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Integral Input-to-State Stability of Networked Control Systems

Navid Noroozi “, Roman Geiselhart

, Seyed Hossein Mousavi

, Romain Postoyan |

and Fabian R. Wirth

Abstract—We investigate integral input-to-state stability (ilSS)
of nonlinear networked control systems (NCSs). The controller is
designed by emulation, i.e., it is constructed to ensure ilSS for the
closed-loop system in the absence of the network. Afterward, the
latter is taken into account and explicit conditions are provided on
the scheduling protocol and the maximum allowable transmission
interval to preserve ilSS for the NCS. The results are applied to two
case studies: bilinear systems and neutrally stable linear systems
under saturated feedback, where the conditions are formulated as
linear matrix inequalities. The effectiveness of the results is further
illustrated via a numerical example.

Index Terms—Hybrid systems, integral input-to-state stability
(iISS), Lyapunov methods, networked control systems (NCSs).

|. INTRODUCTION

In networked control systems (NCSs), both sensor and actuator data
are transmitted over a digital channel. The recent interest in NCSs is
motivated by the many benefits they offer, such as the ease of main-
tenance and installation, configuration flexibility, reduced weight and
volume, and lower cost compared to wired point-to-point connections.
In order to exploit the full potential of this emerging technology, novel
design and analysis approaches are needed, to ensure control function-
ality despite the communication imperfections induced by the network.

A popular design approach for NCSs is the so-called emulation
method, see, e.g., [1]-[5] and references therein. The idea is to first
ignore communication constraints and design a continuous-time con-
troller for the continuous-time plant. Then, the controller is imple-
mented via the network and it is shown that the stability property of the
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closed-loop continuous-time system is preserved for the NCS under
suitable conditions on the network. Typically, the maximum allow-
able transmission interval (MATI) needs to be sufficiently small and,
when scheduling occurs, the protocol has to satisfy a certain stability
property, see [2] and [6].

Since plants with disturbances are prevalent in control applications,
there have been many attempts toward a stability analysis of nonlinear
NCSs in the presence of disturbances via the emulation-based setting.
For instance, £, stability of NCSs is addressed in e.g., [2], [7], and
[8] and input-to-state stability (ISS) of NCSs is considered in e.g., [4],
[9], and [10]. In this paper, we investigate a different, yet relevant,
stability notion for systems with inputs: integral input-to-state stability
@iISS) [11]. This concept is of fundamental importance in control theory
as it extends H, stability to nonlinear systems, cf., [11] and [12] for
more details. Roughly speaking, iISS captures the notion that the system
state remains small, regarding the initial conditions, provided that the
integral of the input (i.e., the input energy) is small.

Building upon the work of [6] where the stability of NCS with no
disturbances is addressed, this paper investigates iISS of NCSs subject
to time-varying transmissions and scheduling. We adapt and extend the
approach in [6] to ensure an iISS property for the NCS with respect to
disturbances on the plant dynamics, the measurement, the control input,
and the transmitted data. Inspired by the recent results in [13] on iISS
of continuous-time systems, we introduce Lyapunov-based conditions
permitting both additive and multiplicative disturbances. This avoids
unnecessary conservatism, which may arise when attempting to upper
bound the cross terms by additive terms. As a result, a less conservative
upper bound on the MATI, compared to the case where the cross terms
are upper bounded by additive terms, is obtained. While the results
of [6] have been already generalized to the case of ISS, e.g., [4], [10],
and [14], 1ISS is a more general property, which requires a different set
of assumptions and different proof techniques. For instance, in com-
parison to conditions in [4], [10], and [14], the gain function governing
the decay of the associated iISS Lyapunov function does not have to
be monotonic. Last but not least, unlike most of the current literature,
e.g., [2], [4], [7], and [14], we not only consider measurement noise
but also disturbances induced by the network, which can be due to
quantization errors or unmodeled transmission delays. The presence
of disturbances leads to the possibility of growth of state trajectories
during jumps, which renders the analysis more difficult. Our results
are applied to two case studies: bilinear systems and linear system un-
der saturated feedback, where the conditions are formulated as linear
matrix inequalities. We further illustrate the results via a numerical
example.

This paper expands on the conference paper [15], where integral
input-to-state practical stability is mainly studied, while asymptotic
properties are ensured here. In addition, the assumptions are different
and more tailored to the problem at hand, and the case studies of bilinear
systems and linear system under saturated feedback are provided. It can
be noted that the results are also new in the sampled-data case, i.e., when
no scheduling occurs.



Il. PRELIMINARIES
A. Notation

R>o(R.) and Z-o (N) are the nonnegative (strictly positive) real
numbers and the nonnegative (strictly positive) integers, respectively.
The standard Euclidean norm is denoted by |-|. For aclosed set .4 C R"
and any point 2 € R", we denote || , := min,c 4 |2 — y|. For any pair
(z,y) € R" x R™, we write (z,y) to represent [z",y"]". We will
consider IC, Ky, and KL comparison functions, see [16, Ch. 4.4] for
definitions. A function 5 : R>g X Ry x Ryg — Ryg isof class CLL
(B € KLL),ifforeachs > 0,5(-,s,-) € KLand B(-, -, s) € KL. The
identity function is denoted by id.

B. Hybrid Systems

Consider a hybrid system with state € R” and input w € R?
defined by

vt = g(z,w) (v,w) €D

where C and D are closed subsets of R” x R?, f:C — R" and g :
D — R™ are continuous. We refer to C and D as the flow set and the
jump set, cf., [17] and [18].

We recall the following definitions concerning hybrid time domains
from [17] and [18]. A subset 2 C R>y x Z>( is called a hybrid
time domain if for all (7,J) € E, EN([0,T] x {0,1,,...,J}) =
U‘j’:0 ([tj,t;+1], ) for some finite sequence of real numbers 0 = ¢, <
-+ <ty.,. For each hybrid time domain F, there is a lexicographic
ordering of points: given (¢,7), (t',j') € E, we say (t,7) = (t',j)
ift+7<t'+j, and (t,j) < (t',5) if t+j<t' +j. For s € R,
i(s) :==sup{i € Zs : (s,1) € E} whenever the set on the right-hand
side is nonempty.

A function defined on a hybrid time domain £ is called a hybrid
signal. A hybrid signal z is called a hybrid arc if for each j € Z~, the
function z(-, j) is locally absolutely continuous on the interval [; :=
{t e R: (t,j) € E}.For the hybrid arc z, we denote z, := z(0,0). A
hybrid signal w : £ — R? is called a hybrid input if for each j € Z~y,
w(+, j) is Lebesgue-measurable and locally essentially bounded on I;.
Ifz : E — R" is a hybrid signal, we also use the notation dom = := F
instead of I, if we want to stress this is the domain of definition of x.
Due to lack of space, the notion of a solution pair (z,w) to H is not
presented here, see [17] for detailed information.

Ill. PROBLEM STATEMENT

Consider the nonlinear plant model
&y = fp(zp,u,d;)
y:gp(xpvdy) (2)

where f, : R"» x R" x R"d: — R" and g, : R"» x R"dv —
R™v are continuously differentiable. Here, z,, € R"» is the plant state,
u € R"* is the control input, d, € R"d is the disturbance input, and
y € R"v is the plant output, which is affected by d, € R"%v . The dis-
turbance d,, can model either some uncertainty in the output function or
some measurement noise. We also assume that we know a continuous-
time controller, which ensures that the closed-loop system with (2) is
iISS with inputs d,, d,, and d, in the absence of a communication
network. We focus on dynamic controllers of the form

Te = fe(wmy)
U= gc (xca du) (3)

where again f. : R"¢ x R"v — R"¢ and g. : R"¢ x R"du — R"«
are continuously differentiable. Here, z. € R"¢ is the controller state,
and d, € R"7u is the disturbance affecting the control input. Similar
motivations as those for d, apply to the disturbance d,, .

We consider the scenario where the plant and the controller are
connected via a packet-based communication network that is composed
of £ € N nodes. A node corresponds to a collection of sensors and/or
actuators of the plant and the controller.

The network generates various constraints on the communication
of both u and y. In this paper, we concentrate on the effect due to
time-varying sampling and scheduling. Note that we also consider
some other networked-induced effects including quantization as per-
turbations to the system. Transmissions occur only at some given time
instants t;, j € N satisfying € <t; —t;_; < Tyarr. Here, myiary is
a given constant representing the maximum time between any two
transmission instants, whereas € € (0, 7y o11] represents the minimum
intertransmission time. Note that € can be taken arbitrarily small and
prevents Zeno behavior [18] in the hybrid model that will be derived
later. Furthermore, at each transmission instant, a single node is granted
access to the network. This selection is done by the scheduling pro-
tocol. As in [2], the overall system can be modeled by the following
impulsive system:

iy = f,(x,,1,d,) t € [tj1,t]
Y= gp(xp,dy)
te = fe(2e,9) te [t 1]
u=g.(z.,d,)
§=F (x,, 3,9, 1) t € [tj-1, ]
i = fo(z,,x.,9,0) te[tj1,t)]
9(t7) = y(t;) + hy (Gre(t), vy ()
at]) = ult;) + hy (G et;), va (t;))
2y (1)) = 7, (1)
o (t]) = 3 (t)) “)

where 1 € R"* and §y € R"v are, respectively, the currently available
estimates of the true controller output at the plant side, and the estimate
of the measurements at the controller side.

These two variables are updated at the transmission times ¢;, j € N
and evolve according to the dynamics fp and f,; between transmis-
sion instants. For instance, the use of zero-order-hold devices leads to
fp =0, fc = 0, and model-based techniques may also be envisioned,
see Section V-B. The functions &, and h,, accommodate the effect of the
transmission protocol on the updates of (¢;) and 4(t;), respectively,
at the transmission times ¢;, see [2]. The signal v := (v, ,v, ) € R"
denotes a disturbance corrupting the data transmitted over the net-
work at transmission instants. The data corruption can be due to
several network-induced imperfections such as the quantization ef-
fect (cf., [19] for more details). In addition, e := (e,,e,) € R"*
denotes the network-induced errors where e, :=§ —y € R"v and
e, =uU—ué€cR"™,

In order to reformulate the system in a specific form, we make the
following assumptions.

Assumption 1: The disturbance d, is a measurable and essentially
bounded function of time. The perturbation signals d,, and d,, in (4) are
uniformly bounded and continuously differentiable functions of time
and the signal v is a uniformly bounded sequence.



Gi.VCn. €ri= (xp,xc) € N ) h = (h‘y7 hu) € R™e , W i= (dx7dy>
dy.d,,d,) € R" withn, :=ng + 2n, + 2n,, we rewrite (4) as

z = f(z,e,w) (52)
¢ =gz, ew) (5b)
e(t;) = h(j,e(t;),v) (50)

where f:R"" x R" x R"* — R"# and g:R"* x R"¢ x R"»
— R" are defined by f(z,e,w) := (f,(2, e (@, du) + €, ds),
fe(xe, gp(2p,dy) + €y)), 69(37»6710) = (fp(@p,@e, gp(Tp, dy) +
€y, 9c (LL’C, du) + ey, dx) - ai; (l'[, s dy)fp (zpvgc ("I:rH du) + ey, da:)
5 .

- ;gi ($p7 dy)dy7 fc(zln I(ngp(‘r]n dy) + 67/7gc($c7 du) + €y 7d:r,)
- gﬂ: (xe,dy) fe(xe,gp(xp,dy) +e,) — g:%i(xu,du)du). The func-
tion h in (5c) is called the scheduling protocol. In the absence of v, the
precise description of h for a large class of standard protocols including
round-robin (RR), try-once-discard (TOD), and sampled-data (SD)
protocols is studied in [2]. In the presence of the disturbances, this
particular description of h may be given by

= W(e(t;), 5))e(t;) + ¥le(t;), j)v(t;)- (6)

The protocol is fully defined by the function

e(t;r) = (Ing

(e, ) i= diag (V1 (e, ), Yles ), ) ™)

where v;, i = 1,...,{, are mappings from R"¢ x Z-, to {0,1}
(cf., [2, Sec. III] for precise definitions of ¢; for RR, TOD, and SD
protocols). Equation (6) describes the update of e at each transmission,
where only the transmitted data are influenced by the disturbance v at
the transmission instant.

The aim is to provide conditions on system (2), controller (3), the
scheduling protocol, and an upper bound on the MATI for which iISS
is guaranteed for NCS (5). Toward this end, we transform the NCS into
a hybrid system in the formalism of [18]. We introduce a clock variable
7 € R, representing the time elapsed since the last transmission. We
also introduce k € Z to count the number of transmissions, which is
useful to model static protocols such as RR.

In that way, we have

&= f(z,e,w)
é:g(x7€’w)

=1 T E [O>TMATI] (8a)
k=0

=

+_h

j_Jr _ 0(/{,6,1}) T E [67TMATI]- (Sb)
KT =r+1

According to (8), the flow set C and the jump set D are given by
C={(z,e,7,k,w,v): 7 €0, 7mant]} and D = {(z,e,7, Kk, w,v) :
T € [, Tmam]}. respectively. For the sake of convenience, de-
note § := (z,e,7, k), F(&,w,v) := (f(z,e,w), g(z,e,w),1,0),and
G(&, w,v) := (z,h(k,e,v),0,k + 1). We can then write system (8)

as
_[E =
n= {8

Let (E s (w, v)) be a solution pair to system (9). We denote its hybrid
time domain by E.

The objective is to ensure that the set A := {(m, e,7,k):x=0,e=
O} is iISS as defined next.

F(& w,v) (f, (w,v)) eC

G(& w,v) (& (w,v) €D’ )

Definition 2: The hybrid system (9) is said to be uniformly integral
input-to-state stable (UilSS) in A with respect to the perturbation sig-
nals (w, v) if there exist & € Koo, m1, 12 € K, and 3 € KLL such that
any solution pair (£, (w, v)) of (9) satisfies

a (€t )L < B (6ot ) + / i (w(s,i(s))]) ds

D
(t.5) € T(v)
(0,0) < (#,5") < (t,4)

forall (¢,j) € E, where I'(v) := {(t,j) € E: (t,j+ 1) € E}.

The estimate of the form (10) is consistent with [20], where general
hybrid systems are investigated. This estimate covers the classic ones
for pure continuous-time and discrete-time systems. We also note that
the bound (10) is more general than the one in [15, Definition 1] as
there are exogenous inputs affecting the jumps.

n (o', 5)1) (10)

IV. MAIN RESULTS

We provide a set of conditions that can be used for systems influ-
enced by both additive and multiplicative disturbances/uncertainties. In
particular, we aim at conditions that provide bounds on MATTI. Inspired
by the dissipation conditions in [13, Th. 14], we make the following
assumption.

Assumption 3: There exist locally Lipschitz functions V' : R"» —
Roo, W : Z5y x R" — R5;, a continuous function H :R"* —
Rog, @y, @ € Kooy 0 € PD,01,05,05,04,0) 0¥ ol ol
01,09, ,0, € KU{0}, real numbers L,y > 0, and A € (0,1) such

that for all x € R"»
a, ([z]) < V(z) <@, (|z]) an

and for almost all x € R"~, for all e € R"¢, all kK € Z>(, and all
w € R"w it holds that

(VV (@), f(z,e,w)) <—o(|z])—o(W (k, €))+a} (|w])0:(V(x))
+alV (Jw))fs (W (k,€)) — H? () + v*W?2(k, ) + o1 (Jw]). (12)

In addition, it holds that

a, (le]) W (k,e) <a.(le]) Vi €Zsy VeecR"™ (13)
Wk + 1,h(k,e,v)) <AW(k,e) + o, (|v])
Vi € Zsy VYeeR"® YveR"™ (14)

and for almost all e € R"¢, for all z € R"~, all kK € Z>(, and all
w € R"w

<8W8(:,e)

+ 0 ([w)bs (V (@) +05" (Jw])0s (W (s, €)) + o2 (fw]).

Define 6(-) := max{él(-),éQ(\/%)}, where 0, (-) := 2max{6, (-),

02(-)} and 6, (-) := 2max{f; (-),id(-)8,(-)}. The function @ satisfies
the following condition:

,g(x,e, w)> < LW(k,e)+H(x)

15)

. N dr B
zgrblo 0 1+6 (T) -
Conditions (11)—(13) imply that controller (3) guarantees ilSS of the
origin for system & = f(x, e, w) with respect to the inputs e and w. In
particular, inequality (12) is of the form of a dissipative iISS-Lyapunov
estimate for pure continuous-time systems, see [13, Definition 13].
Moreover, when the functions ¢, and 6, in (12) are identically zero,

(16)



inequality (12) reduces to a classic iISS-Lyapunov estimate, e.g., [12,
Definition I1.2]. These properties may be directly verified on the closed-
loop system in the absence of a digital network. Conditions (13)—(14)
imply that the transmission protocol is uniformly input-to-state stable
(UISS) [19]. In the absence of measurement noise, the transmission pro-
tocol is uniformly globally asymptotically stable (UGAS). As shown
later (see Lemma 4), UGAS implies UISS if the function A in (5¢)
satisfies a globally Lipschitz property in the third argument (uniformly
in the first two arguments). We note that a wide range of transmis-
sion protocols such as RR, TOD, and SD are known to be UGAS and
satisfy the required Lipschitz condition, in view of (6)—(7). Sufficient
conditions for (15) are that g is globally Lipschitz and zero at zero,
and W is globally Lipschitz in e uniformly in . We also note that
Assumption 3 is similar to [6, Assumption 1] while we additionally
take the disturbances into account. Finally, similar to [13, Definition
13], condition (16) implies that the function # cannot grow too quickly.
The function @ is used later to scale an initial Lyapunov function can-
didate. Condition (16) guarantees that the resulting scaled Lyapunov
function candidate is radially unbounded (cf., the proof of Theorem 5
in Appendix B for more details).

The following result shows an ISS property of the protocol h used
in (5¢). The proof follows from a straightforward application of Lips-
chitz properties of W and h, e.g., see the proof of [21, Proposition 1].

Lemma 4: Consider the discrete-time system e(j+ 1) =
h(j,e(j),v) from (5¢). Assume that h is globally Lipschitz in
the third argument, uniformly in the other arguments. Assume
that for the input-free system e(j + 1) = h(j,e(j),0) there exist
W Z-y x R" — R, which is globally Lipschitz in the second
argument with constant M, uniformly in the first argument, functions
a,, @ € Ky and real number A € (0, 1) such that (13) and (14) are
satisfied for v = 0. Then, system (5c) satisfies (13) and (14) with
o, = M id.

Let A, v, L be the constants coming from Assumption 3 and consider
constants ¢ > 1, A € (&, 1). We define

e -1 r(l —3)

7y tan ( (- 1>+1+1> L <yy/e
)\.+l

1-22

T by 1
T(C7A777L) =3\ <i2+%(1+(:)1+1 L= ’y\/E
1 h71 ‘ 7'(175»)
7 tan 2%(%(%)71#1%) > e
(17)

where r := /|(v/L)? — 1|. Now, we are ready to present the main
result of this paper. The proof is given in Appendix B.

Theorem 5: Consider system (9) and suppose that Assumptions 1
and 3 hold. Let A,~, L be the constants coming from Assumption 3
andletc > 1,1 € (A, 1). If mygarr < ’Z~'(c7 }177, L), then system (9) is
UiISS in A with respect to (w, v). In particular, if 1,¢5,¢4 € (0,1)
are sufficiently small such that 1 + €, + &, < cand A%(1 4 &4) < 22,
then the input gains 7; and 7, as in (10), are given by

% v 2
=207 + 20" 4+ 20, + = O’S
)\252

- 1 .
) = 293! (7 + 1)05 (18)
€d

where 0¥ :=max{o}, ﬁ (0¥ ?} and 0" :=max{s] 2921l }.

Theorem 5 provides the explicit upper bound (17) for the MATI. The
parameters ¢ and A, respectively, in (17) accommodate the influence of
w and v. The upper bound 7 is strictly decreasing with respect to the
first two arguments. In particular, as ¢ — 1 and A — A in (17), T tends

to the following function:

PR r(1-4)
7 tan (%il(}‘—fl)ﬂﬂ) 1> 1L

70, L) =4+ (15) 19)

Note that (19) is the bound developed in [6] when no uncertainties
are considered. In view of (19), ¢ in (17) reduces to 1 when w = 0 is
zero. Similarly, we have ). = A in the absence of the noise v (cf., the
proof of Theorem 5 in Appendix B for more details). In the presence
of uncertainties, one may choose 7 to be as close as possible to 7
by, respectively, taking ¢ and A sufficiently close to 1 and A. However,
this comes at the price of small €1, €2, and ¢, satisfying the conditions
1461 +6&y <cand )?(1 +e4) < 22, which in turn leads to large
estimates for the gains. Therefore, in view of (18), the larger 7y a1 the
larger the UiISS input gains n; and 7). This suggests that the optimal
performance of the NCS needs a compromise between the maximum
transmission time interval and the UilSS input gains.

Theorem 5 makes use of Assumption 3 in which conditions (12)
and (15) include both additive and multiplicative disturbances. This
enlarges the applicability of the result as we recover classic iISS con-
ditions in [15] by only considering the additive terms. Given certain
choices for the multiplicative terms, our results are useful for bilinear
systems (see Section V-A). We present two special cases of interest in
the following, which are immediate consequences of Theorem 5.

Corollary 6: Consider system (9) and suppose that Assumptions 1
and 3 hold without any cross terms (i.e., 0; = 65 = 03 = 6, = 0). Let
A,7, L be the constants coming from Assumption 3 and let ¢ > 1,
A€ (A1) If yarr < T (¢, A, 7, L), then system (9) is UilSS in A
with respect to (w, v). If 5,4 € (0, 1) are sufficiently small such that
14+ <cand A2(1+¢4) < A2, then the input gains 7; and 7, as
in (10), are given by 71 := 201 + =

Note that, by setting 6; = 6, = 0, conditions (11) and (12) also
imply that the subsystem & = f(z,e,w) is Lo-gain stable from
(W, o (\w\)> to H (cf., [2] and [6] for more details).

Corollary 7: Consider system (9) and let Assumption 1 hold. Sup-
pose also that Assumption 3 holds with 0, (s) = 04(s) = s,05(s) = 0,
05(s) = /s forall s > 0. If myar; < ’T(c X ,7, L), then system (9)
is UIISS. If €;,e9,24 € (0,1) are such that 1 +&; + &9 < ¢ and
P(1+eg) < A2, then the input gains 7; and 7, can be chosen as
in (18).

Remark 8: 1t is of particular interest to use the SD protocol, where
all network nodes are updated simultaneously. In this case, (5¢) re-
duces to e(t;) = v, where v is the disturbance. In that way, condi-
tion (14) holds with & = 0, i.e., W (x + 1,v) < o, (|v]) and the upper
bound (19) simplifies to 7°(0, L,~). The condition A%(1 + ;) < A>
in Theorem 5 is trivially satisfied and the input gain 7, reduces to
291"l o2.

02,772 = 294" 1(— +1>U

V. CASE STUDIES
A. Bilinear Systems

In this section, we apply the results of Section IV to bilinear systems
subject to both additive and multiplicative disturbances. Consider the
following plant model:

T, =
Y

Ayz, + Byu+ (X0 dy i By,

ny (20)
Crap + (Eigl dy.iDi)xp



where d, ; € R (respectively, d,, € R) denotes the ith component of
the vector d, (respectively, d, ) and the real matrices A, , £; € R"»*"»,
B, e R"»*"« and C,,D; € R"»*"». We assume that (4,,B,) is
stabilizable and (A, , C,) is detectable. The plant is controlled by the
following feedback law:

T, =
u =

where d, € R"* is the controller-to-actuator noise/disturbance and
the real matrices A, € R"<*"¢, B, ¢ R"*"v (), e R"«*" D, e
R™« "y Controller (21) is designed to globally exponentially stabilize
the origin of (20)—(21) in the absence of disturbances, which is possible
as the pairs (A,,B,) and (A4,,C,) are stabilizable and detectable,
respectively. The origin of the nommal closed-loop system (i.e., when
the matrices D; and F; and the measurement noise d, are zero) is
globally exponentially stable. The closed-loop system (20)—(21) is a
special class of bilinear systems whose iISS is investigated in [11]. Due
to the multiplicative disturbance terms on the right-hand side of (20), the
solution x may grow exponentially for sufficiently large disturbances.

We assume that only the sensor data are transmitted over the com-
munication network. Using zero-order-hold devices and following
Section III, the resulting NCS is described by

= Az + Be+ (Zm 7)w+Ew

i=1

¢ =Cz+ De+ (i:wZ )er (iwlF‘)eJer

i=1
(22b)

Acze + Bey

@1
C.x. + Doy +d,

(22a)

e(t]) = (22¢)

where r = (Jcp,azc), w; € R denotes the ith component of the vec-

tor w := (d,,d,,d,,d,), e = § —y is the sensor-to-controller error,
A,B,C,and D are

h(j,e,v)

A A,+B,D.C, B,C. ’ B B, D,
B.C, A, B,
C: = (-C,(4,+B,D,C,) —C,B,C.), = -C,B,D,.
(23)

The matrices E;, E,F{,F¢, and F follow from (20) and (21). Note
that matrix A is Hurwitz.

We show that one can use Corollary 7 to conclude the UilSS property
of the system. In the sequel, we check the conditions in Assumption 3
for two different protocols: RR and TOD. From [2], in the absence of
disturbances at jumps, both protocols satisfy conditions (13) and (14)

with their respective functions W, where o, = id and ‘ W <M

for any k € Z>(, almost all e € R"¢, with M = V/? for the RR and
M = 1 for the TOD. Moreover, . = 1/ (¢ — 1) /¢ for both protocols. In
the presence of disturbances, Lemma 4 guarantees that the same func-
tions W with the same associated gain functions satisfy (13) and (14).
We note that the function o, = M id also appears on the right-hand
side of (14).

To verify conditions (12) and (15) of Assumption 3, we take the
quadratic function V (z) = 2 "Px, where P is a positive definite ma-
trix, and note that (2" g(z, e, w)) < |2 |(|Cx| + [D|e] +
\z%wfwgyz%me|+|mw>s M(/Ca| +
\ F |w] nw e
|ID|W (k,e) = VV(z)+ | XM Fel|lw|W (s, e) + |F

[lw|) for almost all e € R", for all z € R"", all k€ Zs,

and all w € R"». Then, condition (15) holds with L = M |D\

Mm|ST

1d, 9 = 5
o =M |3 F¢lid, and 0o = M |F|id. We also have

xmm<P)
(VV(2), f(z,e,w)) <z (PA+ATP)z+ 2 PBe

[

+ ¢ BTPx + 2‘2 E,||w|a Pz + 22 PEw  (24)

foralmostallz € R"~,foralle € R"¢,allx € Z-j,andallw € R"» .
Consider the following linear matrix inequality (LMI):

PB <0
(v —e)h, )

with positive constants £; and €, chosen beforehand. LMI (25) always
has asolution P = P > 0 as by using Schur complement we can pick
v sufficiently large such that a solution P to (25) always exists. We note
that (25) together with (24) implies that condition (12) holds with 6; =
id, of = 2|30 E;lid, 6, =0, 0] =0, and 0, (s) = [B[* s? /¢,
for all s € R-,. Minimizing ~ subject to (25) and computing MATI
from (19), Corollary 7 gives UilSS of system (22).

Corollary 9: Consider system (22). Let the matrix A in (23) be
Hurwitz. Let P be a solution of (25). Also, let myar; satisfy (19),
where L = M |D| and A = /(¢ — 1)/{. Then, system (22) is UiISS
in A with respect to (w, v), where A is as in Theorem 5.

PA+ATP+¢1,, +M2C'C
) (25)

B'P

B. Linear Systems Under Saturated Feedback

We consider the following class of neutrally stable systems affected
by actuator saturation and additive disturbances:

(26)

where z, € R"?,u € R"*, and the function s — o(s) = (o1 (s), ...,
on, (8)), which is defined by o; (s) := min{1, m|s|}sign(s) for each
seR,i=1,...,n,, and m > 0 represents the actuator saturation.
We assume that A, is a skew-symmetric matrix and (A4,, B, ) is con-
trollable. This class of systems has been widely studied in the litera-
ture and includes physical systems such as harmonic oscillators, e.g.,
see [22] and [23]. As shown in [23], the control law © = BpT.rp renders
the closed-loop system iISS in the absence of network.

Assume that only the sensor data are transmitted over the communi-
cation network. The variable § corresponds to &, here since we assume
that the full state x, is measured. We use the following model-based
holding function to generate &, between two successive transmission
instants:

» = Ayz, — Byo(u) +d,

» = A, &, — Byo(u). 27)

Following Section III, we model the resulting NCS as a hybrid system.
Similar to Section V-A, we can consider RR and TOD protocols. As
discussed earlier, for both protocols conditions (13) and (14) hold. Note
that only an additive disturbance appears on the right-hand side of (26).
Hence, we only need to verify conditions (12) and (15) of Assumption 3
when 0; =0 fori € {1,...,4} in (12) and (15). From (26), (27), and
the fact that \L | < ]W forany k € Z(,almostall e € R"¢, with
M as in Section V-A, we have that

oW (k, e)

Oe
meaning that (15) holds with w =d,, L = M |A,|, H(z) =0, and
oy = M id. Inspired by [23, Th. 2], we take the function V (z) =
%((1 + f/(ac))l/d - 1), where V(z) := £ [z + 2" Px with P :=

yu@@§SMMAM+MuA
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Fig. 1. State and saturated control input for 7 = 0.5 and the TOD

protocol. * denotes the transmission instants.

Py + § |PyB,| I and ¢ = 2m |PB,,|. The matrix P, is any symmetric
positive definite matrix such that

(28)

as ensured by the controllability of (A,, B, ) [23, Corollary 4]. Then,
we have that

(A, —2mB,B,) Py + Py(A, —2mB,B,") < —2I

—(1 &) |z

(1+ V()

e |B,[* o'

(1+ V()"

(VV(z), f(z,e,dy)) <

1 ¢ ‘Bp|2 2
—_— — d,
<461 + 452 ) |e‘ ta | ‘E|
9 /4 P . 72
where ¢ :=3%/3¢!/3 42| P|(£)'/3. Denote o(|z|) i% -
eqc? 2|z |4 . .
% Taking €1, &, sufficiently small, p(z) > 0 for all = €
R"»\{0}. Adding and subtracting o(W (e, x)), (12) is satisfied with
N L N
¥ = 451+ 1o + gy and o = ¢ 1d.

Corollary 10: Consider system (9) with the plant dynam-
ics as in (26), the estimator as in (27) and u = Bprcp. Let
Tmati satisfy (19), where L = M|A,|, A =+/({ —1)/¢ and =

.2 2 .
\/ﬁ + % + 1 — &y withey, €9, and ¢ computed as above. Then

system (9) is UilSS in A with respect to (w,v), where A is as in
Theorem 5.

We finally illustrate the above results with application to a harmonic
oscillator. Let A, and B, in (26) be given by

= (Go) 7= ()

and m =1 in (26). Solving (28) for F, and choosing £; = 0.25
and €, = 0.5, we obtain the following upper bounds for the MA-
TIs: 7 = 0.0560 for RR and 7 = 0.0601 for TOD. Fig. 1 depicts the
state trajectories of the x,, and the saturated control input o (u) with
a normally distributed random disturbance d, with mean value O and
variance 0.2 for 7 = 0.5 and the TOD protocol.

VI. CONCLUSION

This paper has investigated iISS of nonlinear NCSs. Following the
emulation approach, we have given conditions under which iISS of
the original continuous-time closed-loop system is preserved for the
NCS. Moreover, an explicit bound on the MATT has been provided. We
have adapted and extended conditions in [6] to study iISS of nonlinear
NCSs influenced by both additive and multiplicative disturbances. The
conditions are particularly useful for the study of iISS for bilinear

systems and linear systems under saturated feedback. The effectiveness
of our results was further shown via an illustrative example.

APPENDIX A
TECHNICAL LEMMAS

We state technical lemmas that are required to give the proof of
Theorem 5.

Lemma 11: Consider (17). Given ¢ > 1,1 € (1,1), and v, L > 0,
denote 7 := 7T (¢, ,~, L) and let ¢ : [0, 7] — R be the solution to

¢=-2Lp—(¢" +¢c)  ¢(0)=1" 29)
where . € (&, 1). Then, ¢(7) € [A,A7!] forall 7 € [0, T].

The proof of Lemma 11 follows the proof of a similar result in [6]
and is omitted. The following comparisonlike lemma is a variant of [20,
Lemma 9].

Lemma 12: Letp € PD,and z : E — R be a hybrid arc with 2y >

0. Consider a hybrid signal v : E — R~ such that for each j, v(-, j)

is continuous. Furthermore, assume that the following conditions hold:
1) for almost all ¢ such that (¢,7) € E\I'(2)

2(t,j) < —p(max{z(t,j) + v(t,]),0}) (30)
2) forall (¢,j — 1) € I'(2) it holds that
Then, there exists 3 € KL such that for all (t,j) e E
2(t, §) < max{fB(z0,1), Vl(t.5).00 (32)

where v — "U|(t,j>~°0 is defined in [17].

APPENDIX B
PROOF OF THEOREM 5

Let the quadruple (c,v, L, ) generate ¢ via (29). Consider the
following hybrid Lyapunov function as in [6], for any £ € CUD U
G(D):

U(€) = V(z) + v (r)W? (s, e). 33)

By (11) and (13) and the fact that ¢(7) € [, A~']forall 7 € [0, Ty a11]
(cf., Lemma 11), there exist a, & € K, such that the following holds:

(34)

a(l¢l,) <UE) <a(lgly)  vEeCUDUGD).

For almost all (&, (w,v)) €C, we have (VU(&), F(§,w,v)) =
(VV (), f(z,e,w)) + 2y0(T)W (r,e) VW (K, ), g(x, e, w)) +
v (T)W?2 (K, e). It follows from (12), (15), and (29) that
(VU(&), F(&w,v)) < —ellz]) — o(W(k, €)) + o1 (Jw])
— H*(2) = 9*¢* (T)W? (K, €) — (¢ = )V’ W?(k,e)
+270(7)oy (Jw))W (k,€)85(V (2)) + 2v¢(T)W (, e) H (x)
+279(1)ay ([w))W (k, €)0. (W (,¢))

o1 (w01 (V(2)) + ot ([w])02 (W (r, €)). (33)

Moreover, by the fact that ¢(7) < A1 for all T € [0, A1) (cf.,
Lemma 11) and using Young’s inequality, the following holds for any



£1,89 > 0:

(VU(€), F(&w,v)) < —o(|z]) —o(W (K, €)) + of (lw])f: (V(x))

+ 121 (o3 (JwD]*65(V (2)) + 01" (Jw])82 (W (s, ¢))

+ 2937 oy (Jw)W (, )04 (W (s, €))

—(c=1-e1 =)y W?(ke) + o1 (jw]) + = —a3 (|wl).

Letting 6 () :=o01(-) + 03(-) and recalling the definition

of V()0 (),6, (), and 05(-) (see the statement  of

Theorem 5), we have (VU(&), F(&,w,v)) < o (lw)b, (V(z)) +
o ([w])0s (W(k, ) —(¢ = 1 =1 —e2)7* W (r, ) —o|x]) -

(W( ))+U(|w|) By the definition of 6(-)  (cf,

Assumptlon 3), we have (VU(E),F(&w,v))<—po(lz])—

o(W(k,e))+o"(lwho(V(z)) — (c =1 —e1 —e2)7y* W (s, e) +
oV (Jw))0(vAW? (k,€)) + & (Jw|). Tt follows from the mono-
tonicity of ¢ € K and the fact that ¢(7) € [A,A7'] for all
7 € [0, rur] that (VU(E), F(E, w,v) < —ol|a]) — oW (s,¢)) +
o ([w)U(E) — (c — 1 - &1 ~ e )? W2 (s,c) + 6(Jwl),  where
o(+) == " (-) + " (). Picking £, and ¢, sufficiently small such that
c>1+4+¢e; + &9, we have

(VU(E), F (& w,v)) < o(W(r, e))+o(lw)o(U(E))

(36)

—o(|z|)—
+ o (|w]).

By application of [12, Lemma IV.1] to ¢ on the right-hand side of (36),
there exist o1 € K and gy € £ such that (VU(&), F(&,w,v)) <
—01(W(k,e))o:(W(r,e)) — er(|z])o2(|z]) + o (|w])O(U(£)) + &
(Jw]). From oy € K, 02 € £, and (11), we have (VU(E),F
(& w,v)) < —or0a, (V(z))ox 0a;' (V(2)) — 01 (W(k,e))o
(W(k,e)) +o(Jw)0(U (€ ))+q(|w|) By the monotonicity of g,
and 09, and the fact that ¢(7) > A for all 7 € [0, v a1], there exists a
function g € PD such that for almost all (¢, (w,v)) € C the following

holds:
(VU(E), F (&, w,v)) < =o(U(€)) + o (lw))8(U(E)) + 6 (|wl]). (37)
For any (& (w,v)) €D, we have U(G(¢,w,v))=V(z)+

yd(0)W?2(k + 1, h(k, e,v)). According to (9) and (14), and since
#(0) = A1, it is obtained that

U(G(&w,v)) = V(z) +v0(0)W?(k + 1, h(k, e,v))

< V(@) + 3 (12W2 (5, €) + 20 (5, ) (Jo]) + 02 (o).

Using Young’s inequality, we have U(G(§,w, v))<V()
VAR (L4 €)W (k,€) + 6, (|v]),  where 6, () :=vA (& +

1)o2(-). From the fact that A > A, one can take ¢, sufficiently small
such that A2 (1 + ;) < A%. Thus

U(G(§w,v)) <U(E) + 64 (Jv]) (38)

for all (&, (w,v)) € D.
Define a scaling function p : R>y — R satisfying
g M _ 1
O =0 =T P ERee (39)

We note that from (16) we have p € K. Now, let S(-) := pu(U(+)).
So, for any (&, (w,v))€C, we have (VS(),F(& w,v)) <
ey (e (W)U (€) — a(U(€)) + 6(Jw)) < —a(U(€)) + &

(Jw]), with &(-):=0()+5() and o():= ;2555. Defining
0(-) == 0o pu~'(-), we have that

(VS(), F(&w,v)) < —0(S(£)) + a(w). (40)
On the other hand, we have for all (& (w,v)) €D that
S(G(&,w,v)) —S(§) = wU(G(& w,v))) — u(U()). Considering
two different cases: when U(G(§,w,v)) > U({) and when

U(G(&,w,v)) < U(E), and using (38), (39), and the monotonicity
of 1, we have that

S(G(& w,v)) < S(E) + 6, (|v]) (41

for all (¢, w,v) € D. Define the hybrid arcs z and w by
z(t,7) = S(§(t, 4)) — w(t, j) (42)
w(t,j) = / (lw(s,i())ds+ > (ot 5)). @3

0 )
(t',j") € T(v)
(0,0) 2 (¢,5") < (t.4)
It follows from (40), (42), and (43) that

2(t,7) < —0(S(&(t, 7)) = —o (max{z(t,j) + w(t,7),0}) (44)

for all j € Z~, and almost all ¢ such that (¢, j) € E. From (41)—(43),
we have

2(t,7) < 2(t;,5 — 1) (45)

for all (t;,j—1) € E such that (t;,7) € E. By application of
Lemma 12 to (44) and (45), there exists 3 € L such that
Z(ta.]) < InaX{B(zO ’ t)? |w|(t;)>o} < B(Z(Jv t) + |w|(f'j),3c (46)

An immediate consequence from (42), (43), and (46) and the fact that
S(&o) is that

zZ) =

St ) < B(S (©) 1) +2/U & (ju(s,i(s))]) ds
12 5 (e,

(t',j") € I'(v)

0,0) < (1) < (t,5)

for all (¢,7) € E. Noting that t > ¢j for all (¢,7) € FE yields

SE(t 1) < B (S (€0) 0.5+ 0.5¢j) +2 / & (Ju(s,i(s))]) ds

+2 ) a5
(t',j") € L(v)
(0,0) 2 (#,5") < (£, 4)
for all (¢,j) € E. By the definition of the function S
and  exploiting ~ (34)  yields  poa(|(x(t,7),e(t, 5))]) <
Bluoa(|(zo,eo)l),0.5t + 0.5¢5) +2f0 a(|lw(s,i(s))|)ds +
2 Z (t' /) c F(7,) 0'7, (|’U(t,7j )|) DCI]Otll’lg Qi=[oq,

(0,0) = (t,j") < (£, ])
B(r,s1,82):=0(poa(r),0.5s1 +0.5es0), m1(s) :=25(s), and
2 (s) := 26, (s) gives the conclusion. |
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