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Chandrasekhar-based Maximum Correntropy Kalman Filtering

with the Adaptive Kernel Size Selection
Maria V. Kulikova

Abstract— This technical note is aimed to derive the Chandrasekhar-

type recursion for the maximum correntropy criterion (MCC) Kalman
filtering (KF). For the classical KF, the first Chandrasekhar difference

equation was proposed at the beginning of 1970s. This is the alternative

to the traditionally used Riccati recursion and it yields the so-called fast

implementations known as the Morf-Sidhu-Kailath-Sayed KF algorithms.
They are proved to be computationally cheap because of propagating

the matrices of a smaller size than n × n error covariance matrix in

the Riccati recursion. The problem of deriving the Chandrasekhar-type
recursion within the MCC estimation methodology has never been raised

yet in engineering literature. In this technical note, we do the first

step and derive the Chandrasekhar MCC-KF estimators for the case

of adaptive kernel size selection strategy, which implies a constant scalar
adjusting weight. Numerical examples substantiate a practical feasibility

of the newly suggested MCC-KF implementations and correctness of the

presented theoretical derivations.

Index Terms— Maximum correntropy, Kalman filtering, Chan-

drasekhar recursion, fast implementations.

I. INTRODUCTION

The maximum correntropy criterion (MCC) filtering/smoothing has

become an important topic for an analysis in the past few years, both

for linear [1]–[9] and nonlinear systems [10]–[15]. In engineering

literature, the MCC Kalman-like estimators were proved to be robust

with respect to outliers/impulsive noises and to outperform the

classical Kalman filtering (KF) for estimation accuracy in case of

non-Gaussian uncertainties in state-space models. The problem of

designing the “distributionally robust” filtering/smoothing methods

has a long history [16]. The related problem of constructing the statis-

tically valid uncertainty bounds has been studied in [17]–[19]. Apart

from the MCC-KF methodology examined in this paper, we mention

a few other strategies for detecting the outliers. These are the Huber-

based and M-estimator-based KF algorithms suggested in [20]–[22],

the unknown input filtering (UIF) methodology proposed to model

the unknown external excitations as unknown inputs and to derive

the robust observer in [23], and many other estimation strategies.

We may also note the most recent and comprehensive survey of

the existed Kalman-like smoothing methods developed for the non-

Gaussian state-space models in [24]. In this paper, we focus on the

Kalman filtering under the MCC methodology.

Previous research on the MCC-KF implementation methods has

produced the Riccati recursion-based algorithms, only. However, it

is worth noting here that the classical KF allows for an alternative

filter mechanization suggested at the beginning of 1970s in [25]. It

implies the so-called Chandrasekhar recursion and yields the class

of the fast KF implementations known as the Morf-Sidhu-Kailath-

Sayed algorithms [26]–[28]. To the best of author’s knowledge, the

question about possibility to derive the Chandrasekhar-type recursion
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under the MCC filtering strategy has never been raised before. This

is the challenge to be addressed in this technical note.

The essential starting point for further discussion is to review

the Chandrasekhar-type algorithms existed for the classical KF in

engineering literature. The first fast KF implementations were derived

for linear time-invariant systems in [25]. The key idea behind the

Chandrasekhar-based filtering is to propagate the difference between

the error covariance matrices ∆k = Pk − Pk−1 instead of updating

the matrix Pk ∈ R
n×n through the classical Riccati recursion. It

is motivated by the fact that the rank of matrix ∆k is often less

than the rank of Pk, especially for time-invariant state-space models,

i.e. for the systems with constant (over time) matrices characterized

the model. As a result, a low-rank approximation of the difference

matrix ∆k can be utilized and the obtained filleting algorithms update

the matrices of a smaller size than the number of states n to be

estimated. Thus, the Chandrasekhar-type algorithms are, in general,

computationally cheaper than the Riccati-based KF implementations.

To achieve our goal, the Riccati recursion required for propagating

the covariance matrix Pk should be mathematically re-formulated in

terms of the difference matrix ∆k propagation. Having done this step,

one receives the Chandrasekhar-type recursion. Recall, at the first

time, this problem was solved for the case of constant continuous-

time systems in [25]. The derived differential equations turned out

to be similar to a certain equation introduced by the astrophysicist

S. Chandrasekhar in 1948 for solving finite-interval Wiener-Hopf

equation, and the obtained KF recursion was called of Chandrasekhar

type. Almost at the same time, the problem was solved for constant

discrete-time systems as well in [26]. However, the related solution

for time-variant systems is rather complicated and it was derived

twenty years later in [28]. Nowadays, there exists a wide variety of

the Chandrasekhar-based KF implementations. For instance, we may

mention the robust factored-form (square-root) filtering/smoothing

methods in [27], [29] as well as the H∞ filtering algorithms in [30],

[31]. Meanwhile, the Chandrasekhar-type recursion under the MCC

filtering methodology has never been derived, so far. In other words,

all existed MCC-KF implementation methods involve the Riccati-type

recursion for propagating the error covariance matrix.

For the stated problem, a number of questions arise: (i) is it possible

to derive Chandrasekhar-type recursion for the Kalman-like filtering

under the examined MCC methodology? (ii) If the recursion exists,

does it allow for designing the related low-rank implementations for

the MCC-KF estimator? In this paper, we answer positively for both

questions and suggest a solution for the case of the MCC-KF adaptive

kernel size selection strategy with a constant scalar adjusting weight.

The results of numerical experiments substantiate the theoretical

derivations presented in this paper and prove a practical feasibility

of the suggested MCC-KF Chandrasekhar-type implementations.

II. RICCATI RECURSION-BASED MAXIMUM CORRENTROPY

KALMAN FILTERING

Consider a linear discrete-time stochastic system

xk+1 =Fxk +Gwk, (1)

yk =Hxk + vk, k ≥ 0 (2)

http://arxiv.org/abs/2311.01165v1


PREPRINT 2

where the system matrices F ∈ R
n×n, G ∈ R

n×q and H ∈ R
m×n

are known and constant over time. The vectors xk ∈ R
n and yk ∈

R
m are the unknown dynamic state and available measurements,

respectively. The random variables x0, wk and vk satisfy

E {x0} = x̄0, E

{

(x0 − x̄0)(x0 − x̄0)
⊤
}

= Π0,

E {wk} = E {vk} = 0, E

{

wkx
⊤
0

}

= E

{

vkx
⊤
0

}

= 0,

E

{

wkv
⊤
k

}

= 0, E

{

wkw
⊤
j

}

= Qδkj ,E
{

vkv
⊤
j

}

= Rδkj

where the covariance matrices Q ∈ R
q×q and R ∈ R

m×m are

known. The symbol δkj is the Kronecker delta function.

The classical KF produces the minimum linear expected mean

square error (MSE) estimate x̂k|k of the state vector xk, given the

measurements Yk
0 = {y0, . . . , yk}. The estimator can be formulated

in the a priori form as proposed in [32, Theorem 9.2.1], i.e. when

the one-step ahead predicted estimate x̂k+1|k (a priori estimate) is

propagated as follows:

x̂k+1|k = F x̂k|k−1 +Kp,kek, ek = yk −Hx̂k|k−1, (3)

Kp,k = FPk|k−1H
⊤R−1

e,k, Re,k = R +HPk|k−1H
⊤

(4)

where the innovations are defined as ek = yk − Hx̂k|k−1 with the

covariance matrix Re,k = E
{

eke
⊤
k

}

, and Kk = E
{

x̂k+1|ke
⊤
k

}

=
FPk|k−1H

T . The matrix Pk|k−1 is the one-step ahead predicted error

covariance Pk|k−1 = E
{

(xk − x̂k|k−1)(xk − x̂k|k−1)
⊤
}

propa-

gated through the Riccati difference recursion:

Pk+1|k = FPk|k−1F
⊤ +GQG⊤ −Kp,kRe,kK

⊤
p,k (5)

with the initial values P0|−1 = Π0 > 0 and x̂0|−1 = x̄0.

Being a linear estimator, the classical KF exhibits only sub-optimal

behavior in non-Gaussian settings. To enhance its estimation quality

and robustness with respect to outliers (impulsive noise), the KF

linear expected MSE estimation criterion has been combined with

the maximum correntropy approach in [5]–[7]. More precisely, the

concept of correntropy represents a similarity measure of two random

variables [1]. It can be used as an optimization cost in the related

estimation problem as discussed in [33, Chapter 5]: an estimator of

unknown state X ∈ R can be defined as a function of observations

Y ∈ R
m, i.e. X̂ = g(Y ) where g is solved by maximizing the

correntropy between X and X̂ , which is defined as follows [34]:

gMCC = argmax
g∈G

V (X, X̂) = argmax
g∈G

E

{

kσ
(

X − g(Y )
)}

(6)

where G stands for the collection of all measurable functions of Y ,

kσ(·) is a kernel function and σ > 0 is the kernel size (bandwidth).

One of the most popular kernel function utilized in practice is the

Gaussian kernel given as follows:

kσ(X − X̂) = exp
{

−(X − X̂)2/(2σ2)
}

. (7)

It is not difficult to see that the MCC cost (6) with Gaussian kernel (7)

reaches its maximum if and only if X = X̂ .

In [6], the MCC-KF is developed by solving the following estima-

tion problem with the Gaussian kernel:

x̂k|k = argmax J(k), (8)

J(k) = kσ(‖x̂k|k − F x̂k−1|k−1‖) + kσ(‖yk −Hx̂k|k‖). (9)

Next, a fixed point rule (with one iterate, only) has been used for

solving (with respect to x̂k|k) the resulted nonlinear equation arisen

in the optimization problem above. It results to the following filtering

recursion for the state [6, p. 503]:

x̂k|k = F x̂k−1|k−1 +Kλ
k (yk −Hx̂k|k−1) (10)

where the gain matrix is proved to be computed as follows [6]: Kλ
k =

λk

(

P−1

k|k−1
+ λkH

⊤R−1H
)−1

H⊤R−1 and the scalar adjusting

weight λk is given by

λk =
kσ(‖yk −Hx̂k|k−1‖R−1)

kσ(‖x̂k|k−1 − F x̂k−1|k−1‖P−1

k|k−1

)
. (11)

Finally, the recursion for the state estimate in (10) is utilized with

a symmetric Joseph stabilized equation existed for the classical KF

for the error covariance matrix Pk|k calculation; see [35], [36]. The

resulted computational method was called the MCC-KF estimator

and it is summarized in [6, p. 503]. Further, the estimation quality

of the original MCC-KF method has been boosted by deriving the

mathematically equivalent formulas for the gain matrix and error

covariance, which are similar to the classical KF equations presented

in [35, pp. 128-129]. This approach yields the so-called improved

MCC-KF (IMCC-KF) estimator suggested in [9]. It consists of the

following steps.

TIME UPDATE (k = 1, . . . ,K). At this stage, the one-step ahead

predicted (a priori) estimate, x̂k|k−1, is computed together with the

corresponding error covariance matrix Pk|k−1 as follows:

x̂k|k−1 = F x̂k−1|k−1, (12)

Pk|k−1 = FPk−1|k−1F
⊤ +GQG⊤. (13)

MEASUREMENT UPDATE (k = 1, . . . ,K). The correction step is

called the measurement update where the a posteriori estimate x̂k|k

is calculated together with the corresponding error covariance matrix

Pk|k as follows:

Kλ
k = λkPk|k−1H

⊤[Rλ
e,k]

−1, Rλ
e,k = λkHPk|k−1H

⊤ +R, (14)

x̂k|k = x̂k|k−1 +Kλ
k ek, ek = yk −Hx̂k|k−1, (15)

Pk|k = (I −Kλ
kH)Pk|k−1 (16)

where the scaling (inflation) parameter λk is computed by (11).

The IMCC-KF estimator can be re-formulated in the a priori form

similar to the classical KF equations (3) – (5). Having substituted (15)

into (12), we get the recursion for the one-step ahead predicted (a

priori) estimate x̂k+1|k as follows:

x̂k+1|k = F x̂k|k−1 +Kλ
p,kek, (17)

Kλ
p,k = λkFPk|k−1H

⊤[Rλ
e,k]

−1
(18)

where Rλ
e,k is defined by (14) and the a priori error covariance

Pk+1|k is computed via the following Riccati-type recursion:

Pk+1|k = FPk|k−1F
⊤ +GQG⊤ −

1

λk

Kλ
p,kR

λ
e,k[K

λ
p,k]

⊤. (19)

Indeed, having substituted formula (16) into (13) and taking into

account the symmetric form of any covariance matrix and the fact

that Kλ
p,k = FKλ

k , we prove (19) as follows:

Pk+1|k = F (I −Kλ
kH)Pk|k−1F

⊤ +GQG⊤

= FPk|k−1F
⊤ +GQG⊤ − FKλ

kHPk|k−1F
⊤

= FPk|k−1F
⊤ +GQG⊤ −Kλ

p,k(FPk|k−1H
⊤)⊤

= FPk|k−1F
⊤ +GQG⊤ −

1

λk

Kλ
p,kR

λ
e,k[K

λ
p,k]

⊤

Although λk is a scalar value, it is preferable to avoid the division.

Thus, equations (17) – (19) can be written as follows:

x̂k+1|k = F x̂k|k−1 + λkKp,kek, (20)

Kp,k = FPk|k−1H
⊤[Rλ

e,k]
−1

(21)

Pk+1|k = FPk|k−1F
⊤ +GQG⊤ − λkKp,kR

λ
e,kK

⊤
p,k. (22)
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III. CHANDRASEKHAR-BASED MAXIMUM CORRENTROPY

KALMAN FILTERING

For a better presentation of a new material, we introduce the

backward difference operator ∆ [·] that means ∆ [Ak] = Ak −
Ak−1 for any matrix A. The Riccati-based filtering implies the

error covariance matrix Pk+1|k ∈ R
n×n propagation through the

classical KF recursion (5) as well as the IMCC-KF equation (22).

The key idea of the Chandrasekhar recursion-based filtering is to

propagate the difference ∆
[

Pk+1|k

]

= Pk+1|k − Pk|k−1 instead

of Pk+1|k. It is motivated by the fact that the rank of matrix

∆
[

Pk+1|k

]

∈ R
n×n is often less than n, which is a number of states

to be estimated by the filter, especially for time-invariant state-space

models (i.e. with constant system matrices). Hence, the difference

matrix ∆
[

Pk+1|k

]

implies a low-rank approximation and, thus, the

related filtering algorithms can be derived for propagating the resulted

lower rank factors. More precisely, the fast Morf-Sidhu-Kailath-Sayed

algorithms derived for the classical KF are based on a factorization

(non-uniquely defined) of symmetric indefinite matrix ∆
[

P1|0

]

in

the form ∆
[

P1|0

]

= L0M0L
⊤
0 where L0 ∈ R

n×α, M0 ∈ R
α×α,

and α is called the displacement rank. Similar, for the IMCC-KF

recursion in (22), we have

α = rank∆
[

P1|0

]

= rank(P1|0 − P0|−1)

= rank(FΠ0F
⊤ +GQG⊤ − λ0Kp,0R

λ
e,0K

⊤
p,0 − Π0).

It is important to acknowledge that the mentioned factorization is

performed only once, i.e. at the initial step of any Chandrasekhar-

based filtering method. When the resulted factors L0 ∈ R
n×α and

M0 ∈ R
α×α are defined, they are propagated instead of entire matri-

ces Pk+1|k and/or ∆
[

Pk+1|k

]

. In general, the displacement rank α ≤
n and, hence, the Chandrasekhar-type algorithms for propagating

Mk ∈ R
α×α and Lk ∈ R

n×α are computationally cheaper than the

Riccati-based implementations that update a full rank error covariance

matrix Pk+1|k of size n. The computational complexity is shown to

be reduced from O(n3) related to the Riccati recursion to O(n2α)
related to the Chandrasekhar recursion per iteration [26], [28]. The

methods for implementing the underlying low-rank approximation of

∆
[

P1|0

]

will be discussed at the end of this section. The first aim of

this section is to derive the Chandrasekhar recursion for the IMCC-KF

filtering. In other words, the corresponding IMCC-KF Riccati-type

recursion in (22) should be re-formulated in terms of the matrices

∆
[

Pk+1|k

]

, i.e. equation (22) and the newly derived Chandrasekhar-

based formulas should be mathematically equivalent. We prove the

following theoretical result.

Lemma 1: The IMCC-KF Riccati-based filtering formulas (20) –

(22) with a constant adjusting parameter λ are equivalent to the

following Chandrasekhar-type recursions:

∆
[

Pk+1|k

]

=
(

F − λKp,kH
)(

∆
[

Pk|k−1

]

+ λ∆
[

Pk|k−1

]

H⊤[Rλ
e,k−1]

−1H∆
[

Pk|k−1

]

)

×
(

F − λKp,kH
)⊤

, (23)

∆
[

Pk+1|k

]

=
(

F − λKp,k−1H
)(

∆
[

Pk|k−1

]

− λ∆
[

Pk|k−1

]

H⊤[Rλ
e,k]

−1H ∆
[

Pk|k−1

]

)

×
(

F − λKp,k−1H
)⊤

. (24)

Proof: First, from expression (14) for Rλ
e,k we derive

∆
[

Rλ
e,k

]

= λH∆
[

Pk|k−1

]

H⊤

and, hence

Rλ
e,k−1 = Rλ

e,k −∆
[

Rλ
e,k

]

= Rλ
e,k − λH∆

[

Pk|k−1

]

H⊤. (25)

Next, for the gain matrix Kp,k in (21), we get

∆
[

Kp,kR
λ
e,k

]

= Kp,kR
λ
e,k −Kp,k−1R

λ
e,k−1

= F ∆
[

Pk|k−1

]

H⊤
(26)

and, hence

Kp,k =
[

Kp,k−1R
λ
e,k−1 + F ∆

[

Pk|k−1

]

H⊤
] [

Rλ
e,k

]−1

. (27)

From the IMCC-based Riccati-type recursion in (22), we obtain

∆
[

Pk+1|k

]

= Pk+1|k − Pk|k−1 = F ∆
[

Pk|k−1

]

F⊤

− λKp,kR
λ
e,kK

⊤
p,k + λKp,k−1R

λ
e,k−1K

⊤
p,k−1

= F ∆
[

Pk|k−1

]

F⊤ − λ∆
[

Kp,kR
λ
e,kK

⊤
p,k

]

. (28)

To derive the expression for the last term in equation (28), i.e. for

∆
[

Kp,kR
λ
e,kK

⊤
p,k

]

, one multiplies formula (26) by K⊤
p,k and K⊤

p,k−1

values, respectively. Thus, we have

∆
[

Kp,kR
λ
e,k

]

K⊤
p,k = F ∆

[

Pk|k−1

]

H⊤K⊤
p,k

= Kp,kR
λ
e,kK

⊤
p,k −Kp,k−1R

λ
e,k−1K

⊤
p,k,

∆
[

Kp,kR
λ
e,k

]

K⊤
p,k−1 = F ∆

[

Pk|k−1

]

H⊤K⊤
p,k−1

= Kp,kR
λ
e,kK

⊤
p,k−1 −Kp,k−1R

λ
e,k−1K

⊤
p,k−1

and, next, we summarize

∆
[

Kp,kR
λ
e,k

]

K⊤
p,k +∆

[

Kp,kR
λ
e,k

]

K⊤
p,k−1

= ∆
[

Kp,kR
λ
e,kK

⊤
p,k

]

+Kp,kR
λ
e,kK

⊤
p,k−1 −Kp,k−1R

λ
e,k−1K

⊤
p,k

= F ∆
[

Pk|k−1

]

H⊤K⊤
p,k + F ∆

[

Pk|k−1

]

H⊤K⊤
p,k−1.

Finally,

∆
[

Kp,kR
λ
e,kK

⊤
p,k

]

= F ∆
[

Pk|k−1

]

H⊤K⊤
p,k

+ F ∆
[

Pk|k−1

]

H⊤K⊤
p,k−1 (29)

+Kp,k−1R
λ
e,k−1K

⊤
p,k −Kp,kR

λ
e,kK

⊤
p,k−1.

Having substituted (29) into (28), we obtain

∆
[

Pk+1|k

]

= F ∆
[

Pk|k−1

]

F⊤ − λF ∆
[

Pk|k−1

]

H⊤K⊤
p,k

− λF ∆
[

Pk|k−1

]

H⊤K⊤
p,k−1 − λKp,k−1R

λ
e,k−1K

⊤
p,k

+ λKp,kR
λ
e,kK

⊤
p,k−1. (30)

The required formulas (23), (24) are both derived from equa-

tion (30) by substituting the related recursions for Kp,k and Re,k

and, then, by expanding the terms in the resulted equation. Indeed,

we prove (24) by taking into account that Re,k is a symmetric matrix

and by substituting (26), (27) into (30) as follows:

∆
[

Pk+1|k

]

= F ∆
[

Pk|k−1

]

F⊤

− λF ∆
[

Pk|k−1

]

H⊤
[

Rλ
e,k

]−1

Rλ
e,k−1K

⊤
p,k−1

− λF ∆
[

Pk|k−1

]

H⊤
[

Rλ
e,k

]−1

H∆
[

Pk|k−1

]

F⊤

− λF ∆
[

Pk|k−1

]

H⊤K⊤
p,k−1 − λKp,k−1R

λ
e,k−1K

⊤
p,k

+ λ
[

Kp,k−1R
λ
e,k−1 + F ∆

[

Pk|k−1

]

H⊤
]

K⊤
p,k−1

= F ∆
[

Pk|k−1

]

F⊤

− λF ∆
[

Pk|k−1

]

H⊤
[

Rλ
e,k

]−1

Rλ
e,k−1K

⊤
p,k−1

− λF ∆
[

Pk|k−1

]

H⊤
[

Rλ
e,k

]−1

H∆
[

Pk|k−1

]

F⊤

− λKp,k−1R
λ
e,k−1

[

Rλ
e,k

]−1

Rλ
e,k−1K

⊤
p,k−1
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− λKp,k−1R
λ
e,k−1

[

Rλ
e,k

]−1

H∆
[

Pk|k−1

]

F⊤

+ λKp,k−1R
λ
e,k−1K

⊤
p,k−1. (31)

Recall, the matrices Re,k and Re,k−1 are symmetric as well as the

matrix ∆
[

Pk|k−1

]

. From equation (25) we have

[

Rλ
e,k

]−1

Rλ
e,k−1 = (I − λ

[

Rλ
e,k

]−1

H∆
[

Pk|k−1

]

H⊤). (32)

Having substituted (32) into (31), we obtain

∆
[

Pk+1|k

]

= F ∆
[

Pk|k−1

]

F⊤

− λF ∆
[

Pk|k−1

]

H⊤

(

I − λ
[

Rλ
e,k

]−1

H ∆
[

Pk|k−1

]

H⊤

)

K⊤
p,k−1

− λF ∆
[

Pk|k−1

]

H⊤
[

Rλ
e,k

]−1

H∆
[

Pk|k−1

]

F⊤

− λKp,k−1R
λ
e,k−1

(

I − λ
[

Rλ
e,k

]−1

H∆
[

Pk|k−1

]

H⊤

)

K⊤
p,k−1

− λKp,k−1

(

I − λH∆
[

Pk|k−1

]

H⊤
[

Rλ
e,k

]−1
)

H∆
[

Pk|k−1

]

F⊤

+ λKp,k−1R
λ
e,k−1K

⊤
p,k−1.

Finally, having substituted (32) one more time into equation above

and, next, having collected the similar terms, we arrive at (24). The

same approach is used for deriving (23). The difference with the

derivation above is in the replacement of the term Kp,k−1 by Kp,k

via the corresponding recursion instead of avoiding the terms Kp,k

in equation (30) and replacing them by Kp,k−1.

Remark 1: As can be seen, Lemma 1 and, hence, the first Chan-

drasekhar MCC-KF-type recursions are proved for a constant scalar

adjusting parameter λ. We stress that there exist some adaptive kernel

size selection strategies for σk that yield a constant adjusting weight

λ. A particular example of such adaptive selection rules can be found

in [6] and the resulted estimator is successfully applied for solving

practical application in [37], [38]. Thus, the new theoretical result

in Lemma 1 has a practical interest, although it is restricted to a

constant adjusting weight case. The derivation of the Chandrasekhar

recursion for a general case of time-varying λk is complicated for the

MCC-KF estimators. This is an open question for a future research.

Now, we are ready to propose the first Chandrasekhar-based IMCC-

KF implementations. Let’s consider the first recursion in Lemma 1,

i.e. equation (23). Recall, the goal is to propagate the low rank

factors Lk ∈ R
n×α and Mk ∈ R

α×α of the difference matrix

∆
[

Pk+1|k

]

= Pk+1|k − Pk|k−1 where ∆
[

Pk+1|k

]

= LkMkL
⊤
k

instead of the full matrix Pk+1|k ∈ R
n×n. Taking into account the

required factorization, one may express equation (23) as follows:

∆
[

Pk+1|k

]

= LkMkL
⊤
k =

(

F − λKp,kH
)(

∆
[

Pk|k−1

]

+ λ∆
[

Pk|k−1

]

H⊤[Rλ
e,k−1]

−1H∆
[

Pk|k−1

]

)

×
(

F − λKp,kH
)⊤

=
(

F − λKp,kH
)(

Lk−1Mk−1L
⊤
k−1

+ λLk−1Mk−1L
⊤
k−1H

⊤[Rλ
e,k−1]

−1HLk−1Mk−1L
⊤
k−1

)

×
(

F − λKp,kH
)⊤

=
(

F − λKp,kH
)

Lk−1

×
(

Mk−1 + λMk−1L
⊤
k−1H

⊤[Rλ
e,k−1]

−1HLk−1Mk−1

)

× L⊤
k−1

(

F − λKp,kH
)⊤

.

Having compared both sides of the resulted equality, we conclude

Lk :=
(

F − λKp,kH
)

Lk−1, (33)

Mk := Mk−1 + λMk−1L
⊤
k−1H

⊤[Rλ
e,k−1]

−1HLk−1Mk−1. (34)

The last step is to express Kp,k and Re,k in terms of the factors

Lk and Mk . From formula (25), we have

Rλ
e,k = Rλ

e,k−1 + λH∆
[

Pk|k−1

]

H⊤

= Rλ
e,k−1 + λHLk−1Mk−1L

⊤
k−1H

⊤. (35)

At the same way, from equation (27) we obtain

Kp,k =
[

Kp,k−1R
λ
e,k−1 + F ∆

[

Pk|k−1

]

H⊤
] [

Rλ
e,k

]−1

[

Kp,k−1R
λ
e,k−1 + FLk−1Mk−1L

⊤
k−1H

⊤
] [

Rλ
e,k

]−1

(36)

Having collected equations (33) – (36) and formula (20) used for

computing the state estimate, the first Chandrasekhar recursion-based

IMCC-KF implementation is designed. For readers’ convenience, it

is summarized in the form of pseudo-code in Algorithm 1.

Algorithm 1. CHANDRASEKHAR IMCC-KF based on recursion (23)

INITIALIZATION:(k= 0)

1 Set x0|−1 = x̄0, P0|−1 = Π0;

2 Compute Rλ
e,0 = R + λHΠ0H

⊤, Kp,0 = FΠ0H
⊤[Rλ

e,0]
−1;

3 Find ∆
[

P1|0

]

=FΠ0F
⊤+GQG⊤− λKp,0R

λ
e,0K

⊤
p,0−Π0;

4 Factorize ∆
[

P1|0

]

= L0M0L
⊤
0 , L0 ∈ R

n×α, M0 ∈ R
α×α;

FILTER RECURSION: (k = 0, N )

5 Rλ
e,k+1 = Re,k + λHLkMkL

⊤
k H

⊤;

6 Kp,k+1 =
[

Kp,kR
λ
e,k + FLkMkL

⊤
k H

⊤
] [

Rλ
e,k+1

]−1
;

7 Lk+1 = (F − λKp,k+1H
)

Lk;

8 Mk+1 = Mk + λMkL
⊤
k H

⊤[Rλ
e,k]

−1HLkMk;

9 x̂k+1|k = F x̂k|k−1 + λKp,k(yk −Hx̂k|k−1).

It is worth noting here that the error covariance matrix Pk+1|k

is simply recovered from the propagated factors Lk ∈ R
n×α and

Mk ∈ R
α×α of the matrix ∆

[

Pk+1|k

]

= Pk+1|k − Pk|k−1 at any

time instance, if necessary:

Pk+1|k = Pk|k−1 + LkMkL
⊤
k = Π0 +

k
∑

j=0

LjMjL
⊤
j .

Alternatively, the Chandrasekhar recursion in (24) might be utilized

for designing the related IMCC-KF implementation as follows:

∆
[

Pk+1|k

]

= LkMkL
⊤
k =

(

F − λKp,k−1H
)

Lk−1

×
(

Mk−1 − λMk−1L
⊤
k−1H

⊤[Rλ
e,k]

−1HLk−1Mk−1

)

× L⊤
k−1

(

F − λKp,k−1H
)⊤

,

i.e. we conclude

Lk :=
(

F − λKp,k−1H
)

Lk−1, (37)

Mk := Mk−1 − λMk−1L
⊤
k−1H

⊤[Rλ
e,k]

−1HLk−1Mk−1. (38)

Having summarized equations (35) – (38) with (20), a new

Chandrasekhar-based IMCC-KF implementation is designed.

Algorithm 2. CHANDRASEKHAR IMCC-KF based on recursion (24)

INITIALIZATION:(k= 0)

1 Set x0|−1 = x̄0, P0|−1 = Π0;

2 Compute Rλ
e,0 = R + λHΠ0H

⊤, Kp,0 = FΠ0H
⊤[Rλ

e,0]
−1;

3 Find ∆
[

P1|0

]

=FΠ0F
⊤+GQG⊤− λKp,0R

λ
e,0K

⊤
p,0−Π0;

4 Factorize ∆
[

P1|0

]

= L0M0L
⊤
0 , L0 ∈ R

n×α, M0 ∈ R
α×α;

FILTER RECURSION: (k = 0, N )

5 Rλ
e,k+1 = Re,k + λHLkMkL

⊤
k H

⊤;

6 Kp,k+1 =
[

Kp,kR
λ
e,k + FLkMkL

⊤
k H

⊤
] [

Rλ
e,k+1

]−1
;

7 Lk+1 = (F − λKp,kH)Lk;

8 Mk+1 = Mk − λMkL
⊤
k H

⊤[Rλ
e,k+1]

−1HLkMk;

9 x̂k+1|k = F x̂k|k−1 + λKp,k(yk −Hx̂k|k−1).
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Having compared equations (33) and (37) for computing Lk

factor, we observe a difference between Algorithms 1 and 2. In fact,

equation (33) of Algorithm 1 implies calculation of Lk through Kp,k

value obtained at the same filtering step tk. Meanwhile equation (37)

of Algorithm 2 computes Lk by using Kp,k−1, i.e. by using the value

from the previous filtering step tk−1. Besides, a similar difference in

calculating Mk factor between Algorithms 1 and 2 is observed from

equations (34) and (38). Indeed, Algorithm 1 implies calculation of

Mk through the previous step value Re,k−1, meanwhile equation (37)

of Algorithm 2 finds Mk by using the current value Re,k. Finally, we

note that each filtering step of Algorithm 1 require two m×m matrix

inversions, i.e. the terms
[

Rλ
e,k

]−1
and

[

Rλ
e,k+1

]−1
. In contrast,

Algorithm 2 involves only
[

Rλ
e,k+1

]−1
. However, a careful imple-

mentation of Algorithm 1 suggests to save the previously obtained
[

Rλ
e,k

]−1
value and, hence, to reduce the number of matrix inversions

up to one operation. In this case, the computational complexity of

Algorithms 1 and 2 are the same, i.e. the same number of flops are

required. Indeed, Algorithms 1 and 2 differ by the way of calculating

Lk and Mk factors, only. Besides, they are computed at a similar

ways. Hence, a careful implementation of Algorithm 1 yields the

same number of flops.

Next, we consider Algorithm 2 and derive a few more implemen-

tations based on recursion (24). The same can be done with respect

to recursion (23). First, we suggest a variant of Algorithm 2 that

requires the inversion of α-by-α matrix instead of Re,k+1 of size m
involved in Algorithm 2. Such implementation might be preferable

for practical use, especially when α << m, where m is the size

of measurement vector yk in the state-space model. Having applied

the matrix inversion lemma (Sherman-Morrison-Woodbury formula)

to the recursion in (35), we get

[Rλ
e,k+1]

−1 = [Rλ
e,k + λHLkMkL

⊤
k H

⊤]−1 = [Rλ
e,k]

−1

− λ[Rλ
e,k]

−1HLk

(

M−1

k + λL⊤
k H⊤[Rλ

e,k]
−1HLk

)−1

× L⊤
k H

⊤[Rλ
e,k]

−1.

Furthermore, taking into account that

(

M−1

k + λL⊤
k H

⊤[Rλ
e,k]

−1HLk

)−1

= Mk − λMkL
⊤
k H

⊤(Rλ
e,k + λHLkMkL

⊤
k H⊤)−1HLkMk

= Mk − λMkL
⊤
k H

⊤(Rλ
e,k+1)

−1HLkMk = Mk+1,

we conclude that if Mk is updated through (38), then

[Rλ
e,k+1]

−1 = [Rλ
e,k]

−1 − λ[Rλ
e,k]

−1HLkMk+1L
⊤
k H

⊤[Rλ
e,k]

−1.

Having summarized the formulas above, we formulate Algo-

rithm 3, which is mathematically equivalent to Algorithm 2 and

through Lemma 1 it is equivalent to Algorithm 1 as well.

Algorithm 3. CHANDRASEKHAR IMCC-KF based on recursion (24)

INITIALIZATION:(k= 0)

1 Set x0|−1 = x̄0, P0|−1 = Π0;

2 Compute Rλ
e,0 = R+ λHΠ0H

⊤, K0 = FΠ0H
⊤;

3 Find ∆
[

P1|0

]

=FΠ0F
⊤+GQG⊤− λK0[R

λ
e,0]

−1K⊤
0 −Π0;

4 Factorize ∆
[

P1|0

]

= L0M0L
⊤
0 , L0 ∈ R

n×α, M0 ∈ R
α×α;

FILTER RECURSION: (k = 0, N )

5 Lk+1 = (F − λKk[R
λ
e,k]

−1H
)

Lk;

6 M−1

k+1
= M−1

k + λL⊤
k H⊤[Rλ

e,k]
−1HLk;

7 [Rλ
e,k+1]

−1 = [Rλ
e,k]

−1

− λ[Rλ
e,k]

−1HLkMk+1L
⊤
k H⊤[Rλ

e,k]
−1;

8 Kk+1 = Kk + FLkMkL
⊤
k H

⊤;

9 x̂k+1|k = F x̂k|k−1 + λKk[R
λ
e,k]

−1(yk −Hx̂k|k−1).

Having analyzed the implementation above, we conclude that

Algorithm 3 propagates the inverse matrices M−1

k and [Rλ
e,k]

−1.

However, the value Mk is required in line 7 of Algorithm 3,

i.e. it still demands the matrix inversion operation, but the matrix

to be inverted is of size α. In other words, if α << m, then

Algorithm 3 is preferable for practical use from the computational

complexity point of view. Meanwhile, the numerical stability issues of

Algorithms 1 – 3 should be also taken into account when one decides

between Algorithms 1, 2 and 3. The numerical behaviour depends on

properties of the matrices to be inverted, i.e. on the condition numbers

of Re,k in Algorithms 1, 2 and Mk in Algorithm 3.

Finally, we may suggest a symmetric implementation based on

Chandrasekhar recursion (24) by re-formulating Algorithm 3.

Algorithm 4. CHANDRASEKHAR IMCC-KF based on recursion (24)

INITIALIZATION:(k= 0)

1 Set x0|−1 = x̄0, P0|−1 = Π0;

2 Compute Rλ
e,0 = R + λHΠ0H

⊤, Kp,0 = FΠ0H
⊤[Rλ

e,0]
−1;

3 Find ∆
[

P1|0

]

=FΠ0F
⊤+GQG⊤− λKp,0R

λ
e,0K

⊤
p,0−Π0;

4 Factorize ∆
[

P1|0

]

= L0M0L
⊤
0 , L0 ∈ R

n×α, M0 ∈ R
α×α;

FILTER RECURSION: (k = 0, N )

5 Rλ
e,k+1 = Re,k + λHLkMkL

⊤
k H

⊤;

6 M−1

k+1
= M−1

k + λL⊤
k H

⊤[Rλ
e,k]

−1HLk;

7 Kp,k+1 =
[

Kp,kR
λ
e,k + FLkMkL

⊤
k H

⊤
] [

Rλ
e,k+1

]−1
;

8 Lk+1 = (F − λKp,kH
)

Lk;

9 x̂k+1|k = F x̂k|k−1 + λKp,k(yk −Hx̂k|k−1).

From the numerical stability and computational complexity rea-

sons, Algorithm 4 seems to be the worst implementation, although

the formulas in lines 5, 6 have a symmetric form. Indeed, Algorithm 4

involves both the m×m and α×α matrix inversions in each iterate.

Finally, the required low-rank approximation for ∆
[

P1|0

]

and

the displacement rank α are discussed. In contrast to a symmetric

positive (semi-) definite error covariance matrix Pk|k−1 involved in

the Riccati recursion, the matrix ∆
[

Pk|k−1

]

is a symmetric indef-

inite matrix. Following [32, Chapter 13], the required factorization

∆
[

P1|0

]

= L0M0L
⊤
0 , L0 ∈ R

n×α, M0 ∈ R
α×α can be performed

in various ways; e.g. by using Bunch-Kaufman algorithm [39], [40].

More precisely, the accurate Bunch-Kaufman method from [41] with

corresponding MATLAB routine ldl is utilized for implementing

Algorithms 1–4. Given a symmetric indefinite matrix A ∈ R
n×n,

it performs factorization PAP⊤ = LDL⊤ with a permutation

P ∈ R
n×n, a unit lower triangular L ∈ R

n×n, and a real block

diagonal D ∈ R
n×n. Thus, the displacement rank α equals the rank

of the resulted matrix D. We stress that it is defined automatically

and it heavily depends on initial value P0 and the problem statement.

For instance, if Π0 = 0, then Kp,0 = 0, Rλ
e,0 = R and ∆

[

P1|0

]

=
GQG⊤, i.e. one may set L0 := G ∈ R

n×q and M0 := Q ∈ R
q×q ,

i.e. α := q. In practice, the process covariance matrix is often a

diagonal matrix with a few non-zero diagonal elements (that is q)

and, hence, in this case α << n. In general, the displacement rank

satisfies α ≤ n. For any initial value Π0, the value of α is defined and,

next, the resulted block diagonal matrix D of size n is approximated

by its part of size α with corresponding non-zero (block) diagonal

elements, i.e. we set M0 := [D]α ∈ R
α×α. Finally, the product

P⊤L is computed and, next, the columns that correspond to non-

zero elements in D are pulled out to get an approximation L0 :=
[P⊤L] ∈ R

n×α. It should be stressed that the required factorization is

performed only once, i.e. at the initial filtering step and, next, all fast

Morf-Sidhu-Kailath-Sayed implementations propagate the resulted

factors Lk ∈ R
n×α and Mk ∈ R

α×α according to the underlying

Chandrasekhar recursions.
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TABLE I

THE RMSE, THE AVERAGE CPU TIME (S) AND RUNTIME BENEFIT OF THE CHANDRASEKHAR METHODS OVER THE RICCATI FILTERING IN EXAMPLE 1.

n = 4, Π0 = diag{[1, 1, 1, 10−2]}, α = 4 n = 4, Π0 = 0, α = 1
Ratio KF and IMCC-KF Root mean square errors RMSExi

Root mean square errors RMSExi
CPU time

q4/R implementations x1 x2 x3 x4 ‖ · ‖2 x1 x2 x3 x4 ‖ · ‖2 (s.) (%)

0.63 · 10−2 Classical Riccati KF 80.95 1.77 0.42 0.92 80.97 78.37 2.07 0.00 0.91 78.40 0.0159 NA

IMCC-KF Riccati (20)-(22) 80.90 1.95 0.42 0.93 80.93 77.69 2.34 0.00 0.91 77.73 0.0212 -

IMCC-KF Algorithm 1 80.90 1.95 0.42 0.93 80.93 77.69 2.34 0.00 0.91 77.73 0.0203 4.4

IMCC-KF Algorithm 2 80.90 1.95 0.42 0.93 80.93 77.69 2.34 0.00 0.91 77.73 0.0202 5.2

IMCC-KF Algorithm 3 80.90 1.95 0.42 0.93 80.93 77.69 2.34 0.00 0.91 77.73 0.0205 3.7

IMCC-KF Algorithm 4 80.90 1.95 0.42 0.93 80.93 77.69 2.34 0.00 0.91 77.73 0.0206 3.2

0.63 · 10−4 Classical Riccati KF 81.77 4.26 0.44 0.93 81.89 60.75 5.93 0.00 0.92 61.05 0.0167 NA

IMCC-KF Riccati (20)-(22) 81.32 3.95 0.44 0.93 81.42 56.54 6.61 0.00 0.92 56.93 0.0218 -

IMCC-KF Algorithm 1 81.32 3.95 0.44 0.93 81.42 56.54 6.61 0.00 0.92 56.93 0.0210 3.6

IMCC-KF Algorithm 2 81.32 3.95 0.44 0.93 81.42 56.54 6.61 0.00 0.92 56.93 0.0206 6.0

IMCC-KF Algorithm 3 81.32 3.95 0.44 0.93 81.42 56.54 6.61 0.00 0.92 56.93 0.0211 3.5

IMCC-KF Algorithm 4 81.32 3.95 0.44 0.93 81.42 56.54 6.61 0.00 0.92 56.93 0.0214 1.9

IV. NUMERICAL EXPERIMENTS

The goal is to justify the theoretical derivation of the newly

suggested Chandrasekhar-based MCC-KF estimators in Section III.

Example 1: The dynamic of the in-track motion of a satellite

traveling in a circular orbit is given as follows [42, p. 1448]:

xk+1 =









1 1 0.5 0.5
0 1 1 1
0 0 1 0
0 0 0 0.606









xk+wk, Q =









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 q4









,

yk =
[

1 0 0 0
]

xk + vk, R = 1,

with zero-mean initial state and Π0 = diag{[1, 1, 1, 10−2]}. In [42],

two cases are examined: (i) q4 = 0.63·10−2 , and (ii) q4 = 0.63·10−4 .

The original MCC-KF estimator has been derived for dealing

with the impulsive noise case in [6]. Here, we follow the same

experimental conditions as in the cited paper, i.e.

wk ∼ N (0, Q) + Shot noise,

vk ∼ N (0, R) + Shot noise

where the short noise is generated as follows: (i) only 10% of samples

are corrupted by the outliers; (ii) the discrete time instants tk cor-

rupted are selected randomly from the uniform discrete distribution

in [21, N − 1] where the system is simulated for N = 300 discrete

time points; (iii) the magnitude of each impulse is chosen randomly

from the uniform discrete distribution in the interval [0, 3].

When the stochastic model is simulated for N = 300, the inverse

problem (i.e. the state estimation from the observed signal) is solved

by various filtering methods under examination. The root mean square

error (RMSE) is calculated over M = 500 Monte Carlo runs to

justify the estimation accuracy. Additionally, the average CPU time

(s) is collected for each implementation in Table I. The runtime

benefit is also computed for Algorithms 1–4 compared to the Riccati-

based counterpart as follows: (CPUChandrasekhar/CPURiccati−1)
and it is expressed in percent. It is worth noting here that the CPU

time benefit is remarkable when α << n. It is not difficult to see that

if Π0 = 0 in Example 1, then ∆
[

P1|0

]

= GQG⊤ where G = I4 and,

hence, α = 1 while n = 4. For this case we present the CPU time and

the computed computational benefit in Table I. In general case of Π0

utilized in Example 1, we do not know in advance the exact value of

α, because it is defined automatically from the related factorization.

However, for readers’ convenience, we force Algorithms 1–4 to return

this value and summarize the results for various Π0 together with the

outcomes of the numerical experiments in Table I.

Having analyzed the results summarized in Table I, we make a few

conclusions. First, we observe that the MCC-KF implementations out-

perform the classical KF for estimation quality in case of impulsive

noise examined in this paper. This result was anticipated, because the

MCC KF-like estimators are shown to be more robust with respect to

outliers than the classical KF methodology in many recent papers. In

our experiments, the difference in estimation accuracies between the

classical KF and the MCC KF-like methods is modest, because we

use the adaptive kernel size selection approach suggested in [6] that

yields the constant adjusting parameter λ.This allows for testing the

suggested Chandrasekhar implementations. For other adaptive kernel

size selection strategies the difference in estimation quality between

the classical KF and the MCC KF-like estimators might be more

impressive. However, this paper is rather focused on the existence of

the Chandrasekhar-type recursion under the MCC methodology.

Having compared the Riccati- and Chandrasekhar-based MCC

KF-like implementations, we conclude that they produce the same

estimates of the state vector, i.e. their resulted accuracies are the same

for any initial value Π0 and various signal-to-noise-ratio values under

examination. This substantiates the correctness of the theoretical

derivation presented in Section III. In other words, the mathematical

equivalence between the classical Riccati- and the newly suggested

Chandrasekhar-based filtering under the MCC-KF methodology is

validated in practice.

Finally, having compared the CPU time averaged over Monte Carlo

runs, we conclude that the Chandrasekhar-based implementations are

faster than their algebraically equivalent Riccati-based counterparts

when α < n. This is in line with the previous research focused on

the Chandrasekhar-based KF implementations in [26], [28]. More

precisely, from the last column in Table I we observe that the

Chandrasekhar-based MCC-KF implementations work approximately

on 5% faster than the Riccati-based MCC-KF algorithm in case of

low-dimensional problem in Example 1, i.e. when α = 1 and n = 4.

Thus, we conclude that the newly-developed Chandrasekhar-based

MCC-KF implementations provide the same estimation quality to that

of the original Riccati-based IMCC-KF algorithm, but at a reduced

CPU time. This runtime difference is expected to be significant in

case of estimating the large-scale dynamical systems.

V. CONCLUDING REMARKS

In this technical note, the first Chandrasekhar recursion is derived

for the maximum correntropy Kalman filtering. The theory is inferred

for a case of the adaptive kernel size selection mechanism that yields

a constant adjusting parameter. Several Chandrasekhar-based MCC
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KF-like implementations have been proposed, and the numerical

experiments substantiate their practical feasibility and efficiency. The

derivation of the Chandrasekhar-type recursion for a general case of

a time-variant adjusting weight in the MCC-KF estimators is rather

complicated. This is an area for a future research. Another open

question is a design of the Kalman-like nonlinear filtering methods

under the MCC methodology; e.g. the MCC-EKF is planned for a

future work based on the results in [43]–[45].
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