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Interaction-Based Distributed Learning
in Cyber-Physical and Social Networks

Francesco Sasso⇤, Angelo Coluccia⇤, Senior Member, IEEE and Giuseppe Notarstefano†, Member, IEEE

Abstract—In this paper we consider a network scenario in
which agents can evaluate each other according to a score graph
that models some physical or social interaction. The goal is to
design a distributed protocol, run by the agents, allowing them to
learn their unknown state among a finite set of possible values.
We propose a Bayesian framework in which scores and states
are associated to probabilistic events with unknown parameters
and hyperparameters respectively. We prove that each agent
can learn its state by combining a local Bayesian classifier
with a (centralized) Maximum Likelihood (ML) estimator of
the parameter-hyperparameter. To overcome the intractability of
the ML problem, we provide two relaxed probabilistic models
that lead to distributed estimation schemes with affordable
complexity. In order to highlight the appropriateness of the
proposed relaxations, we demonstrate the distributed estimators
on a machine-to-machine testing set-up for anomaly detection
and on a social interaction set-up for user profiling.

I. INTRODUCTION

A typical feature of cyber-physical and social networks is
the mutual interaction among subsystems. In social networks
individuals continuously interact by sharing contents and ex-
pressing opinions or ratings on different topics. Similarly, in
industrial (control) networks, as power-networks, smart grids
or automated factories, devices have the possibility to test
each other to detect faults or malware attacks. In this paper
we model a general network scenario in which nodes can
give/receive a score to/from other “neighboring” nodes with
the goal of deciding their own (or their neighbors’) state. The
state may indicate the level of (mis)trust or faultiness, the
belonging to a class/community, or an influence level. Cen-
tralized solutions for node classification are computationally
expensive in large-scale networks and do not preserve privacy.
Thus, distributed solutions need to be investigated.

Literature review: In the past few years, a great interest
has been devoted to distributed estimation schemes in which
nodes aim at agreeing on a common parameter, e.g., by means
of Maximum Likelihood (ML) approaches, [2]–[4]. In [5]–
[7] a more general Bayesian framework is considered, in
which nodes estimate local parameters, rather than reaching
consensus on a common one. The estimation of the local
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parameters is performed by resorting to an Empirical Bayes
approach in which the parameters of the prior distribution,
called hyperparameters, are estimated through a distributed
algorithm. The estimated hyperparameters are then combined
with local measurements to obtain the Minimum Mean Square
Error (MMSE) estimator of the local parameters. Consensus-
based algorithms have been proposed in [4], [8], [9] for
the simultaneous distributed estimation and classification of
network nodes. A different classification set-up is considered
in [10], where a group of individuals needs to decide on two
alternative hypotheses; the global decision is, however, taken
by a fusion center. The recent literature on distributed social
learning, [11], focuses on non-Bayesian schemes in which
each agent processes its own and its neighbors’ beliefs [12],
[13], see also [14] for a survey. Later work investigates the
effect of network size/structure [15], [16] and faulty nodes [17]
on the learning rules. Schemes for time-varying topologies
are proposed in [18]. Differently from our set-up, all these
references consider a scenario in which agents aim at learning
a common unobservable state. A different batch of references
proposes dynamic laws modeling interpersonal influences in
groups of individuals, and investigates the asymptotic behav-
ior of opinions [19]–[21]. The tutorial [22] reviews opinion
formation in social networks and other applications by means
of randomized distributed algorithms. Finally, the problem of
self-rating in a social environment is addressed in [23] by
introducing suitable distributed dynamics.

Statement of contributions: The contributions of this paper
are as follows. First, we set up a learning problem in a
network context in which nodes want to learn their own state
based on observations coming from the interaction with other
nodes. This general scenario captures a wide variety of social
and machine-to-machine contexts, where information comes
from interactions rather than from local measurements of the
surrounding environment. For this set-up we devise a Bayesian
probabilistic framework in which both the parameters of
the observation model and the hyperparameters of the prior
distribution are allowed to be unknown. In this sense, this
framework can be seen as an Empirical Bayes approach with
additional unknown parameters. Second, in order to solve this
interaction-based problem, we propose a learning approach
combining a local Bayesian classifier with a joint parameter-
hyperparameter Maximum Likelihood estimation approach.
For the local Bayesian classifier, we derive a closed form
expression depending only on aggregated evaluations from
the neighbors. This expression can be used to obtain both the
Maximum A Posteriori (MAP) decision as well as a ranking
of the alternatives with associated (probabilistic) trust. Since
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the complexity of the ML estimator grows exponentially with
the network size, we identify two reasonable relaxations that
lead to modified likelihood functions exhibiting a separable
structure. In particular, we propose a node-based relaxation,
for which available distributed optimization algorithms can be
used, and a full relaxation for which we design an ad-hoc
distributed algorithm combining a local descent step with a
diffusion step. We analyze the performance of the proposed
distributed classifiers through Monte Carlo simulations on two
interesting scenarios, namely on anomaly detection in cyber-
physical networks and user profiling in social networks.

Organization: In Section II we set-up the Bayesian frame-
work and introduce the two application scenarios. In Sec-
tion III we derive the proposed distributed classification algo-
rithms. Finally, in Section IV we report the numerical results.

II. BAYESIAN FRAMEWORK FOR INTERACTION-BASED
LEARNING

In this section, we set up the interaction-based learning
problem and introduce a general Bayesian probabilistic model.

A. Interaction network model

We consider a network of agents able to perform evaluations
of other agents. The result of each evaluation is a score given
by the evaluating agent to the evaluated one. Such an interac-
tion is described by a score graph. Formally, let {1, . . . , N}
be the set of agent identifiers and GS = ({1, . . . , N}, ES)
a digraph such that (i, j) 2 ES if agent i evaluates agent j.
We denote by n the total number of edges in the graph, and
assume that each node has at least one incoming edge in the
score graph, that is there is at least one agent evaluating it.

Let C and R be the set of possible state and score values, re-
spectively. Being finite sets, we can assume C = {c1, . . . , cC}
and R = {r1, . . . , rR}, where C and R are the cardinality
of the two sets, respectively. Consistently, in the network we
consider the following quantities:

• xi 2 C, unobservable state (or community) of agent i;
• yij 2 R, score (or evaluation result) of the evaluation

performed by agent i on agent j.
An example of score graph with associated state and score
values is shown in Fig. 1.

x1

x2

x3 x4
y13

y14

y21 y23 y32

y34

Fig. 1. Example of a score graph GS .

Besides the evaluation capability, the agents have also com-
munication and computation functionalities. That is, agents

communicate according to a time-dependent directed commu-
nication graph t 7! Gcmm(t) = ({1, . . . , N}, Ecmm(t)), where
the edge set Ecmm(t) describes the communication among
agents: (i, j) 2 Ecmm(t) if agent i communicates to j at time
t 2 Z�0. We introduce the notation N I

cmm,i(t) and NO

cmm,i(t)
for the in- and out-neighborhoods of node i at time t in the
communication graph. We will require these neighborhoods to
include the node i itself; formally, we have

N I

cmm,i(t) = {j : (j, i) 2 Ecmm(t)} [ {i},
NO

cmm,i(t) = {j : (i, j) 2 Ecmm(t)} [ {i}

We assume the following on the communication graph:

Assumption II.1. There exists an integer Q � 1 such that the
graph

S(t+1)Q�1
⌧=tQ

Gcmm(⌧) is strongly connected 8 t�0.

We point out that the (time-dependent) communication
graph, modeling the distributed computation, is not necessarily
related to the (fixed) score graph. We just assume that, when
the distributed algorithm starts, each node i knows the scores
received by in-neighbors in the score graph. This could be
obtained by assuming that if the distributed algorithm starts at
some time t0, then for some t̄ > 0, GS ✓

S
t0

⌧=t0�t̄ Gcmm(⌧).

B. Bayesian probabilistic model
We consider the score yij , (i, j) 2 ES , as the (observed)

realization of a random variable denoted by Yij ; likewise,
each state value xi, i 2 {1, . . . , N}, is the (unobserved)
realization of a random variable Xi. In order to highlight
the conditional dependencies among the random variables
involved in the score graph, we resort to the tool of graphical
models, in particular Bayesian networks [24]. Specifically, we
introduce the Score Bayesian Network with N + n nodes
Xi, i = 1, . . . , N , and Yij , (i, j) 2 ES and 2n (conditional
dependency) arrows defined as follows. For each (i, j) 2 ES ,
we have Xi ! Yij  Xj indicating that Yij conditionally
depends on Xi and Xj . In Fig. 2 we represent the Score
Bayesian Network related to the score graph in Fig. 1.

X1

X2

X3 X4Y13

Y14

Y21 Y23 Y32

Y34

Fig. 2. The score Bayesian network related to the score graph in Fig. 1.

Denoting by YES the vector of all random variables
Yij , (i, j) 2 ES , the joint distribution factorizes as

P(YES , X1, . . . , XN )=
⇣ Y

(i,j)2ES

P(Yij |Xi, Xj)
⌘⇣ NY

i=1

P(Xi)
⌘
.

We assume Yij , (i, j) 2 ES are ruled by a conditional proba-
bility distribution P(Yij |Xi, Xj ;✓), depending on a parameter
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vector ✓ whose components take values in a given set ⇥. For
notational purposes, we define the tensor

ph|`,m(✓) := P(Yij = rh|Xi = c`, Xj = cm;✓), (1)

where rh 2 R and c`, cm 2 C. From the definition of
probability distribution, we have the constraint ✓ 2 S⇥ with

S⇥ :=
n
✓ 2 ⇥ : ph|`,m(✓) 2 [0, 1],

RX

h=1

ph|`,m(✓) = 1
o
.

To clarify the notation, an example realization of ph|`,m(✓)
for a given ✓ 2 S⇥, is depicted in Fig. 3.

p1|1,1 = 0.4 p1|2,1 = 0.7

p1|1,2 = 0.5

p2|1,1 = 0.4 p2|2,1 = 0.2

p3|1,1 = 0.2 p3|2,1 = 0.1

p3|1,2 = 0.2

p1|2,2 = 0.6

p2|1,2 = 0.3 p2|2,2 = 0.3

p3|2,2 = 0.1

c`

cm
rh

Fig. 3. Example of a tensor {ph|`,m(✓)}`,m=1,2|h=1,2,3 for fixed ✓ 2 S✓ .

We model Xi, i = 1, . . . , N , as identically distributed
random variables ruled by a probability distribution P(Xi;�),
depending on a hyperparameter vector � whose components
take values in a given set �. We introduce the notation

p`(�) := P(Xi = c`;�) (2)

and, analogously to ✓, we have the constraint � 2 S� with

S� :=
n
� 2 � : p`(�) 2 [0, 1],

CX

`=1

p`(�) = 1
o
.

We suppose each node knows ph|`,m, p` and the scores
received from its in-neighbors and given to its out-neighbors
in GS . Also, for the sake of analysis, we assume ph|`,m and
p` to be continuous functions.

Notice that the least structured case for the model above
is given by the categorical model in which the vector of
parameters and the vector of hyperparameters are given by
the corresponding probability masses. That is, ✓ and � have
respectively R+2C and C components. We point out that the
categorical model, being so unstructured, is the most flexible
one. Clearly, this flexibility is paid by a much higher number of
parameters, which quickly degenerates in over-fitting. There-
fore, in practical applications one usually exploits domain-
specific knowledge to identify a suitable parametrization in
terms of the most relevant parameters and hyperparameters.
Some examples are discussed in the next subsection, while the
problem of jointly estimating the parameter-hyperparameter
(✓,�) will be addressed in the next section as a building block
of the (distributed) learning scheme.

C. Examples of application scenarios

1) Binary-state learning for anomaly detection: We con-
sider a network in which each node i tests neighboring nodes j
with a binary outcome indicating if the tested node is deemed
faulty (i.e., its state is xj = 1) or not (i.e., xj = 0). Since
each node performing the evaluation can be itself faulty, its
outcome may be not reliable; also, no node knows whether it
itself is faulty or not. We consider a probabilistic extension
of the well-known Preparata’s model [25]. Specifically, we
assume that the evaluation outcome is determined as follows:
if node i is working properly, then it will return the true status
of the evaluated node j (i.e., yij = 1 if node j is faulty and
yij = 0 if it is working properly); conversely, if node i is
faulty, the outcome is uniformly random. Formally:

ph|`,m = (1� c`)
h
(1� cm)(1� rh) + cmrh

i
+

1

2
c`,

p`(�) = �c`(1� �)1�c` , � 2 [0, 1],
(3)

with R = 2 (r1 = 0, r2 = 1) and C = 2 (c1 = 0, c2 = 1).
In this first scenario, we assume for simplicity that the distri-
bution of evaluation results is known, so the only unknown is
the hyperparameter �, i.e., the a priori probability that a node
is faulty. We refer to this model as anomaly detection model.

2) Social ranking: Another relevant scenario is user pro-
filing in social networks, wherein people tend to aggregate
(tacitly or explicitly) into groups based on some affinity.

For example, consider an online forum on a dedicated
subject, wherein each member can express her/his preferences
by assigning to posts of other members/colleagues a score
from 1 to R indicating an increasing level of appreciation
for that post. In order to model the distribution of scores,
we consider distance-based ranking distributions, [26], [27],
in which (ranking) probabilities decrease as the distance from
a reference (ranking) probability increases. To fit our needs,
we propose for the distribution of scores the following slight
variant of the so-called Mallow’s �-model (see [28]):

ph|`,m(✓) =
1

 `,m(✓)
e�

�
(rR�rh)/rR�d(c`,cm)/cC

✓

�2

, (4)

where rh = h (h = 1, . . . , R), c` = ` (` = 1, . . . , C), ✓ 2 R>0

is a dispersion parameter,  `,m(✓) is a normalizing constant,
and d is a semi-distance, i.e., d � 0 and d(c`, cm) = 0 iff
c` = cm. Informally, the “farther” a given community c` is
from another community cm, the higher will be the distance
d(c`, cm), thus the lower the score.

In many cases the resulting subgroups reflect some hier-
archy in the population. Basic examples could be forums or
working teams. Thus, we consider a scenario in which each
person belongs to a community reflecting some degree of
expertise about a given topic or field. In particular, we have
C ordered communities, with the `th community given by
c` = `. That is, for example, a person in the community c1 is
an newbie, while a person in cC is a master. Since climbing
in the hierarchy is typically the result of several promotion
events, a natural probabilistic model for the communities is a
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binomial distribution B(C � 1, �), where � 2 [0, 1] represents
the probability of being promoted, i.e.,

p`(�) =

✓
C � 1

c` � 1

◆
�c`�1(1� �)C�1�(c`�1).

We will refer to this second set-up as social ranking model.

III. INTERACTION-BASED DISTRIBUTED LEARNING

In this section we describe the proposed distributed learning
scheme. Without loss of generality, we focus on a set-up in
which a node wants to self-classify. The same scheme also
applies to a scenario in which a node wants to classify its
neighbors, provided it knows their given and received scores.
Notice that, in many actual contexts, as, e.g., social network
platforms, this information is readily available.

The section is structured as follows. First, we derive a local
Bayesian classifier provided that an estimation of parameter-
hyperparameter (✓,�) is available. Then, based on a combina-
tion of plain ML and Empirical Bayes estimation approaches,
we derive a joint parameter-hyperparameter estimator. Finally,
we propose two suitable relaxations of the Score Bayesian
Network which lead to distributed estimators, based on proper
distributed optimization algorithms.

A. Bayesian classifiers (given parameter-hyperparameter)
Each node can self-classify (i.e., learn its own state) if an es-

timate (✓̂, �̂) of parameter-hyperparameter (✓,�) is available.
Before discussing in details how this estimate can be obtained
in a distributed way, we develop a decentralized MAP self-
classifier that uses only single-hop information, i.e., the scores
it gives to and receives from neighbors.

Formally, let yNi be the vector of (observed) scores that
agent i obtains by in-neighbors and provides to out-neighbors,
i.e., the stack vector of yji with (j, i) 2 ES and yij with
(i, j) 2 ES . Consistently, let YNi be the corresponding
random vector; then for each agent i = 1, . . . , N , we define

ui(c`) := P(Xi = c`|YNi = yNi ; �̂, ✓̂), ` = 1, . . . , C.

The soft classifier of i is the probability vector ui :=
(ui(c1), . . . , ui(cC)) (with nonnegative components that sum
to 1). Fig. 4 reports a pie-chart representation of an example.

ui(c1)

50%

ui(c2)

25%

ui(c3)

15%
ui(c4)

10%

Fig. 4. Example of outcome of the soft classifier of an agent i, for C = 4:
ui = (0.5, 0.25, 0.15, 0.1).

From the soft classifier we can define the classical Maximum
A-Posteriori probability (MAP) classifier as the argument
corresponding to the maximum component of ui, i.e.,

x̂i := argmax
c`2C

ui(c`).

The main result here is to show how to efficiently compute
the soft and MAP classifiers. First, we define

N$
i

:= {j : (j, i) 2 ES , (i, j) 2 ES},
N 

i
:= {j : (j, i) 2 ES , (i, j) /2 ES},

N!
i

:= {j : (i, j) 2 ES , (j, i) /2 ES},

and for each h, k = 1, . . . , R we introduce the quantities:

n$
i
(h, k) := |{j 2 N$

i
: yij = rh, yji = rk}|,

n 
i
(h) := |{j 2 N 

i
: yji = rh}|,

n!
i
(h) := |{j 2 N!

i
: yij = rh}|.

Theorem III.1. Let i 2 {1, . . . , N} be an agent of the score
graph. Then, the components of the vector ui are given by

ui(c`) =
vi(c`)

Zi

where Zi =
P

C

`=1 vi(c`) is a normalizing constant, and
vi(c`) = p`(�̂)⇡$i (c`)⇡ i (c`)⇡!i (c`) with

⇡$
i
(c`) =

RY

h,k=1

⇣ CX

m=1

pk|m,`(✓̂)ph|`,m(✓̂)pm(�̂)
⌘n
$
i (h,k)

,

⇡ 
i
(c`) =

RY

h=1

⇣ CX

m=1

ph|m,`(✓̂)pm(�̂)
⌘n
 
i (h)

,

⇡!
i
(c`) =

RY

h=1

⇣ CX

m=1

ph|`,m(✓̂)pm(�̂)
⌘n
!
i (h)

.

The proof is given in Appendix B.

Corollary III.2. If the score graph is undirected, then we have

vi(c`) = p`(�̂)⇡
$
i
(c`).

B. Joint Parameter-Hyperparameter ML estimation (JPH-ML)
Classification requires that at each node an estimate (✓̂, �̂)

of parameter-hyperparameter (✓,�) is available. In this regard,
a few remarks about ✓ and � are now in order.

Depending on both the application and the network context,
these parameters may be known, or (partially) unknown to the
nodes. If both of them are known, we are in a pure Bayesian
set-up in which, as just shown, each node can independently
self-classify with no need of cooperation. The case of unknown
✓ (and known �) falls into a Maximum Likelihood framework,
while the case of unknown � (and known ✓) can be addressed
by an Empirical Bayes approach. In this paper we consider a
general scenario in which both of them may be unknown. Our
goal is then to compute, in a distributed way, an estimate of
parameter-hyperparameter (✓,�) and use it for classification
at each node.

In the following we show how to compute such an estimator
in a distributed way by following a mixed Empirical Bayes
and Maximum Likelihood approach. We define the Joint
Parameter-Hyperparameter Maximum Likelihood (JPH-ML)
estimator as

(✓̂ML, �̂ML) := argmax
(✓,�)2S⇥⇥S�

L(yES
;✓,�) (5)
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where yES
is the vector of all scores yji, (j, i) 2 ES , and

L(yES
;✓,�) = P(YES = yES

; ✓,�) (6)

is the likelihood function.
Notice that, while ✓ is directly linked to the observables

yES
, the hyperparameter � is related to the unobservable

states. While one could readily obtain the likelihood function
for the sole estimation of ✓ from the distribution of scores,
the presence of � requires to marginalize out all unobservable
state (random) variables. By the law of total probability

L(yES
;✓,�) =

CX

`1=1

· · ·
CX

`N=1

P(YES =yES
, X1=c`1 , . . . , XN =c`N ).

(7)

Denoting by N I

i
the set of in-neighbors of agent i in the score

graph (we are assuming that it is non-empty), the probability in
(7) can be written as the product of the conditional probability
of scores, i.e.,

P(YES = yES
|X1 = c`1 , . . . , XN = c`N ) =

NY

i=1

Y

j2NI
i

P(Yji = yji|Xj = c`j , Xi = c`i)

multiplied by the prior probability of states, i.e.,

P(X1 = c`1 , . . . , XN = c`N ) =
NY

i=1

P(Xi = c`i).

Thus, the likelihood function turns out to be

L(yES ;✓,�) =
CX

`1=1

· · ·
CX

`N=1

NY

i=1

gi(✓,�; `1, . . . , `N ),

where

gi(✓,�; `1, . . . , `N ) = p`i(�)
Y

j2NI
i

phji|`j ,`i(✓),

with hji the index of the score element rhji 2 R =
{r1, . . . , rR} associated to the score yji, i.e., yji = rhji .

Equations above clearly show that data from all nodes are
coupled in the likelihood function in a nontrivial way. As
typical in distributed computation approaches, we may try
to manipulate the problem formulation in order to obtain a
“separable” structure by introducing copies of the decision
variables together with consistency constraints. Specifically,
we can introduce a collection of CN additional variables,
one for each gi(✓,�; `1, . . . , `N ), and denote them ⇢[`1···`N ],
`1, . . . , `N 2 {1, . . . , C}. Problem (5) is, thus, equivalent to

max
⇢[`1···`N ]2R,

(✓,�)2S⇥⇥S�

CX

`1=1

· · ·
CX

`N=1

⇢[`1···`N ],

subj. to ⇢[`1···`N ] 
NY

i=1

gi(✓,�; `1, . . . , `N ),

which in turn is equivalent to

max
⇢[`1···`N ]2R>0,

(✓,�)2S⇥⇥S�

CX

`1=1

· · ·
CX

`N=1

⇢[`1···`N ],

subj. to log(⇢[`1···`N ]) 
NX

i=1

log(gi(✓,�; `1, . . . , `N )).

(8)

Notice that the constraints are always well-defined because
gi is a positive function for each i = 1, . . . , N . In (8) we
recognize a separable structure in the cost and the constraints,
which can lead to distributed solutions. However this op-
timization problem involves CN constraints per node and
CN + d✓ + d� decision variables, with d✓ and d� the number
of components of ✓ and �. Thus, in order to solve it in
a distributed way, one should address the challenging task
of designing distributed optimization algorithms capable to
handle a number of decision variables and constraints which
is exponential in the number of nodes. In view of these
considerations, one might argue whether following such a
route is really necessary for the nodes to obtain a satisfactory
solution for the classification problem. In the rest of paper we
propose a different methodological approach based on suit-
able relaxations of the likelihood function and show, through
numerical examples, that such solutions provide a satisfactory
classification outcome. In particular, we propose a relaxation
approach for the likelihood function which leads to separable
and computationally tractable optimization problems.

Remark III.3 (Alternative Estimation Methods). Before pro-
ceeding, one might argue whether other alternative estimation
approaches may be more convenient; in particular, it is known
that the popular Expectation Maximization (EM) estimation
approach may offer valuable solutions when ML cannot be
obtained or it is computationally expensive. However, it is
a simple matter to show that, for the problem at hand,
the maximization involved in the EM procedure requires to
evaluate the sum of CN terms, thus the same complexity order
as the ML approach.

C. Distributed JPH Node-based Relaxed estimation (JPH-NR)
We introduce, instead of L(yES

;✓,�), a Node-based Re-
laxed (NR) likelihood LNR(yES

;✓,�). Let yNI
i

be the vector
of (observed) scores that agent i obtains by in-neighbors and
YNI

i
the corresponding random vector. Then,

LNR(yES
;✓,�) :=

NY

i=1

P(YNI
i
= yNI

i
; ✓,�). (9)

This relaxation can be interpreted as follows. We suppose each
node has a virtual state, independent of its true state, every
time it evaluates another node. Thus, in the Score Bayesian
Network, besides the state variables Xi, i = 1, . . . , N , there
will be additional variables X!j

i
for each j with (i, j) 2 ES .

To clarify this model, Figs. 5-6 depict the node-based relaxed
graph and the corresponding graphical model for the same
example given in Figs. 1-2.
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Fig. 5. Node-based relaxation of the score graph in Fig. 1, with virtual nodes
indicating the virtual states of each node.
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X!3
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3 X4Y13

Y14
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Y34

Fig. 6. Node-based relaxation of the score Bayesian network of Fig. 5.

Since YNI
i

, i = 1, . . . , N , are not independent, then clearly
L 6= LNR. However, as it will be apparent from the numerical
performance assessment, reported in the Section IV, this
choice yields reasonably small estimation errors.

Using this virtual independence between YNI
i

, with i =
1, . . . , N , we define the JPH-NR estimator as

(✓̂NR, �̂NR) := argmax
(✓,�)2S⇥⇥S�

LNR(yES
;✓,�). (10)

The next result characterizes the structure of JPH-NR (10).

Proposition III.4. The JPH-NR estimator based on the node-
based relaxation of the score Bayesian network is given by

(✓̂NR, �̂NR) = argmax
(✓,�)2S⇥⇥S�

NX

i=1

g(✓,�;ni) (11)

with ni=[n(1)
i

· · ·n(R)
i

]>, n(h)
i

:= |{j 2 N I

i
: yji = rh}|, and

g(✓,�;ni) =

log
⇣ CX

`=1

p`(�)
RY

h=1

⇣ CX

m=1

ph |m,`(✓)pm(�)
⌘n

(h)
i

⌘
. (12)

The proof is given in Appendix C.
Proposition III.4 ensures that the JPH-NR estimator can

be computed by solving an optimization problem that has a
separable cost (i.e., the sum of N local costs).

Available distributed optimization algorithms for asyn-
chronous networks can be adopted to this aim, e.g. [29], [30],
[31]. This means that the distributed JPH-NR estimation algo-
rithm inherits the convergence rate of the chosen distributed
optimization algorithm.

D. Distributed JPH Fully-Relaxed estimation (JPH-FR)

Although JPH-NR estimator is a viable solution for which
we will report simulation results later in the paper, we consider
a stronger relaxation, which gives rise to a more convenient
distributed algorithm consisting of a linear (consensus-like)
averaging process and a purely local optimization step.

Thus, we introduce the Fully Relaxed (FR) likelihood:

LFR(yES
;✓,�) :=

Y

(i,j)2ES

P(Yij = yij ; ✓,�) (13)

where all dependencies among the variables Yij , (i, j) 2 ES

are neglected. Accordingly, the JPH-FR estimator is given by

(✓̂FR, �̂FR) := argmax
(✓,�)2S⇥⇥S�

LFR(yES
;✓,�). (14)

The following proposition exposes the structure of (14).

Proposition III.5. The JPH-FR estimator based on the full
relaxation of the score Bayesian network is given by

(✓̂FR, �̂FR) = argmin
(✓,�)2S⇥⇥S�

�>g(✓,�) (15)

where g := (g(1), . . . , g(R)), � := (�(1), . . . ,�(R)), and

g(h)(✓,�) := � log
⇣ CX

`,m=1

ph|`,m(✓)p`(�)pm(�)
⌘
,

�(h) :=
NX

i=1

n(h)
i

n
, h = 1, . . . , R

The proof is given in Appendix D.
In order to solve the optimization problem (15) in a dis-

tributed way, each agent in the network needs to know the vec-
tor �. A naive approach is to first run a consensus algorithm
to obtain approximated local “copies” of �; then, (15) can
be solved by applying a standard (centralized) optimization
method, e.g. the projected gradient method. However, in this
approach one needs to wait for the consensus algorithm to
converge (up to the required accuracy), then to start another
iterative (local) procedure to finally obtain the solution. We
propose here a different approach, where only a single iterative
(distributed) procedure is run. The idea is to combine one step
of consensus with one step of gradient in order to build a
sequence that converges to an optimal solution.

Let ni be the number of incoming edges of agent i
into the score graph GS , i.e., ni = |N I

i
|. For each t 2

Z�0, agent i stores in memory two local states ⇠i(t) =
(⇠(1)

i
(t), . . . , ⇠(R)

i
(t)) and ⌘i(t), an estimate �i(t) of �, and

an estimate (✓̂i(t), �̂i(t)) of (✓̂, �̂).
By following the push-sum consensus algorithm to compute

averages in directed graphs [32], we provide the following
distributed algorithm to compute �. By denoting dj(t) =
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|NO

cmm,i(t)| the out-degree of node j at time t in the com-
munication graph Gcmm(t), node i implements

⇠(h)
i

(t+ 1) =
X

j2Ncmm,I
i (t)

⇠(h)
j

(t)

dj(t)

⌘i(t+ 1) =
X

j2Ncmm,I
i (t)

⌘j(t)

dj(t)

�(h)
i

(t+ 1) =
⇠(h)
i

(t+ 1)

⌘i(t+ 1)

(16)

with ⇠(h)
i

(0) = n(h)
i

and ⌘i(0) = ni.
Then, each node can use its current estimate �(h)

i
(t) to

implement a gradient step on the estimated cost function
�i(t)>g. That is, let (✓̂i,0, �̂i,0) 2 S✓⇥S� be a starting point
for the distributed estimation algorithm, ↵ > 0 a suitable step-
size, then (✓̂i(0), �̂i(0)) = (✓̂i,0, �̂i,0) and

(✓̂i(t+ 1), �̂i(t+ 1)) =
h
(✓̂i(t), �̂i(t))� ↵�i(t)

>rg(✓̂i(t), �̂i(t))
i+

,
(17)

with [·]+ the (Euclidean) projection operator onto the feasible
set S⇥ ⇥ S�.

The following technical assumption ensures uniqueness of
the projection.

Assumption III.6. The given sets ⇥ and � are both subsets
of finite-dimensional real-vector spaces, and the product set
S⇥ ⇥ S� is compact and convex.

The convergence properties of the distributed algorithm
defined by (16)-(17) are given in the following theorem.

Theorem III.7. Let Assumptions II.1 and III.6 hold. Suppose
that g is differentiable, and that rg is bounded and Lipschitz
continuous, with constant L > 0, over the feasible set S⇥ ⇥
S�. Let 0 < ↵ < 2

L
. Then, any limit point of the sequence

{(✓̂i(t), �̂i(t))}t2N generated by (16)-(17) is a stationary point
of the objective function �>g over the feasible set S⇥ ⇥ S�.

The proof is given in Appendix E.

Remark III.8. We observe that in the distributed JPH-FR
estimation algorithm, defined by equations (16) and (17), the
local copies �(h)

i
(t) exhibit exponential convergence to the

average consensus value, as recalled in Lemma A.5. Thus, the
distributed JPH-FR estimation algorithm turns out to be a
projected subgradient algorithm with an error converging to
zero exponentially fast.

IV. APPLICATION OF THE FRAMEWORK

In this section we provide numerical results for two mean-
ingful case studies, using the anomaly detection and the social
ranking models described in Section II-C. Beforehand, we
analyze a special binary/binary case for which the JPH-FR
estimator can be computed in closed form.

A. Distributed learning for anomaly detection: binary scores
and binary states

In this section we discuss the anomaly detection model
described in Section II-C, reported here for the sake of clarity:

ph|`,m = (1� c`)
h
(1� cm)(1� rh) + cmrh

i
+

1

2
c`,

p`(�) = �c`(1� �)1�c` , � 2 [0, 1],

with R = 2 (r1 = 0, r2 = 1) and C = 2 (c1 = 0, c2 = 1).
Using Lemma A.4, the fully relaxed likelihood is obtained:

LFR(�) =
h1
2
� + �(1� �)

in(2)h1
2
� + (1� �)2

in(1)

.

By studying the roots of its derivative, one can show, see [6],
that for this model a closed form for �̂FR (depending on �) can
be found. Hence, only a (distributed) consensus algorithm is
needed to compute �.

Besides this special (binary-binary) case, in general it is not
possible to find a closed form, hence the proposed distributed
estimation schemes are needed in practice.

B. Distributed learning for anomaly detection: R-ary scores
and binary states

We consider an extension of the previous scenario by
allowing scores to assume multiple values. We basically relax
the fact that a normally working node gives the exact state
of the tested node in a deterministic way. We assume that the
R possible scores are given according to some probability,
depending, e.g., on the reliability of the test or expressing the
level of trust about the tested node. For the sake of clarity we
just consider a linear trend. Formally, we let

R � 2, rh = h� 1, h = 1, . . . , R,

C = 2, c1 = 0, c2 = 1,

and consider the following probabilistic model:

ph|`,m =
2

R
(1� c`)

h
(1� cm)

⇣
1� rh

rR

⌘
+ cm

rh
rR

i
+

c`
R
,

p`(�) = �c`(1� �)1�c` , � 2 [0, 1].

Notice that this model, hereafter referred to as the reliability
model, boils down to the Preparata’s model [25] for the case
of binary score (R = 2, see Sec. II-C1).

We have performed Monte Carlo simulations, with 5000
trials for each point, for a score graph with N = 300 agents
according to the probabilistic model above, for R = 5 and
� = 0.3. As for the score graph, we considered a sequence of
scenarios by starting from a directed cyclic configuration and
then, progressively, adding edges up to 104 edges.

We considered the reliability model to compute both the
JPH-NR and the JPH-FR estimator of the hyperparameter,
which were then used to perform the classification. Results
of these simulations are shown in Fig. 7, where the relative
Root Mean Square Error (RMSE) of the estimates of � is
reported. We observe that in this case both the JPH-NR and
JPH-FR estimators attain a very low relative RMSE, with
misclassification rates very close to an “oracle” classifier
that knows the true value of �. Clearly, this is a favorable
situation. In the following we will stress the estimation set-up
to highlight differences among the algorithms.
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JPH-NR

Fig. 7. Relative RMSE of the estimates of � as a function of the number of
edges n from N (cycle graph) to 104, with N = 300, � = 0.3 and R = 5.

103 104
0

5 · 10�2

0.1
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n
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Fig. 8. Misclassification rate as a function of the number of edges n from
N (cycle graph) to 104, with N = 300, � = 0.3 and R = 5.

C. Distributed learning for social ranking

In this Section we show results for the social ranking model
described in Section II-C, reported here for the sake of clarity:

ph|`,m(✓) =
1

 `,m(✓)
e�

�
(rR�rh)/rR�d(c`,cm)/cC

✓

�2

,

p`(�) =

✓
C � 1

c` � 1

◆
�c`�1(1� �)C�1�(c`�1),

where rh = h, c` = `, while ✓ 2 R�0, � 2 [0, 1]. We use as
semi-distance d(c`, cm) = |c` � cm| = |`�m|.

As in the previous fault detection scenario, there exist
configurations of parameters and network in which the two
estimators exhibit almost the same performance. For instance
for C = 3 communities and R = 3 possible scores, with
parameters ✓ = 0.1 and � = 0.3, and a sequence of score
graphs with N = 300 nodes and edges added as before, we
have obtained a misclassification error for the two estimators
whose deviation from the oracle is at most 1.4%.

Next, we consider two scenarios that aim at stressing the
differences among the estimators. In particular, we consider
a set-up with few nodes in which correlations should play a
stronger role. Then, we consider a more challenging classifi-
cation problem with a higher number of classes and a lower

number of available score values. Specifically, in the first set-
up we have reduced the network size to N = 30 and kept
the same values for the other parameters. In the second set-
up we have kept the same number of agents (N = 300) and
parameters ✓ and �, and changed the number of communities
and scores to C = 5 and R = 2. As before, we have increased
the number of edges in the score graph and run Monte Carlo
simulations with 5000 trials for each configuration of the score
graph. The misclassification rates for the classifiers based on
the JPH-NR and JPH-FR estimators, and for the oracle are
reported in Fig. 9 and Fig. 10, respectively for the first and
second scenario. As appearing from these pictures, the error
curves of the proposed classifiers deviate from the oracle when
the number of edges is low. While a gap remains for the JPH-
FR curve, when the number of edges increases the JPH-NR
curve approaches the oracle in both the analyzed scenarios.
In general, it worth noting that the misclassification error
decreases for all the classifiers when increasing the number
of edges. In particular, in the second scenario, even with a
moderate size of the network (N = 300) and a relatively
sparse graph (at most n = 104, which is roughly 10% of
the edges of the complete graph), about 85% of the nodes
correctly classify their own state (among 5 possibilities) when
the JPH-NR estimator is used.

50 100 150 200 250 300 350 400 450 500
0.3

0.35

0.4

0.45

0.5

0.55

n

Misclassification rate

Oracle
JPH-FR
JPH-NR

Fig. 9. Misclassification rate as a function of the number of edges n from N
(cycle graph) to 500, with N = 30, � = 0.3, ✓ = 0.1, C = 3 and R = 3.

Finally, we report an additional case to highlight the useful
insights given by the soft classifier. We considered a network
of N = 10 agents, whose score graph GS is shown in Fig.
11. We drew the states and scores in the given score graph
according to the previous distributions, and then used the
social ranking model to solve the learning problem as before,
by means of the JPH-FR estimator.

The contour of a node has a color that indicates the true
state of the node. Inside the node we have represented the
outcome of the soft classification, i.e., the output of the local
self-classifier, as a pie-chart. The colors used are: red for state
1, blue for state 2, gray for state 3. Moreover, each edge is
depicted by a different pattern based on its evaluation result
rh: solid lines are related to scores equal to 3, dash dot lines
are related to scores equal to 2, while dotted lines are related
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Fig. 10. Misclassification rate as a function of the number of edges n from N
(cycle graph) to 104, with N = 300, � = 0.3, ✓ = 0.1, C = 5 and R = 2.
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Fig. 11. Soft classifier representation of a particular score graph.

to scores equal to 1. We associated to each node a symbol
X or ⇥ indicating if the MAP classifier correctly decided
for the true state or not. We show a realization with three
misclassification errors; remarkably, all of them correspond to
a lower confidence level given by the soft classifier, which
is an important indicator of the lack of enough information
to reasonably trust the decision. It can be observed that
the edge patterns concur to determine the decision. Indeed,
the only gray-state node is correctly classified thanks to the
predominant number of dotted edges insisting on it, and
similarly for the blue-state nodes which mostly have solid
incoming edges. When a mix of scores are available, clearly
there is more uncertainty and the learning may fail, as for two
of the red-state nodes.

As a final remark, we point out that in some scenarios
symmetries may arise in the model, thus creating ambiguities
in the labeling of the communities. Specifically, for this
scenario, it can be shown that the relaxed likelihoods LNR

and LFR take on the same value when � is replaced by 1��,
e.g., LNR(yES

;✓,�) = LNR(yES
;✓, 1� �). Thus the hyper-

parameter estimate is not unique in this case. However, this
has just the effect of swapping the label of communities c1 and

c3. Notice that, in the node-based relaxed case, agents reach
directly a consensus on the same value, thus circumventing
possible inconsistencies in the labeling. For the fully relaxed
case agents can easily agree on the same value in a number
of steps equal to the diameter.

V. CONCLUSION

In this paper we have proposed a novel probabilistic frame-
work for distributed learning, which is particularly relevant
to emerging contexts such as cyber-physical and social net-
works. In the proposed set-up, network nodes can learn their
(unknown) state by exploiting interactions with neighbors,
rather than direct measurements. For this problem we have
proposed a (hierarchical) Bayesian framework in which the
parameters of the interaction model as well as hyperparameters
of the prior distributions may be unknown. Node classification
is performed by means of a local Bayesian classifier and a
joint parameter-hyperparameter ML estimator. The resulting
scheme is very general but, unfortunately, the ML estima-
tion part is computationally intractable in both centralized
and distributed set-ups. Therefore, we have proposed two
approximated ML estimators (exploiting proper relaxations
of the conditional dependences among the involved random
variables) that can be computed in a distributed way. To val-
idate the proposed schemes, we have addressed two example
scenarios from anomaly detection in cyber-physical networks
and user profiling in social networks. Monte Carlo simulation
results show that the proposed distributed learning schemes,
although based on relaxations of the exact likelihood function,
exhibit performance comparable with the ideal classifier that
has perfect knowledge of all parameters.

APPENDIX

A. Preliminaries on Bayesian Networks
We recall some definitions and results from graphical model

theory. We need to assess when two random variables Zin
and Zfin in a Bayesian Network structure K are conditionally
independent given another variable Zg . We use the shorthand
notation Zi ⌦ Zi+1 meaning that either Zi ! Zi+1, or Zi  
Zi+1, or both hold.

Definition A.1. Given a graphical model K, we say that
Z0, . . . , Zr form a trail in K if, for every i = 0, . . . , r� 1, we
have Zi ⌦ Zi+1. If, for every i = 0, . . . , r � 1, we have that
Zi ! Zi+1, then the trail is called a directed path.

Definition A.2. We say that Zd is a descendant of Z in the
graph K if there exists a directed path from Z to Zd.

When influence can flow from Zin to Zfin via Zg , we say
that the two-arrow trail Zin ⌦ Zg ⌦ Zfin is active. For each
of the four possible two-arrow trails, we detail the condition
under which it is active:

• Causal trail (Zin ! Zg ! Zfin): active if and only if Zg

is not observed.
• Evidential trail (Zin  Zg  Zfin): active if and only if

Zg is not observed.
• Common cause (Zin  Zg ! Zfin): active if and only if

Zg is not observed.
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• Common effect (Zin ! Zg  Zfin): active if and only if
either Zg or one of its descendants is observed.

Now, consider the case of a longer trail Zin = Z0 ⌦ · · · ⌦
Zr = Zfin. Intuitively, for influence to flow from Zin to Zfin, it
needs to flow through every single node on the trail. In other
words, Z0 can influence Zr if for every i = 1, . . . , r� 1, then
Zi�1 ⌦ Zi ⌦ Zi+1 is active.

Obviously, it can happen that there is more than one trail
between two nodes; in these cases one node can influence
another if and only if there exists a trail along which influence
can flow. If there is no active trail between random variables
Zin and Zfin, given Zg , they are said to be d-separated.

B. Proof of Theorem III.1
The following Lemma is used in the proof of Theorem III.1.

Lemma A.3. Let i, j, k 2 {1, . . . , N} with j 6= k. The
following statements hold:

1) if (i, j), (k, i) 2 ES then Yij and Yki are conditionally
independent given Xi;

2) if (i, j), (i, k) 2 ES then Yij and Yik are conditionally
independent given Xi;

3) if (j, i), (k, i) 2 ES then Yji and Yki are conditionally
independent given Xi;

Proof. We prove only the first statement, the other two can be
proven in the same way. Consider a trail Yij = Z0 ⌦ · · · ⌦
Zr = Yki. Denoting by s the number of state random variables
traversed along the trail, then the length of the trail (number
of arrows) is r = 2s. This property can be easily visualized
in Figure 2. For each u = 0, . . . , s� 1 it results:

Z2u  Z2u+1 ! Z2u+2

with Z2u = Yiuju , Z2u+1 = Xvu , Z2u+2 = Yiu+1ju+1 ,
where we have that vu 2 {iu, ju} \ {iu+1, ju+1}, while
(iu, ju), (iu+1, ju+1) 2 ES .

Our objective is to prove that the previous trail is blocked
(i.e., not active); this will imply that Yij , Yki are d-separated
given Xi, so that the proof follows, [33]. We observe that
if Xv0 = Xi, then we have, inside the trail, the common
cause Z0  Xi ! Z2 in which Xi is observed; thus the
previous common cause is blocked, implying that also the trail
is blocked. Next, we prove that block occurs at most for u = 1.
Consider Xv0 6= Xi. In this case, from the assumption j 6= k,
by contradiction, we find that s > 1. By truncating the trail at
the fourth element, we have:

Z0  Xv0 ! Z2  Xv1 .

In the common effect Xv0 ! Z2  Xv1 , Z2 is not observed,
and Z2 = Yi1j1 has no descendant in the graphical model; thus
the previous common effect is blocked, implying that also the
trail is blocked.

After these preliminaries, we can proceed with the proof of
Theorem III.1. We will omit the dependency on ✓ and �.

From the Bayes theorem, we know that:

ui(c`) =
vi(c`)

P(YNi = yNi)
,

where vi(c`) := P(YNi = yNi , Xi = c`). Our goal is to prove
that vi(c`) = p`(�̂)⇡$i (c`)⇡ i (c`)⇡!i (c`). First of all, from
the chain rule we have:

vi(c`) = P(Xi = c`)P(YNi = yNi |Xi = c`), (18)

and from Lemma A.3, we know that

P(YNi =yNi |Xi=c`) = P(YN$i
=yN$i

|Xi=c`)

⇥ P(YN i
=yN i

|Xi=c`) (19)
⇥ P(YN!i

=yN!i
|Xi=c`).

The next step is to study each one of the three factors. Starting
from P(YN$i

= yN$i
|Xi = c`), we obtain:

P(YN$i
=yN$i

|Xi=c`)

=
Y

j2N$i

P(Yij=yij , Yji=yji|Xi=c`)

=
RY

h,k=1

P(Yij0 = rh, Yj0i = rk|Xi = c`)
n
$
i (h,k)

=
RY

h,k=1

⇣ CX

m=1

P(Yij0=rh, Yj0i=rk, Xj0=cm|Xi=c`)
⌘n
$
i (h,k)

=
RY

h,k=1

⇣ CX

m=1

P(Xj0=cm)P(Yij0=rh|Xi=c`, Xj0=cm)

⇥ P(Yj0i=rk|Xj0=cm, Xi=c`)
⌘n
$
i (h,k)

. (20)

In the first equation we have used again Lemma A.3; in the
second equation we have used the fact that Yij , (i, j) 2 ES

are identically distributed, and we have also aggregated the
agents in N$

i
that receive/give score rh/rk from/to agent i;

in the third equation we have marginalized with respect to the
random variable Xj0 ; in the fourth equation we have factorized
according to the score Bayesian network.

For the second factor P(YN i
= yN i

|Xi = c`), we obtain:

P(Y N i
= yN i

|Xi = c`)

=
Y

j2N i

P(Yji = yji|Xi = c`)

=
RY

h=1

P(Yj0i = rh|Xi = c`)
n
 
i (h)

=
RY

h=1

⇣ CX

m=1

P(Yj0i = rh, Xj0 = cm|Xi = c`)
⌘n
 
i (h)

=
RY

h=1

⇣ CX

m=1

P(Xi = cm)

⇥ P(Yj0i = rh|Xj0 = cm, Xi = c`)
⌘n
 
i (h)

.

(21)

Here, we point out that, when using Lemma A.3 in the first
equation, all the random variables YN i

are conditionally
independent given Xi. Also, factors in the second equation
are aggregated based on the agents in the set N 

i
that give

score rh to agent i.
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Finally, the third factor turns out to be:

P(Y N!i
= yN!i

|Xi = c`)

=
RY

h=1

⇣ CX

cm=1

P(Xi = cm)

⇥ P(Yij0 = rh|Xi = c`, Xj0 = cm)
⌘n
!
i (h)

.

(22)

Plugging together (20), (21), (22) into (19), and then into
(18), the proof is complete.

C. Proof of Proposition III.4
We omit the dependency on ✓ and � for notational purposes.
Consider a factor P(YNI

i
= yNI

i
) of the node-based relaxed

likelihood, with i an agent in the score graph. Marginalizing
with respect to Xi, we have

P(YNI
i
= yNI

i
) =

CX

`=1

P(YNI
i
= yNI

i
, Xi = c`).

Now, applying the chain rule we obtain

P(YNI
i
= yNI

i
) =

CX

`=1

P(Xi = c`)P(YNI
i
= yNI

i
|Xi = c`).

We are then ready to use Lemma A.3, which implies that

P(YNI
i
= yNI

i
) =

CX

`=1

P(Xi = c`)
Y

j2NI
i

P(Yji = yji|Xi = c`).

Recalling that Yij , (i, j) 2 ES are identically distributed, we
aggregate all the agents in N I

i
that give score rh to agent i:

P(YNI
i
=yNI

i
)=

CX

`=1

P(Xi=c`)
RY

h=1

P(Yj0i=rh|Xi=c`)
n
(h)
i ,

and marginalize with respect to Xj0 , thus obtaining

P(YNI
i
= yNI

i
) =

CX

`=1

P(Xi=c`)

⇥
RY

h=1

⇣ CX

m=1

P(Yj0i=rh, Xj0 =cm|Xi=c`)
⌘n

(h)
i

.

From the structure of the score Bayesian network the following
factorization is obtained:

P(YNI
i
=yNI

i
)=

CX

`=1

P(Xi=c`)
RY

h=1

⇣ CX

m=1

P(Xj0 =cm)

⇥ P(Yj0i=rh|Xj0 =cm, Xi=c`)
⌘n

(h)
i

.

Then, the node-based relaxed likelihood LNR is the product
over i = 1, . . . , N of the factors above, so that

LNR(✓,�) =
NY

i=1

CX

`=1

p`(�)
RY

h=1

⇣ CX

m=1

ph|m,`(✓)pm(�)
⌘n

(h)
i

,

where we have used the shorthand notation introduced in (2)
and (1).

Applying the logarithm to the expression of LNR(✓,�)
derived above, it follows immediately that log(LNR(✓,�)) =P

N

i=1 g(✓,�;ni), with each g(✓,�;ni) as in (12). Finally,
since the logarithm is increasing, the maximum argument is
invariant under this transformation, thus concluding the proof.

D. Proof of Proposition III.5
Before proving Proposition III.5 we give a useful lemma:

Lemma A.4. The fully relaxed likelihood can be written as

LFR(✓,�) =
RY

h=1

⇣ CX

`,m=1

ph|`,m(✓)p`(�)pm(�)
⌘n

(h)

,

where n(h) := |{(i, j) 2 ES : yij = rh}|.

Proof. In what follows, we omit the dependency on ✓
and �. We start focusing our attention on the productQ

(i,j)2ES
P(Yij = yij), which gives the fully relaxed like-

lihood. Recalling that Yij , (i, j) 2 ES , are identically dis-
tributed, and aggregating the edges (i, j) for which yij = rh,
we obtain

Y

(i,j)2ES

P(Yij = yij) =
RY

h=1

P(Yi0j0 = rh)
n
(h)

,

with (i0, j0) being an arbitrary edge in ES . Then, marginal-
izing with respect to Xi0 and Xj0 , it follows that

Y

(i,j)2ES

P(Yij = yij)

=
RY

h=1

⇣ CX

`,m=1

P(Yi0j0 =rh, Xi0 =c`, Xj0 =cm)
⌘n

(h)

.

Finally, exploiting again the structure of the Bayesian network,
we have that
Y

(i,j)2ES

P(Yij=yij)=
RY

h=1

⇣ CX

`,m=1

P(Xi0 =c`)P(Xj0 =cm)

⇥ P(Yi0j0 =rh|Xi0 =c`, Xj0 =cm)
⌘n

(h)

,

so that the proof follows.

Now we are ready to prove Proposition III.5. Since the
logarithm is a monotone transformation, it follows straight that

(✓̂FR, �̂FR) = argmin
(�,✓)2S�⇥S✓

� 1

n
log(LFR(✓,�)). (23)

Using Lemma A.4, we have that:

� 1

n
log(LFR(✓,�)) =

�
RX

h=1

n(h)

n
log

⇣ CX

`,m=1

ph|`,m(✓)p`(�)pm(�)
⌘
,

(24)

so that it is easy to show that

n(h) =
NX

i=1

n(h)
i

. (25)

Plugging together (23), (24), and (25), the proof follows.
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E. Proof of Theorem III.7
Before proving Theorem III.7, we give two Lemmas.

Lemma A.5. Let Assumption II.1 holds, and consider i 2
{1, . . . , N}. Then there exist C > 0, d 2 [0, 1) and T > 0,
such that,

k�� �i(t)k  dtC, (26)

for all t � T .

Proof. The proof follows the same steps as in [30], details are
omitted for the sake of conciseness.

Lemma A.6. Let At, Bt, Ct be three sequences such that Bt

is nonnegative for all t. Assume that

At+1  At �Bt + Ct,

and that the series
P1

t=0 Ct converges. Then either At ! �1
or else At converges to a finite value and

P1
t=0 Bt <1.

Proof. For the proof see Lemma 1 in [34].

We now prove Theorem III.7. For notational purposes, we
define:

zt
i
:= (✓̂i(t), �̂i(t)),

zt
i
:= [zt

i
� ↵�i(t)

>rg(zt
i
)]+, (27)

g�(✓,�) := �>g(✓,�).

Let ẑi be a limit-point of {zt
i
}t�0; taking into account that

the stepsize is constant, our strategy is to prove that ẑi is a
stationary point of g� over S✓ ⇥ S� by showing that ẑi is
a fixed point of the projected gradient method related to the
objective function g� and to the feasible set S✓ ⇥ S� , i.e.:

ẑi = [ẑi � ↵rg�(ẑi)]+. (28)

Clearly zt+1
i

= zt
i
, thus we have:

g�(z
t+1
i

)� g�(z
t

i
) = g�(z

t

i
)� g�(z

t

i
), (29)

moreover, using the fact that rg� is Lipschitz continuous with
constant L > 0, it follows that:

g�(z
t

i
)� g�(z

t

i
)  rg�(zti)>(zti � zt

i
) +

L

2
kzt

i
� zt

i
k2. (30)

Simple calculations show that

rg�(zti) = �i(t)
>rg(zt

i
) + (�� �i(t))

>rg(zt
i
), (31)

where rg(zt
i
) is the Jacobian of g at zt

i
. Putting together

equations (29), (30), and (31) we obtain:

g�(z
t+1
i

)�g�(zti)  �i(t)
>rg(zt

i
)(zt

i
� zt

i
)

+
L

2
kzt

i
� zt

i
k2 + (�� �i(t))

>rg(zt
i
)(zt

i
� zt

i
). (32)

We know that zt
i

is the projection of zt
i
�↵�i(t)>rg(zti) onto

the set S� ⇥ S✓ , therefore:

(zt
i
� ↵�i(t)

>rg(zt
i
)� zt

i
)>(z � zt

i
)  0, z 2 S� ⇥ S✓.

In particular, for z = zt
i
, remembering that ↵ > 0, we have:

�i(t)
>rg(zt

i
)(zt

i
� zt

i
)  � 1

↵
kzt

i
� zt

i
k2. (33)

From the boundedness of rg and from equation (26), rg�
is bounded. Moreover, from Lemma A.5, �i(t) converges
exponentially fast to �. Thus, since by assumption the feasible
set is bounded, there exist C > 0 and d 2 [0, 1) such that

(�� �i(t))
>rg(zt

i
)(zt

i
� zt

i
)  dtC. (34)

Now, let G be the following auxiliary function:

G(t) := g�(z
t+1
i

)� g�(z
t

i
)� dtC,

combining equation (34) with (32) and (33), and recalling that
0 < ↵ < 2

L
, we have:

G(t) 
⇣L
2
� 1

↵

⌘
kzt

i
� zt

i
k2  0. (35)

In particular, we have:

g�(z
t+1
i

)  g�(z
t

i
) + dtC,

so that, applying Lemma A.6 with the sequences At = g�(zti),
Bt = 0 and Ct = dtC, and recalling that the feasible set is
bounded, g�(zti) converges to a finite value. Therefore:

lim
t!1

G(t) = 0. (36)

We have supposed that ẑi is a limit point of {zt
i
}t�0, thus:

lim
k!1

ztk
i

= ẑi. (37)

Combining equations (35), (36) and (37), it follows that

lim
k!1

ztk
i

= ẑi. (38)

By hypothesis rg is continuous; moreover, [·]+ is non-
expansive, thus continuous. Using these facts, from Lemma
A.5 and equations (27), (37), we can conclude:

lim
k!1

ztk
i

= [ẑi � ↵rg�(ẑi)]+.

that plugged into (38) gives (28), thus concluding the proof.
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He has been visiting scholar at the University of Stuttgart, University of
California Santa Barbara and University of Colorado Boulder. His research
interests include distributed optimization, cooperative control in complex
networks, applied nonlinear optimal control, and trajectory optimization and
maneuvering of aerial and car vehicles. He serves as an Associate Editor
for IEEE Transactions on Automatic Control, IEEE Transactions on Control
Systems Technology and IEEE Control Systems Letters. He is also part of
the Conference Editorial Board of IEEE Control Systems Society and EUCA.
He is recipient of an ERC Starting Grant 2014.


