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Analysis of Stochastic Approximation Schemes
With Set-Valued Maps in the Absence of a
Stability Guarantee and Their Stabilization

Vinayaka G. Yaji and Shalabh Bhatnagar

Abstract—In this paper, we analyze the behavior of
stochastic approximation schemes with set-valued maps in
the absence of a stability guarantee. We prove that after a
large number of iterations, if the stochastic approximation
process enters the domain of attraction of an attracting set,
it gets locked into the attracting set with high probability.
We demonstrate that the above-mentioned result is an ef-
fective instrument for analyzing stochastic approximation
schemes in the absence of a stability guarantee, by using
it to obtain an alternate criterion for convergence in the
presence of a locally attracting set for the mean field and by
using it to show that a feedback mechanism, which involves
resetting the iterates at regular time intervals, stabilizes the
scheme when the mean field possesses a globally attract-
ing set, thereby guaranteeing convergence. The results in
this paper build on the works of Borkar, Andrieu et al., and
Chen et al., by allowing for the presence of set-valued drift
functions.

Index Terms—Stochastic approximation, set-valued
maps, lock-in probability, differential inclusions, stabiliza-
tion via resetting.

I. INTRODUCTION

I T IS WELL known that several optimization and con-
trol tasks can be cast as suitable root finding problems.

That is, given f : Rd → Rd , one needs to find x∗ ∈ Rd , such
that f(x∗) = 0 (given such a point exists). Due to practi-
cal considerations, one usually has access to noisy measure-
ments/estimations of the function whose root needs to be de-
termined. An approach to solving such a problem with noisy
measurements of f is given by the recursion as

Xn+1 −Xn − a(n)Mn+1 = a(n)f(Xn ) (1)

where {Mn}n≥1 denotes the noise arising in the measurement
of f and having fixed an initial condition (X0 ∈ Rd ), the iter-
ates {Xn}n≥1 are generated according to recursion (1). Under
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certain assumptions, which include the Lipschitz continuity of
the function f , boundedness of the iterates along almost every
sample path (that is P (supn≥0 ‖Xn‖ <∞) = 1) and a condi-
tion, which ensures that the eventual contribution of the additive
noise terms, is negligible, it is shown in [1] that the linearly in-
terpolated trajectory of the recursion (1) tracks the flow of the
ordinary differential equation (o.d.e.) given by

dx

dt
= f(x). (2)

Such a trajectory is called an asymptotic pseudotrajectory for
the flow of o.d.e. (2) (for a precise definition see [1]). Suppose
the set of zeros of f is a globally asymptotically stable set for
the flow of o.d.e. (2), then it was shown that the limit set of
an asymptotic pseudotrajectory was contained in such a set and
hence the iterates {Xn}n≥0 converge in the limit to a root of the
function f .

In order to analyze recursion (1) when the function f is no
longer Lipschitz continuous or even continuous, but is just mea-
surable satisfying the linear growth property, that is for every
x ∈ Rd , ‖f(x)‖ ≤ K(1 + ‖x‖) for someK > 0, or when there
is a nonadditive noise/control component taking values in a com-
pact set whose law is not known [in which case the recursion (1)
takes the form Xn+1 −Xn − a(n)Mn+1 = a(n)f(Xn,Un ),
whereUn denotes the noise/control], the above-mentioned o.d.e.
method had to be extended to recursions with much weaker re-
quirements on the function f . This was accomplished in [2],
where the asymptotic behavior of the recursion given by

Xn+1 −Xn − a(n)Mn+1 ∈ a(n)F (Xn ) (3)

was studied, where F is a set-valued map satisfying some con-
ditions [while the other quantities have the same interpretation
as in (1)]. Under the assumption of stability of iterates (that
is P (supn≥0 ‖Xn‖ <∞) = 1) and appropriate conditions on
the additive noise terms, in [2], it was shown that the linearly
interpolated trajectory of recursion (3) tracks the flow of the
differential inclusion (DI) given by

dx

dt
∈ F (x). (4)

We refer the reader to [3, Ch. 5.3] for a detailed argument
as to how the measurable case and the case with unknown
noise/control can be recast in the form of recursion (3). For
a brief summary of the convergence analysis of recursion (3),
we refer the reader to Section III-A of this paper.

Common to the analysis of both recursions (1) and (3)
is the assumption on the stability of the iterates, that is
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P (supn≥0 ‖Xn‖ <∞) = 1. The condition of stability is highly
nontrivial and very often difficult to verify. Over the years
significant effort has gone into providing sufficient conditions
for stability (see [4] and [5]). In [6], it was shown that for recur-
sion (1), in the absence of stability guarantee, the probability of
converging to an attracting set of o.d.e. (2) given that the iterates
lie in a neighborhood of it converged to 1 as the index (n) in
which the iterate entered the neighborhood of the attracting set
increased to infinity. This probability of the iterates converging
to an attracting set given that the same lie in a neighborhood of it
is called the lock-in probability, and in [6], a lower bound for this
probability was used to obtain sample complexity bounds for
recursion (1). Furthermore, a tighter lower bound for the lock-
in probability was derived in [7] under a slightly stronger noise
assumption and used to obtain convergence guarantee when the
laws of the iterates are tight. In this paper, we extend the results
in [6] to the case of stochastic approximation schemes with
set-valued maps as in recursion (3).

A. Some Notations and Definitions

Throughout this paper, C(R,Rd) denotes the metric space of
all continuous functions on R taking values in Rd with metric
D, which for every z, z′ ∈ C(R,Rd) is given by

D(z,z′) =
∞∑

k=1

1
2k

min{‖z − z′‖[−k,k ], 1} (5)

where ‖z − z′‖[−k,k ] := supt∈[−k,k ] ‖z(t)− z′(t)‖.
We use U to denote the closed unit ball in Rd centered at

the origin. Furthermore, for every Y1 , Y2 ⊆ Rd , and r ∈ R, de-
fine, Y1 + Y2 := {y1 + y2 : y1 ∈ Y1 and y2 ∈ Y2} and rY1 :=
{ry1 : y1 ∈ Y1}.

In order to prove the main result of this paper, definitions of
the flow of a DI as well as an attracting set for such a dynamical
system are needed. We recall these notions below, and we state
them with respect to a generic DI as in (4) (for a detailed
description and associated results see [2]).

The flow of DI (4) is given by the set-valued map Φ : R×
Rd → {subsets of Rd}, where for every (t, x) ∈ R×Rd

Φ(t, x) :=
{
x(t) ∈ Rd : x(·) is a solution of

DI (4) with x(0) = x} . (6)

A compact set A ⊂ Rd is an attracting set for the flow of DI
(4), if there exists an open neighborhood of A, say O, with the
property that for every ε > 0, there exists a time T > 0 (depend-
ing on ε and O) such that for every t ≥ T and for every x ∈ U ,
Φ(t, x) ∈ Nε(A), where Nε(A) denotes the ε-neighborhood of
A. Such a neighborhood O of an attracting set A is called the
fundamental neighborhood of A.

The set of initial conditions in Rd from which the flow is
attracted to an attracting set A is called the basin of attraction
and is denoted by B(A). Formally

B(A) :=
{
x ∈ Rd : ∩t≥0{Φ(q, x) : q ≥ t} ⊆ A

}
.

An attracting set A is globally attracting if, B(A) = Rd .
Furthermore, let K(Rd) denote the family of all nonempty

compact subsets of Rd . Let H : K(Rd)×K(Rd)→ [0,∞) be

defined such that, for every S1 , S2 ∈ K(Rd)

H(S1 , S2) := max
{

sup
s1 ∈S1

inf
s2 ∈S2

‖s1 − s2‖

× sup
s2 ∈S2

inf
s1 ∈S1

‖s1 − s2‖
}
. (7)

With H as defined above, (K(Rd),H) is a complete metric
space (for proof see [8, Th. 1.1.2]).

B. Contributions and Organization of the Paper

We first provide a lower bound for the lock-in probability of
stochastic approximation schemes with set-valued maps as in
recursion (3). The bound is derived under an assumption on the
additive noise terms, which is stronger than the one in [6]. This
is necessitated due to the lack of Lipschitz continuity of the drift
function F . We establish that

P (Xn → A as n→∞|Xn0 ∈ O′) ≥ 1− 2de−K̃ /b(n0 )

for n0 large, where A ⊆ Rd denotes an attracting set of DI (4),
O′ is an open neighborhood of A with compact closure, K̃ is
some positive constant, and {b(n)}n≥0 is a sequence of reals
converging to zero, which are step size dependent.

Having summarized the convergence analysis under stability
in Section III-A, we state the lock-in probability bound in Sec-
tion III-B and provide a few implications of the same. Using the
lock-in probability result, we provide an alternate criterion for
convergence in the presence of a locally attracting set, which
completely does away with the need to verify stability. A de-
tailed comparison between the obtained convergence guarantee
and the corresponding guarantee in the presence of stability is
also provided.

Proof of the lock-in probability result is presented in Sec-
tion V. The proof relies heavily on the insights obtained from
the analysis in [6] for single-valued maps. From the analysis in
[6], it is evident that the Lipschitz continuity of the drift func-
tion f plays a crucial role in obtaining events and decoupling
error contributions, which in turn are necessary to obtain the
bound in the inequality mentioned above. But in the recursion
studied in this paper [that is recursion (3)], the drift function
F is set-valued, and the assumptions under which we study the
said recursion (which are summarized in Section II), the drift
function F is not even continuous. We overcome this problem
by first obtaining a sequence of locally Lipschitz continuous
set-valued maps, which approximate the drift function F from
above and then parameterize them using the Stiener selection
procedure. The associated results are summarized in Section
V-A. This enables us to write recursion (3) in the form of recur-
sion (1), but with locally Lipschitz continuous drift functions.
Furthermore, the relation between the solutions of DIs with the
approximating set-valued maps as their vector field and those of
DI (4) is established in Section V-B. Having written recursion
(3) in the form of recursion (1), we then collect sample paths of
interest (see Section V-C). Along the sample paths that are col-
lected, the iterates are such that, having entered a neighborhood
of the attracting set at iteration n0 , the iterates will infinitely of-
ten enter the said neighborhood, and the time elapsed between
successive visits to the neighborhood of the attracting set can
be upper bounded by a constant which is mean field dependent.
Furthermore, we show that the probability of occurrence of such
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sample paths can be lower bounded by error contributions due
to additive noise terms alone after a large number of iterations.
Using the concentration inequality for martingale sequences we
obtain the lock-in probability bound in Section V-D.

Using the lock-in probability result, we then design a feed-
back mechanism, which enables us to stabilize the stochastic
approximation scheme in the presence of a globally attracting
set for DI (4). The feedback mechanism involves resetting the
iterates at regular time intervals if they are found to be lying
outside a certain compact set. This approach to stabilization
has been studied in various forms for stochastic approximation
schemes with single-valued drift functions as in recursion (1),
in [9], [10], and [11] to name a few references. We extend the
same to the case of set-valued drift functions. The main idea in
the analysis of such a scheme is to show that along almost every
sample path of the modified recursion, the number of resets that
are performed is finite, thereby guaranteeing that eventually the
iterates lie within a compact set. We observe that the lock-in
probability result (to be precise the approach adopted to obtain
the same) plays a central role in showing that the number of
resets performed remain finite. Having shown that the iterates
eventually lie within a compact set, we use the convergence
arguments from [2] to show that the iterates generated by the
modified scheme converge to the globally attracting set of DI
(4). The modified scheme is presented and explained in detail in
Section IV. The proof of the finite resets theorem is presented in
Section VI. The procedure employed to collect sample paths in
the proof of the lock-in probability result can be used to collect
sample paths where only finite number of resets have occurred
in the modified scheme and this in turn enables us to show that
the number of resets is finite almost surely.

Finally, we conclude by providing a few directions for future
work in Section VII.

II. RECURSION AND ASSUMPTIONS

Let (Ω,F ,P ) be a probability space and {Xn}n≥0 be a
sequence of Rd -valued random variables on Ω, such that for
every n ≥ 0

Xn+1 −Xn − a(n)Mn+1 ∈ a(n)F (Xn ) (8)

where
A1) F : Rd → {

subsets of Rd
}

is a set-valued map, which
for every x ∈ Rd satisfies the following.

i) F (x) is a convex and compact subset of Rd .
ii) There existsK > 0 (independent of x) such that

supy∈F (x) ‖y‖ ≤ K(1 + ‖x‖).
iii) For every Rd -valued sequence {xn}n≥1

converging to x and for every sequence
{yn ∈ F (xn )}n≥1 converging to y ∈ Rd , we
have that y ∈ F (x).

A2) {a(n)}n≥0 is a sequence of positive real numbers sat-
isfying the following.

i)
∑∞

n=0 a(n) =∞.
ii)

∑∞
n=0 (a(n))2 <∞.

A3) {Mn}n≥1 is an Rd -valued, martingale difference
sequence with respect to the filtration {Fn :=
σ(Xm,Mm , m ≤ n)}. Furthermore, {Mn}n≥1 are

such that

‖Mn+1‖ ≤ K(1 + ‖Xn‖) a.s. (9)

for every n ≥ 0, for some constant K > 0.
Assumption (A1) ensures that the set-valued map F is a Mar-

chaud map. The condition (A1)(ii) is called the linear growth
property since it ensures that the size of the sets F (x) grow lin-
early with respect to the distance from the origin. The condition
(A1)(iii) is called the closed graph property since it states that
the graph of the set-valued map F , defined as

{
(x, y) ∈ R2d : x ∈ Rd , y ∈ F (x)

}

is a closed subset of R2d . The map F being a Marchaud map
ensures that the DI given by

dx

dt
∈ F (x) (10)

possesses at least one solution through every initial condition.
By a solution of DI (10) with initial conditionx0 ∈ Rd , we mean
an absolutely continuous function x : R→ Rd such that x(0) =
x0 and for almost every t ∈ R, dx(t)

dt ∈ F (x(t)). DI (10) is the
mean field of recursion (8) and its dynamics play an important
role in describing the asymptotic behavior of recursion (8).

Assumption (A2) states the conditions to be satisfied by
the step size sequence {a(n)}n≥0 . Square summability [that
is (A2)(ii)] is needed later in the analysis for obtaining a prob-
ability bound on certain tail events associated with the additive
noise terms {Mn}n≥1 .

Assumption (A3) defines the martingale noise model. These
terms denote the noise arising in the measurement of F (·). The
condition (9) holds in several reinforcement learning applica-
tions (see [3, Ch. 10])

Remark: Clearly when {Mn}n≥1 are i.i.d., zero mean and
bounded, assumption (A3) is satisfied. Furthermore, since the
drift function in recursion (8) is a set-valued map, scenarios
where the measurement noise terms possess a bounded bias can
be recast in the form of recursion (8) as explained below.

Consider the recursion given by

Xn+1 −Xn − a(n)Mn+1 − a(n)ηn+1 = a(n)f(Xn ), n ≥ 0
(11)

where f : Rd → Rd is a single-valued Lipschitz continuous
map and for every n ≥ 0, ηn+1 denotes the bias in the measure-
ment noise. Let the bias terms {ηn}n≥1 be bounded by a positive
constant, say ε > 0 (that is, for every n ≥ 1, ‖ηn‖ ≤ ε). Then,
recursion (11) can be written in the form of recursion (8) with
set-valued map F , given by F (x) = {f(x) + η : ‖η‖ ≤ ε}, for
every x ∈ Rd . We refer the reader to [3, Ch. 5.3] for several
other variants of the standard stochastic approximation scheme,
which can be analyzed with the help of recursion (8).

III. LOCK-IN PROBABILITY FOR STOCHASTIC RECURSIVE

INCLUSIONS

Before we state the main result of this paper, we summa-
rize the analysis of stochastic approximation schemes with set-
valued maps in the presence of a stability guarantee.

A. Summary of the Asymptotic Analysis Under Stability

Let t(0) := 0 and for every n ≥ 1, t(n) :=
∑n−1

k=0 a(k). The
linearly interpolated trajectory of recursion (8) is given by the
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stochastic process X̄ : Ω×R→ Rd , where for every (ω, t) ∈
Ω× [0,∞)

X̄(ω, t) :=
(

t− t(n)
t(n+ 1)− t(n)

)
Xn+1(ω)

+
(

t(n+ 1)− t
t(n+ 1)− t(n)

)
Xn (ω) (12)

where n is such that t ∈ [t(n), t(n+ 1)) and for every (ω, t) ∈
Ω× (−∞, 0), X̄(ω, t) := X0(ω).

For ω ∈ Ω, the limit set map of X̄ is given by, λ : Ω→
{subsets of Rd} where for every ω ∈ Ω

λ(ω) := ∩t≥0
{
X̄(ω, q) : q ≥ t}. (13)

In [2], under assumptions (A1)–(A3) along with the additional
assumption of stability of the iterates (that is P (supn≥0 ‖Xn‖ <
∞) = 1), it was shown that for almost every ω ∈ Ω, the linearly
interpolated trajectory of recursion (8) X̄(ω, ·) is an asymptotic
pseudotrajectory for the flow of DI (10). More precisely, for
almost everyω ∈ Ω, X̄(ω, ·) was shown to satisfy the following.

a) The family of shifted trajectories given by {X̄(ω, ·+
t)}t≥0 is relatively compact in C(R,Rd).

b) Every limit point of the shifted trajectories {X̄(ω, ·+
t)}t≥0 is a solution of the DI (10).

From [2, Th. 4.3], it follows that for almost every ω ∈ Ω, the
limit set of the linearly interpolated trajectory X̄(ω, ·), λ(ω), is
a nonempty, compact, and an internally chain transitive (ICT)
set for the flow of DI (10) (see [2, Definition VI] for definition
of an ICT set). Now using [2, Th. 3.23], the main convergence
result of [2] follows and is stated below.

Theorem III.1: Let A ⊆ Rd be an attracting set for the flow
of DI (10). Under assumptions (A1)–(A3),

a) for almost every ω ∈ {ω ∈ Ω : supn≥0 ‖Xn (ω)‖ <
∞} ∩ {ω ∈ Ω : λ(ω) ∩B(A) = ∅}, λ(ω) ⊆ A, and
therefore, as n→∞, Xn (ω)→ A.

b) ifB(A) = Rd (that isA is a globally attracting set), then
for almost every ω ∈ {ω ∈ Ω : supn≥0 ‖Xn (ω)‖ <∞},
λ(ω) ⊆ A, and therefore, as n→∞, Xn (ω)→ A.

Using the lock-in probability bound, we recover convergence
guarantee similar to Theorem III.1 while eliminating the need
to verify stability.

B. Main Result and Its Implications

Before we state the main result, we state an assumption that
fixes the attracting set of interest.

A4) There exists A ⊆ Rd , an attracting set of DI (10) [the
mean field of recursion (8)] with O ⊆ Rd as its funda-
mental neighborhood of attraction.

Let O′ be an open neighborhood of the attracting set A [as
in (A4)] such that Ō′ is compact and Ō′ ⊆ O. Then the main
result of the paper can be stated as follows.

Theorem III.2 (Lock-in probability): Under assumptions
(A1)–(A4), there exists a constant K̃ > 0 (depending on the at-
tracting setA andO′) andN0 ≥ 1 such that, for every n0 ≥ N0 ,
for every E ∈ Fn0 satisfying E ⊆ {ω ∈ Ω : Xn0 (ω) ∈ O′}
and P (E) > 0, we have that,

P (Xn → A as n→∞|E) ≥ 1− 2de−K̃ /b(n0 )

where, for every n ≥ 0, b(n) :=
∑∞

k=n (a(k))2 .

There are two immediate implications of the above-
mentioned result and are stated below, one of which serves as
an alternate convergence result in the absence of stability guar-
antees, that is, it allows us to obtain the convergence guarantee
in Theorem III.1(a) without the need to verify whether a given
sample path satisfies supn≥0 ‖Xn (ω)‖ <∞.

1) As a consequence of assumption (A2)(ii), we have that
limn→∞ b(n) = 0. Therefore, from Theorem III.2, if the
observation that the iterate lies in a neighborhood of the
attracting set is made later in time (n0), the probability of
converging to the attracting set increases and converges
to 1 as n0 →∞. Formally, limn0→∞ P (Xn → A as n→
∞|Xn0 ∈ O′) = 1.

2) Suppose P (∩N≥0 ∪n≥N {Xn ∈ O′}) > 0 (if P (∩N≥0
∪n≥N {Xn ∈ O′}) = 0 then the iterates almost surely do
not converge to the attracting setA). Then for everyN ≥
0, P (∪n≥N {Xn ∈ O′}) > 0 and ∪n≥N {Xn ∈ O′} =
{XN ∈ O′} ∪ (∪n>N {X̄k /∈ O′, for N ≤ k ≤ n− 1,
Xn ∈ O′}), where, the union in the right-hand side
(RHS) is disjoint. Then, by Theorem III.2, for every
N ≥ N0

P ({Xn → A as n→∞} ∩ (∪n≥N {Xn ∈ O′}))
≥

∑

n≥N
P ({Xn → A as n→∞} ∩ {Xk /∈ O′, for

N ≤ k ≤ n− 1,Xn ∈ O′})

=
∑

n≥N

[
P ({Xn → A as n→∞|{Xk /∈ O′, for

N ≤ k ≤ n− 1,Xn ∈ O′}) P ({Xk /∈ O′, for

N ≤ k ≤ n− 1,Xn ∈ O′})
]

≥
∑

n≥N

(
1− 2de−K̃ /b(n)

)
P ({Xk /∈ O′, for

N ≤ k ≤ n− 1,Xn ∈ O′})

≥
(
1− 2de−K̃ /b(N )

) ∑

n≥N
P ({Xk /∈ O′, for

N ≤ k ≤ n− 1,Xn ∈ O′})

=
(
1− 2de−K̃ /b(N )

)
P (∪n≥N {Xn ∈ O′})

≥
(
1− 2de−K̃ /b(N )

)
P (∩N≥0 ∪n≥N {Xn ∈ O′})

where {XN ∈ O′} := {Xk /∈ O′, for N ≤ k ≤ N − 1,
XN ∈ O′}. By letting N tend to infinity in the
above-mentioned inequality and using the fact that
limn→∞ b(n) = 0, we get that, P ({Xn → A as n→
∞} ∩ (∩N≥0 ∪n≥N {Xn ∈ O′})) = P (∩N≥0∪n≥N
{Xn ∈ O′}) . Therefore, from the above-mentioned
equations, we can conclude the following.

Corollary III.3: Under assumptions (A1)–(A4), for almost
every ω ∈ ∩N≥0 ∪n≥N {Xn ∈ O′}, Xn (ω)→ A as n→∞.
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Remark: In comparison with Theorem III.1(a), the condi-
tion that ω ∈ ∩N≥0 ∪n≥N {Xn ∈ O′} is stronger than the re-
quirement that ω ∈ {λ(ω) ∩B(A) = ∅} because the former
requires the iterate sequence to enter an open neighborhood
of A with compact closure infinitely often while the lat-
ter requires the iterates to enter the basin of attraction of
A infinitely often, which is larger than O′. But in the pres-
ence of stability, we have that {supn≥0 ‖Xn‖ <∞} ∩ {λ(·) ∩
B(A) = ∅} ⊆ ∩N≥0 ∪n≥N {Xn ∈ O′}. Furthermore, as a con-
sequence of Corollary III.3, we have that P ({supn≥0 ‖Xn‖ <
∞} ∩ {λ(·) ∩B(A) = ∅}) = P (∩N≥0 ∪n≥N {Xn ∈ O′}), or
in other words, the sample paths that visit O′ infinitely often
and are unstable occur with zero probability.

IV. APPLICATION: STABILIZATION VIA RESETTING

In this section, we modify recursion (8) in such a way that
the modified procedure yields sample paths that are stable (that
is lie in a compact set almost surely), which in turn allows us to
recover the convergence result as in Theorem III.1(b) without the
need to verify stability, in the presence of a globally attracting
set for the mean field. That is, we replace assumption (A4) with
the following stronger requirement.

A4)’ There exists A ⊆ Rd , a globally attracting set for the
flow of DI (10).

The modification that we propose involves resetting the iter-
ates at regular time intervals if they are found to be lying outside
a certain compact set. Let the initial condition X0(ω) = x0 ∈
Rd for every ω ∈ Ω and {rn ∈ (0,∞)}n≥0 be a strictly increas-
ing sequence such that ‖x0‖ < r0 and limn→∞ rn =∞. The
modified scheme, henceforth referred to as stabilized stochas-
tic recursive inclusion (SSRI), is where every sample path is
generated as outlined in Algorithm 1.

For a flowchart depicting the flow of control in Algorithm
1 see [13]. Consider the scenario where the kth reset has been
performed at iteration index n0 . Then the algorithm checks
whether the iterate lies in the compact set rkU (a closed ball
of radius rk centered at the origin) after approximately 2kTW
amount of time has elapsed (for the relation between time and
iteration index see Section III-A). Now either a reset occurs or
the iterate is left unchanged. If the iterate is left unchanged,
then the next reset check is performed after 2kTW amount of
time has elapsed. If the iterate is reset, then the next check is
performed after 2k+1TW amount of time has elapsed. It would
suffice if the time between successive reset checks were set to
be greater than a certain threshold, which is determined by the
minimum time needed by the flow of the mean field [that is DI
(10)] to reach the attracting setA from any initial condition in a
compact neighborhood of it. But in practical scenarios, one may
not be able to compute such a time, and hence, may not be able
to determine the required threshold. This approach of increasing
time duration between successive reset checks with increasing
reset count allows us to bypass this problem. The choice of
exponentially increasing durations is one of convenience as it
simplifies notations involved in proving certain results later.

For every n ≥ 1, define the indicator random variable χn :
Ω→ {0, 1} such that, for every ω ∈ Ω,

χn (ω) =

{
0 if Xn (ω) = X ′n (ω)

1 if Xn (ω) = X ′n (ω).
(14)

We assume that the noise terms {Mn}n≥1 satisfy the following
version of assumption (A3).

A3)’ {Mn} is a martingale difference sequence with respect
to the filtration {Fn}n≥1 , where, for every n ≥ 1, Fn

denotes the smallestσ-algebra generated by the iterates
Xm (that is the iterates before the reset operation) and
noise terms Mm , for 0 ≤ m ≤ n (then it is easy to
show that for every n ≥ 1, X ′n and hence χn are Fn

measurable). Since for every n ≥ 1, Mn denotes the
noise arising in the estimation (or measurement) of
F at X ′n−1 , we assume that the energy of the noise
depends onX ′n−1 . That is for every n ≥ 0, ‖Mn+1‖ ≤
K(1 + ‖X ′n‖) a.s.

The next theorem says that, for almost every sample path
generated by Algorithm 1, the total number of resets is finite,
thereby guaranteeing stability. The proof of this theorem (pro-
vided in Section VI) crucially hinges on a lower bound for the
probability of the event that there are no future resets given that
there are a certain number of resets up until iteration n0 for
some large n0 . Specifically, it requires the probability of the
above-mentioned event to converge to 1 as n0 tends to infinity
and this is guaranteed by Theorem III.2.

Theorem IV.1 (Finite resets): Under assumptions (A1),
(A2), (A3)’, and (A4)’, P ({ω ∈ Ω :

∑∞
n=1 χn (ω) <∞}) = 1.

As a consequence of the above-mentioned theorem, we have
the following.

a) Letω ∈ {ω ∈ Ω :
∑∞

n=1 χn (ω) <∞}. Then there exists
an N ≥ 1 and R > 0 (depending on ω) such that, for ev-
ery n ≥ N , Xn (ω) = X ′n (ω) and supn≥N ‖Xn (ω)‖ ≤
R. Therefore,

∑
n≥N E[(a(n))2‖Mn+1‖2 |Fn ](ω) ≤∑

n≥N (a(n))2K2(1 + ‖X ′n (ω)‖)2 ≤ K2(1 + R)2
∑

n≥N (a(n))2 <∞, where the last inequality fol-
lows from assumption (A2)(ii). Therefore, {ω ∈ Ω :∑

n≥1 χn (ω) < ∞} ⊆ {ω ∈ Ω :
∑∞

n=0 E[(a(n))2

‖Mn+1‖2 |Fn ](ω) <∞}. Therefore, by Theorem IV.1,
we have that P (

∑∞
n=0 E[(a(n))2‖Mn+1‖2 |Fn ] <

∞) = 1 and by martingale convergence theorem (see [3,
Sec. 11.3, Th. 11]), we have that the square integrable
martingale {∑n−1

m=0 a(m)Mm+1 ,Fn}n≥1 converges
almost surely.

b) Thus, for ω lying in a probability one set, there exists
N ≥ 1 and R > 0 (depending on ω) such that along this
sample path the iterates {Xn (ω)}n≥N can be viewed as
being generated by recursion (8) with initial condition
XN (ω), their norms are bounded byR uniformly and the
additive noise terms {Mn (ω)}n≥N satisfy the hypothesis
of [2, Proposition 1.3]. Then by arguments similar to
those of Theorem III.1(b), we have the following.

Corollary IV.2: Under assumptions (A1), (A2), (A3)’, and
(A4)’, for almost every ω, the iterates generated by Algorithm
1 {X ′n (ω)}n≥0 are such that X ′n (ω)→ A as n→∞.

V. PROOF OF THE LOCK-IN PROBABILITY THEOREM

(SEE THEOREM III.2)

Proof of lock-in probability result follows as a consequence of
a series of lemmas. First, we recall definitions of continuous set-
valued maps and locally Lipschitz continuous set-valued maps.
These notions are taken from [12, Ch. 1].
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Algorithm 1: SSRI given x0 and {rk}k≥0 .

n← 0 �Initialize iteration count
k ← 0 �Initialize reset count
te ← 0 �Initialize time elapsed since last check
TW > 0 �Initialize window length
nW ← 1 �Initialize window count
X ′0(ω)← x0 �Initialize initial condition
while n ≥ 0 do
Xn+1(ω)−X ′n (ω)− a(n)Mn+1(ω) ∈ a(n)F (X ′n (ω)) �Obtain Xn+1(ω)
te ← te + a(n) �Update the time elapsed
if te ≥ TW then �Is time elapsed greater than the window length?
if nW = 1 then �Have sufficient number of windows elapsed?

if ‖Xn+1(ω)‖ > rk then �Is the iterate lying outside a compact set?
X ′n+1(ω) = x0 �Perform reset
k ← k + 1 �Increment reset count

else
X ′n+1(ω)← Xn+1(ω) �Perform no reset

end if
nW = 2k �Reset window count

else
nW ← nW − 1 �Decrement window count
X ′n+1(ω) = Xn+1(ω) �Perform no reset

end if
te ← 0 �Reset time elapsed

else
X ′n+1(ω)← Xn+1(ω) �Perform no reset

end if
n← n+ 1 �Increment iteration count

end while

A. Upper Semicontinuous Set-Valued Maps &
Approximation

Definition: A set-valued map F : Rd → K(Rd) is
1) upper semicontinuous (u.s.c.) if, for every x ∈ Rd , for

every ε > 0, there exists a δ > 0 (depending on x and
ε) such that, for every x′ ∈ Rd satisfying ‖x′ − x‖ < δ,
we have that F (x′) ⊆ F (x) + εU , where F (x) + εU :=
{y + εu : y ∈ F (x), u ∈ U}.

2) lower semicontinuous (l.s.c.) if, for every x ∈ Rd , for ev-
ery Rd -valued sequence {xn}n≥1 converging tox, for ev-
ery y ∈ F (x), there exists a sequence {yn ∈ F (xn )}n≥1
converging to y.

3) continuous if, it is both u.s.c. and l.s.c.
4) locally Lipschitz continuous if, for every x0 ∈ Rd , there

exists δ > 0 and L > 0 (depending on x0) such that for
every x, x′ ∈ x0 + δU , we have that F (x) ⊆ F (x′) +
L‖x− x′‖U .

The notions of continuity and local Lipschitz continuity of a
set-valued map can be restated using the metric defined in (7)
and is stated as a lemma below for easy reference (for a proof
see [12, Ch. 1, Sec. 5, Corollary 1]).

Lemma V.1: A set-valued map F : Rd → K(Rd) is
a) Continuous, if and only if, for every x0 ∈ Rd , for every
ε > 0, there exists δ > 0 (depending on x0 and ε), such
that for every x ∈ x0 + δU , H(F (x), F (x0)) < ε.

b) locally Lipschitz continuous, if and only if, for every
x0 ∈ Rd , there exists δ > 0 andL > 0 (depending onx0 ),
such that for every x, x′ ∈ x0 + δU , H(F (x), F (x′)) ≤
L‖x− x′‖.

The next lemma provides results needed later to obtain locally
Lipschitz continuous single-valued parametrization of map F in
recursion (8).

Lemma V.2:
a) If f : Rd → R is a locally Lipschitz continuous map and
C ∈ K(Rd), then the set-valued map F : Rd → K(Rd),
given by F (x) := f(x)C for every x ∈ Rd is a locally
Lipschitz continuous set-valued map.

b) If for every i ∈ {1, 2}, Fi : Rd → K(Rd) is a lo-
cally Lipschitz continuous set-valued map, then the
set-valued map F : Rd → K(Rd), given by F (x) :=
F1(x) + F2(x) for every x ∈ Rd is a locally Lipschitz
continuous set-valued map.

Proof:
a) Fix x0 ∈ Rd and let r := supc∈C ‖c‖. Since f is locally

Lipschitz continuous, there exists δfx0
> 0 and Lfx0

> 0
such that for every x, x′ ∈ x0 + δfx0

U , |f(x)− f(x′)| ≤
Lfx0
‖x− x′‖. Let x, x′ ∈ x0 + δfx0

U . Then for any c ∈ C

‖f(x)c− f(x′)c‖ = |f(x)− f(x′)|‖c‖
≤ rLfx0

‖x− x′‖.

Therefore, for every x, x′ ∈ x0 + δfx0
U , for every

c ∈ C, f(x′)c− f(x)c ∈ rLfx0
‖x− x′‖U . Thus, for

every x, x′ ∈ x0 + δfx0
U , F (x′) ⊆ F (x) + rLfx0

‖x−
x′‖U , from which it follows that the set-valued map
F is locally Lipschitz continuous at x0 with δ :=
δfx0

and L := rLfx0
. Since x0 ∈ Rd is arbitrary, the
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above-mentioned argument gives us that F is locally Lip-
schitz continuous at every x0 .

b) Fix x0 ∈ Rd . Since for every i ∈ {1, 2}, Fi are locally
Lipschitz continuous, there exists δi > 0 and Li > 0
such that for every x, x′ ∈ x0 + δiU , Fi(x) ⊆ Fi(x′) +
Li‖x− x′‖U . Let δ := min{δ1 , δ2}, L := L1 + L2 , and
x, x′ ∈ x0 + δU . For any y ∈ F (x), there exists y1 ∈
F1(x) and y2 ∈ F2(x) such that y = y1 + y2 . By our
choice of δ, we have y′1 ∈ F1(x′), y′2 ∈ F2(x′), and
u1 , u2 ∈ U , such that for every i ∈ {1, 2}, yi = y′i +
Li‖x− x′‖ui . Therefore,

y = y1 + y2

= y′1 + L1‖x− x′‖u1 + y′2 + L2‖x− x′‖u2

= y′1 + y′2 + (L1 + L2) ‖x− x′‖
(
L1u1 + L2u2

L1 + L2

)
.

(15)

Clearly y′1 + y′2 ∈ F (x′) and since U is a convex sub-
set of Rd , L1 u1 +L2 u2

L1 +L2
∈ U . From (15), we get that,

F (x) ⊆ F (x′) + (L1 + L2)‖x− x′‖U , for everyx, x′ ∈
x0 + δU . Therefore, F is locally Lipschitz continuous at
x0 . Since x0 is arbitrary, the above-mentioned argument
gives us that F is locally Lipschitz continuous. �

Consider a set-valued map F satisfying assumption (A1).
A simple contradiction argument gives us that F is u.s.c. It
is not possible to represent such u.s.c. set-valued maps with
a single-valued continuous map with an additional parameter.
But instead one can approximate them from above as explained
in the following. The first step is to embed the graph of the
map F in that of a sequence of continuous set-valued maps as
stated in the lemma below. For the proof of the lemma below
notions of a paracompact topological space, an open covering,
its locally finite refinement, and partition of unity subordinated
to a locally finite covering are needed, which are summarized
in [13, Appendix A].

Lemma V.3: Let F : Rd → K(Rd) be a set-valued map sat-
isfying (A1). Then, there exists a sequence of continuous set-
valued maps {F (l) : Rd → K(Rd)}l≥1 , such that for every
l ≥ 1.

a) For every x ∈ Rd , F (l)(x) is a nonempty, convex, and
compact subset of Rd .

b) For every x ∈ Rd , F (x) ⊆ F (l+1)(x) ⊆ F (l)(x).
c) There exists K(l) > 0, such that for every x ∈ Rd ,

supy∈F ( l ) (x) ‖y‖ ≤ K(l)(1 + ‖x‖).
d) F (l) is a locally Lipschitz continuous set valued map.

Furthermore,
e) for every x ∈ Rd , F (x) = ∩l≥1F

(l)(x).
Proof: For any ε > 0, for every x0 ∈ Rd , let B(ε, x0) :=

{x : ‖ x− x0 ‖< ε}. Let
{
εl := 1

3 l
}
l≥1 . Then, for every l ≥ 1,

Cl :=
{
B(εl , x0) : x0 ∈ Rd

}
is an open covering of Rd . Since

Rd is a metric space, it is paracompact (see [12, Ch. 0, Sec. 1,
Th. 1]). Therefore, for every l ≥ 1, there exists a locally fi-
nite open refinement of the covering Cl and let it be denoted
by C̃l :=

{
Cl
i

}
i∈I l where Il is an arbitrary index set. By [12,

Ch. 0, Sec. 1, Th. 2], there exists a locally Lipschitz continuous
partition of unity

{
ψli

}
i∈I l , subordinated to the covering C̃l .

Therefore, for every l ≥ 1, for every i ∈ Il , there exists xli , such
that support(ψli) ⊆ Cl

i ⊆ B(εl , xli). For every l ≥ 1, for every
x ∈ Rd , let Il(x) :=

{
i ∈ Il : ψli(x) > 0

}
and by definition of

ψli , we have that 0 < |Il(x)| <∞ and
∑

i∈I l (x) ψ
l
i(x) = 1.

For every l ≥ 1, define the set valued map F (l) : Rd →{
subsets of Rd

}
, such that for every x ∈ Rd , F (l)(x) :=∑

i∈I l (x) ψ
l
i(x)A

l
i , where Al

i := c̄o
(
F

(
B

(
2εl , xli

)))
.

The proofs of parts (a), (b), (c), and (e) of the lemma are
exactly the same as that of [14, Lemma 3.2]. We shall provide
a proof of part (d) of the lemma mentioned above from which
continuity of the set-valued maps F (l) follows.

d) Fix l ≥ 1 and x ∈ Rd . Since C̃l is a locally finite open
covering of Rd , there exists δ > 0 (depending on x),
such that Il(x, δ) :=

{
i ∈ Il : B(x, δ) ∩ Cl

i = ∅
}

is fi-
nite. Since {ψli}i∈I l is a locally Lipschitz continuous par-
tition of unity subordinated to the covering C̃l , we have
that for every i ∈ Il , support(ψli) ⊆ Cl

i . Therefore, for
every x′ ∈ B(x, δ), F (l)(x′) =

∑
i∈I l (x,δ) ψ

l
i(x
′)Al

i .
From the proof of part (a) of this lemma, we know
that for every i ∈ Il , Al

i is a compact and convex
subset of Rd . Therefore, from Lemma V.2(a), we get
that, for every i ∈ Il(x, δ), the set-valued map given by
y → ψli(y)A

l
i is locally Lipschitz continuous. Further-

more, since |Il(x, δ)| <∞, from Lemma V.2(b), we get
that the set-valued map given by y →∑

i∈I l (x,δ) ψ
l(y)Al

i

is locally Lipschitz continuous. Since the set-valued map
y →∑

i∈I l (x,δ) ψ
l
i(y)A

l
i restricted toB(x, δ) is the same

as F (l) on B(x, δ), we get that F (l) is locally Lipschitz
continuous at x. Since x is arbitrary, the above-mentioned
argument gives us that F (l) is a locally Lipschitz contin-
uous set-valued map. �

The continuous set-valued maps F (l) as obtained above
can be now parametrized (that is represented with a single-
valued continuous function with an additional parameter). Key
to parametrization is a continuous selection procedure by which
we mean a function σ : K(Rd)→ Rd , which is continuous and
is such that for every Y ∈ K(Rd), σ(Y ) ∈ Y . Since the maps
F (l) are convex set-valued, it suffices to look for a selection pro-
cedure, which is continuous restricted to the family of compact
and convex subsets of Rd . Furthermore, we want a selection
procedure that would preserve the local Lipschitz continuity
of the set-valued map F (l) in the parametrization as well. In
order to accomplish this, we shall use the Stiener selection pro-
cedure (for a definition see [15, Th. 9.4.1]). The next lemma
summarizes some properties of the Stiener selection procedure
and an intersection lemma, which form the central tools for
parameterizing the set-valued maps F (l) (for a proof we refer
the reader to [15, Th. 9.4.1] and [15, Lemma 9.4.2]). Before
we state the lemma, we introduce some notation needed. Let
Kc(Rd) denote the family of all nonempty compact and convex
subsets of Rd . For any set Y ⊆ Rd and for any x ∈ Rd , define
d(x, Y ) := infy∈Y ‖x− y‖.

Lemma V.4:
a) There exists a function σ : Kc(Rd)→ Rd , such that for

every Y, Y1 , Y2 ∈ Kc(Rd)

σ(Y ) ∈ Y and ‖σ(Y1)− σ(Y2)‖ ≤ dH(Y1 , Y2).
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b) The map Π : Kc(Rd)×Rd → Kc(Rd), defined such that
for every Y ∈ Kc(Rd) and x ∈ Rd , Π(Y, x) := Y ∩
(x+ 2d(x, Y )U), is such that for everyY1 , Y2 ∈ Kc(Rd)
and for every x1 , x2 ∈ Rd

H(Π(Y1 , x1),Π(Y2 , x2)) ≤ 5 (H(Y1 , Y2) + ‖x1 − x2‖) .

We now use the results stated in the above-mentioned lemma
to parametrize the set-valued maps F (l) .

Lemma V.5: Let {F (l)}l≥1 be as in Lemma V.3. For every
l ≥ 1, there exists a continuous function f (l) : Rd × U → Rd

such that the following conditions are true.
a) For every x ∈ Rd , f (l)(x,U) = F (l)(x), where
f (l)(x,U) :=

{
f (l)(x, u) : u ∈ U}

.
b) For K(l) > 0 as in Lemma V.3, for every (x, u) ∈ Rd ×
U , ‖f (l)(x, u)‖ ≤ K(l)(1 + ‖x‖).

c) For every x0 ∈ Rd , there exists δ(l) > 0 and L(l) > 0
(depending onx0 ), such that for everyx, x′ ∈ x0 + δ(l)U ,
for every u ∈ U

∥∥∥f (l)(x, u)− f (l)(x′, u)
∥∥∥ ≤ L(l)‖x− x′‖.

Proof: Fix l ≥ 1. Let the map f (l) : Rd × U → Rd be de-
fined such that, for every (x, u) ∈ Rd × U

f (l)(x, u) := σ
(
Π

(
F (l)(x),K(l)(1 + ‖x‖)u

))
(16)

where σ and Π are as in Lemma V.4.
a) By definition of f (l) ,σ and Π, for every (x, u) ∈ Rd × U ,

we have that

f (l)(x, u) ∈ Π(F (l)(x),K(l)(1 + ‖x‖)u) ⊆ F (l)(x).

Therefore, for every x ∈ Rd , f (l)(x,U) ⊆ F (l)(x).
By Lemma V.3(c), we know that for every x ∈ Rd ,
supy∈F ( l ) (x) ‖y‖ ≤ K(l)(1 + ‖x‖). Thus, for every x ∈
Rd , for any y ∈ F (l)(x), there exists u ∈ U , such that
y = K(l)(1 + ‖x‖)u. For such a u ∈ U , by definition
of Π, we have that Π(F (l)(x),K(l)(1 + ‖x‖)u) = y and
hence f (l)(x, u) = σ

(
Π

(
F (l)(x),K(l)(1 + ‖x‖)u)) =

y. Therefore, for every x ∈ Rd , F (l)(x) ⊆ f (l)(x,U)
from which it follows that f (l)(x,U) = F (l)(x), for ev-
ery x ∈ Rd .

b) Follows from part (a) of this lemma and Lemma V.3(c).
c) Fix x0 ∈ Rd . Since F (l) is a locally Lipschitz contin-

uous set-valued map [see Lemma V.3(d)], we obtain
δF ( l ) > 0 and LF ( l ) > 0 (depending on x0) such that
for every x, x′ ∈ x0 + δF ( l )U , H(F (l)(x), F (l)(x′)) ≤
LF ( l ) ‖x− x′‖. Set δ(l) := δF ( l ) and L(l) := 5d(LF ( l ) +
K(l)). Then, for any x, x′ ∈ x0 + δ(l)U , for every u ∈ U ,

we have
∥∥∥f (l)(x, u)− f (l)(x′, u)

∥∥∥

=
∥∥∥σ

(
Π

(
F (l)(x),K(l)(1 + ‖x‖)u

))

−σ
(
Π

(
F (l)(x′),K(l)(1 + ‖x′‖)u

))∥∥∥

≤ dH
(
Π

(
F (l)(x),K(l)(1 + ‖x‖)u

)
,

Π
(
F (l)(x′),K(l)(1 + ‖x′‖)u

))
(17)

≤ 5d
(
H

(
F (l)(x), F (l)(x′)

)

+
∥∥∥K(l) (1 + ‖x‖)u−K(l) (1 + ‖x′‖)u

∥∥∥
)

(18)

= 5d
(
H

(
F (l)(x), F (l)(x′)

)

+K(l) |‖x‖ − ‖x′‖| ‖u‖
)

≤ 5d
(
H

(
F (l)(x), F (l)(x′)

)
+K(l)‖x− x′‖

)

≤ 5d
(
LF ( l ) ‖x− x′‖+K(l)‖x− x′‖

)

= L(l)‖x− x′‖ (19)

where (17) follows from Lemma V.4(a), (18) follows
from Lemma V.4(b), and (19) follows from our choice of
δ(l) and local Lipschitz continuity of F (l) . �

The set-valued map in recursion (8) can be replaced with
the parametrization obtained in the lemma mentioned above as
explained below.

1) For every l ≥ 1, by Lemma V.3(b), we know that for every
x ∈ Rd , F (x) ⊆ F (l)(x). Therefore, for every l ≥ 1, for
every n ≥ 0

Xn+1 −Xn − a(n)Mn+1 ∈ a(n)F (l)(Xn ).

2) For every l ≥ 1, by Lemma V.5(a), we know that for every
x ∈ Rd , F (l)(x) = f (l)(x,U). It can now be shown that
for every n ≥ 0, there exists a U -valued random variable
on Ω, sayU (l)

n , such that for everyω ∈ Ω, for every n ≥ 0

Xn+1(ω)−Xn (ω)− a(n)Mn+1(ω)

= a(n)f (l)(Xn (ω), U (l)
n (ω)) (20)

(for proof, see [14, Lemma 6.1]).

B. Solutions of the Mean Field and Their Approximation

In this section, we shall approximate the solutions of mean
field [that is DI (10)] with the solutions of DI given by

dx

dt
∈ F (l)(x) (21)

for some l ≥ 1. In order to accomplish this, we need some
notations, which are introduced in the following.
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For every T > 0 and for every x ∈ Rd , let S(T, x) denote the
set of solutions of DI (10) on [0, T ]. Formally

S(T, x) :=
{
x : [0, T ]→ Rd : x is absolutely continuous

with x(0) = x and for a.e. t ∈ [0, T ],

dx(t)
dt
∈ F (x(t))

}
. (22)

Since F is a Marchaud map, we have that for every T > 0
and for every x ∈ Rd , S(T, x) = ∅. Similarly for every l ≥ 1,
for every T > 0 and for every x ∈ Rd , let S(l)(T, x) denote the
set of solutions of DI (21) on [0, T ]. Formally

S(l)(T, x) :=
{
x : [0, T ]→ Rd : x is absolutely continuous

with x(0) = x and for a.e. t ∈ [0, T ],

dx(t)
dt
∈F (l)(x(t))

}
. (23)

From Lemma V.3, we know that for every l ≥ 1, F (l) is
a Marchaud map, and hence, for every T > 0 and for every
x ∈ Rd , S(l)(T, x) = ∅.

For any Y ⊆ Rd , for any T > 0, define S(T, Y ) :=
∪y∈Y S(T, y). Similarly, for every l ≥ 1, S(l)(T, Y ) :=
∪y∈Y S(l)(T, y).

The following lemma summarizes some important relation-
ships between the solutions of DI (10) and those of DI (21)
needed later. It also states that for large enough l ≥ 1, the solu-
tions of DI (21) are within an ε-neighborhood of the solutions
of DI (10) for every initial condition lying in a compact subset
of Rd .

Lemma V.6: For every T > 0, the following conditions are
true.

a) For every l ≥ 1, for every x ∈ Rd , S(T, x) ⊆
S(l+1)(T, x) ⊆ S(l)(T, x).

b) For every x ∈ Rd , S(T, x) = ∩l≥1S
(l)(T, x).

c) For any Y ⊆ Rd , S(T, Y ) = ∩l≥1S
(l)(T, Y ).

d) For every Y ⊆ Rd compact, S(T, Y ) is a compact subset
of C([0, T ],Rd) (the vector space of Rd -valued continu-
ous functions on [0, T ]).

e) For every Y ⊆ Rd compact, for every l ≥ 1, S(l)(T, Y )
is a compact subset of C([0, T ],Rd).

f) For every Y ⊆ Rd compact, for every ε > 0, there
exists l′ ≥ 1, such that for every l ≥ l′, for every
x(l) ∈ S(l)(T, Y ), there exists x ∈ S(T, Y ), such that
supt∈[0,T ] ‖x(t)− x(l)(t)‖ < ε.

Proof: Fix T > 0.
a) Fix l ≥ 1 and x ∈ Rd . Let x ∈ S(T, x). Then, we have

that x is absolutely continuous with x(0) = x and for
a.e. t ∈ [0, T ], dx(t)

dt ∈ F (x(t)). By Lemma V.3(b), we
know that for every t ∈ [0, T ], F (x(t)) ⊆ F (l+1)(x(t)).
Therefore, for a.e. t ∈ [0, T ], dx(t)

dt ∈ F (l+1)(x(t)), from
which we get that x ∈ S(l+1)(T, x). Hence, S(T, x) ⊆
S(l+1)(T, x). Using the fact that for every x′ ∈ Rd ,
F (l+1)(x′) ⊆ F (l)(x′) [see Lemma V.3(b)], a similar ar-
gument gives us that S(l+1)(T, x) ⊆ S(l)(T, x).

b) Fix x ∈ Rd . From part (a) of this lemma, we have
that S(T, x) ⊆ ∩l≥1S

(l)(T, x). Let x ∈ ∩l≥1S
(l)(T, x).

Then, x is absolutely continuous with x(0) = x and for
every l ≥ 1, for a.e. t ∈ [0, T ], dx(t)

dt ∈ F (l)(x(t)). Thus,

for a.e. t ∈ [0, T ], for every l ≥ 1, dx(t)
dt ∈ F (l)(x(t)).

Hence, for a.e t ∈ [0, T ], dx(t)
dt ∈ ∩l≥1F

(l)(x(t)) =
F (x(t)), where the equality follows from Lemma
V.3(e). Therefore, x ∈ S(T, x), from which, we get that
∩l≥1S

(l)(T, x) ⊆ S(T, x).
c) Follows from parts (a) and (b) of this lemma.

d, e) Follows from [2, Lemma 3.1].
f) Suppose not. Then, there exists Y ⊆ Rd com-

pact and ε > 0, such that for every l′ ≥ 1, there
exists l ≥ l′ and x(l) ∈ S(l)(T, Y ), such that
d(x(l) , S(T, Y )) ≥ ε, where d(x(l) , S(T, Y )) :=
infx∈S (T ,Y ) supt∈[0,T ] ‖x(l)(t)− x(t)‖. Thus, we can
obtain a sequence of solutions, say {x(lk )}k≥1 , such that
for every k ≥ 1, 1 ≤ lk < lk+1 and x(lk ) ∈ S(lk )(T, Y )
with d(x(lk ) , S(T, Y )) ≥ ε. From part (a) of this lemma,
we have that for every k ≥ 1, S(lk )(T, Y ) ⊆ S(1)(T, Y )
and hence {x(lk )}k≥1 ⊆ S(1)(T, Y ). Since Y ⊆ Rd

is compact, by part (e) of this lemma, we know
that S(1)(T, Y ) is a compact subset of C([0, T ],Rd).
Thus, there exists a subsequence of {x(lk )}k≥1 ,
say {x(lk j )}j≥1 such that x(lk j ) → x∗ as j →∞
in C([0, T ],Rd) and x∗ ∈ S(1)(T, Y ). Since for
every j ≥ 1, d(x(lk j ) , S(T, Y )) ≥ ε, we get that
d(x∗, S(T, Y )) ≥ ε and hence x∗ /∈ S(T, Y ). From
part (a) of this lemma, we get that for every l ≥ 1, for
J := min{j ≥ 1 : lkj ≥ l}, {x(lk j )}j≥J ⊆ S(l)(T, Y ).
Furthermore, by part (e) of this lemma, we have that
for every l ≥ 1, S(l)(T, Y ) is a compact subset of
C([0, T ],Rd). Thus, for every l ≥ 1, x∗ ∈ S(l)(T, Y )
and hence x∗ ∈ ∩l≥1S

(l)(T, Y ) = S(T, Y ) [see part (c)
of this lemma]. This leads to a contradiction. �

Part (f) of the above-mentioned lemma provides the necessary
approximation result. Furthermore, since the set-valued maps
F (l) admit a single-valued parametrization (f (l) as in Lemma
V.5), a solution of DI (21) can be viewed as a solution of the
o.d.e. given by

dx

dt
= f (l)(x, u(t)) (24)

for someu : [0,∞)→ U measurable and vice versa. The lemma
mentioned below summarizes some useful results on the solu-
tions of o.d.e. (24) and its vector field.

Lemma V.7: For every l ≥ 1, the following conditions are
true.

a) For every T > 0, for any u : [0, T ]→ U measurable,
for every initial condition, the set of solutions of o.d.e.
(24) is nonempty. That is, for every x0 ∈ Rd , there
exists x : [0, T ]→ Rd such that, x is absolutely con-
tinuous, x(0) = x0 and for a.e. t ∈ [0, T ], dx(t)

dt =
f (l)(x(t), u(t)).

b) For every T > 0, for every Y ⊆ Rd compact, there exists
C1(Y, T, l) > 0, such that for every u : [0, T ]→ U mea-
surable, every solution of o.d.e. (24) with initial condition

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 21,2021 at 06:59:56 UTC from IEEE Xplore.  Restrictions apply. 



YAJI AND BHATNAGAR: ANALYSIS OF STOCHASTIC APPROXIMATION SCHEMES WITH SET-VALUED MAPS 1109

in Y , say x : [0, T ]→ Rd , satisfies

sup
t∈[0,T ]

‖x(t)‖ ≤ C1(Y, T, l).

c) For any Y ⊆ Rd compact, there exists L(Y, l) > 0, such
that for every T > 0, for every u : [0, T ]→ U , the map
h : Y × [0, T ]→ Rd , given by h(x, t) := f (l)(x, u(t))
for every (x, t) ∈ Y × [0, T ], satisfies

‖h(x, t)− h(x′, t)‖ ≤ L(Y, l)‖x− x′‖
for every x, x′ ∈ Y and for every t ∈ [0, T ].

d) For every T > 0, for every u : [0, T ]→ U , for every ini-
tial condition, the o.d.e. (24) admits a unique solution.

Proof: Fix l ≥ 1.
a) Fix T > 0 and u : [0, T ]→ U measurable. The proof

of this part is a direct application of [16, Th. 3.8].
We show here that the sufficient conditions required
to apply the said theorem are satisfied by the vector
field of the o.d.e. (24). First, we show that f (l)(·, u(·))
is a Caratheodary function (see [16, Definition 3.2]).
By Lemma V.5, it is clear that for every t ∈ [0, T ],
the map x→ f (l)(x, u(t)) is continuous and for ev-
ery x ∈ Rd , the map t→ f (l)(x, u(t)) is measurable.
Furthermore, by Lemma V.5(b), we have that for any
c > 0, for every x ∈ Rd with ‖x‖ ≤ c, for every t ∈
[0, T ], ‖f (l)(x, t)‖ ≤ K(l)(1 + c). Thus, f (l)(·, u(·)) is
a Caratheodary function. Final condition to verify is
on the rate of growth of solutions. By Lemma V.5(b),
‖f (l)(x, u(t))‖ ≤ ψ(‖x‖) := K(l)(1 + ‖x‖). The func-
tion ψ : [0,∞)→ [0,∞) is clearly positive everywhere
and the function 1

ψ is locally integrable on [0,∞). A
simple argument gives us that for every r > 0, the in-
tegral

∫∞
r

dr̃
ψ (r̃) can be lower bounded by the tail of

1
K ( l )

∑∞
n=1

1
n . Hence, for every r > 0,

∫∞
r

dr̃
ψ (r̃) =∞.

Now [16, Th. 3.8] can be applied to obtain the required
result.

b) Fix T > 0 and Y ⊆ Rd compact. Since Y is com-
pact, there exists r > 0 such that supy∈Y ‖y‖ ≤ r. Set

C1(Y, T, l) := (r +K(l)T )eK
( l ) T , where K(l) > 0 is as

in Lemma V.5(b). For some u : [0, T ]→ U measurable
and for some x0 ∈ Y , let x : [0, T ]→ Rd be a solu-
tion of o.d.e. (24) with initial condition x0 . Then, for
every t ∈ [0, T ], x(t) = x0 +

∫ t

0 f
(l)(x(s), u(s))ds, and

hence, for every t ∈ [0, T ]

‖x(t)‖ ≤ ‖x0‖+
∫ t

0
‖f (l)(x(s), u(s))‖ds

≤ r +K(l)T +K(l)
∫ t

0
‖x(s)‖ds (25)

where (25) follows from the fact that x0 ∈ Y and Lemma
V.5(b). The required bound follows from (25) and Gron-
wall’s result (see [3, Sec. 11.2.1, Lemma 6]).

c) Fix Y ⊆ Rd compact. It is enough to show that
there exists L(Y, l) > 0, such that for every y1 , y2 ∈
Y , supu∈U ‖f (l)(y1 , u)− f (l)(y2 , u)‖ ≤ L(Y, l)‖y1 −
y2‖. From Lemma V.5(c), we know that for every

x0 ∈ Y , there exists δ(x0 , l) > 0 and L(x0 , l) > 0, such
that for every x, x′ ∈ x0 + δ(x0 , l)U , for every u ∈
U , ‖f (l)(y1 , u)− f (l)(y2 , u)‖ ≤ L(Y, l)‖y1 − y2‖. Let
G := {x0 + δ(x0 ,l)

2 Ů : x0 ∈ Y }, where, Ů denotes the
interior of U . Since Y is compact and G is an open cover
of Y , there exists {x1 , x2 , . . . , xk} ⊆ Y , such that Y ⊆
∪ki=1(xi + δ(xi ,l)

2 Ů). Set δ(Y, l) := min1≤i≤k
δ(xi ,l)

2 and
L0(Y, l) := max1≤i≤k L(xi, l).
Let y1 , y2 ∈ (Y × Y ) ∩ {(y1 , y2) : ‖y1 − y2‖ < δ(Y,
l)}. Then, we know that there exists i ∈ {1, . . . , k},
such that y1 ∈ xi + δ(xi ,l)

2 Ů . Furthermore, since

‖y1 − y2‖ < δ(Y, l) ≤ δ(xi ,l)
2 , we have that y2 ∈

xi + δ(xi, l)Ů . Therefore, y1 , y2 ∈ xi + δ(xi, l)U and
hence, for every u ∈ U , ‖f (l)(y1 , u)− f (l)(y2 , u)‖ ≤
L(xi, l)‖y1 − y2‖ ≤ L0(Y, l)‖y1 − y2‖. Thus, for every
y1 , y2 ∈ (Y × Y ) ∩ {(y1 , y2) : ‖y1 − y2‖ < δ(Y, l)},
supu∈U ‖f (l)(y1 , u)− f (l)(y2 , u)‖≤L0(Y, l)‖y1−y2‖.
Let E := (Y × Y ) ∩ {(y1 , y2) : ‖y1 − y2‖ ≥ δ(Y, l)}.
By Lemma V.5(b), the map (y1 , y2) ∈ Y × Y →
supu∈U ‖f (l)(y1 , u)− f (l)(y2 , u)‖ is well de-
fined. Furthermore, using the fact that for every
(y1 , y2), (y′1 , y

′
2) ∈ Y × Y , | supu∈U ‖f (l)(y1 , u)−

f (l)(y2 , u)‖ − supu∈U ‖f (l)(y′1 , u) − f (l)(y′2 , u)‖| ≤
supu∈U ‖f (l)(y1 , u)− f (l)(y′1 , u)‖+ supu∈U ‖f (l)(y2 ,
u)− f (l)(y′2 , u)‖ and Lemma V.5(c), we have that the
map (y1 , y2)→ supu∈U ‖f (l)(y1 , u)− f (l)(y2 , u)‖
is continuous. Thus, the map (y1 , y2) ∈ E →
supu ∈U ‖f ( l ) (y1 ,u)−f ( l ) (y2 ,u)‖

‖y1−y2 ‖ is a continuous func-
tion on a compact set E and hence achieves a
maximum, say L1(Y, l) ≥ 0. Therefore, for every
(y1 , y2) ∈ (Y × Y ) ∩ {(y1 , y2) : ‖y1 − y2‖ ≥ δ(Y, l)},
supu∈U ‖f (l)(y1 , u)− f (l)(y2 , u)‖ ≤ L1(y, l)‖y1 −
y2‖.
Thus, from the arguments in the two preceding
paragraphs, we have that there exists L(Y, l) :=
max{L0(Y, l), L1(Y, l)}, such that, for every y1 , y2 ∈
Y , supu∈U ‖f (l)(y1 , u)− f (l)(y2 , u)‖ ≤ L(Y, l)‖y1 −
y2‖.

d) Using parts (b) and (c) of this lemma, the proof of
uniqueness follows from arguments similar to that of [16,
Th. 3.4]. �

C. Bounding Procedure

In this section, we show that the lower bound on the prob-
ability of the event that the iterates converge to an attracting
set given that after a large number of iterations, the iterates lie
in a neighborhood of it, depends mainly on the additive noise
terms.

In order to accomplish this, we first define some terms that are
a measure of the distance of the linearly interpolated trajectory
of recursion (8), that is X̄ [see (12)] to the solutions of the DI
(10) over a T > 0 length time interval, among others. Recall
from Section III-B thatO′ ⊆ Rd is an open neighborhood of the
attracting set A [as in assumption (A4)] with compact closure,
such thatA ⊆ O′ ⊆ Ō′ ⊆ O, whereO denotes the fundamental
neighborhood of A. Thus, we can find an ε0 > 0, such that
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Nε0 (Ō′) ⊆ O and N 2ε0 (A) ⊆ O′, where for any ε > 0, Nε(·)
denotes the ε-neighborhood of a set. Furthermore, since A is
an attracting set for the flow of DI (10), for ε0 > 0 as obtained
above, there exists TA > 0, such that for every x ∈ O, for every
t ≥ TA , Φ(t, x) ∈ Nε0 (A). Throughout the rest of this paper,
ε0 and TA will denote the constants as obtained above.

For every T > 0, for every n ≥ 0.
Definition 1: Let τ(n, T ) := min{k ≥ n : t(k) ≥ t(n) +

T}, where t(n), for every n ≥ 0 are as defined in Section III-A.
That is τ(n, T ) denotes the first iterate such that, at least time
T has elapsed since the nth iteration. Furthermore, let the time
elapsed from iteration n to iteration τ(n, T ) be denoted by
Δ(n, T ), that is Δ(n, T ) := t(τ(n, T ))− t(n). Then by the
choice of our step sizes, we have that T ≤ Δ(n, T ) ≤ T + 1.

Definition 2: For every ω ∈ Ω, ρ(ω, n, T ) := infx∈S (T ,Ō′)
supt∈[0,T ] ‖X̄(ω, t+ t(n))− x(t)‖, where S(T, Ō′) denotes
the set of solutions of DI (10) as defined in (22).

Definition 3: For every ω ∈ Ω, for every l ≥ 1, let
x̄(l)(·;n, T, ω) : [0, T ]→ Rd denote the unique solution of the
o.d.e. as

dx

dt
= f (l)(x, u(t;n, T, ω)) (26)

with initial condition x̄(l)(0;n, T, ω) = Xn (ω), where
u(·;n, T, ω) : [0, T ]→ U is defined such that, for every t ∈
[0, T ], u(t;n, T, ω) := U

(l)
k (ω), where U (l)

k is as in (20) and
k is such that t+ t(n) ∈ [t(k), t(k + 1)) [for a proof of exis-
tence and uniqueness of solutions to o.d.e. (26), see Lemma
V.7]. It is easy to see that for every l ≥ 1, x̄(l)(·;n, T, ω) ∈
S(l)(T,Xn (ω)), where S(l)(T,Xn (ω)) denotes the set of solu-
tions of DI (21), as defined in (23).

Definition 4: For every ω ∈ Ω, for every l ≥ 1,
ρ

(l)
1 (ω, n, T ) := supt∈[0,T ] ‖X̄(ω, t+ t(n))− x̄(l)(t;n, T, ω)‖

and ρ
(l)
2 (ω, n, T ) := infx∈S (T ,Ō′) supt∈[0,T ] ‖x̄(l)(t;n, T, ω)−

x(t)‖.
Definition 5: For any Tu ≥ TA , for any n0 ≥ 0, let

{nm}m≥1 denote a subsequence of natural numbers defined
such that for every m ≥ 0, TA ≤ Tm := t(nm+1)− t(nm ) ≤
Tu .

Now we collect sample paths of interest using the quantities
ρ, ρ(l)

1 , and ρ(l)
2 . The following lemma summarizes results in

this regard.
Lemma V.8: For every Tu ≥ TA , for every n0 ≥ 0, for every

l ≥ 1, for every event E ∈ Fn0 , such that E ⊆ {ω : Xn0 (ω) ∈
O′}, for every {nm}m≥1 as in Definition 5,

a) for every M ≥ 0

E ∩
(
∩Mm=0

{
ω ∈ Ω : ρ(l)

1 (ω, nm , Tm )

+ ρ
(l)
2 (ω, nm , Tm ) < ε0

})

⊆ E ∩ (∩Mm=0 {ω ∈ Ω : ρ(ω, nm , Tm ) < ε0}
)

⊆ {
ω ∈ Ω : XnM + 1 (ω) ∈ O′} .

b)
P

(
E ∩

(
∩m≥0

{
ω∈Ω : ρ(l)

1 (ω, nm , Tm )

+ ρ
(l)
2 (ω, nm , Tm ) < ε0

}))

≤ P (E ∩(∩m≥0{ω∈Ω : ρ(ω, nm , Tm )< ε0}))
≤ P (E ∩ {ω ∈ Ω : Xn (ω)→ A as n→∞})

where {Tm}m≥0 is as in Definition 5.
Proof: Fix n0 ≥ 0, l ≥ 1, and E ∈ Fn0 , such that E ⊆

{ω ∈ Ω : Xn0 (ω) ∈ O′}.
a) For every m ≥ 0, for every ω ∈ Ω, from Definition 2 and

Definition 4, it is clear that

ρ(ω, nm , Tm ) ≤ ρ(l)
1 (ω, nm , Tm ) + ρ

(l)
2 (ω, nm , Tm )

from which we get that for every m ≥ 0, {ω ∈ Ω :
ρ

(l)
1 (ω, nm , Tm ) + ρ

(l)
2 (ω, nm , Tm ) < ε0} ⊆ {ω ∈ Ω :

ρ(ω, nm , Tm ) < ε0}. Therefore, E ∩ (∩Mm=0{ω ∈
Ω : ρ(l)

1 (ω, nm , Tm ) + ρ
(l)
2 (ω, nm , Tm ) < ε0}) ⊆ E ∩

(∩Mm=0{ω ∈ Ω : ρ(ω, nm , Tm ) < ε0}).
The proof of the second inclusion follows from induc-
tion. Fix M = 0 and ω ∈ E ∩ {ω ∈ Ω : ρ(ω, n0 , T0) <
ε0}. Then, Xn0 (ω) ∈ O′. Since T0 ≥ TA , we have that
for every x ∈ S(T0 , Ō′), x(T0) ∈ Nε0 (A). Furthermore,
since ρ(ω, n, T0) < ε0 and by Lemma V.6(d), we get
that there exists x ∈ S(T0 , Ō′), such that ‖X̄(ω, t(n1)) −
x(T0)‖ = ‖Xn1 (ω) − x(T0)‖ < ε0 and henceXn1 (ω) ∈
N 2ε0 (A) ⊆ O′. Therefore, ω ∈ {ω ∈ Ω : Xn1 (ω) ∈ O′}.
Thus, the inclusion is true for M = 0. Suppose the
inclusion is true for some M > 0. Let ω ∈ E ∩(∩M+1

m=0 {ω ∈ Ω : ρ(ω, nm , Tm ) < ε0}
)
. Since the inclu-

sion is true for M , we have that XnM + 1 (ω) ∈ O′. Now
by arguments exactly same as those for the base case (that
is for M = 0), we get that XnM + 2 (ω) ∈ O′. Therefore, the
inclusion is true for M + 1.

b) The first inequality follows from part (a) of this lemma.
We shall provide a proof of the second inequality. Let
ω ∈ E ∩ (∩m≥0 {ω ∈ Ω : ρ(ω, nm , Tm ) < ε0}). Then, by
part (a) of this lemma, we have that for every m ≥
0, Xnm (ω) ∈ O′. Since Ō′ is compact, by Lemma
V.6(d), we have that S(Tu , Ō′) is a compact subset of
C([0, Tu ],Rd), and hence, there exists C(Ō′, Tm ) > 0
such that supx∈S (Tu ,Ō′) supt∈[0,Tu ] ‖x(t)‖ ≤ C(Ō′, Tm ).
Furthermore, since for every m ≥ 0, Tm ≤ Tu , we
get that supx∈S (Tm ,Ō′) supt∈[0,Tm ] ‖x(t)‖ ≤ supx∈S (Tu ,Ō′)
supt∈[0,Tu ] ‖x(t)‖ ≤ C(Ō′, Tm ). By our choice of ω,
we have that for every m ≥ 0, ρ(ω, nm , Tm ) <
ε0 and by Definition 2, we get that for every
m ≥ 0, supt∈[0,Tm ] ‖X̄(ω, t+ t(nm ))‖ ≤ C(Ō′, Tm ) +
ε0 . Therefore, ω is such that supn≥0 ‖Xn (ω)‖ <
∞ and for every m ≥ 0, Xnm (ω) ∈ O′. Thus, λ(ω)
(see (13) for definition), is nonempty, compact, and
λ(ω) ∩ Ō′ ⊆ λ(ω) ∩B(A) = ∅, where B(A) denotes
the basin of attraction of the attracting set A. By
Theorem III.1(a), we have that for almost every ω
in E ∩ (∩m≥0 {ω ∈ Ω : ρ(ω, nm , Tm ) < ε0}) the iter-
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ates converge to the attracting set A. Therefore, we
get that P (E ∩ (∩m≥0 {ω ∈ Ω : ρ(ω, nm , Tm ) < ε0})) ≤
P (E ∩ {ω ∈ Ω : Xn (ω)→ A as n→∞)}). �

The quantity ρ(l)
1 as in Definition 4, captures the difference

between the linearly interpolated trajectory of recursion (8) and
the solution of the o.d.e. (26) over a T > 0 length time interval.
This difference can be shown to comprise of two components
namely, the error due to discretization and the error due to ad-
ditive noise terms. By the step size assumption, that is (A2), we
know that the step sizes are converging to zero. Hence, intuition
suggests that after a large number of iterations have elapsed,
the discretization error must be negligible, and the contribution
to the difference term ρ

(l)
1 is mainly due to the additive noise

terms. The following is made precise in the lemma below. A
brief outline of the proof of this lemma, which follows from
Lemma V.7(c) and [3, Ch. 2, Lemma 1], can be found in [13,
Appendix B].

Lemma V.9: For every l ≥ 1, for every Tu ≥ TA , there
exists N ′0 ≥ 1, such that for every n0 ≥ N ′0 , for every
E ∈ Fn0 such that, E ⊆ {ω ∈ Ω : Xn0 (ω) ∈ O′}, for every
sequence {nm}m≥0 as in Definition 5, for every m ≥ 0, we
have, P(B(l)

m−1 ∩ {ω∈Ω : ρ(l)
1 (ω, nm , Tm ) ≥ ε0

2 })≤ P
({ω∈

Ω :maxnm ≤j≤nm + 1‖ζj (ω)− ζnm (ω)‖ ≥ ε0
4K 0 (Tu ) }∩ B(l)

m−1

)
,

where the following are true.
1) B(l0 )

−1 := E and for every M ≥ 0, B(l0 )
M :=E ∩ ( ∩Mm=0

{ω∈Ω : ρ(l0 )
1 (ω, nm , Tm ) + ρ

(l0 )
2 (ω, nm , Tm )<ε0}

)
.

2) For every j ≥ 1, ζj :=
∑j−1

n=0 a(n)Mn+1 , where {Mn}n≥1
denote the additive noise terms as defined in assumption
(A3).

3) {Tm}m≥0 is as in Definition 5 andK0(Tu ) > 0 is a positive
constant increasing in Tu .

Suppose event E as in the lemma mentioned
above occurs with some positive probability. Then,
the following lemma shows that the lower bound of
P ({ω ∈ Ω : Xn (ω)→ A as n→∞}|E) depends mainly
on the additive noise terms for n0 large.

Lemma V.10: For every Tu ≥ TA , there exists l0 ≥ 1 and
N ′0 ≥ 1, such that for every n0 ≥ N ′0 , for every E ∈ Fn0 such
that, E ⊆ {ω ∈ Ω : Xn0 (ω) ∈ O′} and P (E) > 0, for every
sequence {nm}m≥0 as in Definition 5, we have

P ({ω ∈ Ω : Xn (ω)→ A as n→∞}|E)

≥ 1−
∞∑

m=0

P

(
max

nm ≤j≤nm + 1
‖ζj − ζnm ‖ ≥

ε0
4K0(Tu )

|B(l0 )
m−1

)

(27)

where the sequence of events {B(l0 )
m }m≥−1 , the sequence of

random vectors {ζj}j≥1 , and the constantK0(Tu ) are as defined
in Lemma V.9.

Proof: By Lemma V.6(f), we get that there exists l0 ≥
1 (depending on Ō′, Tu , and ε0) such that for every
x(l0 ) ∈ S(l0 )(Tu , Ō′), there exists x ∈ S(Tu , Ō′) such that
supt∈[0,Tu ] ‖x(l0 )(t)− x(t)‖ < ε0

2 . Furthermore, by Lemma
V.8(a) and definition of E, we get that for every m ≥ 0,
B(l0 )
m−1 ⊆ {ω ∈ Ω : Xnm (ω) ∈ O′}. Therefore, for every ω ∈

B(l0 )
m−1 , x̄(l0 )(·;nm , Tm , ω) ∈ S(l0 )(Tm , Ō′), and

ρ
(l0 )
2 (ω, nm , Tm )

= inf
x∈S (Tm ,Ō′)

sup
t∈[0,Tm ]

‖x̄(l0 )(t;nm , Tm , ω)− x(t)‖

≤ inf
x∈S (Tu ,Ō′)

sup
t∈[0,Tu ]

‖x̄(l0 )(t;n, Tu , ω)− x(t)‖ (28)

<
ε0
2

(29)

where (28) follows from the fact that Tm ≤ Tu and (29)
follows from our choice of l0 and Definition 3. Therefore, for
every m ≥ −1, B(l0 )

m ∩ {ω ∈ Ω : ρ(l0 )
1 (ω, nm+1 , Tm ) + ρ

(l0 )
2

(ω, nm+1 , Tm ) ≥ ε0} ⊆ B(l0 )
m ∩ {ω ∈ Ω : ρ(l0 )

1 (ω, nm+1 , Tm )
≥ ε0

2 }, and hence,

P
(
{ω ∈ Ω : ρ(l0 )

1 (ω, nm+1 , Tm )

+ ρ
(l0 )
2 (ω, nm+1 , Tm ) ≥ ε0}|B(l0 )

m

)

≤ P
(
{ω ∈ Ω : ρ(l0 )

1 (ω, nm+1 , Tm ) ≥ ε0
2
}|B(l0 )

m

)
.

(30)

By Lemma V.9, we know that there exists N ′0 ≥ 1
such that, for every n0 ≥ N ′0 , for every m ≥ 0,
P
(B(l0 )

m−1 ∩{ω∈Ω : ρ(l0 )
1 (ω, nm , Tm ) ≥ ε0

2 }
)≤ P

(B(l0 )
m−1 ∩{ω∈

Ω :maxnm ≤j≤nm + 1‖ζj (ω)− ζnm (ω)‖ ≥ ε0
4K 0 (Tu ) }

)
, from which

it follows that

P
(
{ω∈Ω : ρ(l0 )

1 (ω, nm , Tm ) ≥ ε0
2
}|B(l0 )

m−1

)

≤ P

({
ω∈Ω : max

nm ≤j≤nm + 1
‖ζj (ω)− ζnm (ω)‖

≥ ε0
4K0(Tu )

} ∣∣∣∣B
(l0 )
m−1

)
. (31)

For l0 ≥ 1 as obtained in the equation mentioned above and
for n0 ≥ N ′0 , we have that

P (Xn → A as n→∞|E)

≥ P
(
∩m≥0{ω ∈ Ω : ρ(l0 )

1 (ω, nm , Tm )

+ ρ
(l0 )
2 (ω, nm , Tm ) < ε0}|E

)
(32)
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= 1− P
(
∪m≥0{ω ∈ Ω : ρ(l0 )

1 (ω, nm , Tm )

+ ρ
(l0 )
2 (ω, nm , Tm ) ≥ ε0}|E

)

= 1− P
(
{ω ∈ Ω : ρ(l0 )

1 (ω, n0 , Tm )

+ ρ
(l0 )
2 (ω, n0 , Tm ) ≥ ε0}|B(l0 )

−1

)

−
∞∑

m=1

P
(
{ω ∈ Ω : ρ(l0 )

1 (ω, nm , Tm )

+ ρ
(l0 )
2 (ω, nm , Tm ) ≥ ε0}|B(l0 )

m−1

)
P

(
B(l0 )
m−1 |B(l0 )

−1

)

(33)

≥ 1−
∞∑

m=0

P
(
{ω ∈ Ω : ρ(l0 )

1 (ω, nm , Tm )

+ρ(l0 )
2 (ω, nm , Tm ) ≥ ε0}|B(l0 )

m−1

)
(34)

where (32) follows from Lemma V.8(b), (33) fol-
lows from the observation that (∪m≥0{ω ∈ Ω :
ρ

(l0 )
1 (ω, nm , Tm ) + ρ

(l0 )
2 (ω, nm , Tm ) ≥ ε0}) ∩ E = ∪m≥0({ω

∈ Ω : ρ(l0 )
1 (ω, nm , Tm ) + ρ

(l0 )
2 (ω, nm , Tm ) ≥ ε0} ∩ B(l0 )

m−1)
(where the union in RHS is disjoint) and (34) follows from
the fact that for every m ≥ 0, P (B(l0 )

m−1 |B(l0 )
−1 ) ≤ 1. Using (30)

and (31) in (34), we get that there exists l0 ≥ 1 and N ′0 ≥ 1,
such that for every n0 ≥ N ′0 , for every E ∈ Fn0 such that
E ⊆ {ω ∈ Ω : Xn0 (ω) ∈ O′} and P (E) > 0

P (Xn → A as n→∞|E)

≥ 1−
∞∑

m=0

P
(
{ω ∈ Ω : ρ(l0 )

1 (ω, nm , Tm )

+ρ(l0 )
2 (ω, nm , Tm ) ≥ ε0}|B(l0 )

m−1

)

≥ 1−
∞∑

m=0

P
(
{ω ∈ Ω : ρ(l0 )

1 (ω, nm , Tm ) ≥ ε0
2
}|B(l0 )

m−1

)

≥ 1−
∞∑

m=0

P

(
{ω ∈ Ω : max

nm ≤j≤nm + 1
‖ζj (ω)− ζnm (ω)‖

≥ ε0
4K0(Tu )

}|B(l0 )
m−1

)
.

�

D. Review of the Probability Bounding
Procedure for the Additive Noise Terms

In this section, we fix l0 and n0 ≥ N0 , where l0
and N0 are as in Lemma V.10 and provide an upper
bound for P

({ω ∈ Ω : maxnm ≤j≤nm + 1 ‖ζj (ω)− ζnm (ω)‖ ≥
ε0

4K 0 (Tu ) }|B(l0 )
m−1

)
, for every m ≥ 0. The proof of the bound-

ing procedure is similar to that of [3, Ch. 4, Lemma. 10] and we
provide a brief outline here for the sake of completeness.

a) From recursion (8), we have that for every m ≥ 0, for
every nm ≤ j ≤ nm+1 − 1, for every ω ∈ Ω, there exists

Vj (ω) ∈ F (Xj (ω)), such that

Xj+1(ω)−Xj (ω)− a(n)Mj+1(ω) = a(n)Vj (ω).

By assumption (A1)(ii), we know that ‖Vj (ω)‖ ≤
K(1 + ‖Xj (ω)‖) and hence for nm ≤ j ≤ nm+1 − 1,
‖Xj+1(ω)‖ ≤ ‖Xj (ω)‖(1 + a(j)K) + a(j)K +
a(j)‖Mj+1‖. Furthermore, by assumption (A3),
we have that, for every m ≥ 0, for almost ev-
ery ω ∈ Ω, for nm ≤ j ≤ nm+1 − 1, ‖Xj+1(ω)‖ ≤
‖Xj (ω)‖(1 + 2a(j)K) + 2a(j)K. Now by arguments as
in [3, Lemma 9], we get that, for every m ≥ 0, for almost
every ω ∈ Ω, for nm ≤ j ≤ nm+1

‖Xj (ω)‖ ≤ e2KTu (‖Xnm (ω)‖+ 2KTu ). (35)

b) Clearly {ζj − ζnm ,Fj}nm ≤j≤nm + 1 is a martingale.
By (35) and (A3), we get that for nm ≤ j < nm+1 ,
‖ζj+1 − ζj‖ = ‖a(j)Mj+1‖ ≤ a(j)K(1 + ‖Xj‖) ≤
a(j)K(1 + e2KTu (1 + 2KTu‖Xnm ‖)). Since for

every ω ∈ B(l0 )
m−1 , Xnm (ω) ∈ O′ (whose closure

is compact), there exists a C > 0, such that
‖Xnm (ω)‖ ≤ C. Therefore, for every m ≥ 0,

for every ω ∈ B(l0 )
m−1 , for every nm ≤ j < nm+1 ,

‖ζj+1 − ζj‖ ≤ a(j)K(1 + e2KTu (1 + 2KTuC)). Thus,
applying the concentration inequality for martingales,
by arguments exactly the same as in the proof of [3,
Lemma 10], we get that for every m ≥ 0

P

({
ω ∈ Ω : max

nm ≤j≤nm + 1
‖ζj (ω)− ζnm (ω)‖

≥ ε0
4K0(Tu )

}
|B(l0 )

m−1

)
≤ 2de−K̃ /(b(nm )−b(nm + 1 ))

(36)
where K̃ := ε20/

(
32(K0(Tu ))2dK(1 + e2KTu (1 +

2KTuC))
)
.

Proof of Theorem III.2: Let l0 ≥ 1 and N ′0 be as in Lemma
V.10. By definition of b(·), we get that there exists N ′′0 ≥
1, such that for every n ≥ N ′′0 , b(n) < K̃. Define N0 :=
max{N ′0 , N ′′0 }. Let n0 ≥ N0 and {nm := τ(nm−1 , TA )}m≥1 .
{nm}m≥1 as defined satisfies the conditions mentioned in Def-
inition 5. Then, by Lemma V.10 and (36), we get that for
n0 ≥ N0

P (Xn → A as n→∞|E)

≥ 1− 2d
∞∑

m=0

e−K̃ /(b(nm )−b(nm + 1 )) . (37)

We know that e−K̃ /x/x→ 0 as x→ 0 and increases with x for
0 < x < K̃. Therefore, by our choice of n0 , we get that

e−K̃ /(b(nm )−b(nm + 1 ))

b(nm )− b(nm+1)
≤ e−K̃ /b(n0 )

b(n0)

from which it follows that for every m ≥ 0, e
− K̃

b (n m )−b (n m + 1 ) ≤
(b(nm )− b(nm+1)) e

− K̃
b (n 0 )

b(n0 ) . Substituting the above-mentioned
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equation in (37), we get that for every n0 ≥ N0

P (Xn → A as n→∞|E)

≥ 1− 2d
∞∑

m=0

e
− K̃

b (n m )−b (n m + 1 )

≥ 1− 2d
∞∑

m=0

(b(nm )− b(nm+1))
e−K̃ /b(n0 )

b(n0)

= 1− 2d
e−K̃ /b(n0 )

b(n0)

∞∑

m=0

(b(nm )− b(nm+1))

= 1− 2de−K̃ /b(n0 ) .

�

VI. PROOF OF FINITE RESETS THEOREM

(SEE THEOREM IV.1)

From the definition of χn in (14), we know that χn takes
the value one if there is a reset of the nth iterate and is zero
otherwise. Therefore,

∑∞
n=1 χn denotes the total number of

resets.
Suppose the event {∑∞

n=1 χn ≥ k} has zero probability for
some k ≥ 1. Then, for k ≥ 1, such that P (

∑∞
n=1 χn ≥ k) =

0, we have P (
∑∞

n=1 χn < k) = 1, from which Theorem IV.1
trivially follows. Therefore, without loss of generality assume
P (

∑∞
n=1 χn ≥ k) > 0, for every k ≥ 1.

For every k ≥ 0, letGk denote the event that there are at most
k resets and G∞ denote the event that there are finitely many
resets. That is, for every k ≥ 0, Gk := {∑∞

n=1 χn ≤ k} and
G∞ := {∑∞

n=1 χn <∞}. Then, it is clear that, for every k ≥ 1,
Gk ⊆ Gk+1 , and G∞ = ∪k≥0Gk . Therefore, limk→∞ P (Gk )
exists and P (G∞) = limk→∞ P (Gk ). For any k ≥ 1

P (Gk ) = P

( ∞∑

n=1

χn ≤ k
)

= P

({ ∞∑

n=1

χn ≤ k − 1

}
∪

{ ∞∑

n=1

χn = k

})

= P (Gk−1) + P

( ∞∑

n=1

χn = k

)
. (38)

The event {∑∞
n=1 χn = k} can be written as a disjoint union of

events as below. For every k ≥ 1
{ ∞∑

n=1

χn = k

}
= ∪n0≥1

[{
n0−1∑

n=1

χn = k − 1

}

∩ {χn0 = 1} ∩
{ ∞∑

n=n0 +1

χn = 0

}]

(39)

where {∑0
n=1 χn = k − 1} := Ω. Let J(k) := {n0 ≥ 1 :

P ({∑n0−1
n=1 χn = k − 1} ∩ {χn0 = 1}) > 0}. Then for every

k ≥ 1.
a) By arguments in the second paragraph of this sec-

tion, we have that P (Gc
k−1) = P (

∑∞
n=1 χn ≥ k) > 0.

Furthermore, the event {∑∞
n=1 χn ≥ k} can be written as

a disjoint union of events as

{ ∞∑

n=1

χn ≥ k
}

= ∪n0≥1

[{
n0−1∑

n=1

χn = k − 1

}

∩ {χn0 = 1}
]

(40)

from which it follows that

0 < P

({ ∞∑

n=1

χn ≥ k
})

=
∞∑

n0 =1

P

({
n0−1∑

n=1

χn = k − 1

}
∩ {χn0 = 1}

)
.

(41)

Therefore, J(k) = ∅.
b) min{n0 ∈ J(k)} ≥ k, since there cannot be k resets in less

than k iterations.
From (39) and definition of J(k), we have that for every

k ≥ 1

P

( ∞∑

n=1

χn = k

)

=
∑

n0 ∈J (k)

[
P

( ∞∑

n=n0 +1

χn = 0
∣∣∣∣
n0−1∑

n=1

χn = k − 1, χn0 = 1

)

× P

(
n0−1∑

n=1

χn = k − 1, χn0 = 1

)]
. (42)

Step 1 (Obtaining O′, ε0 and TA ) : By (A4)’, we have that
A is a globally attracting set of DI (10). Let r̃ > 0 be such
that A ⊆ r̃Ů . By definition of a globally attracting set and [2,
Lemma 3.13], we get that for any r ≥ r̃, rŮ is a fundamental
neighborhood of A. Let k1 ≥ 1 be such that rk1 ≥ r̃. Set the
fundamental neighborhoodO := rk1 +1Ů andO′ := rk1 Ů . Ob-
tain ε0 > 0 and TA > 0 as in Section V-C. That is ε0 > 0 is such
that N 2ε0 (A) ⊆ O′ ⊆ Nε0 (Ō′) ⊆ O and TA > 0, is such that
for every x ∈ O, for every t ≥ TA , Φ(t, x) ∈ Nε0 (A).

Step 2 (Obtaining {nm}m≥1 as in Definition 5): Clearly
there exists k2 ≥ 1, such that for every k ≥ k2 , TA ≤ 2kTW .
For any n0 ≥ 1, for every m ≥ 1, define nm := n2k 2 ,m−1 ,
where for every 1 ≤ j ≤ 2k2 , nj,m−1 := τ(nj−1,m−1 , TW )
with n0,m−1 := nm−1 and τ(·, ·) is as in Definition 1.
Therefore, for every m ≥ 1, Tm−1 := t(nm )− t(nm−1) =∑2k 2 −1

j=0 Δ(nj,m−1 , TW ), where Δ(·, ·) is as in Definition 1.
Thus, for every m ≥ 0, TA ≤ 2k2 TW ≤ Tm ≤ 2k2 TW + 2k2 ,
and hence, Tu = 2k2 TW + 2k2 .

Step 3 (Redefining trajectories): Define X̄ , as defined
in (12), with the iterates {Xn}n≥0 (iterates before reset
check) generated by Algorithm 1. For every n ≥ 1, de-
fine X̃(·, ·;n) : Ω× [t(n),∞)→ Rd such that for every
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(ω, t) ∈ Ω× [t(n), t(n+ 1))

X̃(ω, t;n) :=
(

t− t(n)
t(n+ 1)− t(n)

)
Xn+1(ω)

+
(

t(n+ 1)− t
t(n+ 1)− t(n)

)
X ′n (ω) (43)

and for every (ω, t) ∈ [t(n+ 1),∞), X̃(ω, t;n) = X̄(ω, t).
Step 4 (Obtaining parameters): By arguments exactly same

as the ones used to obtain (20), we get that, for every l ≥ 1, for
every n ≥ 0, there exists a U -valued random variable on Ω, say
Ũ

(l)
n such that, for every ω ∈ Ω

Xn+1(ω)−X ′n (ω)− a(n)Mn+1(ω)

= a(n)f (l)(X ′n (ω), Ũ (l)
n (ω)). (44)

Step 5 (Redefining distance measures): For every ω ∈ Ω, for
every n ≥ n′ ≥ 1, for every T > 0, for every l ≥ 1.

a) Let x̃(l)(·;n, n′, T, ω) : [0, T ]→ Rd denote the unique so-
lution of the o.d.e.

dx

dt
= f (l)(x, ũ(t;n, n′, T, ω)) (45)

with initial condition x̃(l)(0;n, n′, T, ω) = X ′n ′(ω), where
ũ(·;n, n′, T, ω) : [0, T ]→ U is defined such that, for every
t ∈ [0, T ], ũ(t;n, n′, T, ω) := Ũ

(l)
k (ω), where Ũ (l)

k is as in
(44) and k is such that t+ t(n) ∈ [t(k), t(k + 1)) [for a
proof of existence and uniqueness of solutions to o.d.e.
(45), see Lemma V.7]. It is easy to see that for every l ≥ 1,
x̃(l)(·;n, n′, T, ω) ∈ S(l)(T,X ′n ′(ω)), the set of solutions
of DI (21), as defined in (23).

b) Define
1) ρ̃(ω, n, n′, T ) := infx∈S (T ,Ō′) supt∈[0,T ] ‖X̃(ω, t

+t(n);n′)− x(t)‖.
2) ρ̃(l)

1 (ω, n, n′, T ) := supt∈[0,T ] ‖X̃(ω, t+ t(n);n′)−
x̃(l)(t;n, n′, T, ω)‖.

3) ρ̃(l)
2 (ω, n, n′, T ) := infx∈S (T ,Ō′) supt∈[0,T ] ‖x̃(l)(t;n, n′, T, ω)−

x(t)‖.
Step 6 (Collecting sample paths): Fix k > max{k1 , k2} and

n0 ∈ J(k). By our definition of Fn0 (see Section IV), we have
thatE(k, n0) := {∑n0−1

n=1 χn = k − 1, χn0 = 1} ∈ Fn0 and is
contained in {X ′n0

(ω) ∈ O′}. Given that there has been a reset at
indexn0 , the next reset check is performed by Algorithm 1 at the
iteration n2k −k 2 . So for n0 + 1 ≤ j < n2k −k 2 ,Xj (ω) = X ′j (ω).
From arguments exactly the same as Lemma V.8(a), we get
that

E(k, n0) ∩
( ∩2k −k 2 −1

m=0 {ρ̃(l)
1 (ω, nm , n0 , Tm )

+ ρ̃
(l)
2 (ω, nm , n0 , Tm ) < ε0}

)

⊆ E(k, n0) ∩
(
∩2k −k 2 −1
m=0 {ρ̃(ω, nm , n0 , Tm ) < ε0}

)

⊆ {ω ∈ Ω : Xn
2 k −k 2

(ω) ∈ O′}
⊆ {ω ∈ Ω : Xn

2 k −k 2
(ω) = X ′n

2 k −k 2
(ω)}

⊆
{ n

2 k −k 2∑

n=n0 +1

χn = 0

}
(46)

where (46) follows from the fact that k ≥ k1 and hence
O′ = rk1 Ů ⊆ rk Ů . It is also worth mentioning here that

the proof of Lemma V.8(a) holds irrespective of how the
iterates are generated. Given that ω ∈ E(k, n0) ∩

( ∩2k −k 2 −1
m=0

{ρ̃(l)
1 (ω, nm , n0 , Tm ) + ρ̃

(l)
2 (ω, nm , n0 , Tm ) < ε0}

)
, along

this sample path there has been a reset at n0 , and at the next
check performed at n2k −k 2 there has been no reset. Hence, the
next check for reset is performed by Algorithm 1 at iteration
n2(k −k 2 )+ 1 . Again from arguments as in Lemma V.8(a), we

get that E(k, n0) ∩
( ∩2(k −k 2 )+ 1−1

m=0 {ρ̃(l)
1 (ω, nm , n0 , Tm ) +

ρ̃
(l)
2 (ω, nm , n0 , Tm ) < ε0}

)⊆{ω ∈ Ω : X2(k −k 2 )+ 1 (ω)∈O′}
⊆ {∑n

2 (k −k 2 )+ 1

n=n0 +1 χn = 0}. Repeating the above for the third
reset check after n0 and proceeding similarly, we obtain that

E(k, n0) ∩
(
∩m≥0{ρ̃(l)

1 (ω, nm , n0 , Tm )

+ ρ̃
(l)
2 (ω, nm , n0 , Tm ) < ε0}

)

⊆
{ ∞∑

n=n0 +1

χn = 0

}
. (47)

Step 7 (Bounding): Define B̃(l)
−1 := E(k, n0) and for every

M ≥ 1, let B̃(l)
M := E(k, n0) ∩

( ∩Mm=0 {ρ̃(l)
1 (·, nm , n0 , Tm ) +

ρ
(l)
2 (·, nm , n0 , Tm ) < ε0}

)
.Note that as in Lemma V.10, we can

obtain l0 ≥ 1, such that for every m ≥ 0, for every ω ∈ B̃(l0 )
m−1 ,

we have that ρ̃(l0 )
2 (ω, nm , n0 , Tm ) < ε0

2 , since for every ω ∈
B̃(l0 )
m−1 , Xnm (ω) ∈ O′ and whether or not a reset check is per-

formed at this index, we have that Xnm (ω) = X ′nm (ω). Thus,
for such an l0 , mimicking the proof of Lemma V.10, we ob-
tain that P (∩Mm=0{ρ̃(l)

1 (·, nm , n0 , Tm ) + ρ
(l)
2 (·, nm , n0 , Tm ) <

ε0}|B̃(l0 )
−1 ) ≥ 1−∑∞

m=0 P (ρ̃(l0 )
1 (·, nm , n0 , Tm ) ≥ ε0

2 |B̃(l0 )
m−1).

From Lemma V.9, we have that for k > max{k1 , k2 , N
′
0},

for every n0 ∈ J(k)

P
(
∩Mm=0{ρ̃(l)

1 (·, nm , n0 , Tm )

+ ρ
(l)
2 (·, nm , n0 , Tm )< ε0}|B̃(l0 )

−1

)

≥ 1−
∞∑

m=0

P

(
max

nm ≤j≤nm + 1
‖ζj − ζnm ‖ ≥

ε0
4K0(Tu )

|B̃(l0 )
m−1

)
.

(48)

Step 8 (Noise bound): Similar to item (a) in Section V-
D, from Algorithm (1), we have that for every m ≥ 0, for
every nm ≤ j ≤ nm+1 − 1, ‖Xj+1‖ ≤ ‖X ′j‖(1 + a(j)K) +
a(j)K + a(j)‖Mj+1‖ and since ‖X ′j+1‖ ≤ ‖Xj+1‖, we get
that for every nm ≤ j ≤ nm+1 − 1

‖X ′j+1‖ ≤ ‖X ′j‖(1 + a(j)K) + a(j)K + a(j)‖Mj+1‖.
Now by arguments exactly same as those of item (a) of Sec-
tion V-D, we get that for every m ≥ 0, for every nm ≤ j ≤
nm+1 − 1, ‖X ′j+1‖ ≤ e2KTu (‖Xnm ‖+ 2KTu ). Now by us-
ing concentration inequality as in item (b) of Section V-D, we
get that for every m ≥ 0

P

(
max

nm ≤j≤nm + 1
‖ζj − ζnm ‖ ≥

ε0
4K0(Tu )

|B̃(l0 )
m−1

)

≤ 2de−K̃ /(b(nm )−b(nm + 1 )) . (49)
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Using (47)–(49),we get that, for every k ≥ max{k1 , k2 , N0}
(whereN0 is as defined in the proof of Theorem III.2), for every
n0 ∈ J(k), P (

∑∞
n=n0 +1 χn = 0|∑n0−1

n=1 χn = k − 1, χn0 =
1) ≥ 1− 2d

∑∞
m=0 e

−K̃ /(b(nm )−b(nm + 1 )) ≥ 1− 2de−K̃ /b(n0 ) .
Substituting the above-mentioned equation in (42) and using
the fact that for n ≤ n′, b(n′) ≤ b(n), we get that, for every
k ≥ max{k1 , k2 , N0},

P

( ∞∑

n=1

χn = k

)

≥ (1− 2de−K̃ /b(k))

×
∞∑

n0 =1

P

({
n0−1∑

n=1

χn = k − 1

}
∩ {χn0 = 1}

)

= (1− 2de−K̃ /b(k))P

({ ∞∑

n=1

χn ≥ k
})

. (50)

Substituting (50) in (38), we get that for ev-
ery k ≥ max{k1 , k2 , N0}, P (Gk ) ≥ P (Gk−1) + (1−
2de−K̃ /b(k))P (Gc

k−1) ≥ 1− 2de−K̃ /b(k) . Letting k →∞
in the above-mentioned equation and using the fact that
P (G∞) = limk→∞ P (Gk ), we get that P (G∞) = 1.

VII. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

We have extended the lock-in probability result (see Theorem
III.2) in [6] to stochastic approximation schemes with set-valued
drift functions, which serves as an important tool for analyzing
recursions when their stability is not guaranteed. The extension
to set-valued map allows one to obtain lock-in probability for
stochastic approximation schemes with measurable drift func-
tions and schemes where the drift function itself possesses a
nonadditive unknown noise component (see [3, Ch. 5.3]). Fur-
thermore, using Theorem III.2, in the presence of a locally at-
tracting set for the mean field, we have provided an alternate
condition for verification of convergence in the absence of sta-
bility guarantee, which involves verifying whether the iterates
are entering infinitely often, an open neighborhood of the at-
tractor with a compact closure. In the presence of a globally
attracting set, our modified recursion as in Algorithm 1 con-
verges almost surely to the globally attracting set, the proof of
which relies on the method used to obtain the lock-in probability
result.

In the future, we wish to consider other applications of the
lock-in probability result such as sample complexity (see [3,
Ch. 4.2]) and almost sure convergence under tightness of the
iterates (see [7]). Another interesting direction is to explore
various additive noise models where the above-mentioned result
can be extended for the case of set-valued drift functions.
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