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Dynamic attitude planning for trajectory tracking in
thrust-vectoring UAVs

Davide Invernizzi, Marco Lovera and Luca Zaccarian

Abstract— This paper addresses the trajectory tracking control
problem for underactuated UAVs, with specific focus on vehicles
with thrust-vectoring capabilities. According to the different actua-
tion mechanisms, the most common UAV platforms can achieve
only a partial decoupling of attitude and position tasks. Since
position tracking is of utmost importance for applications involving
aerial vehicles, we propose a control scheme in which position
tracking is the primary objective. To this end, this work exploits
the concept of attitude planner, a dynamical system through which
the desired attitude reference is processed to guarantee the sat-
isfaction of the primary objective: the attitude tracking task is
considered as a secondary objective which can be realized as long
as the desired trajectory satisfies specific trackability conditions.

Index Terms— UAVs, thrust vectoring, trajectory tracking

I. INTRODUCTION

The increasing demand of complex and challenging applications
involving Vertical-Take-Off and Landing Unmanned Aerial Vehicles
(VTOL UAVs) has led to the design of novel configurations to
overcome the maneuverability limitation of standard platforms. In
particular, multirotor UAVs with coplanar propellers cannot fulfill at
the same time attitude and position tasks. We refer to these platforms
as vectored-thrust UAVs because their propulsive system can deliver
a control force only along a fixed direction within the airframe.

By designing an actuation mechanism that can change the thrust
direction within the airframe, more complex maneuvering can be
performed. Such platforms, which we call thrust-vectoring UAVs,
can be realized by mounting the propellers in a non-coplanar fashion
[3], [5] or by employing servo-actuators to dynamically adjust their
orientation [8], [9], [19]. When the thrust vectoring capabilities
are limited, the tracking control problem is challenging since only
a partial decoupling is possible between the attitude and position
objectives. In particular, our work starts by showing that it is
impossible to track an arbitrary full pose trajectory (independent
attitude and position) also for thrust-vectoring configurations, when
the vectoring capability is limited. In this case a viable approach is to
prioritize control objectives, for instance by subduing the realization
of attitude tracking to the achievement of position tracking [5], [8].
While much literature is devoted to the trajectory tracking problem
for the vectored-thrust configuration [7], [11], [13], [17], [18], [21],
few works address the thrust-vectoring one [5], [8], [12].

The control design that we propose is developed in two stages. The
first step is the design of a control force and torque that ensure robust
tracking of any desired trajectory that possesses certain smoothness
and boundedness properties. In the second step, we design a dynamic
attitude planner to account for the system underactuation and to
enforce prioritization of the position tracking objective over the
attitude one in the spirit of ideas proposed in [5], [8]. In developing
our control law we take as well inspiration from [18], in which the
emphasis was on defining classes of position and attitude controllers
that stabilize the UAV at a given position. In the same way, our

D. Invernizzi, M. Lovera are with Department of Aerospace Science
and Technology, Politecnico di Milano, Via La Masa 34, 20156, Milano,
Italy.

L. Zaccarian is with LAAS-CNRS, Université de Toulouse, CNRS,
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control design parametrizes a family of control solutions to the
tracking problem for underactuated UAVs provided that they possess
some basic properties. Moreover, our contribution extends the results
of [18], which only deals with stabilization (constant reference)
and vectored-thrust platforms and the results of [11], which only
deals with a static attitude planning and vectored-thrust platforms.
This extension is non-trivially accomplished here by characterizing
a non-autonomous closed-loop by way of set-valued maps and it
allows considering a large class of attitude control laws that do
not necessarily make the attitude error subsystem autonomous nor
exponentially stable [5], [8]. As in our previous work [11], the control
design leaves freedom also in the choice of the position feedback
stabilizer, provided that it guarantees certain properties: a basic
requirement is the position dynamics be Input-to-State Stable (ISS)
with respect to small inputs. Such property is ensured by employing,
e.g., nested saturations-based stabilizers [17]. Then, we show that our
control design provides robust tracking with semi-global properties.
To achieve this result, we study the stability of the closed-loop
interconnection between the attitude and position error systems within
the framework of differential inclusions. This approach simplifies the
analysis of the corresponding cascaded non-autonomous system: the
proof technique relies on casting the control problem as a stability
problem for a compact attractor with dynamics satisfying regularity
conditions, which ensures robustness of the stability property against
a very large class of (sufficiently small) perturbations [6, Chapter
7]. Our proof is based on reduction theorems [14] which have been
exploited with a different control strategy in [16] to address set-
point tracking (stabilization). Finally, we show that existing attitude
planning strategies developed for vectored-thrust [13] and thrust-
vectoring platforms [12] fit within the proposed robust control design
framework.

Notation. The canonical basis in Rn is denoted as ei :=

(0, . . . , 1, . . . , 0) for i ∈ {1, ..., n} and the identity matrix in Rn×n

is denoted as In := [e1 · · · ei · · · en]. Given x = (x1, . . . , xn) ∈
Rn, ‖x‖ :=

√
x21 + . . .+ x2n is the Euclidean norm while for a

matrix A ∈ Rn×n, ‖A‖F :=
√

tr(ATA) is the Frobenius norm and
skew(A) := A−AT

2
is the skew-symmetric part of A. A ∈ Rn×n

>0 (Rn×n
<0 )

denotes a positive (negative) definite matrix. The minimum and maximum
eigenvalues of A ∈ Rn×n are λm(A) and λM (A), respectively, and
skew(A) := A−AT

2
is the skew-symmetric part of A. Set SO(3) :=

{R ∈ R3×3 : RTR = I3, det(R) = 1} denotes the third-order Special
Orthogonal group. The normalized distance of R ∈ SO(3) with respect
to I3, induced by the Frobenius norm, is denoted as ‖R‖SO(3) :=

1
8
‖R − I3‖F =

√
1
4

tr(I3 −R) ∈ [0, 1]. Given ω ∈ R3, the hat
map ·̂ : R3 → so(3) := {Ω ∈ R3×3 : Ω = −ΩT } is such that
ω̂y = ω × y, ∀y ∈ R3 and × represents the cross product in R3. The
inverse of the hat map is the vee map, denoted as (·)∨ : so(3) → R3.
The set of piecewise-continuous and bounded functions is denoted as
L∞. We use standard comparison functions: a function α : R≥0 → R≥0

is of class K if it is zero at zero, strictly increasing, and continuous. It is
of class K∞ if it is also unbounded. A function β : R≥0×R≥0 → R≥0

is of class KL if it is of class K in the first argument and nonincreasing
and converging to zero as its second argument tends to +∞.
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II. DYNAMICAL MODELS FOR THRUST-VECTORING UAVS

This section recalls the simplified dynamical model of multirotor
UAVs that is usually employed for control design purposes. In order
to obtain a control design independent of the specific actuation
mechanism, we will assume the control wrench wc := (fc, τc), where
fc ∈ R3 and τc ∈ R3 are the control force and torque, respectively, to
be the control variable. Then, we will resort to approximate models of
the wrench map (from physical inputs to delivered wrench), according
to most common actuation mechanisms. The equations of motion for
control design are:

ẋ = v (1)

Ṙ = Rω̂ (2)
mv̇ = −mge3 +Rfc (3)
Jω̇ = −ω̂Jω + τc, (4)

where x ∈ R3 and v ∈ R3 are position and velocity of the center
of mass in the inertial frame, respectively, R = [ b1 b2 b3 ] ∈ SO(3)
is the rotation matrix describing the attitude of the body fixed frame
FB := {b1, b2, b3} with respect to the inertial frame, ω ∈ R3 is the
body angular velocity, m ∈ R>0 and J = JT ∈ R3×3

>0 are the UAV
mass and inertia matrix with respect to the principal axes.

When the range of the map from the set of physical inputs U to the
delivered wrench, namely U 3 u 7→ wc(u), spans R6, the system is
fully actuated. In the following, the control torque τc is assumed to
span R3, whilst the actuation mechanism allows delivering the control
force fc only on a compact subset of R3. Within this category of
UAVs, a further classification distinguishes between vectored-thrust
[11] and thrust-vectoring configurations [5]. As per the first class,
the control force can be delivered only in the common direction of
the thrust axes of the propellers:

fc3(t) > 0, fc1(t) = fc2(t) = 0 ∀t ≥ 0. (5)

This configuration is adopted in most multirotor UAVs thanks to the
inherent mechanical simplicity combined with good performance in
many flight conditions. The second class comprises UAVs with thrust-
vectoring capabilities such as multirotor UAVs both with fixed-tilted
[5] or dynamically tiltable propellers [19]. While the dynamically
tiltable configuration makes the system fully actuated if the tilt angle
of the servo-actuators is not limited, this is not true for the fixed-tilted
configuration, for which the maximum inclination at which the rotors
are mounted is limited by the efficiency loss: the power consumption
in hover is large and increases with the inclination of the propellers.
For the latter configuration, the control force fc has to satisfy:

0 < cos(θM ) ≤ fc(t)
T e3

‖fc(t)‖
= cos(θc(t)) ∀t ≥ 0, (6)

where θM is the maximum tilt angle and ‖·‖ represents the Euclidean
norm. Finally, for all the cases above, we assume that the control
force is bounded by a positive scalar TM ∈ R>0, namely ‖fc(t)‖ ≤
TM ∀t ≥ 0. This constraint is required to account for actuators
saturations, in particular the limited spinning velocity of propellers.

III. CONTROL PROBLEM STATEMENT

This work deals with the tracking control problem for the sys-
tem described by (1)-(4). The objective is to track a reference
t 7→ (Rd(t), ωd(t), xd(t), vd(t)) ∈ TSO(3) × R3 × R3, where
TSO(3) := SO(3)× R3 is the trivial tangent bundle of SO(3).

When considering the actuation limitations shown in the previous
section, the tracking of an arbitrary reference trajectory in TSO(3)×
R3×R3 is not possible due to the platform underactuation. However,
platforms with thrust-vectoring capabilities can achieve a certain
degree of decoupling between attitude and position tracking when the
corresponding trajectories are compatible in some sense. To suitably
represent and exploit these degrees of freedom, let us first compute

Fig. 1. Control scheme: cascade interconnection.

the steady state (short, ss) control wrench, which is obtained by
inverting the system dynamics:

fssc (t) := mRTd (t) (v̇d(t) + ge3) (7)
τssc (t) := Jω̇d(t) + ω̂d(t)Jωd(t). (8)

For arbitrary position and attitude trajectories, it is likely that fssc
will not be compatible with the actuation limitations (5) and (6).
On the other hand, because position tracking is mandatory in aerial
applications, equation (7) suggests that the desired attitude can be
properly modified to be compliant with the actuation constraints.
Indeed, according to equation (7), the control force is obtained by
rotating the vector m (v̇d + ge3) by RTd . ı̀ We will propose a strategy
to track the desired attitude as long as it allows following the desired
position, as already suggested by [8] and [5]. Whenever this condition
cannot be granted, only the closest feasible attitude will be tracked.
We will exploit the fact that when the control force is delivered along
the vertical direction of the body frame (b3) (vectored-thrust case),
the constraint (6) for the thrust-vectoring case is satisfied as well.

Before going on, the following assumptions (not too restrictive for
standard applications) are required to hold for the desired trajectory.

Assumption 1: Smoothness and boundedness of the desired tra-
jectory. The desired trajectory t 7→ (Rd(t), ωd(t), xd(t), vd(t)) ∈
TSO(3)×R3×R3 satisfies Ṙd(t) = Rd(t)ω̂d(t) and ẋd(t) = vd(t),
for all t ≥ 0, and is continuously differentiable up to the second
order. Furthermore, the desired linear acceleration v̇d(·) and angular
velocity ωd(·) are bounded.

IV. ROBUST STABILIZATION OF THE ERROR DYNAMICS

In this section we show the design of a control law that ensures
position tracking for any bounded and sufficiently smooth trajectory
with no restriction on the initial position error and some restriction
on the initial attitude error. Specifically, we will show that the system
dynamics can be represented by a feedback interconnection in which
an attitude planner provides the reference to the attitude subsystem
which, in turn, affects the position error dynamics (see Figure 1).

The attitude planner design plays a central role in our control
strategy. This subsystem takes the desired attitude reference and the
position errors as inputs and is in charge of computing a reference
attitude and angular velocity that are feasible, in the sense that
the actuation constraints are satisfied. Specifically, the output of the
planner (which is the actual reference to the attitude subsystem) is
denoted as (Rp, ωp) ∈ TSO(3).

Property 1: The attitude planner output (Rp, ωp) ∈ TSO(3) is
feasible, in the following sense

Ṙp(t) = Rp(t)ω̂p(t), ∀t ≥ 0, ωp(·) ∈ C1 ∩ L∞. (9)

A. Control force and position error dynamics

Since the goal of this work is to obtain a control law that prioritizes
position over orientation tracking, we start by inspecting the position
error dynamics. By focusing on the dynamics in (1)-(4), the natural
choice of the tracking errors for position and velocity is:

ex := x− xd, ev := v − vd. (10)

Accordingly, the position and velocity errors are expressed in the in-
ertial frame. The control objective is to stabilize the origin (ex, ev) =
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(0, 0) ∈ R3 × R3. Consider the equations (1), (3) and the definition
of the errors in (10). Then,

ėx = ev (11)
mėv = m (v̇ − v̇d) = −m (v̇d + ge3) +Rfc. (12)

The system would be fully actuated if one could arbitrarily assign
fc, and it would be possible to enforce Rfc = fd, with

fd(ex, ev, v̇d) := β (ex, ev) +m (v̇d + ge3) , (13)

where β : R3 × R3 → R3 is a static state feedback stabilizer. The
corresponding closed-loop dynamics would be described by (11) and
mėv = β (ex, ev). Thus, the origin would be globally asymptotically
stable. In this work we will adopt the same strategy used in [17],
corresponding to a nested saturations-based static nonlinear feedback:

β (ex, ev) := λ2sat
(
k2
λ2

(
ev + λ1sat

(
k1
λ1
ex

)))
, (14)

where sat(·) is a smooth decentralized unit saturation function
satisfying the properties mentioned in [Sec. II-A] [17], k1, k2 and
λ1, λ2 are gains and saturation levels to be selected according to the
guidelines of [Prop. 1] [17]. While we develop our theory for this
specific stabilizer, we emphasize that similar generalizations to those
reported in [11], [18] are possible, thus allowing for stabilizing laws
inducing improved transients.

To account for the fact that it is not possible to obtain Rfc = fd
when the control force cannot span R3, it is convenient to rewrite
the velocity error dynamics as:

mėv = −m (v̇d + ge3) +RRTp Rpfc (15)
= −m (v̇d + ge3) +ReRpfc. (16)

where Rp is the reference attitude given by the attitude planner and

Re := RRTp ∈ SO(3) (17)

is the so-called left attitude error [1]. Introducing the corresponding
angular velocity error,

eω := ω − ωp, (18)

a natural choice for the control force fc is

fc := RTp Φ (Re, eω, t) fd, (19)

where Φ(Re, eω, t) : TSO(3)×R≥0 → R3×3 is a design function,
selected later, ensuring that Φ(Re, eω, t) → I3 for (Re, eω) →
(I3, 0) and ∀t ≥ 0. Indeed, by adding and subtracting fd in equation
(16), the closed-loop velocity error dynamics reads:

mėv = β (ex, ev) + ∆R (Re, eω, t) fd(ex, ev, v̇d) (20)

where
∆R(Re, eω, t) := ReΦ (Re, eω, t)− I3. (21)

Written in this form, the position error is clearly affected by the
attitude error through the term ∆Rfd, which is the mismatch between
the desired force fd and the actual control force resolved in the
inertial frame, i.e., Rfc.

Remark 1: The control force is obtained by scaling the desired
force fd by a suitable term Φ (Re, eω, t) dependent on the attitude
error, and then by applying a rotation RTp to the resulting vector. The
idea behind the proposed control law is twofold. When the attitude
error is large, the scaling term Φ (Re, eω, t) can be used to reduce
the control force and, correspondingly, the overshoot in the position
tracking is limited and the transient behavior can be improved. The
second point is related to the fact that the desired attitude may be
such that the constraints on fc expressed by equations (5)-(6) are
still not respected with the control force defined in equation (19).
However, by prioritizing position over orientation tracking one can
consider the planner rotation matrix Rp as an additional degree of

freedom to ensure that the scaled control force Φ (Re, eω, t) fd is
eventually rotated to be compliant with the actuation constraint.

The rationale behind the proposed control law is that if the attitude
error dynamics can be made asymptotically stable, then, for t→∞,
Re(t) → I3, Φ (Re(t), eω(t), t) → I3 and the control force
delivered in the inertial frame R(t)fc(t) = Re(t)Φ(t)fd(t) →
fd(t), which is the force in the inertial frame required to track the
desired position trajectory. Indeed, in this case, the mismatch between
the desired and actual control force converges to zero as well, namely
∆R(t)fd(t) → 0. Firstly, the choice of Φ must be such that the
following property holds true for the attitude mismatch ∆R.

Property 2: (Vanishing perturbations). Consider ∆R defined in
(21). Given Va(Re, eω) :=

√
‖eω‖2 + ‖Re‖2SO(3)

, there exists a
bounded class-K function γ(·), satisfying ∀ (Re, eω, t) ∈ TSO(3)×
R≥0:

‖∆R(Re, eω, t)‖ ≤ γ (Va (Re, eω)) . (22)
We will now show a possible selection of Φ such that the above

property is verified. A wide range of performance-oriented alternative
choices are possible as long as they satisfy Property 2, which is
needed to ensure that, at convergence, the magnitude of the delivered
control force fc converges to the nominal force fssc (7). It is
straightforward to employ a scaling transformation, dependent on the
attitude error alone, as follows:

Φ(Re, eω, t) := c(Re, t)I3, (23)

where c : SO(3) × R≥0 → R is a properly selected function. The
next proposition, whose proof is given in [10, Appendix], gives an
example of such scaling function, which is naturally written in terms
of the angle θe between the desired direction bp3 := Rpe3 and the
vertical body axis b3 := Re3,i.e.,

θe(Re, Rp) := arccos(bTp3b3) = arccos(eT3 R
T
p ReRpe3). (24)

Proposition 1: Given c(Re, t) :=
`−(1−cos(θe(Re,Rp(t))))

` ,
where θe is defined in (24), then, for Φ(Re, eω, t) := c(Re, t)I3
and ` > 2, Property 2 is satisfied.

B. Control torque and attitude error dynamics
The attitude controller has to ensure the convergence of the attitude

tracking errors according to the fully actuated rotational dynamics
in equations (2), (4). By using matrix multiplication as the group
operation, the attitude error Re = RRTp , is employed as the attitude
error measure in SO(3), which was already introduced in equation
(17). The error kinematics are derived from (2) and (9) as follows:

Ṙe = ṘRTp +RṘTp = ReRpêωR
T
p . (25)

Consider the system defined in (2), (4) and the control law

τc := −RTp eR −Kωeω + Jω̇p + ω̂pJω, (26)

where Kω ∈ R3×3 is positive definite and eR := skew(KRRe)
∨ ∈

R3 is the left-trivialized derivative of the modified trace function
ΨKR

(Re) := 1
2 tr(KR(I −Re)). The map (·)∨ : so(3) 7→ R3 used

in the definition of eR represents the inverse of the ·̂ map defined
in the notation section. It is assumed that matrix KR ∈ R3×3 is
symmetric and that it satisfies:

tr(KR)I3 −KR ∈ R3×3
>0 . (27)

Using (25) and the control torque (26) with the rotational equations
of motion (2), (4), the dynamics of the errors (17) and (18) reads:

Ṙe = ReRpêωR
T
p (28)

Jėω = −RTp eR −Kωeω − êωJeω − êωJωp. (29)

The control torque (26), first proposed by [1], has a simpler ex-
pression than the one based on the right group error considered
in [13] and no cancellation of non-harmful nonlinearities occurs.
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The equilibria for the attitude subsystem are the points where the
differential of ΨKR

and the angular velocity error vanish, i.e., eR =
0, eω = 0. The set of equilibria contains the desired equilibrium
(Re, eω) = (I3, 0) and additional undesired configurations corre-
sponding to the other critical points of ΨKR

. Due to this intrinsic
structure of SO(3), no time-invariant continuous control law can
globally stabilize (I3, 0). Nonetheless, by defining the scalar (positive
from (27)):

`R := λm (tr(KR)I3 −KR) > 0, (30)

it is well known that in the sublevel set

SR :=
{
Re ∈ SO(3) : ΨKR

(Re) < `R
}
, (31)

the point Re = I3 is the unique critical point and minimum of ΨKR
.

Next, the total error energy function

VR (Re, eω) :=
1

2
eTωJeω + ΨKR

(Re) , (32)

will be used in the stability analysis. It can be shown that this
function is a Lyapunov candidate for the attitude error dynamics,
i.e., it is positive definite about (Re, eω) = (I3, 0), continuously
differentiable and radially unbounded in the direction of ‖eω‖ → ∞.
The following theorem, the proof of which is reported in Section VII
to avoid breaking the flows of the exposition, establishes desirable
properties of the attitude stabilizer.

Theorem 1: Consider the system described by (28)-(29) and a ref-
erence attitude t 7→ (Rp(t), ωp(t)) ∈ TSO(3) satisfying Property 1.
For any symmetric matrix KR ∈ R3×3 satisfying (27) and any matrix
Kω ∈ R3×3

>0 , the equilibrium point (Re, eω) = (I3, 0) is uniformly
asymptotically stable (UAS) with basin of attraction containing the
set

Sa := {(Re, eω) ∈ TSO(3) : VR (Re, eω) < `R} (33)

where `R and VR are defined in (30) and (32).
Remark 2: By choosing KR = kRI3, kr ∈ R>0, which satisfies

(30) with `R = 2kR, the sublevel set of ΨKR
in (31) contains all the

rotations with an angle strictly less than 180◦, namely almost all the
configurations in SO(3). By increasing the gain kR, also the set of
initial conditions eω(t0) included in (33) can be arbitrarily enlarged
achieving a semi-global stability property. Robust global asymptotic
stability of the desired equilibrium (I3, 0) can be obtained by using
a hybrid controller on SO(3) [15].

Remark 3: As an alternative choice to (26), the control law τ̃c :=

ω̂Jω+J
(
ω̇p − ω̂pω −RTp (eR +KωRpeω)

)
substituted in (2), (4)

provides the following closed-loop:

Ṙe = Re ˆ̃eω (34)
˙̃eω = −eR −Kω ẽω, (35)

where ẽω := Rp(ω−ωp). In this way the closed loop is autonomous
and independent of ωp. Even though this choice would make the
stability analysis of the control scheme simpler and would place less
restrictions on the position stabilizer (see Remark 6), it would also
make the design less general. For instance, the feedback τ̃c cancels
non-harmful nonlinearities making it less desirable from the point of
view of actuation effort.

C. Complete dynamics

This section presents the main results of the stability analysis for
the complete system. Our proof is based on a compact representation
of the closed loop wherein the solutions of the time-varying dynamics
is embedded into a time-invariant differential inclusion, in ways that
are similar to the strategy in [17], even though the approach adopted
here does not require the (somewhat stringent) assumption ω̇p be
bounded. By introducing xa := (Re, eω) and xp := (ex, ev), the
solutions to the attitude error dynamics (28)-(29) and the position

error dynamics (11), (20) can be embedded within the solution funnel
generated by the following constrained differential inclusion1:

(A) ẋa ∈ Fa(xa), xa ∈ TSO(3) (36)

(P ) ẋp ∈ Fp (xp, xa) , xp ∈ R3 × R3, (37)

with a slight abuse of notation2 and where Fa(xa), Fp(xp) are

Fa(xa) := (38)⋃
Rp ∈ co (SO (3))∥∥ωp

∥∥ ≤ ωM

[
ReRpêωR

T
p

−J−1
(
RTp eR +Kωeω + êωJeω + êωJωp

) ] ,
Fp(xp, xa) :=

[
ev

1
m

(
β(ex, ev) + fMγ(Va(Re, eω))B3

)] (39)

where co(·) denotes the closed convex hull, B3 is the closed unit
ball and ωM ∈ R>0 is a constant existing thanks to Assumption 1.
Moreover, function γ comes from (22), and scalar fM :=

√
3λ2+fssM

is a bound on fd arising from substituting (7) and (40) into (13).
Based on representation (36), (37), asymptotic tracking for the

complete dynamics can be proven, under Assumption 1, as stated
by the following Theorem.

Theorem 2: Consider the closed loop system described by (11),
(20) and (28), (29) controlled by (19), (26) and the planner output
given by (Rp, ωp) = (Rd, ωd) ∈ TSO(3), where the desired
trajectory t 7→ (Rd(t), ωd(t), xd(t), vd(t)) satisfies Assumption 1.
Then, if Φ(·, ·, ·) is selected according to Property 2, for any
symmetric matrix KR satisfying (27), any Kω ∈ R3×3

>0 , the point
(Re, eω, ex, ev) = (I3, 0, 0, 0) is robustly uniformly asymptotically
stable with basin of attraction containing the set Sa×R3×R3, where
Sa is defined in (33).

Proof: The cascaded interconnection (36), (37) comprises the
upper subsystem (36), whose stability properties (with domain of
attraction Sa) is established in Theorem 1, and the lower subsystem
(37), which is stabilized by the nested saturation feedback (14)
proposed in [17]. (Local) stability of the cascade follows from
standard reduction theorems for differential inclusions (see, e.g., [14])
whereas attractivity from Sa × R3 × R3 can be established using
the small signal ISS properties of stabilizer (14) following the same
steps as in [17, Proof of Prop. 4]. Finally, stability and attractivity
of the point (Re, eω, ex, ev) = (I3, 0, 0, 0) for the closed loop
implies robust uniform asymptotic stability from Sa × R3 × R3, by
concatenating the implications in [6, Thm 7.12] and [6, Thm 7.21].

V. ATTITUDE PLANNING FOR CONSTRAINTS COMPLIANCE

Theorem 2 establishes robust asymptotic stability of the origin for
the error dynamics, regardless of the reference orientation (Rp, ωp) ∈
TSO(3). Nonetheless, it gives no guarantees about the fact that the
force fc requested by the control scheme satisfies the constraints
characterized in Section II. In this section we propose to select
(Rp, ωp) according to a dynamic attitude planner, as represented in
Figure 1, which is in charge of properly changing the desired attitude
to prioritize position over orientation tracking, while respecting the
input constraints at hand. With respect to the approach of [5],
in which the reference attitude is obtained as the solution of an
optimization problem, our design allows to naturally compute a
differentiable reference that satisfies Property 1 so that τc in (26)
is well defined. Note also that the control design of [5], [8] limits the
choice of attitude stabilizers to those making the desired equilibrium
exponentially stable.

1Following [6, §6.2.1], the regularity of the data of our constrained
differential inclusions simplifies the definition of solutions of ẋ ∈ F (x),
x ∈ C, corresponding to any absolutely continuous function φ such that
φ̇(t) ∈ F (φ(t)) and φ(t) ∈ C for almost all t.

2To be consistent with the formulation, the differential inclusion should be
written by exploiting the vectorization, vec(Ṙe) ∈ vec

(
ReRpêωRT

p

)
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Before proceeding with the planner design, we recall the following
additional assumptions on the desired trajectory which are needed to
ensure a well-defined planner reference at all times.

Assumption 2: The desired trajectory t 7→ (Rd(t), ωd(t), xd(t),
vd(t)) ∈ TSO(3)× R3 × R3 satisfies Assumption 1 and

1) the desired acceleration v̇d(·) is such that the nominal force (7)
is bounded by some strictly positive constants fssm , fssm , i.e.,

0 < fssm ≤ ‖fssc (t)‖ ≤ fssM < TM ∀t ≥ 0, (40)

and that inft≥0(m|g + v̇d3 |) > 0;
2) the desired trajectory xd(·) belongs at least to C4;
3) the desired jerk v̈d(·) belongs to L∞

A. Attitude planner dynamics
There is a natural way to express the reference attitude Rp by

noticing that the actuation constraints for all the different config-
urations are satisfied if the control force is delivered along the
positive direction of the b3 axis. Following standard strategies for
underactuated UAVs [13], we introduce a smooth matrix function
Rc(fd, t) : R3 \ {0} × R≥0 → SO(3) defined as:

Rc(fd, t) :=
[
bc1(fd, t) bc2(fd, t) bc3(fd)

]
(41)

where bc3 := fd/‖fd‖ and bc1(fd, t) and bc2(fd, t) are any two
orthogonal unit vectors such that Rc defines a rotation matrix. A
possible selection is:

bc1 := bc2(fd, t)× bc3(fd), bc2 :=
bc3(fd)× bd(t)

‖bc3(fd)× bd(t)‖ . (42)

The vector bd defines the desired heading direction of the UAV:

bd(t) :=
[
cos(ψd(t)) sin(ψd(t)) 0

]T
, (43)

where t 7→ ψd(t) ∈ R is the desired yaw angle (which may be
extracted from a given Rd(t)). We note that Rc(fd, t) is well defined
as long as fd 6=

[
0 0 0

]T . Based on Rc, we select the reference
attitude Rp, output of the attitude planner, as:

Rp := Rc(fd, t)Rr, (44)

where Rr ∈ SO(3) is an additional state of the dynamic attitude
planner. Being an element of SO(3), the differential equation for the
relative attitude Rr can be written as:

Ṙr = ω̂rRr, (45)

where ωr ∈ R3 is the relative angular velocity, with coordinates
in the frame Fc, that will be used as an auxiliary input to control
the evolution of Rr . For instance, ωr can be used to track at best
the desired attitude Rd by exploiting a Lyapunov-based design, once
a suitable potential function of the desired attitude Rd is provided.
Then, the time evolution of Rr can be properly modified in order
to satisfy the actuation constraints (see Section VI). Finally, the
attitude planner has to provide a corresponding velocity reference
ωp, satisfying Ṙp = Rpω̂p, which is computed by first introducing
the angular velocity

ωc(Rc, fd) := (RTc Ṙc)
∨ (46)

of the frame FC := {bc1 , bc2 , bc3}, and then using (44) and (45)
to obtain Ṙp = ṘcRr + RcṘr = RpR

T
r (ω̂c + ω̂r)Rr = Rpω̂p. In

particular, the above relation provides ω̂p = RTr (ω̂c+ ω̂r)Rr which,
by exploiting the vee map (·)∨ gives:

ωp = RTr (ωc(Rc, fd) + ωr) (47)

.
As the main goal of the attitude planner is to track at best the

desired attitude, it is more convenient to rewrite the dynamics (45)
in terms of the planner attitude error, i.e.,

Rpe := RpR
T
d . (48)

Using then Ṙd = Rdω̂d from Assumption 1 and (47), the overall
dynamics of the attitude planner becomes:

Ṙpe = RpeRd(ω̂p − ω̂d)RTd (49)

ωp = (RTc R
p
eRd)T (ωc(Rc, fd) + ωr). (50)

Proposition 2: By selecting the gain λ2 < inft≥0 |m(v̇d3(t)+g)|
in (14), the rotation matrix Rc by (41)-(43), is well defined when the
desired trajectory satisfies Assumption 2.

Proof: The proposition can be proven by inspecting the follow-
ing inequality:

‖fd(t)‖ ≥ |fd3(t)| ≥ m|v̇d3(t) + g| − |β3(ex, ev)| (51)
≥ inf
t≥0
|m(v̇d3(t) + g)| − β3M > 0, (52)

which holds thanks to the equivalence β3M = λ2 for the defi-
nition of (14) coming from [17] and the assumption that λ2 <
inft≥0 |m(v̇d3(t)+g)|. Then, bc1 and bc2 are unit vectors, orthogonal
to each other and with bc3 and well defined ∀t ≥ 0. Indeed, bd(t)
belongs to the horizontal plane by definition (43) and the third
component of bc3 never vanishes from (51). Hence, the cross product
bc3 × bd does not vanish either and so ‖bc3 × bd‖ 6= 0 ∀t ≥ 0 in
equation (42).

The following lemma is a useful link between the output (Rp, ωp)
of the attitude planner, and the reference motion satisfying the
properties of Assumption 1. Its proof is given in [10, Appendix].

Lemma 1: (Feasibility conditions of the planner output). If the
relative angular velocity is bounded and continuously differentiable,
i.e., ωr ∈ (L∞ ∩ C1), and the desired angular velocity ωd satis-
fies Assumption 1, then the reference attitude motion (Rp, ωp) ∈
TSO(3), obtained according to equations (44), (47), is feasible, in
the sense that it satisfies Property 1.

Remark 4: The decomposition of the reference attitude in equation
(44) allows one to effectively account for the actuation constraints of
the different configurations. The angular velocity ωr of the relative
rotation matrix is an additional degree of freedom that can be
exploited when the thrust-vectoring capability is not locked, i.e., when
the control force can be produced in a region around the vertical axis.
This additional input can be exploited to track the desired attitude
at best while taking into account the constraints. Indeed, it is always
possible to select an initial condition Rr(0) such that the actuation
constraints are verified. Then, the evolution of the relative attitude
can be properly controlled by modifying the angular velocity input
ωr to satisfy the constraints.

Remark 5: The requirement xd(·) ∈ C4 in Assumption 1 allows
us to properly define the time derivative of ωp, which is required to
apply the attitude control law, as shown in the next section. Indeed,
by direct computation from (47):

ω̇p = −RTr ω̂rωc +RTr (ω̇c + ω̇r) , (53)

where ω̇c = (RTc R̈c − ω̂2
c )∨.

B. Special selections
In this section we illustrate the relevance of the proposed control

scheme for addressing the input limitations of thrust-vectoring UAVs
(case (b) ). A similar analysis about vectored-thrust configurations
(case (a)) can be found in [10], [11].

Within the present design, we make use of the relative rotation
matrix Rr introduced in (44) to perform attitude maneuvers that are
compatible with position tracking. By considering that Rc defined in
(41) satisfies Rce3 =

fd
‖fd‖

, the control force can be written as:

fc = c(Re, t)R
T
r R

T
c fd = c(Re, t)R

T
r ‖fd‖e3 = c(Re, t)‖fd‖RTr e3.

(54)
By substituting (54) into the constraint (6), we get:

cos(θc) =
c(Re, t)‖fd‖RTr e3
c(Re, t)‖fd‖

= eT3 Rre3 = eT3 br3 , (55)
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which shows that in order to satisfy (6), it is sufficient to guarantee
that eT3 br3 ≥ cos(θM ). In this section we will show how the solution
proposed in [12] to compute the relative angular velocity ωr of
equation (45) to account for the conic region constraint (19) and
exploit the thrust-vectoring capabilities of tiltrotor configurations can
be applied within the present framework. In particular, we will verify
that the planner output obtained by selecting

ωr = br3 × ProjG
(
ωdr × br3

)
+
(
bTr3ω

d
r

)
br3 , (56)

where ProjG : R3 → R3 is a geometric projection operator3 and

ωdr = Rrωd − ωc −RrRTd e
p
R (57)

with epR := kdskew(Rpe)∨, satisfies Property 1. The projection
operator keeps the planar vector b⊥r3 := [ eT1 br3 e

T
2 br3 ] inside a circle

of radius δ := sin(θM ) by acting on the vector field ωdr in the
region

(
δ√
1+ε

, δ
]
, where ε ∈ (0, 1) is a user-defined parameter. In

particular, thanks to the projection operator, eT3 br3(t) ≥ cos(θM )
∀t ≥ 0 and, by virtue of (55), also:

cos (θc(t)) ≥ cos (θM ) ∀t ≥ 0. (58)

As a consequence, if the relative attitude is initialized such that br3
is inside a cone defined by θM around bc3 , it will never leave it.

Lemma 2: The relative angular velocity computed according to
equation (56) is such that the planner output (Rp, ωp) ∈ TSO(3)
obtained with (44), (47), satisfies Lemma 1.

Proof: By exploiting a smooth Projection operator, ωr defined
in (56) is C1 and its time derivative can be computed as in (53).
Then, we can write the following bound on ωr:

‖ωr‖ ≤ ‖ProjG(ωdr × br3)‖+ ‖ωdr‖ (59)

Notice that the projection operator simply removes the radial compo-
nent of ḃdr3 , when it is working, hence ‖ProjG(ωdr × br3)‖ ≤ ‖ωdr‖
because br3 is a unit vector. Finally, we can conclude the boundedness
of ωdr from the following inequality:

‖ωdr‖ ≤ ‖ωd‖+ ‖ωc‖+ ‖epR‖, (60)

in which ωd is bounded according to Assumption 1, ωc is bounded as
shown in [10, Appendix], and epR is bounded, being the left-trivialized
derivative of a function defined on a compact manifold.

Definition 1: A trajectory t 7→ (Rd(t), ωd(t), xd(t), vd(t)) ∈
TSO(3) × R3 × R3 satisfying Assumption 2 is compatible with
the position tracking task for the system of case (b) if, given
δ := sin(θM ), ε ∈ (0, 1) and θb := arcsin

(
δ√
1+ε

)
, there exists

t̄ ∈ R≥0, such that

eT3 f
ss
c (t)

‖fssc (t)‖ ≥ cos(θb) ∀t ≥ t̄, (61)

where fssc (t) is defined in equation (7).
According to Definition 1, the attitude motion is compatible with

the conic region constraint (6) if the angle between the third desired
axis bd3 and the nominal force Rdf

ss
c (t) is within the cone in which

the ProjG operator is not active. The next corollary combines the
results of Theorem 2 and Lemma 2.

Corollary 1: Consider the closed loop system described by (11),
(20), (28), (29), (49) controlled by (19), (26), where the planner
output (Rp, ωp) is given by (44) and (50), with Rc, ωc and ωr
selected as in (41)-(43), (46) and (56)-(57), respectively. Assume that
the desired trajectory t 7→ (Rd(t), ωd(t), xd(t), vd(t)) is trackable
according to Definition 1, that Φ(·, ·, ·) is selected according to (23)
and satisfies Property 2, and that the gains k1, k2 and saturation levels

3The geometric projection operator is an extension of the smooth projection
operator for systems evolving on Rn originally proposed in [2], to the case
of systems evolving on Sn.

λ1, λ2 in (14) are selected according to [17, Prop. 1] and Proposition
2. Then, for any symmetric matrix KR satisfying (27), Kω ∈ R3×3

>0 ,
ε ∈ (0, 1) and kd ∈ R>0, the control force (19) satisfies the actuation
constraint (6) and the point (Re, eω, ex, ev, R

p
e) = (I3, 0, 0, 0, I3)

is robustly asymptotically stable with basin of attraction contain-
ing the set Sa × R3 × R3 × Sap, where Sa is given by (33)
and Sap :=

{
Rpe ∈ SO(3) : eT3 R

T
d (0)(Rpe)T

fd(0)
‖fd(0)‖

≥ cos(θM )
}

,
with fd defined in (13).

Proof: The proof is based on Theorem 2, Lemma 2 and [12,
Thm 3]. Lemma 2 guarantees that the output planner reference
(Rp, ωp) ∈ TSO(3) computed according to (44) and (56) satisfies
Property 1. Therefore, in the given basin of attraction, since the
assumptions of Theorem 2 are satisfied, Rpe evolves on SO(3) accord-
ing to (49), (50) with ωr given by (56) and the projection operator
guarantees that equation (58) holds ∀t ≥ 0, all the closed-loop
solutions converge uniformly to (Re, eω, ex, ev) = (I3, 0, 0, 0).
Then, following the proof [12, Thm 3], combining the trackability
condition in Definition 1 and the properties of the projection operator
together with the expression of ωdr in (57), the theorem can be proved.

Remark 6: (Classes of position and attitude stabilizers). Any po-
sition stabilizer β(·, ·) satisfying the conditions of [Property 2] [11]
would work in Corollary 1. At the same time, different selections of
the control torque (see [1] for some alternatives beyond the one in
Remark 3) could be considered as long as they guarantee UAS of
(Re, eω) = (I3, 0) for any planner reference t 7→ (Rp(t), ωp(t)).
Following Remark 3, our selection in equation (26) is quite general
in terms of characteristics of the attitude error subsystem that one
has to consider when addressing the stability analysis of the complete
control scheme. While this makes our stability analysis quite general,
it comes at the expense of more stringent requirements on the position
stabilizer (second item in [Property 2] [11]) to guarantee that the
planner velocity is bounded (Property 1).

VI. NUMERICAL RESULTS

The control law designed in the previous sections will be applied
to the case of a hexarotor UAV in which each propeller is tilted by an
angle α with respect to the local x-axis (see Figure 2). The mapping
from u := (ω1, . . . , ω6) to the control wrench wc can be compactly
written as wc = M(α)ū [10, eqn. 74], where ωi ∈ [0, ωM ] is the
angular rate of the i-th propeller, ū := (ω2

1 , . . . , ω
2
6) and M(α) ∈

R6×6 is a matrix dependent upon physical quantities of the UAV and
the tilt angle α. Note that non-feasible, i.e., negative, angular rates for
the individual propellers can be obtained when inverting M(α) for a
given control wrench. This can be understood by considering that the
force delivered according to M(α)ū spans only a given region in the
space around b3, the size of which is closely related to the value of
α. The model of case (b) in Section II is reasonable to approximate
the actuation constraint of the considered hexarotor.

The simulation model is a multi-body system with seven bodies
(a central body and six propellers groups) written in the Modelica
modeling language, which accounts for the actuators dynamics as
well as aerodynamic effects. A conservative source of drag has
been considered in the model to verify robustness, which is one
of the main claims of Theorem 2. Furthermore, the control law
has been implemented in a 500Hz sample-data scenario [5] with
a time delay of two samples, together with typical measurement
noise experienced in indoor flight conditions with a motion capture
system. The mass and inertial matrix of the UAV are m = 1 kg and
J = diag (0.008, 0.008, 0.016) kg ·m2, respectively. By considering
α = 20◦, the conic region (6) with θM = 10◦ was found to be
a reasonable approximation of the wrench map M(α) to ensure its
invertibility in a broad operational range. The controller gains are
KR = diag(0.6, 0.6, 1.4), Kω = 0.2I3, ` = 2.1, kd = 2, λ2 =
9, λ1 = 1, k1 = 0.06 k2 = 9, ε = 0.05. The desired position
trajectory is a circle xd(t) = (cos(Ωd(t)t), cos(Ωd(t)t), 0)m, see
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Figure 2, where Ωd(t) is made by two constant intervals connected by
a smooth ramp (top of Figure 3). The desired attitude is Rd(t) = I3,
i.e., the UAV has to fly with level attitude, a requirement that is never
compatible with vectored-thrust configurations. The initial conditions
correspond to hover at x(0) = (1, 0, 0) m. By inspecting Figure 3
(bottom), the considered trajectory is not always feasible in the
sense of Definition 1. Indeed, the inclination angle of the steady
state control force (7) with respect to the vertical body axis, i.e.,
θn := arccos(eT3 f

ss
c (t)/‖fssc (t)‖), is greater than the maximum

tilt angle θM in the interval t ∈ [17, 26]s. It is worth mentioning
that θn represents also the inclination that a vectored-thrust UAV
would have to reach to guarantee position tracking. Figure 4 shows
that, after a transient phase, the position tracking errors remain
bounded: aerodynamic drag prevents their actual convergence to
zero. The oscillations shown at steady state are induced by the
combination of aerodynamic drag (which works in the direction of
−v) and the periodic nature of the circular motion. The attitude
tracking performance is shown in Figure 5, where the inclination
angle of the body axis b3 with respect to the inertial axis e3, i.e.,
θv := arccos(bT3 e3), is plotted (top) together with the yaw angle ψ
(bottom). Since the desired attitude is Rd(t) = I3, the corresponding
desired values are θdv(t) = 0◦ and ψd(t) = 0◦. Additional plots
showing the control variables can be found in the extended report
[10]. When the trajectory is feasible, the UAV is capable of flying
at almost level attitude (θv(t) ≈ 0.5◦). On the contrary, during the
initial transient and the acceleration phase, when the desired attitude
is not compatible with the thrust-vectoring constraint (6) and position
tracking, the attitude tracking objective is only partially achieved and
the projection operator is working to modify the attitude reference so
that position tracking is guaranteed. Note from Figure 2 and Figure 5
that the vehicle is inclined of an angle θv = 11.62◦ at t̄ ≈ 21s
whereas the nominal angle is θn(t̄) ≈ 21◦ > θM . Therefore, the
proposed solution tries to stay as close as possible to the desired
attitude (θdv = 0) even if the trajectory is not trackable. Furthermore,
note that the primary objective is not affected during this phase:
the position tracking performance is not deteriorated. It is worth
mentioning that the tracking errors converge to zero (see Figure 4 and
Figure 5, dashed lines) when the control model (CM) is employed
in the simulation, as expected from Corollary 1. Finally, the conic
region constraint (6) is satisfied at all times, i.e., θc(t) ≤ θM , as
shown in Figure 3 (bottom, solid line).

Fig. 2. Trajectory followed by the hexacopter.

VII. PROOF OF THEOREM 1
To prove Theorem 1, we write the attitude error dynamics as a

constrained differential inclusion and then we apply an invariance
principle to prove the asymptotic stability of the desired attractor.
Equations (28), (29) describe the evolution of the attitude error
dynamics, the solutions of which are also solutions of the differential
inclusion ẋa ∈ Fa, where Fa, defined in (38), is clearly an outer
semicontinuous (its graph is closed) and locally bounded set-valued
map, and for each xa ∈ TSO(3), Fa (xa) is nonempty and convex.
To prove Theorem 1 it will be convenient to intersect Fa (xa) with
the tangent cone to TSO(3), denoted as TTSO(3)(xa) at xa. Indeed
the solutions to (36) can only flow along the directions in the tangent
cone, which simplifies the Lyapunov analysis (see [20] for details).
To this end, the following lemma is useful:
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Lemma 3: Given Fa defined in (38) and the closed set TSO(3),
we have the following:

Fa (xa) ∩ TTSO(3)(xa) = (62)
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⋃
Rp ∈ SO (3)∥∥ωp

∥∥ ≤ ωM

[
RpReR

T
p êω

−J−1
(
RTp eR +Kωeω + êωJeω + êωJωp

) ] .
Proof of Lemma 3. For a smooth manifold, the tangent cone is equiva-
lent to the tangent space, namely TTSO(3)(xa) = TxaTSO(3). Since
TSO(3) is a trivial bundle, i.e., TSO(3) = SO(3) × R3, then we
can write T(Re,eω)TSO(3) ' TReSO(3)×R3. Hence, equality (62)
follows from the observation that ReRpêωRTp ∈ TReSO(3) ←→
Rp ∈ SO(3). � To prove asymptotic stability, we employ the
following invariance principle, which is a corollary of [20, Thm 1].

Proposition 3: Consider ẋ ∈ F (x), x ∈ C, where C is a closed set,
F is a set-valued mapping outer semicontinuous and locally bounded
relative to C, F (x) is nonempty and convex ∀x ∈ C. Given a compact
setA, if there exists a continuously differentiable function V , positive
definite and radially unbounded around A relative to C and such that

V̇ (x) = max
f∈F (x)∩TC(x)

〈∇V (x), f〉 ≤ 0 ∀x ∈ C \ A, (63)

then A is globally stable, namely Lyapunov and Lagrange stable.
Furthermore, the following claims hold:

1) if there exists an open neighborhood U ⊃ A from which no
complete solution γ exists, satisfying V (γ(t))) = V (γ(0)) 6= 0,
then A is asymptotically stable;

2) any such neighborhood U of the form

U := {x ∈ C : V (x) < `} , ` > 0, (64)

is contained in the basin of attraction of A.
Proof of Theorem 1. Since all solutions to (28), (29) are also solution
to (36), we prove Theorem 1 by applying Proposition 3 to (36)
with A = {I3, 0} =: {x∗a}, with the Lyapunov candidate VR in
(32) which is clearly positive definite and radially unbounded. In
particular, for V = VR, we first prove (63) and then we prove item
2) of Proposition 3 with U = Sa, according to (31) and (64).
Verification of (63). From Lemma 3, we may evaluate V̇R in (63) with
F = Fa and Fa (xa)∩TTSO(3) (xa) given in (38), as follows (where
we use eTω (êωa) = 0 and Ψ̇KR

(Re) = − 1
2 tr(KRRe) = eTRRpeω)

V̇R(xa) = −eTωKωeω ≤ 0, ∀xa ∈ TSO(3) (65)

Verification of item 2) of Proposition 3. According to (64) and (31),
select U = {xa ∈ TSO(3) : VR(xa) < `} for some ` > 0. Thanks
to the properties of the potential function ΨKR

, the sublevel set of
the form {xa ∈ TSO(3) : VR(xa) < `}, where ` ≤ `R, with `R
defined in (30), contains only the desired equilibrium point. Indeed,
VR(xa) < `R implies ΨKR

(Re) < `R for any xa ∈ TSO(3) and
only the desired equilibrium point is contained in this sublevel set.
Furthermore, since this set is forward invariant from (65) and the
viability condition of [6, Pag. 124]) is satisfied, maximal solutions
starting in U are complete. We refer now to a solution t 7→ γ(t)
starting in U for which VR(γ(0)) = a 6= 0. Then, if we consider
γ(0) ∈ {xa ∈ U : eω 6= 0}, the function VR(γ(t)) has to decrease
in time by continuity, which implies V̇R(γ(t)) < 0. Instead, if γ(0) ∈
G := {xa ∈ U : eω = 0} \ {x∗a}, then, according to the closed loop
dynamics

Fa(xa)
∣∣
G =

⋃
Rp ∈ co (SO (3))∥∥ωp

∥∥ ≤ ωM

[
0

−J−1RTp eR

]
, (66)

γ(t) will exit the set G for some small t > t0, since eR 6= 0 ∀xa ∈
U\{x∗a}. As a consequence, VR(γ(t)) is forced to decrease again. We
can conclude that there is no complete solution that keeps VR(γ(t))
constant and different from zero. Therefore, from Proposition 3 the
proof is complete. �

VIII. CONCLUSIONS

In this paper we proposed a priority-oriented robust control
paradigm for a general class of underactuated UAVs, in which

position tracking is the primary objective. To this end, we exploited
a dynamic attitude planner in charge of providing a modified attitude
reference, which guarantees that the control force, required to track
the desired position, can always be delivered. A numerical simulation
has been performed by considering a hexarotor with tilted propellers
to verify the robustness of the control law against unmodeled effects
such as unknown mass distribution, aerodynamic drag and distur-
bance torques.
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