂k) ≤ γ(s). (36)

That is, the function outputs the symbol associated with the
closest upper bound to V (xk, x̂k). Moreover, the function
optcom : S → {0, 1}L−k−1 outputs the optimal communi-
cation scheduling by finding an appropriate sequence from
(s(k), k) to the symbol in SA,final with the minimum number

of communication instants, i.e.,

optcom(s(k)) = arg min
ck+1|k···cL−1|k

L−k−1∑
`=1

ck+`|k, (37)

subject to ((s(k+`), k+`), ck+`|k, (s(k + `+ 1), k+`+1)) ∈
δA, ∀` ∈ N0:L−k−1, with ck|k = ck and (s(L), L) ∈ SA,final.

As shown in the algorithm, for each communication time
the controller identifies the current symbol associated with
the closest upper bound to V (xk, x̂k), aiming at reducing
the conservativeness with respect to the offline approach.
Then, based on the current symbol it updates the optimal
communication scheduling by finding the smallest number of
communication instants (line 8). Then, the controller computes
a current control input (line 9) as well as a set of control inputs
for the non-communication time steps (line 12) and transmits
them to the plant. Note that as shown in the algorithm, the
communication is given in a self-triggered manner [3], in
which for each communication time the controller determines
the next communication time (if it exists) based on the state
information xk.

In addition to the communication reduction, another ad-
vantage of employing the online approach (rather than the
offline approach) is that it can potentially handle larger size
of disturbances. This is due to the fact that Algorithm 3 looks
for an accepting run at k = 0 for a given initial state
x0 ∈ XI , while the offline approach looks for an accepting run,
before implementing Algorithm 2, such that every initial state
x0 ∈ XI should lead to a valid trajectory. Mathematically, we
have γ(s(0)) ≤ γ(sinit) with s(0) = sym(x0), meaning that
the initial error is over-estimated when the offline approach
is employed. Thus, an accepting run from s(0) is more likely
to be found instead of sinit under the same values of wmax,
or, in other words, a larger size of disturbance is allowed by
applying the online approach. The above observation will be
also illustrated in the simulation section: see Section V for the
linear case.

With a slight abuse of Definition 5, we define the ac-
cepting run as follows. For given k ∈ N0:L−1, xk ∈
X , and ck+`|k ∈ {0, 1}, ∀` ∈ N0:L−k−1, the sequence
(s(k), k), (s(k + 1), k+ 1), . . . , (s(L), L) is called an accept-
ing run for ck+`|k, ` ∈ N0:L−k−1, if s(k) = sym(xk),
((s(k + `), k + `), ck+`|k, (s(k + `+ 1), k + ` + 1)) ∈ δA,
∀` ∈ N0:L−k−1, and (s(L), L) ∈ SA,final. Moreover,
ck+`|k ∈ {0, 1}, ∀` ∈ N0:L−k−1 is called accepted by TA, if
there exists an accepting run for ck+`|k, ∀` ∈ N0:L−k−1. For
the online communication approach, we obtain the following
result:

Theorem 2. For a given x0 ∈ XI , suppose that Algorithm 3 is
implemented. Moreover, suppose that at the initial time k = 0
there exists c`|0 ∈ {0, 1}, ` ∈ N0:L−1 with c0|0 = c0 = 1, such
that it is accepted by TA. Then, for any w0, . . . , wL−1 ∈ W ,
the following holds:

(E.1) (Feasibility): for any k ∈ N1:L−1 with ck = 1, there
exists ck+`|k ∈ {0, 1}, ` ∈ N0:L−k−1, such that it is
accepted by TA.

(E.2) (Validity): the resulting state trajectory is valid. �

11

The first result (E.1) means that the existence of an accept-
ing run at k = 0 implies the existence of an accepting run for
all the communication time steps afterwards. This property is
important, since if no accepting runs were present for some
k, the controller would not find a suitable communication
scheduling according to (35). The second result (E.2) shows
the validity of the state trajectory by applying Algorithm 3.

Proof. Here we provide a proof only for (E.1). The proof for
(E.2) is similar to the one of Theorem 1 and is provided in
Appendix. The proof for (E.1) is given by induction. From the
assumption, at k = 0 there exists a communication scheduling
such that it is accepted by TA. Thus, the controller can find the
optimal communication scheduling according to (35). Let c∗`|0,
` ∈ N0:L−1 with c∗0|0 = c0 = 1 be the optimal communication
scheduling obtained at k = 0 and

(s∗(0), 0), (s∗(1), 1), . . . , (s∗(L), L) (38)

be the corresponding (accepting) run for c∗`|0, ` ∈ N0:L−1 with
s∗(0) = s(0) = sym(x0). Note that since (38) is accepting, we
have (s∗(L), L) ∈ SA,final. Since s∗(0) is given by solving
(36), it holds that v0 ≤ γ(s∗(0)). Thus, we obtain

v1 ≤ g(v0, c
∗
0|0, wmax) ≤ g(γ(s∗(0)), c∗0|0, wmax) ≤ γ(s∗(1)),

where v1 = V (x1, x̂1) and the last inequality follows from
the fact that (s∗(0), c∗0|0, s

∗(1)) ∈ δ and δ is given according
to Definition 3. Thus, we obtain v1 ≤ γ(s∗(1)). By using the
same procedure, we recursively obtain

vk ≤ γ(s∗(k)), ∀k ∈ N0:k1 , (39)

where k1 > 0 denotes the next communication time from the
initial time k = 0 (i.e., c∗1|0 = · · · = c∗k1−1|0 = 0, c∗k1|0 =
1). Now, consider the next communication time k1, and let
s(k1) = sym(xk1). In what follows, we show that there exists
a communication scheduling for k1, such that it is accepted
by TA. Let ĉk1+`|k1 , ` ∈ N0:L−k1−1 be the communication
scheduling given by

ĉk1+`|k1 = c∗k1+`|0, ∀` ∈ N0:L−k1−1. (40)

Here, ĉk1+`|k1 , ` ∈ N0:L−k1 represents a candidate commu-
nication scheduling for k1, such that it is accepted by TA,
or in other words, there exists an accepting run for ĉk1+`|k1 ,
` ∈ N0:L−k1 . Let ŝ(k1 + `) ∈ S, ` ∈ N0:L−k1 be such that
(ŝ(k1 + `), ĉk1+`|k1 , ŝ(k1 + `+ 1)) ∈ δ, ∀` ∈ N0:L−k1−1 with
ŝ(k1) = s(k1). Note that since T is deterministic and non-
blocking (see Section IV-C), the sequence ŝ(k1 + `) ∈ S, ` ∈
N0:L−k1 is uniquely determined by ĉk1+`|k1 , ` ∈ N0:L−k1 . We
now show that (ŝ(k1), k1), (ŝ(k1 + 1), k1 + 1), . . . , (ŝ(L), L)
is an accepting run for ĉk1+`|k1 , ` ∈ N0:L−k1 . Let us first
show ((ŝ(k1), k1), ĉk1|k1 , (ŝ(k1 + 1), k1 + 1) ∈ δA (with
ŝ(k1) = s(k1)). Condition (D.1) in Definition 4 trivially
holds since (ŝ(k1), ĉk1|k1 , ŝ(k1 + 1)) ∈ δ. Moreover, since
s(k1) = sym(x(k1)) and vk1 ≤ γ(s∗(k1)) (see (39)), we
obtain

γ(ŝ(k1)) = min {γ(s) : s ∈ S, V (xk1 , x̂k1) ≤ γ(s)}
≤ γ(s∗(k1)). (41)

Since ((s∗(k1), k1), c∗k1|0, (s
∗(k1 + 1), k1+1) ∈ δA, we obtain

γ(ŝ(k1)) ≤ γ(s∗(k1)) ≤ vk1,max and thus condition (D.2) in
Definition 4 holds. Moreover, due to the monotonicity property
of g and ĉk1|k1 = c∗k1|0, we obtain

g(γ(ŝ(k1)), ĉk1|k1 , wmax) ≤ g(γ(s∗(k1)), c∗k1|0, wmax). (42)

Since (s∗(k1), c∗k1|0, s
∗(k1 + 1)) ∈ δ, it follows from (27) in

Definition 3 that g(γ(s∗(k1)), c∗k1|0, wmax) ≤ γ(s∗(k1 + 1)),
so that we have g(γ(ŝ(k1)), ĉk1|k1 , wmax) ≤ γ(s∗(k1 + 1)).
Thus, we obtain

γ(ŝ(k1 + 1)) = min{γ(s) : s ∈ S,
g(γ(ŝ(k1)), ĉk1|k1 , wmax) ≤ γ(s)}

≤ γ(s∗(k1 + 1)) ≤ vk1+1,max, (43)

where the last inequality follows from the fact that
((s∗(k1), k1), c∗k1|0, (s

∗(k1 + 1), k1+1) ∈ δA. Thus, condition
(D.3) holds. Finally, noting that ĉk1|k1 = 1 and

αu ◦ α−1(γ(ŝ(k1))) + ρ(ûk1)

≤ αu ◦ α−1(γ(s∗(k1))) + ρ(ûk1)

≤ umax, (44)

it is shown that condition (D.4) in Definition 4 holds. There-
fore, we have ((ŝ(k1), k1), ĉk1|k1 , (ŝ(k1 +1), k1 +1) ∈ δA. By
using the same procedure as above, we recursively obtain

γ(ŝ(k1 + `)) ≤ γ(s∗(k1 + `)) ≤ vk1+`,max, (45)

for all ` ∈ N0:L−k1 , and it is shown that ((s(k1 + `), k1 +
`), ĉk1+`|k1 , (ŝ(k1 + `+ 1), k1 + `+ 1) ∈ δA, ∀` ∈ N0:L−k1−1.
Since (s∗(L), L) ∈ SA,final and γ(ŝ(L)) ≤ γ(s∗(L)), we
then obtain Bγ(ŝ(L))(x̂L) ⊆ Bγ(s∗(L))(x̂L) ⊆ XF . Thus, it
holds that (ŝ(L), L) ∈ SA,final. Therefore, it is shown that
(ŝ(k1), k1), (ŝ(k1 + 1), k1 + 1), . . . , (ŝ(L), L) is an accepting
run for ĉk1+`|k1 , ` ∈ N0:L−k1 .

Since there exists an accepting run for k1, the controller
can find the optimal communication scheduling at k1 accord-
ing to (35). Let c∗k1+`|k1 , ∀` ∈ N0:L−k1−1 be the optimal
communication scheduling obtained at k1, and let k2 > k1

be the next communication time from k1 (i.e., c∗k1+1|k1 =
0, . . . , c∗k2−1|k1 = 0 and c∗k2|k1 = 1). Let s(k2) = sym(xk2)
and

ĉk2+`|k2 = c∗k2+`|k1 , ∀` ∈ N0:L−k2−1 (46)

be a candidate communication scheduling for k2. With a slight
abuse of notation, let ŝ(k2 + `) ∈ S, ` ∈ N0:L−k2 be such that
(ŝ(k2 + `), ĉk2+`|k2 , ŝ(k2 + `+ 1)) ∈ δ, ∀` ∈ N0:L−k2−1 with
ŝ(k2) = s(k2). By using exactly the same procedure as for
the case k1 described above, it follows that

(ŝ(k2), k2), (ŝ(k2 + 1), k2 + 2), . . . , (ŝ(L), L) (47)

is an accepting run for ĉk2+`|k2 , ` ∈ N0:L−k2−1 with ŝ(k2) =
s(k2) = sym(xk2). Since there exists an accepting run at k2,
the controller can find the optimal communication scheduling
according to (35). Then, it is again shown that there exists an
accepting run at the next communication time k3. Therefore,
it is inductively shown that for any communication time step
k1, k2, k3, . . ., there exists a communication scheduling such

12

that it is accepted by TA. The proof of (E.1) is complete.

V. ILLUSTRATIVE EXAMPLES

In this section we provide two illustrative examples to
validate our control schemes. All simulations were conducted
by Matlab 2016a on a Windows 10, Intel(R) Core(TM),
2.40GHz, 8GB RAM computer.

A. Linear case

One of the well-known examples of Problem 1 is a motion
planning problem of a vehicle, in which we aim to steer a
vehicle to a desired goal set in finite time while avoiding
obstacles. Let p = [px; py] ∈ R2 and v = [vx; vy] ∈ R2 be
the position and velocity of the vehicle, respectively. Defining
the state as x = [p; v] ∈ R4, the dynamics is assumed to be
given by

ẋ =


0 0 1 0
0 0 0 1
0 0 − 1

τx
0

0 0 0 − 1
τy

x+


0 0
0 0
1
τx

0

0 1
τy

u+ w, (48)

where τx = τy = 0.95, u ∈ R2 is the control input and w ∈ R2

is the disturbance. We discretize (48) under a sample-and-
hold controller with sampling time interval 0.5 to obtain the
corresponding discrete-time system: xk+1 = Axk+Buk+wk.
The input and the disturbance sets are assumed to be given
by U = {u ∈ R2 : ‖u‖ ≤ 5}, W = {w ∈ R4 : ‖w‖ ≤ 0.1},
and the position of the vehicle p is constrained by the set P ,
where the set P ⊂ R2 is illustrated in Fig. 4(a). In the figure,
the white regions represent the free-space in which the vehicle
can move freely, and the black regions represent obstacles to
be avoided. Assuming that the velocity v is constrained by the
set V = {v ∈ R2 : ‖v‖∞ ≤ 4}, the state-space X is given by
X = P ×V . The initial set is given by XI = PI ×VI , where
PI = {p = [p1; p2] ∈ P : −9 ≤ p1 ≤ −7 ∧ −9 ≤ p2 ≤ −7}
and VI = {v ∈ V : v = 0}. The target set is given by
XF = PF × VF , where PF = {p = [p1; p2] ∈ P : 7 ≤ p1 ≤
9∧−9 ≤ p2 ≤ −7} and VF = {v ∈ V : ‖v‖∞ ≤ 1}. The sets
PI and PF are also illustrated in Fig. 4(a).

To generate reference state and control trajectories in an
offline manner according to Section III-A, we have imple-
mented a standard RRT algorithm [30]. While implementing
the algorithm, we generate a collision-free trajectory with
a safety margin ε = 0.5, i.e., all states x̂0, . . . , x̂L are at
least ε away from the obstacles (i.e., boundaries of X), see
e.g., [40]. Such safety margin is imposed here to obtain
large values of v0,max, . . . , vL,max, so as to increase the
possibility of finding an accepting run of TA. The algorithm
is successfully terminated and finds the reference state and
control trajectories x̂0, . . . , x̂L, û0, . . . , ûL−1 with L = 169.
Based on the trajectories, we compute vk,max, k ∈ N0:L.
Although the naive approach described in Section IV-B was
implemented, the algorithm did not terminate due to a lack
of memory; indeed, the total number of nodes to construct a
binary tree for the worst case is 2169 ≈ 1.7 × 1050, which is
clearly intractable for the algorithm to be terminated. Thus,

(a) Illustration of P .

(b) Trajectory of p (Algorithm 2). (c) Trajectories of p by applying Algo-
rithm 2 with different initial states.

(d) Trajectory of p (Algorithm 3).

Fig. 4. Illustration of the set P and state trajectories of p by applying
Algorithm 2 and 3.

it is worth applying our proposed approach to alleviate the
computational burden.

Since it follows that vk,max ≤ 2 for all k ∈ N0:L−1, we
set ν = 2 (see Remark 2). In this subsection, we fix the
parameter M as M = 100, although we will consider different
values in the next subsection (nonlinear case). Following
Section IV-C, we choose V (x, y) = ‖x − y‖ as the δ-ISS
control Lyapunov function with the control law given by
κ(x, y, u) = −K(x − y) + u, where K is designed so that
σmax(Acl) = 0.7. Based on this, we have constructed T as
well as TA by implementing Algorithm 1. The algorithm took
only less than 2 seconds, which is thus shown to be much
tractable than the naive approach.

Fig. 4(b) illustrates a sample state trajectory of p by apply-
ing the offline communication approach (Algorithm 2), where
x0 = [−8;−8; 0; 0]. In the figure, each red star mark represents
a state when communication is given (i.e., xk, k ∈ N0:L−1

with ck = 1). It is shown from the figure that the trajectory
enters the target region while avoiding all obstacles. Moreover,

13

0 10 20 30 40 50
-3

0

3

u
1

0 10 20 30 40 50
Time (step)

-3

0

3

u
2

Fig. 5. Control inputs over k ∈ [0, 50] by applying Algorithm 2.

the number of communication instants required to achieve
reachability is given by 36 out of the total time steps L = 169,
which is thus shown to achieve the communication reduction.
It can be seen from the figure that the transmission frequency
tends to be high when the state is close to the obstables,
especially when moving in a narrowed space. Intuitively, this
is because the safety margins vk,max, k ∈ N0:L−1 tend to
be small especially when the reference trajectory is close to
the obstacles, and so the communication is more likely to be
given such that the actual state can track to the reference to
guarantee safety. Fig. 5 illustrates the corresponding control
inputs applied to the plant. It is shown from the result
that the control inputs satisfy the constraints, i.e., uk ∈ U ,
∀k ∈ N0:L−1.

To validate Theorem 1, Algorithm 2 has been implemented
100 times with the initial state x0 randomly chosen from
XI . Fig. 4(c) illustrates the resulting state trajectories of p.
From the figure, all trajectories are indeed shown to achieve
reachability while avoiding obstacles, regardless of disturbance
influence and initial states.

Fig. 4(d) illustrates a sample state trajectory of p by applying
the online communication approach (Algorithm 3). Moreover,
Table I illustrates the number of communication instants by
applying Algorithm 2 and Algorithm 3, as well as the average
computation time required for each communication time in-
stant during the online execution (i.e., the average computation
time to execute from line 3 to line 15 for Algorithm 2 and from
line 3 to line 22 for Algorithm 3). From Fig. 4(d) and the table,
the online approach is shown to achieve a smaller number
of communication instants than the offline approach. On the
other hand, it is shown that the computation time for the online
approach is longer than the offline approach. This is due to
the fact that the online approach is required to update the
communication scheduling for each communication time step.

To analyze how much the disturbance size can be toler-
ated for both the online and offline approaches, we further
computed the maximum allowable wmax > 0, such that
the offline communication scheduling (an accepting run from
sinit) is found, as well as that the online communication
scheduling at k = 0 (an accepting run from s(0) = sym(x0)
with x0 = [−8;−8; 0; 0]) is found. The results are given by
wmax = 0.12 for the offline approach, and wmax = 0.21 for
the online approach. Thus, the results show that a larger size

TABLE I
THE NUMBER OF COMMUNICATION INSTANTS AND THE AVERAGE

COMPUATAION TIME DURING ONLINE EXECUTION.

Algorithm 2 Algorithm 3
Num. of communication 36 21

Computation time (s) 5× 10−4 0.25

of disturbance is allowed by applying the online approach.
As described in Section IV-F, this is due to the fact that the
initial state error is over-estimated when the offline approach
is employed (i.e., γ(s(0)) ≤ γ(sinit)).

B. Nonlinear case

As an example of a nonlinear system, we consider a control
problem of an inverted pendulum, whose continuous-time
model is discretized with the sampling time interval ∆ = 0.2:

x1,k+1 = x1,k + ∆(x2,k + wk)

x2,k+1 = x2,k + ∆(a sinx1,k − bx2,k + uk),

where x1,k and x2,k are the states representing the angular
position and the velocity of the mass, uk ∈ R is the control
input, wk ∈ R is the additive disturbance, and a, b > 0 are the
parameters characterized by the physical quantities such as the
gravity constant. Assume that a = 0.6, b = 3 and the control
and the disturbance sets are given by U = {u ∈ R : |u| ≤ 2},
W = {w ∈ R : |w| ≤ 0.01}. Regarding the state constraint,
we consider the following two sets:

XA = {x ∈ R2 : x = [x1;x2] ∈ R2 : |x1| ≤ 1 ∧ |x2| ≤ 0.5},
XB = {x ∈ R2 : x = [x1;x2] ∈ R2 : 2|x1|+ 4|x2| ≥ 1},

and X = XA ∩ XB . The set XB is given so as to steer the
pendulum with sufficiently large position and velocity, see e.g.,
[20] for a similar constraint. The set X is illustrated as the
white regions in Fig. 6(a).

Let us obtain the upper bound of the error model in (18) in
order to implement the proposed strategies. For x = [x1;x2] ∈
X and y = [y1; y2] ∈ X , it follows that

x+
u,w1
− y+

u,w2
=

[
1 ∆

a∆η(x1, y1) 1− b∆

]
(x− y)

+

[
∆
0

]
(w1 − w2),

where x+
u,w1

= f(x, u, w1), y+
u,w2

= f(y, u, w2), and
η(x2, y2) = (sinx2 − sin y2)/(x2 − y2). Since we have

min
−1≤x1,y1≤1

(sinx1 − sin y1)/(x1 − y1) = 0.84, (49)

the system is Lipschitz continuous satisfying the property in
(4) with Lx = 1.03 and Lw = 0.20 (see, e.g., [25] for a
related analysis for the continuous case). Moreover, let V :
R2×R2 → R be given by V (x, y) = (x−y)TP (x−y), where
P = [2.1, 0.45; 0.45, 0.43] and κ(x, y, u) = u−ku(x−y) with

14

(a) State-space X (the white region).

(b) State trajectories by applying Algorithm 2 for the time
interval k ∈ [0, 1000].

Fig. 6. State-space X and state trajectory by applying Algorithm 2.

0 20 40 60 80 100

Time (step)

-2

0

2

u

Fig. 7. Control inputs over k ∈ [0, 120] by applying Algorithm 2.

ku = [2.9, 2.0]. Then, it can verified that

V (x+
κ,w1

,y+
u,w2

)− V (x, y)

≤ −(x− y)TQ(x− y) + ρ(|w1 − w2|),

where Q = [0.29, 0; 0, 0.29] and ρ(|w1 − w2|) = 3.5|w1 −
w2|+ 0.16|w1−w2|2. Therefore, it is shown that the function
V is δ-ISS control Lyapunov function with respect to κ, and
we can obtain the corresponding error model in (18).

Let X1 = {x = [x1;x2] ∈ R2 : −0.9 ≤ x1 ≤ −0.7∧ |x2| ≤
0.1} and X2 = {x = [x1;x2] ∈ R2 : 0.7 ≤ x1 ≤ 0.9 ∧
|x2| ≤ 0.1}. We assume x0 = [−0.83; 0.05] ∈ X1. Instead of
achieving stabilization of the origin, we aim here at designing
control and communication strategies such that the state can
periodically traverse between X1 and X2. To this aim, we
construct TA for both XI = X1, XF = X2 and XI = X2,
XF = X1, and switch the designed strategies between the
two sets during the online implementation. That is, starting
from x0 ∈ X1 we first implement control and communication
strategies by setting XI = X1, XF = X2. Then, once the
state enters X2 we set XI = X2, XF = X1 and implement
the corresponding strategies. This procedure is iterated for all
times so that the state trajectory traverses between X1 and X2.

TABLE II
NUMBER OF COMMUNICATION INSTANTS DURING k ∈ [0, 1000] AND THE

COMPUATAION TIME TO GENERATE THE OFFLINE COMMUNICATION
SCHEDULING.

M 400 100 50 10

Num. of communication 430 484 530 —
Computation time (s) 32 5.4 0.62 —

As with the linear case, we implement the RRT algorithm
to generate the reference trajectories for both XI = X1,
XF = X2 and XI = X2, XF = X1. For both cases, we
set νi = 0.5i/(M − 1), ∀i ∈ N1:M−1 and M = 200 and
construct TA by implementing Algorithm 1. Fig. 6(b) illustrates
the resulting state trajectories by implementing the offline
communication strategy (Algorithm 2). The figure shows that
the state trajectory actually traverses between X1 and X2 while
remaining inside X . Moreover, the number of communication
instants for the time interval k ∈ [0, 1000] is 484, which is
thus shown to achieve the communication reduction. Fig. 7
illustrates the corresponding control inputs applied to the plant.
From the result, it is shown that the control inputs satisfy the
constraints, i.e., uk ∈ U , ∀k ∈ N0:L−1.

In Section IV-E, we have discussed the trade-off between the
computation time to obtain TA and the number of communica-
tion instants according to the selection of M . To analyze such
trade-off, we construct TA for both XI = X1, XF = X2 and
XI = X2, XF = X1 with different selection of the parameter
M as M = 400, 100, 50, 10, and generate the corresponding
offline communication schdulings. For each selection of M ,
we measure the total computation time to terminate Algo-
rithm 1. Then, we implement the control and communication
strategies such that the state trajectory traverses between X1

and X2 according to the procedure described above, and count
the number of communication instants during the time interval
k ∈ [0, 1000]. The results are shown in Table II. The table
illustrates that the number of communication instants increases
as M is selected smaller, and the feasible communication
scheduling was not found when M = 10 (with the symbol “—
”); as described in Section IV-E, this is because the mismatch
between the symbolic model T and the original error model
in (18) becomes larger as the partition of the domain R
becomes sparser. On the other hand, the computation time
to generate the communication scheduling decreases as M is
selected smaller, which is due to a decrease of the number
of iterations in Algorithm 1. Therefore, it is shown that there
exists a trade-off between the computation time to generate
the communication scheduling and the communication load,
and the trade-off can be regulated by the tuning parameter M .

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose control and communication strate-
gies for reachability and safety specifications in a networked
control system. The key idea of the proposed approach is to
utilize the notion of δ-ISS control Lyapunov function, which
captures contractive behaviors between any pair of the state
trajectories under a certain state feedback control law. The

15

function is given to introduce the error propagation model,
which represents how the upper bound of the error between the
actual and the reference trajectories behaves according to the
occurrence or non-occurrence of communication. Based on the
error propagation model, we derive a sufficient condition for
the communication scheduling to guarantee reachability and
safety. Moreover, in order to reduce computational complexity,
we introduce the notion of symbolic error system, which rep-
resents an abstracted behavior of the error propagation model.
The communication scheduling is then given by implementing
standard graph search methodologies, and is provided in both
offline and online fashion. Finally, we illustrate the benefits
of the proposed approach through numerical simulations for
both linear and nonlinear cases.

It should be noted that, incremental stability analysis has
been provided recently for complex dynamical systems that
have not been considered in this paper, including hybrid
systems [41], switched systems [29], and mechanical sys-
tems [42]. Thus, future work will involve investigating the
applicability of the proposed approach to those types of
systems. Moreover, our future work involves investigating
the applicability of the proposed approach to mobile com-
munication networks, where the network consists of multiple
nodes communicating with each other under the randomness
of connectivity. The problem may be treated by incorporating
the idea of energy-aware packet forwarding protocols, such
as those presented in [43], [44]. Finally, extending the pro-
posed approach to more complex specifications, such as those
expressed by Linear Temporal Logic (LTL) formulas, will be
taken into account in future investigations.

APPENDIX

(Proof for (E.2) in Theorem 2): The proof for (E.2) is also
given by induction. Let us go back again to the initial time k =
0, and let c∗`|0, ` ∈ N0:L−1 with c∗0|0 = c0 = 1 be the optimal
communication scheduling obtained at k = 0. In addition, let
(38) denote the accepting run for c∗`|0, ` ∈ N0:L−1 and k1

be the next communication time from the initial time k = 0.
As described in the proof of (E.1), we obtain vk ≤ γ(s∗(k)),
∀k ∈ N0:k1 . Moreover, since ((s∗(k), k), c∗k|0, (s

∗(k + 1), k+
1)) ∈ δA, ∀k ∈ N0:k1−1, it follows from (D.2) and (D.3) in
Definition 4 that

vk ≤ γ(s∗(k)) ≤ vk,max, ∀k ∈ N0:k1 , (50)

which implies from (20) that xk ∈ X , ∀k ∈ N0:k1 . Thus, the
state trajectory guarantees safety for all the time until the next
communication time k1. Moreover, from (D.4) in Definition 4,
it follows that uk ∈ U , ∀k ∈ N0:k1 and the constraint for the
control inputs are satisfied.

Consider now the next communication time k1, and let
c∗k1+`|k1 , ∀` ∈ N0:L−k1−1 be the optimal communication
scheduling obtained at k1 according to (35). Note that the
optimal communication scheduling can be found due to the
feasibility property described in (E.1). With a slight abuse of
notation, let

(s∗(k1), k1), (s∗(1), k1 + 1), . . . , (s∗(L), L) (51)

with s∗(k1) = s(k1) = sym(xk1) be the accepting run for
c∗k1+`|k1 , ∀` ∈ N0:L−k1−1. Moreover, let k2 > k1 be the next
communication time from k1. Again, it follows from (D.2)
and (D.3) in Definition 4 that

vk ≤ γ(s∗(k)) ≤ vk,max, ∀k ∈ Nk1:k2 . (52)

From this and (D.4) in Definition 4, we obtain xk ∈ X , uk ∈
U , ∀k ∈ Nk1:k2 and the safety is guaranteed until the next
communication time k2. By following the same procedure as
illustrated above, we obtain xk ∈ X , ∀k ∈ N0:L and uk ∈ U ,
∀k ∈ N0:L.

Let kN < L be the last communication time step, where N
represents the total number of communication instants. Let
c∗kN+`|kN , ` ∈ N0:L−kN−1 be the optimal communication
scheduling obtained at kN , and

(s∗(kN), kN), (s∗(kN + 1), kN + 1), . . . , (s∗(L), L) (53)

with s∗(kN) = sym(xkN) be the accepting run for c∗kN+`|kN ,
∀` ∈ N0:L−kN−1. Since kN is the last communication time
step, we either have (i) kN = L − 1 (c∗kN |kN = 1), or (ii)
c∗kN |kN = c∗kN+1|kN = · · · c∗L−1|kN = 0. For case (i), it follows
that vL ≤ γ(s∗(L)) ≤ vfinal, since (s∗(L), L) ∈ SA,final.
Thus, we obtain xL ∈ XF . For case (ii), it follows that

vk ≤ γ(s∗(k)) ≤ vk,max, ∀k ∈ NkN :L−1 (54)

and vL ≤ γ(s∗(L)) ≤ vfinal. Thus, xk ∈ X , ∀k ∈ NkN :L−1

and xL ∈ XF . Therefore, the state trajectory achieves reacha-
bility and safety for both case (i) and (ii). Moreover, it follows
from (D.4) in Definition 4 that uk ∈ U , ∀k ∈ NkN :L−1 for both
case (i) and (ii). Based on the above, it is shown that the state
trajectory becomes valid. The proof is complete.

REFERENCES

[1] R. A. Gupta and M.-Y. Chow, “Networked Control System: Overview
and Research Trends,” IEEE Transactions on Industrial Electronics,
vol. 57, no. 7, pp. 2527–2535, 2010.

[2] W. Zhang, M. S. Branicky, and S. M. Phillips, “Stability of networked
control systems,” IEEE Control Systems, vol. 21, no. 1, pp. 84–99, 2001.

[3] W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada, “An introduction
to event-triggered and self-triggered control,” in Proceedings of the 51st
IEEE Conference on Decision and Control (IEEE CDC), 2012, pp.
3270–3285.

[4] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control
tasks,” IEEE Transactions on Automatic Control, vol. 52, pp. 1680–1685,
2007.

[5] M. C. F. Donkers and W. P. M. H. Heemels, “Output-based event-
triggered control with guaranteed L∞ gain and decentralized event-
triggering,” IEEE Transactions on Automatic Control, vol. 57, no. 6, pp.
1362–1376, 2011.

[6] V. S. Dolk, D. P. Borgers, and W. P. M. H. Heemels, “Output-based
and decentralized dynamic event-triggered control with guaranteed Lp-
gain performance and zeno-freeness,” IEEE Transactions on Automatic
Control, vol. 62, no. 1, pp. 34–49, 2016.

[7] K. Hashimoto, S. Adachi, and D. V. Dimarogonas, “Aperiodic sampled-
data control via explicit transmission mapping: a set-invariance ap-
proach,” IEEE Transactions on Automatic Control, vol. 63, no. 10, pp.
3523–3530, 2018.

[8] M. Kishida, “Event-triggered control with self-triggered sampling for
discrete-time uncertain systems,” IEEE Transactions on Automatic Con-
trol, 2018 (to appear).

[9] R. Postoyan, P. Tabuada, D. Nesic, and A. Anta, “A framework for the
event-triggered stabilization of nonlinear systems,” IEEE Transactions
on Automatic Control, vol. 60, no. 4, pp. 982–996, 2014.

16

[10] A. Anta and P. Tabuada, “To sample or not to sample: Self-triggered
control for nonlinear systems,” IEEE Transactions on Automatic Control,
vol. 55, no. 9, pp. 2030–2042, 2010.

[11] D. V. Dimagoronas, E. Frazzoli, and K. H. Johansson, “Distributed
event-triggered control for multi-agent systems,” IEEE Transactions on
Automatic Control, vol. 57, no. 5, pp. 1291–1297, 2012.

[12] W. P. M. H. Heemels and M. C. F. Donkers, “Model-based periodic
event-triggered control for linear systems,” Automatica, vol. 49, no. 3,
pp. 698–711, 2013.

[13] R. Postoyan, A. Anta, W. P. M. H. Heemels, P. Tabuada, and D. Nesic,
“Periodic event-triggered control for nonlinear systems,” in Proceedings
of the 52nd IEEE Conference on Decision and Control (IEEE CDC),
2013, pp. 7397–7402.

[14] A. Girard, “Dynamic triggering mechanisms for event-triggered control,”
IEEE Transactions on Automatic Control, vol. 60, no. 7, pp. 1992–1997,
2014.

[15] J. Araújo, M. Mazo, A. Anta, P. Tabuada, and K. H. Johansson, “System
Architectures, Protocols and Algorithms for Aperiodic Wireless Control
Systems,” IEEE Transactions on Industrial Informatics, vol. 10, no. 1,
pp. 175–184, 2013.

[16] C. Peng, D. Yue, and M.-R. Fei, “A Higher Energy-Efficient Sampling
Scheme for Networked Control Systems over IEEE 802.14.4 Wireless
Networks,” IEEE Transactions on Industrial Informatics, vol. 12, no. 5,
pp. 1766–1744, 2016.

[17] Q. Liu, Z. Wang, X. He, and D. Zhou, “A survey of event-based strate-
gies on control and estimation,” Systems Science & Control Engineering,
vol. 2, no. 1, pp. 90–97, 2014.

[18] A. M. Bayen, I. M. Mitchell, M. Oishi, and C. J. Tomlin, “Aircraft
autolander safety analysis through optimal control-based reach set
computation,” Journal of Guidance, Control, and Dynamics, vol. 30,
no. 1, pp. 68–77, 2017.

[19] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343–352, 2009.

[20] M. Vukosavljev, I. Jansen, M. E. Broucke, and A. P. Schoellig, “Safe and
robust robot maneuvers based on reach control,” in IEEE Conference on
Robotics and Automation (ICRA), 2016.

[21] L. C. G. J. M. Habets and J. H. van Schuppen, “A control problem for
affine dynamical systems on a full-dimensional polytope,” Automatica,
vol. 40, no. 1, pp. 21–35, 2004.

[22] C. Belta, V. Isler, and G. J. Pappas, “Discrete abstractions for robot
motion planning and control in polygonal environments,” IEEE Trans-
actions on Robotics, vol. 21, no. 5, pp. 864–874, 2004.

[23] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Transactions on Automatic Control,
vol. 57, no. 11, pp. 2817–2830, 2012.

[24] A. Girard, “Controller synthesis for safety and reachability via approx-
imate bisimulation,” Automatica, vol. 48, no. 5, pp. 947–953, 2012.

[25] G. Pola, A. Girard, and P. Tabuada, “Approximately bisimilar symbolic
models for nonlinear control systems,” Automatica, vol. 44, no. 10, pp.
2508–2516, 2008.

[26] K. Hashimoto, S. Adachi, and D. V. Dimarogonas, “Self-triggered
control for constrained systems: a contractive set-based approach,” in
Proceedings of 2017 American Control Conference, 2017, pp. 1011–
1016.

[27] D. Angeli, “A lyapunov approach to incremental stability properties,”
IEEE Transactions on Automatic Control, vol. 47, no. 3, pp. 410–421,
2002.

[28] D. N. Tran, B. S. Ruffer, and C. M. Kellett, “Incremental stability
properties for discrete-time systems,” in Proceedings of the 55th IEEE
Conference on Decision and Control, 2016, pp. 477–482.

[29] A. Girard, G. Pola, and P. Tabuada, “Approximately bisimilar symbolic
models for incrementally stable switched systems,” IEEE Transactions
on Automatic Control, vol. 55, no. 1, pp. 116–126, 2010.

[30] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
International Journal of Robotics Research, vol. 20, no. 5, pp. 378–400,
2001.

[31] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” in Proceedings of Robotics: Science and
Systems (RSS), 2010.

[32] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear
and Hybrid Systems, Cambridge University Press, 2017.

[33] T. Dang, A. Donze, O. Maler, and N. Shalev, “Sensitive state-space
exploration,” in Proceedings of the 47th IEEE International Conference
on Decision and Control, 2008.

[34] A. Richards, T. Schouwenaars, J. P. How, and E. Feron, “Spacecraft
trajectory planning with avoidance constraints using mixed-integer linear
programming,” Journal of Guidance, Control, and Dynamics, vol. 25,
no. 4, pp. 755–764, 2002.

[35] L. Blackmore, M. Ono, and B. C. Williams, “Chance-constrained
optimal path planning with obstacles,” IEEE Transactions on Robotics,
vol. 27, no. 6, pp. 1080–1094, 2011.

[36] Z. P. Jiang and Y. Wang, “Input-to-state stability for discrete-time
nonlinear systems,” Automatica, vol. 37, no. 6, pp. 857–869, 2001.

[37] D. Angeli and E. D. Sontag, “Monotone control systems,” IEEE Trans-
actions on Automatic Control, vol. 48, no. 10, pp. 1684–1698, 2003.

[38] C. Baier and J.-P. Katoen, Principles of model checking, The MIT Press,
2008.

[39] S. M. LaValle, Planning algorithms, Cambridge, UK: Cambridge Uni-
versity Press, 2006.

[40] S. Karaman and E. Frazzoli, “Optimal kinodynamic motion planning
using incremental sampling-based methods,” in Proceedings of the 49th
IEEE Conference on Decision and Control, 2010.

[41] R. Postoyan, J. Biemond, W. Heemels, and N. van de Wouw, “Definitions
of incremental stability for hybrid systems,” in Proceedings of the 54th
IEEE Conference on Decision and Control, 2015, pp. 5544–5549.

[42] W. Lohmiller and J. Slotine, “Control system design for mechanical
systems using contraction theory,” IEEE Transactions on Automatic
Control, vol. 45, no. 5, pp. 884–889, 2000.

[43] Y. Li, Y. Jiang, D. Jin, L. Su, L. Zeng, and D. Wu, “Energy-efficient
optimal opportunistic forwarding for delay-tolerant networks,” IEEE
Transactions on Vehicular Technology, vol. 59, no. 9, pp. 4500–4512,
2010.

[44] E. Magistretti, J. Kong, U. Lee, M. Gerla, P. Bellavista, and A. Cor-
radi, “A mobile delay-tolerant approach to long-term energy-efficient
underwater sensor networking,” in Proceedings of 2007 IEEE Wireless
Communications and Networking Conference, 2007.

	I Introduction
	II Problem formulation
	II-A Plant dynamics, free-space
	II-B -ISS control Lyapunov function
	II-C Overview of the communication strategy
	II-D Problem formulation

	III Control Strategy
	III-A Offline procedure
	III-B Control strategy

	IV Communication strategy
	IV-A Deriving error propagation model
	IV-B A naive approach to generate communication scheduling
	IV-C Abstracting the behavior of the error propagation model
	IV-D Generating the communication plan: an offline approach
	IV-E Discussion on the computational complexity
	IV-F Generating communication plan: an online approach

	V Illustrative examples
	V-A Linear case
	V-B Nonlinear case

	VI Conclusion and Future work
	Appendix
	References

