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Almost Global Stability of Nonlinear Switched
Systems with Time-Dependent Switching

Özkan Karabacak, Ayşegül Kıvılcım, and Rafael Wisniewski

Abstract—For a dynamical system, it is known that the
existence of a Lyapunov density implies almost global stability
of an equilibrium. It is then natural to ask whether the existence
of multiple Lyapunov densities for a nonlinear switched system
implies almost global stability, in the same way as the existence of
multiple Lyapunov functions implies global stability for nonlinear
switched systems. In this work, the answer to this question is
shown to be affirmative as long as switchings satisfy a dwell time
constraint with an arbitrarily small dwell time. Specifically, as
the main result, we show that a nonlinear switched system with
a minimum dwell time is almost globally stable if there exist
multiple Lyapunov densities which satisfy some compatibility
conditions depending on the value of the minimum dwell time.
This result can also be used to obtain a minimum dwell time
estimate to ensure almost global stability of a nonlinear switched
systems. In particular, the existence of a common Lyapunov
density implies almost global stability for any arbitrary small
minimum dwell time.

The results obtained for continuous-time switched systems are
based on some sufficient conditions for the almost global stability
of discrete-time non-autonomous systems. These conditions are
obtained using the duality between Frobenius-Perron operator
and Koopman operator.

Index Terms—Almost global stability, nonlinear switched sys-
tems, common Lyapunov density, multiple Lyapunov densities,
minimum dwell time.

I. INTRODUCTION

THERE exist many examples of dynamical systems (see
for example [1] and [2]) that are not globally stable but

almost globally stable. For such systems, there is a non-empty
set of initial states that do not converge to the origin, but this
set is negligible, as it has zero Lebesgue measure. Almost
global stability, namely, convergence of almost all solutions
to an invariant set, has been first considered by Milnor [3] as
a candidate of a useful notion of an attractor. Almost global
stability has proved to be useful in the systems and control
theory after the work of Rantzer [1]. Rantzer showed that
almost globally stability of an equilibrium can be verified
by the existence of a density function, which is now called
Lyapunov density by many researchers. Since then, Lyapunov
densities have been used for the analysis of dynamical systems
[4], [5], [6], [7], [8], [9], [10], [11], [12], for the design of
control systems [13], [14], [15], [16], [17], [18], [19] and for
safety verification [20].

Two factors can be mentioned that motivates the research
on almost global stability via Lyapunov densities: Firstly, for
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nonlinear control systems of form ẋ = F (x) + G(x)u with
input u, almost global stability can be characterized as an opti-
mization problem that is linear in the design variables, namely
the Lyapunov density ρ(x) and the product ρ̃(x) := ρ(x)u(x)
of the Lyapunov density and the input; whereas, classical state-
feedback controller design via Lyapunov functions may lead
to non-convex optimization problems [1]. Secondly, for the
cases where state space is not Euclidean, global stabilization
of equilibria may not be possible and therefore almost global
stabilization might be one of the best global property to expect
[21].

On the other hand, an important problem in this field that
retards the use of Lyapunov densities in control applications
should also be mentioned: As opposed to Lyapunov functions,
Lyapunov densities do not directly provide forward-invariant
sets; hence, they do not prevent undesired overshoots in
solutions, and therefore may need to be accompanied by other
tools (such as barrier functions) that rule out such transients
[20].

Various extensions of Rantzer’s result on almost global
stability via Lyapunov densities have appeared in literature.
To mention a few, Lyapunov densities have been considered
for discontinuous vector fields (switched systems with state
dependent switching) [22], for smoothly time-varying systems
[23], [24] and for discrete-time nonlinear stochastic systems
[25]. However, to the best of our knowledge, almost global
stability of nonlinear switched systems with time-dependent
switching has not been considered in the literature yet, and is
the subject of study of this paper.

Switched systems with time-dependent switching may arise
as abstractions of switched systems with state-dependent
switching [26, Subsection 1.1.2]. They also model switched
control systems where switching is due to an external system
[27]. Additionally, switched systems where switching rate is
bounded, for example due to the speed limit of communication
in networked control systems, can be modelled as switched
systems with time-dependent switching [26]. They can also
be used to characterize the link between information rate and
stability, to design a switching control [27], to control water
storage in a drinking water supply network [28], and to guar-
antee the finite-time stability of a position servomechanism
system [29]. (for more applications, see the references in [26],
[27], [30]).

As the main results on the global stability of nonlinear
switched systems are formulated in terms of multiple Lya-
punov functions [30], it is natural to investigate the con-
sequences of the existence of multiple Lyapunov densities
for a nonlinear switched system. Consequently, we pose the
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following question: Does the existence of multiple Lyapunov
densities imply almost global stability of a switched system?

In the sequel, we provide an affirmative answer to this
question for systems with (arbitrary small) dwell time switch-
ing. Specifically, we provide a sufficient condition for almost
global stability based on multiple Lyapunov densities and a
minimum dwell time (Theorem 1). This result provides an
estimation of the minimum dwell time that guarantees almost
global stability. In particular, if a common Lyapunov density
exists, the switched system is almost globally stable for all
values of τmin > 0 (Corollary 1).

To prove the above-mentioned results for a continuous-time
switched system, we fix a switching signal leading to a time-
varying system, discretize the time-varying system (with a
fixed but arbitrarily small sampling time) giving rise to a
discrete-time non-autonomous system, and finally lean upon
the almost global stability of the latter. To this end, we obtain
sufficient conditions for almost global stability of discrete-time
non-autonomous systems (Lemma 2), which may be of interest
in its own right. For simplicity, we consider almost global
stability of a common equilibrium, however all results in this
paper also hold when the common equilibrium is replaced by
a common compact invariant set.

The proof of our main result is based on linear transfer
operators, Frobenius-Perron operator and Koopman operator,
which are used to capture the global dynamics of a system
(see [31], [32], [33]). This approach was first used for almost
global stability by Vaidya and Mehta in [6], where they
give a sufficient condition for the almost global stability
of an invariant set for discrete-time, autonomous systems
with compact state space using a local attraction assumption.
This result is extended in [11] to systems with non-compact
state space without using any local stability assumption and
in [12] to the problem of finite-time stability. Our results
on almost global stability of discrete-time non-autonomous
systems are in the spirit of [6], [11] and [12]. Finally, we point
out that similar techniques that relate properties of discrete-
time systems to continuous-time systems have appeared in
literature, for instance in [34] for the stability of sampled-data
nonlinear systems.

The outline of the paper is the following: Almost global
stability of continuous-time nonlinear switched systems is
discussed in Section II, which also contains the main result of
the paper. The proof of the main result is given in Section III.
Section IV contains some remarks on the monotonicity of
multiple Lyapunov densities and on how the presented theory
generalizes some already known linear techniques [35].

Notation. R(Z),R>0(Z>0) and R≥0(Z≥0) denote the set
of all, positive and non-negative real numbers (integers),
respectively. For Rn, the vector space of real n-tuples, ‖ · ‖
denotes the Euclidean norm and m denotes the Lebesgue
measure on Rn.

∫
· dµ(x) indicates Lebesgue integral with

respect to measure µ, whereas for simplicity Lebesgue integral
with respect to Lebesgue measure m is denoted as

∫
· dx.

0 ∈ Rn denotes the zero vector. Bε = {x ∈ R | ‖x‖ < ε}
is the open ε−ball around 0 and Bcε is the complement of
Bε. We say that a function f : Rn → R is integrable away
from 0 meaning that it is Lebesgue-integrable on Bcε for all

ε > 0. For functions f, g : Rn → R, f is said to be of the
same order as g meaning that f(x) = O(g(x)), i.e.,

∣∣∣ f(x)
g(x)

∣∣∣
is bounded as ‖x‖ → ∞. f : Rn → Rn is said to be non-
singular, if m(f−1(A)) = 0 for every measurable set A with
m(A) = 0. For a set V ⊂ Rn, 1V denotes the characteristic
function of V . For a function f : Rn → Rn, Df denotes
the Jacobian of f and ∇ · f denotes the divergence of f . For
f : Rn → R, ∇f denotes the gradient of f . For a matrix A,
AT denotes the transpose of A. For symmetric matrices A and
B, we use the notation A < B (A ≤ B) to mean that B −A
is positive (semi-)definite. Finally, we use the phrases ’almost
all’, ’almost every’ and ’almost everywhere’ in the sense of
Lebesgue measure, namely, the set of points for which the
argument fails is contained in a set of zero Lebesgue measure.

II. ALMOST GLOBAL STABILITY OF SWITCHED SYSTEMS

In this section, we present sufficient conditions for almost
global stability of nonlinear switched systems.

Initially, we state some results on the almost global stability
of autonomous systems using Lyapunov densities, not only for
the sake of completeness but also for their use in showing the
global existence of almost all solutions of switched systems.
Consider the following ordinary differential equation

ẋ = f(x), (1)

where f : Rn → Rn is continuously differentiable and
f(0) = 0. The following proposition can be seen as a modified
version of Rantzer’s theorem for autonomous systems for
which almost all solutions are known to exist for all positive
times.

Proposition 1. (Adapted from Theorem 4.2 in [11]) Suppose
that, for almost every x0 ∈ Rn, a forward-complete solution
x : R≥0 → Rn of (1) with x(0) = x0 exists. Assume that there
exists a non-negative, continuously differentiable function ρ :
Rn \ {0} → R satisfying the following conditions:

ρ(x) is integrable away from 0,

∇ · (ρf)(x) > 0 for almost all x ∈ Rn \ {0}.

Then, almost all solutions of (1) converge to 0 as t→∞.

The following proposition is used to ensure the global
existence of almost all solutions.

Proposition 2. Assume that there exists a non-negative, con-
tinuously differentiable function ρ : Rn \ {0} → R satisfying

(1 + ‖f(x)‖)ρ(x) is integrable away from 0,

∇ · (ρf)(x) > 0 for almost all x ∈ Rn \ {0}.

Then, for almost every initial state x0 ∈ Rn, a forward-
complete solution x : R≥0 → Rn of (1) with x(0) = x0

exists and converges to 0 as t→∞.

Proof: Consider the time scaling tnew =∫ t
0

[1 + ‖f (x(s)) ‖] ds, under which the scaled solutions
x(tnew) satisfy the scaled system dx/dtnew = fnew(x), where
fnew(x) := f(x)/(1 + ‖f(x)‖). Solutions of the scaled
vector field fnew exist globally and they produce the same
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trajectories as x(t) with the direction of time preserved
(see [36, page 184]). Therefore, it is enough to show the
convergence of almost all solutions of fnew to 0, since the
convergence of trajectories x(t) to a bounded set implies
their existence for all t ∈ R≥0. This can be done by applying
Proposition 1 with ρnew(x) := (1 + ‖f(x)‖)ρ(x), noting that
∇ · (ρnewfnew)(x) = ∇ · (ρf)(x) > 0.

Remark 1. Proposition 2 differs from Rantzer’s original
theorem in that it assumes the integrability of (1+‖f(x)‖)ρ(x)
away from 0 instead of the integrability of ‖f(x)‖ρ(x)/‖x‖
away from 0. We prefer the former condition as it implies the
integrability of ρ(x) away from 0, which is used in the proof
of the main theorem for switched systems below.

Let us consider a nonlinear switched system given by

ẋ(t) = fσ(t)(x(t)), σ ∈ Sτ , t ∈ [0,∞). (2)

Here, σ : [0,∞) → {1, . . . , N} is called a switching signal
which is a right-continuous, piecewise constant function with
finitely many discontinuities on any finite interval. Sτ denotes
the set of all switching signals satisfying tk − tk−1 ≥ τ, k ∈
Z>0, where tk denote the kth discontinuity point of σ (t0 = 0
is assumed) and τ is called a minimum dwell time. We call
each system given by ẋ = fp(x), for p ∈ {1, 2, . . . , N} a
subsystem of (2). We assume that each subsystem fp : Rn →
Rn, p ∈ {1, 2, . . . , N} is continuously differentiable and share
a common equilibrium at 0, namely fp(0) = 0.

Let us denote the value of σ(t) for t ∈ [tk−1, tk) by pk. A
switching signal can then be identified using these values as

σ(t) =
(

(p1,∆t1), (p2,∆t2), . . .
)
, (3)

where ∆tk = tk − tk−1 ≥ τ is the operation time for the
subsystem fpk on the kth constant operation of the switched
system. In examples, we will mostly use periodic switching
signals, which we identify by a finite sequence (showing the
shortest repeating pattern) as

σ(t) =
(

(p1,∆t1), . . . , (pn,∆tn)
)

=
(

(p1,∆t1), . . . , (pn,∆tn), (p1,∆t1), . . .
)
,

(4)

which has a minimum period of ∆t1 + · · ·+ ∆tn.

Definition 1. The nonlinear switched system (2) is said to be
almost globally stable for a σ ∈ Sτ if the following condition
holds:

For almost every x0 ∈ Rn, a forward-complete solution
x : R≥0 → Rn of (2) for the switching signal σ and
the initial state x(0) = x0 exists and converges to 0 as
t→∞.

The system (2) is said to be almost globally stable if it is
almost globally stable for every σ ∈ Sτ .

Note that if forward-complete solutions exist for almost
all initial states for each subsystem, then forward-complete
solutions of the switched system (2) exist for almost all initial
states when σ ∈ Sτ for some τ > 0.

We are now ready to state our main result, which employs
multiple Lyapunov densities and a dwell time condition to
ensure almost global stability.

Theorem 1 (Main Result). Consider the switched system (2).
Suppose that for each p ∈ {1, 2, . . . , N}, there exist a con-
stant κp > 0 and a non-negative, continuously differentiable
function ρp : Rn \ {0} → R, such that

(1 + ‖fp(x)‖)ρp(x) is integrable away from 0, (5)

∇ · (ρpfp)(x) ≥ κpρp(x) ∀ x ∈ Rn \ {0}. (6)

Suppose also that the functions ρp, p ∈ {1, . . . , N} satisfy
the following compatibility condition

∀ p,m ∈ {1, . . . , N}, ∃ cpm ∈ R>0 :

ρp(x) ≤ cpmρm(x) ∀ x ∈ Rn \ {0}. (7)

Then, the system (2) is almost globally stable for any

τ > τmin := min
β1,...,βN∈R>0

max
p,m∈{1,2,...,N}

ln
(
βp
βm
cpm

)
κp

. (8)

Proof: See Section III.

Remark 2. Once multiple Lyapunov densities satisfying the
conditions (5)-(7) are found, computing τmin is not a diffi-
cult task. This is because the expression of τmin in (8) is
equivalent to the so-called maximum cycle ratio of doubly
weighted directed graphs [37] for which fast algorithms exist
[38] 1. In details, consider the globally-coupled directed graph
G = {N , E , w1, w2}, where N := {1, . . . , N} is the set of
vertices, E := N × N is the set of directed edges, and the
weights w1, w2 : E → R are defined as w1((p,m)) := ln cpm
and w2((p,m)) = κp. Let C be the set of all cycles in G and
define the cycle ratio of a cycle C = {(p0, p1), . . . , (pl−1, pl =
p0)} ∈ C of length l as

w(C) =

∑l
n=1 w1((pn−1, pn))∑l
n=1 w2((pn−1, pn))

.

The maximum cycle ratio of G is then defined as wmin :=
maxC∈C w(C), which is equal to τmin by [37, Theorem 1.1].
In particular, for bimodal systems, the dwell time condition
(8) can be written as

τ > τmin :=
ln c12 + ln c21

κ1 + κ2
. (9)

Let us consider the case where all Lyapunov densities
considered in Theorem 1 are identical, namely there exists
a common Lyapunov density satisfying conditions (5) and
(6) and the condition (7) is satisfied for cpm = 1, ∀ p,m.
In this case, τmin in (8) is obtained as zero by choosing
β1 = · · · = βN . Hence, we have the following corollary
of Theorem 1 which shows that the existence of a common
Lyapunov density implies almost global stability of a nonlinear
switched system with an arbitrary small dwell time.

Corollary 1. Consider the switched system (2). Assume that
there exist a constant κ > 0 and a non-negative, continuously

1This also proves that the maximum in (8) is attained.
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Fig. 1. A solution of Example 1. The dotted line is for the backward solution,
which approaches to a limit cycle as t → −∞. The solid line is for the
forward solution, which approaches to 0 as t→∞.

differentiable function ρ : Rn \ {0} → R such that the
following conditions are satisfied for all p ∈ {1, 2, . . . , N}:

(1 + ‖fp(x)‖)ρ(x) is integrable away from 0, (10)

∇ · (ρfp)(x) ≥ κρ(x) ∀ x ∈ Rn \ {0}. (11)

Then, the system (2) is almost globally stable for any τ > 0.

Remark 3. It may be possible to generalize Corollary 1 to
the set of arbitrary (non-chattering) switching signals Snon-chatt,
containing all signals that have finitely many discontinuities
on finite intervals. Obviously, Corollary 1 applies only to
∪τ>0Sτ ( Snon-chatt. This is because our proof technique (see
Section III) requires a minimum dwell time for each switching
signal considered. Whether or not Corollary 1 can be extended
to Snon-chatt remains to be an open problem.

We now illustrate some applications of the main result. The
following example shows that a nonlinear switched system
with a common Lyapunov density is almost global stable but
may not exhibit global stability.

Example 1. Consider the switched system (2) with N = 3
and the subsystems given as

f1(x1, x2) =

(
x2 − x1 + 3x1x2

−x2 − x1 + x2
2 − 2x2

1

)
,

f2(x1, x2) =

(
−x2 − x1 + x2

1 − 2x2
2

−x2 + x1 + 3x1x2

)
,

f3(x1, x2) =

(
x2 − x1 − x2

1 + 2x2
2

−x2 − x1 − 3x1x2

)
.

Let us consider ρ(x) =
(
x2

1 + x2
2

)−5/2
. (10) is satisfied

because (1 + ‖fp‖) ρ is of the same order as ‖x‖−3 for
p = 1, 2, 3. Moreover, it can be shown that ∇· (ρfp) = 3ρ for
p = 1, 2, 3. Therefore, (11) is satisfied for κ = 3. As a result,
by Corollary 1, 0 is almost globally stable.

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

x
1
(t)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

x
2
(t

)

Subsystem 1

Subsystem 2

x(0)

Fig. 2. A solution of Example 2 for the switching signal
σ(t) = ((1, 4.7), (2, 1.7)) that does not satisfy the dwell time condition
τ > 5.7762. The solution approaches to a limit cycle.

Fig. 1 exhibits a solution of the system for the following
periodic switching signal

σ(t) =
(
(1, 0.5), (2, 0.3), (3, 0.2)

)
, (12)

with period 1. It is seen in Fig. 1 that the backward solution
(obtained by extending the switched system and the switching
signal backward in time in a trivial way) approaches to a limit
cycle as t→ −∞, whereas the forward solution approaches to
0 as t→∞. The existence of the unstable limit cycle implies
the lack of global stability for the switched system, i.e. not all
initial states lead to convergence of solutions to the origin.

The following example illustrates an application of Theo-
rem 1.

Example 2. Consider the switched system (2) with N = 2
and with subsystems

f1(x1, x2) =

(
−0.1x1 + x2 + 3x1x2

−x1 − 0.1x2 − 2x2
1 + x2

2

)
,

f2(x1, x2) =

(
−0.1x1 − 2x2 + 0.5x2

1 − 4x2
2

0.5x1 − 0.1x2 + 1.5x1x2

)
.

Let us consider ρ1(x1, x2) =
(
x2

1 + x2
2

)−5/2
and

ρ2(x1, x2) =
(
(0.5x1)2 + x2

2

)−5/2
. (5) is satisfied because

(1 + ‖fp‖) ρp is of the same order as ‖x‖−3 for p = 1, 2.
Moreover, it can be shown that ∇ · (ρpfp) = 0.3ρp for
p = 1, 2. Therefore, (6) is satisfied for κ1 = κ2 = 0.3.
(7) is also satisfied since ρ1(x) ≤ c12ρ2(x), for c12 = 1
and ρ2(x) ≤ c21ρ1(x), for c21 = 25. Applying Theorem 1
with formula (9), we obtain that the origin is almost
globally stable for all switching signals with dwell time

τ > τmin =
ln(25)

0.6
= 5.7762. Fig. 2 depicts a solution of the

switched system for a periodic switching signal, that does not
satify the dwell time condition τ > 5.7762.
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III. PROOF OF THE MAIN RESULT

The proof of the main result (Theorem 1) is organized
as follows: We first state a sufficient condition for the al-
most global stability of a discrete-time non-autonomous sys-
tem (Lemma 2). Then, the almost global stability of the
continuous-time switched system (2) is characterized by the
almost global stability of the discretizations of (2) for fixed
switching signals (Lemma 3). These lemmas, with the help of a
monotonicity property of Lyapunov densities (Lemma 5) result
in a less conservative sufficient condition for the almost global
stability of (2) (Lemma 6), on which the proof of Theorem 1
is based.

A. Preliminaries for Transfer Operators

Let M(Rn \ {0}) denote the linear vector space of equiv-
alence classes of measurable functions from Rn \ {0} to R,
where two functions are assumed to be equal if they agree
on a set of full Lebesgue measure. Therefore, all statements
for the functions in M(Rn \ {0}) should be understood to
hold for almost all points in Rn \ {0}. For a nonsingular
map f : Rn → Rn with f(0) = 0, let us denote the
Frobenius-Perron operator and the Koopman operator for f
restricted to Rn \ {0} as P and U, respectively. Recall that
P : M(Rn \ {0}) → M(Rn \ {0}) provides information
about the evolution of densities (possibly with infinite mass)
and is uniquely defined via∫

V

Pρdx =

∫
f−1(V )

ρdx (13)

(see [39, p.238]). P is a positive operator, i.e., ρ > 0 =⇒
Pρ > 0, and it can be written explicitly as

Pρ(x) = ρ(f−1(x)) det
(
Df−1

)
, (14)

whenever f is differentiable and invertible (see [31, Re-
mark 3.2.4.]). The Koopman operator U : M(Rn \ {0}) →
M(Rn \ {0}) provides the evolution of observables (possibly
essentially unbounded) and is defined as Ug(x) = g (f(x)).
We define 〈g, ρ〉 :=

∫
Rn gdµρ(x), where µρ(V ) :=

∫
V
ρdx.

Duality between P and U is expressed by 〈Ug, ρ〉 = 〈g,Pρ〉.
Note that we allow both sides of the duality equation to be
infinite. For more details on transfer operators, see [31], [40].

B. Almost Global Stability of Discrete-Time Non-Autonomous
Systems

Consider the discrete-time non-autonomous system

x(k + 1) = fk (x(k)) , k ∈ Z≥0, (15)

where fk : Rn → Rn, k ∈ Z≥0, where fk’s are non-singular
maps. We assume that 0 is a common fixed point for all maps;
namely, fk(0) = 0, k ∈ Z≥0. Denote the solution of (15) for
an initial state x(0) = x0 ∈ Rn by φk(x0) = fk−1 ◦ · · · ◦
f0(x0). We say that the system (15) is almost globally stable
if limk→∞ φk(x) = 0 for almost every x ∈ Rn.

For maps fk, k ∈ Z≥0, let us denote the Frobenius-Perron
operator and the Koopman operator for fk restricted to Rn \
{0} as Pk and Uk, respectively. Similarly, Frobenius-Perron

operators and Koopman operators for the solution maps φk,
k ∈ Z>0 restricted to Rn \ {0} can be written as

P→k := Pk−1 ◦ · · · ◦ P0,

U→k := U0 ◦ · · · ◦ Uk−1,

which are dual to each other, namely 〈g,P→kρ〉 = 〈U→kg, ρ〉.
We set P→0 and U→0 to be the identity operators.

The following result is a direct consequence of the Borel-
Cantelli lemma:

Lemma 1. (15) is almost globally stable if there exists a ρ ∈
M(Rn \ {0}) such that ρ(x) > 0 and ρ̄ :=

∑∞
k=0 P→kρ is

integrable away from 0 2.

Proof: For an ε > 0, consider the events E
(ε)
k =

{x ∈ Rn | U→k1Bc
ε
(x) = 1} = f−1

0 · · · f−1
k−1(Bc

ε), where
Bc
ε is the complement of the ε−ball of 0. Define E(ε) :=

lim supk→∞E
(ε)
k = ∩∞k=0 ∪∞k′=k E

(ε)
k′ , which is the set of all

initial states for which the solution of (15) visits Bc
ε infinitely

often. It suffices to show that m(E(ε)) = 0 for any ε > 0. This
is because the set ∪kE(εk) for a sequence εk → 0 is a set of
Lebesque measure zero and its complement contains the set
of all initial state that converge to 0. Consider the measure
µρ(V ) :=

∫
V
ρdx, with respect to which m is absolutely

continuous3 (since ρ(x) > 0), i.e., m(W ) = 0 whenever
µρ(W ) = 0. Therefore, we only need to show that µρ(E(ε)) =

0. Note that, µρ(E
(ε)
k ) = 〈U→k1Bc

ε
, ρ〉 = 〈1Bc

ε
,P→kρ〉. Since

ρ̄ is integrable away from 0, we have 〈1Bc
ε
, ρ̄〉 <∞, and

∞∑
k=0

µρ(E
(ε)
k ) =

∞∑
k=0

〈1Bc
ε
,P→kρ〉 = 〈1Bc

ε
, ρ̄〉 <∞.

By Borel-Cantelli lemma, this implies µρ(E
(ε)) = 0 and

therefore m(E(ε)) = 0 for all ε > 0.
Note that if the conditions in Lemma 1 are satisfied, then ρ

is also integrable away from 0. This is because ρ ≤ ρ̄ due to
the positivity of Pk, k ∈ Z≥0.

The following lemma can be seen as the discrete-time
counterpart of Theorem 1.

Lemma 2. (15) is almost globally stable if there exist a
positive constant α < 1 and a sequence of positive functions
ρk ∈ M(Rn \ {0}), k ∈ Z≥0 dominated by a function
ρmax ∈M(Rn \ {0}), i.e. ρk ≤ ρmax, k ∈ Z≥0, such that
• ρmax is integrable away from 0, and
• Pkρk ≤ αρk+1 for all k ∈ Z≥0,

where Pk denotes the Frobenius-Perron operator of fk re-
stricted to Rn \ {0} for each k ∈ Z≥0.

Proof: Define ρ̄ :=
∑∞
k=0 P→kρ0. Note that Pkρk <

αρk+1 implies Pk+1Pkρk ≤ Pk+1αρk+1 ≤ α2ρk+2 due
to the positivity of the Frobenius-Perron operator. Iterative
application of this gives

ρ̄ ≤ ρ0 + αρ1 + α2ρ2 + · · · ≤ ρmax
1

1− α
,

which implies that ρ̄ is integrable away from 0. Therefore,
Lemma 1 for ρ = ρ0 implies the result.

2Note that ρ̄ is well-defined as a function from Rn \ {0} to R ∪ {∞}.
3In fact, µρ and m are equivalent, i.e, they have the same measure zero set.

This is because µρ is absolute continuous with respect to m by its definition.
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C. Discretizations of (2) for a Switching Signal

We assume that, for any σ ∈ Sτ , almost all solutions of
(2) exist for all t > 0. For a fixed σ ∈ Sτ , we consider the
time-∆T maps Φ

(∆T )
i , i ∈ N which map the states at time

i ·∆T to the states at time (i+ 1) ·∆T under the dynamics of
(2). This gives rise to a discrete-time non-autonomous system

x(k + 1) = Φ
(∆T )
k (x(k)) , k ∈ Z≥0, (16)

which produce solutions that are discretizations of the
continuous-time trajectories of (2). Note that the systems (16)
for a σ ∈ Sτ is a discrete-time non-autonomous system in the
form of (15), with the only difference being that the maps in
(16) are defined almost everywhere. Nevertheless, Lemma 2
applies to (16) as the measurable functions and the Frobenius-
Perron operators in this lemma are defined up to a set of
measure zero.

Lemma 3. Assume that almost all solutions of (2) exist for
σ ∈ Sτ . Then, the switched system (2) is almost globally stable
for σ ∈ Sτ if and only if its discretization (16) for σ is almost
globally stable for all sufficiently small ∆T > 0.

Proof: The necessity part of the proof is trivial. To show
the sufficiency, let us choose a sequence of sufficiently small
numbers {∆Ti}i∈Z>0

→ 0 such that the discretization (16)
with sampling time ∆Ti is almost globally stable for all
i ∈ Z>0. In other words, for each i ∈ Z>0, there exists a
set Ni of zero Lebesgue measure such that all initial points in
Rn\Ni converge to 0 for the discretization (16) with sampling
time ∆Ti. Set N := ∪iNi, which has zero Lebesgue measure.
It is enough to show that a solution of (2), say x(t), for a given
σ ∈ Sτ and an initial state x(0) = x0 ∈ Rn \ N converges
to 0 if its discretization x(k∆Ti), namely the solution of
(16) with sampling time ∆Ti for x(0) = x0, converges to
0 for all i ∈ Z>0. We show this by contradiction as follows:
Let us assume that limk→∞ x(k∆Ti) = 0 for all i ∈ Z>0

and limt→∞ x(t) 6= 0. The second assumption implies that
there exists an ε > 0 such that for each time T , there
exists a larger time T ′(T ) such that x(T ′(T )) ∈ Bc

ε, whereas
the first assumption implies that there exists a k1 ∈ Z≥0

such that the sequence x(k∆T1) is contained in Bc
ε/2 for

all k ≥ k1. Hence, by the continuity of x(t) with respect
to t, we can choose an increasing sequence of time instants
{tk}k∈Z≥0

such that ‖x(t0)‖ = ε/2 where t0 > k1∆T1,
‖x(tk)‖ = ε for all odd k’s and ‖x(tk)‖ = ε/2 for all
even k’s. This can be done as follows: Set k = k1, consider
x(k∆T1) ∈ Bε/2 and x(T ′(k∆T1)) ∈ Bc

ε, and by continuity
choose t0, t1 ∈ (k∆T1, T

′(k∆T1)] such that ‖x(t0)‖ = ε/2
and ‖x(t1)‖ = ε (See Fig. 3). Repeat this process for
k = k2 satisfying k2∆T1 > t1 to obtain t2 and t3, and so
on. By the continuous differentiability of fp’s, there exists a
common local Lipschitz constant L on Bε valid for all fp’s.
Considering x(tk+1) = x(tk) +

∫ tk+1

tk
fp(x(s))ds for an even

k, and applying Gronwall inequality, we obtain ‖x(tk+1)‖ ≤
‖x(tk)‖eL(tk+1−tk). Then, we have lim infk(tk+1 − tk) ≥
ln(2)
L > 0. Hence, one can choose a sufficiently small ∆Tj

such that x(k∆Tj) visits Bε \ Bε/2 infinitely often, which
contradicts limk→∞ x(k∆Tj) = 0.

x
(
T ′(k2∆T1)

)

x(t0)

x(t1)

Bε/2

x
(
T ′(k1∆T1)

)

0
x(k1∆T1)

x(k2∆T1)

x(t)

Bεx(t2)

x(t3)

Fig. 3. An illustration for the proof of Lemma 3.

D. Monotonicity of the Lyapunov Density

We now state some technical lemmas that provide the
required link between the properties of Lyapunov densities
for continuous-time and discrete-time cases.

Lemma 4. [1] Let D ⊂ Rn be open and f : D → Rn,
ρ : D → R be continuously differentiable functions with ρ
being integrable. Let φt denote the solution map of ẋ = f(x).
For a measurable set Z, assume that φs(Z) = {φs(x)|x ∈ Z}
is a subset of D for all s between 0 and t. Then, we have∫
φt(Z)

ρ(x)dx−
∫
Z

ρ(x)dx =

∫ t

0

∫
φs(Z)

[∇ · (fρ)](x)dxds.

Lemma 5. For a continuously differentiable vector field f :
Rn → Rn with f(0) = 0, suppose that almost all solutions of
ẋ = f(x) exist for all t > 0. Assume that there exist a constant
κ > 0 and a non-negative, continuously differentiable function
ρ : Rn \ {0} → R such that

• ρ(x) is integrable away from 0, and
• ∇ · (ρf) ≥ κρ.

Then, for all T > 0,

P(T )ρ ≤ e−κTρ,

where P(T ) is the Frobenius-Perron operator of the time-T
solution map of ẋ = f(x).

Proof: Let T > 0 and XT be the set of initial states for
which the solution of ẋ = f(x) exists for t ∈ [0, T ]. XT is
an open subset of Rn [41, Theorem 3.5] and by assumption
Rn \ XT is a zero measure set. Hence, it suffices to show
that P(T )ρ ≤ e−κTρ on XT \ {0}. Let Z be an arbitrary
compact subset in XT \ {0} and φ(t, x) = φt(x) denote the
flow map generated by the vector field f . The set φ([0, T ], Z)
is compact due to the continuity of φ(t, x) in both time and
space variables. Thus, {0} and φ([0, T ], Z) are disjoint closed
subsets of Rn. By the normality of Rn, there exist a pair of
disjoint open sets U and V such that {0} ⊂ U, φ([0, T ], Z) ⊂
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V. Therefore, ρ is integrable on V and Lemma 4 for D = V
implies∫
φT (Z)

ρ(z)dz −
∫
Z

ρ(z)dz =

∫ T

0

∫
φs(Z)

[∇ · (fρ)](z)dzds.

(17)
Using the Perron-Frobenius operator P(−s) for the map φ−s :=
(φs)

−1 for s ∈ [0, T ] and applying ∇ · (fρ)(x) ≥ κρ(x), we
obtain∫
Z

P(−T )ρ(x)dx−
∫
Z

ρ(x)dx ≥
∫ T

0

∫
Z

κP(−s)ρ(x)dxds. (18)

Since ∇ · (fρ)(x) ≥ κρ(x) > 0, applying Lemma 4 again for
t = s, where 0 ≤ s ≤ T, we obtain∫

Z

P(−s)ρ(x)dx >

∫
Z

ρ(x)dx. (19)

(18) and (19) imply∫
Z

P(−T )ρ(x)dx >

∫
Z

(1 + κT )ρ(x)dxds.

Finally, we have P(−T )ρ(x) > (1 + κT )ρ(x), since Z is an
arbitrary compact subset in X \ {0}. By using the positivity
of the Perron-Frobenius operator, we obtain that P(T )ρ(x) <

1
(1+κT )ρ(x). Dividing the interval [0, T ], into equal pieces,
∆t = T

n , we obtain P(∆t)ρ(x) < 1
(1+κT

n )
ρ(x). Then, for all

n ∈ Z>0,

P(T )ρ(x) =
(
P(∆t)

)n
ρ(x) <

1

(1 + κT
n )n

ρ(x).

Taking the limit as n→∞, we get P(T )ρ(x) ≤ e−κT ρ(x).

E. A Sufficient Condition via Frobenius-Perron Operators

The proof of Theorem 1 relies on a less-conservative lemma
stated below.

Lemma 6. Consider the switched system (2). Assume that
there exist constants τmin > 0, κp > 0, p ∈ {1, 2, . . . , N}
and non-negative, continuously differentiable functions ρp :
Rn \ {0} → R, p ∈ {1, 2, . . . , N} such that the following
conditions are satisfied for all p,m ∈ {1, 2, . . . , N}:

(1 + ‖fp(x)‖)ρp(x) is integrable away from 0, (20)

∇ · (ρpfp)(x) ≥ κpρp(x) ∀ x ∈ Rn \ {0}. (21)

P(τmin)
p ρp(x) ≤ ρm(x) ∀ x ∈ Rn \ {0}, (22)

where P(t)
p is the Frobenius-Perron operator of the time-t map

for the subsystem ẋ = fp(x). Then, the system (2) is almost
globally stable for any τ > τmin.

Proof: Proposition 2 together with (20) and (21) implies
that for each subsystem ẋ = fp(x), p = 1, 2, . . . , N, almost
all solutions exist for all t ≥ 0. Therefore, for the switched
system (2) almost all solutions exist for all t ≥ 0. To guarantee
that almost all solutions converge to 0, in view of Lemma 3,

we show that almost all solutions converge to 0 for the
discretization (16) for all sufficiently small ∆T . This can be

done by proving that the assumptions in Lemma 2 are satisfied
for (16) for a sequence of density function labeled as

(νk)k∈Z>0
=
(
ν

(1)
1 , . . . , ν

(K1)
1 , ν

(1)
2 , . . . , ν

(K2)
2 , ν

(1)
3 , . . .

)
.

Here, Ki is the number of sampling instants in the interval
[ti−1, ti) (see Fig. 4).

Without loss of generality, we assume that the switching
instants satisfy ti− ti−1 < 2τ for all i ∈ Z≥0, since otherwise
we could split the subsystem operation interval [ti−1, ti) into
pieces of length greater than or equal to τ by adding dummy
switching instants in this interval that represent switchings
from the subsystem fpi to the same subsystem fpi . This results
in an upper bound on Ki’s as Ki ≤ Kmax := 2τ/∆T .
Note that the first sampling instant in the interval [ti−1, ti)
is K̄i−1∆T , where K̄i = K1 + · · ·+Ki for all i ∈ Z>0 and
K̄0 = 0 (see Fig. 4). We define ν(j)

i recursively as follows:
• ν

(1)
i = P(K̄i−1∆T−ti−1)

pi ρpi
• ν

(j+1)
i = P(∆T−∆τ/Ki)

pi ν
(j)
i , for j = 1, . . . ,Ki − 1,

where ∆τ := τ − τmin. Note that, recursive application of the
above yields

ν
(Ki)
i = P(∆ti−∆τ+∆τ/Ki−(ti−(K̄i−1)∆T ))

pi ρpi . (23)

(20) implies that each νk is integrable away from 0. [42,
Theorem 1] implies ρk(x) > 0 4. Hence, positivity of the
Frobenius-Perron operator implies that νk > 0. It remains
to show that there exists an α < 1 such that, for all k,
Pkνk ≤ ανk+1 almost everywhere, where Pk is the Frobenius-
Perron operator of the map Φ

(∆T )
k . We assume that ∆T is

sufficiently small such that Φ
(∆T )
k either consists of a time-

∆T map of a subsystem fp or is a composition of two maps,
a ∆T1-map of a subsystem fp and a ∆T2-map of the next
subsystem fm, where ∆T1 + ∆T2 = ∆T . In particular, for k
not equal to any K̄m, Φ

(∆T )
k consists of one time-∆T map

(see Fig. 4) and from Lemma 5 we have

Pkνk = P(∆T )
pi ν

(j)
i ≤ P(∆τ/Ki)

pi ν
(j+1)
i ≤ e−κpi∆τ/Kiν(j+1)

i

≤ ανk+1,

where i is such that [(k− 1)∆T, k∆T ) ⊂ [ti−1, ti), j is such
that k = K̄i−1 + j and α := e−(minp κp)∆τ/Kmax . For k =

K̄i for some i, Φ
(∆T )
k consists of two maps in general, as

explained above, in particular with ∆T1 = ti − (K̄i − 1)∆T
and ∆T2 = K̄i∆T − ti. Using (23) we have,

Pkνk = P(∆T2)
pi+1

P(∆T1)
pi ν

(Ki)
i

= P(K̄i∆T−ti)
pi+1

P(∆ti−∆τ)
pi P(∆τ/Ki)

pi ρpi .

Using ∆ti −∆τ ≥ τmin and invoking Lemma 5 for the last
Frobenius-Perron operator above, we get

Pkνk ≤ P(K̄i∆T−ti)
pi+1

P(τmin)
pi e−κpi (∆τ/Ki)ρpi

≤ P(K̄i∆T−ti)
pi+1

P(τmin)
pi αρpi

Finally, (22) implies Pkνk ≤ P(K̄i∆T−ti)
pi+1 αρpi+1 = αν

(1)
i+1 =

ανk+1.

4The requirement of the existence of all solutions in the proof of Theorem 1
in [42] can be replaced by the weaker requirement that almost all solutions
exists for t > 0.
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0

ti−1

pi−1

p1

p2

pi+1

pi

∆T2︷︸︸︷
K̄i∆T(K̄i−1)∆T3∆T

t1 ti

2∆T∆T

Φ
(∆T )

K̄i
Φ

(∆T )

K̄i+1
Φ

(∆T )
2 Φ

(∆T )

K̄i−1
Φ

(∆T )
3

ν
(2)
1 ν

(3)
1 ν

(1)
i+1ν

(1)
i ν

(Ki)
iDensities:

Solution Maps:

ν
(1)
1

t

σ(t)

Φ
(∆T )
1

∆T1︷ ︸︸ ︷
K̄i−1∆T

Fig. 4. An illustration for the proof of Lemma 6.

F. Proof of Theorem 1
Existence of almost all solutions of the switched system

follows as in the proof of Lemma 6. Assume that condi-
tions (5)-(7) are satisfied for densities ρ∗p, p ∈ {1, . . . , N}.
(5) implies that ρ∗p’s are integrable away from 0. Let β∗p ,
p ∈ {1, . . . , N} be the numbers for which the minimum
in (8) is attained (the minimum is attained by [37, Theo-
rem 1.1]). Define ρ̃p := β∗pρ

∗
p for p ∈ {1, . . . , N}. (7) implies

β∗p
β∗m
cpm ≥ ρ̃p

ρ̃m
, and (8) implies τmin ≥

ln

(
β∗p
β∗m

cpm

)
κp

≥
ln
(
ρ̃p
ρ̃m

)
κp

,
which leads to e−κpτmin ρ̃p ≤ ρ̃m. Hence, by Lemma 5
P(τmin)
p ρ̃p ≤ e−κτmin ρ̃p ≤ ρ̃m, and the proof follows by

applying Lemma 6 for densities ρ̃p, p ∈ {1, . . . , N}.

IV. SOME REMARKS

We now remark on the monotonicity of multiple Lyapunov
densities and on the generality of Lemma 6.

A. Monotonicity of Lyapunov densities
Values of multiple Lyapunov functions decrease with time

(along solutions) monotonically on each operating interval and
from one switching instant to the next, allowing increases at
switching instants. As an analogue to this, integrals of multiple
Lyapunov densities increase with time (over a set of states) on
each operating interval and from one switching instant to the
next, allowing decreases at switching instants (see Fig. 5). To
be precise, assume that the switched system operates initially
with the subsystem fpk on the interval [tk−1, tk) and then
switches to the subsystem fpk+1

at the switching instant tk.
Recall that µρ(V ) :=

∫
V
ρdx. (21) and Lemma 5 imply that

P(t)
pk ρpk < ρpk for t > 0. Integrating both sides over φt(V ),

where V is a measurable set of states and φt is the time-t
solution map of the subsystem fp, we get

∫
φt(V )

P(t)
pk ρpkdx <∫

φt(V )
ρpkdx, which implies that

∫
V
ρpkdx <

∫
φt(V )

ρpkdx.
As a result, µρpk (V ) increases on the interval [tk−1, tk). On
the other hand, since tk − tk−1 > τmin, we have

P(tk−tk−1)
pk

ρpk = P(τmin)
pk

P(tk−tk−1−τmin)
pk

ρpk

< P(τmin)
pk

ρpk ≤ ρpk+1
,

t

Evolution of
States:

VtkVtk−1

tk−1

µρpk
(Vtk−1)

µρpk+1
(Vtk)

µρσ (Vt)

tk

Fig. 5. The change of integrals of densities with time.

where the first inequality follows from the positivity of
the Frobenius-Perron operator and the second inequality fol-
lows from (22). Integrating both sides of the inequality
P(tk−tk−1)
pk ρpk < ρpk+1

over Vtk := φtk−tk−1
(Vtk−1

) for
a measurable set Vtk−1

, we have
∫
Vtk

P(tk−tk−1)
pk ρpkdx <∫

Vtk
ρpk+1

dx which implies
∫
Vtk−1

ρpkdx <
∫
Vtk

ρpk+1
dx.

Therefore, we obtain µρpk (Vtk−1
) < µρpk+1

(Vtk) meaning
that integrals of densities (µρσ(t) ) increase with time from one
switching instant to the next, which is depicted in Fig. 5.

B. Special Case: Linear Switched Systems

For linear switched systems with stable subsystems,
Lemma 6 generalizes an LMI condition based on multiple
quadratic Lyapunov functions [35]. Consider

ẋ(t) = Aσ(t)x(t), σ ∈ Sτ , t ∈ [0,∞), (24)

where Ap’s are Hurwitz matrices. The sufficient condition
obtained in [35] for the exponential stability of (24) is that
there exist a τmin < τ and positive definite, symmetric matrices
P1, . . . , PN such that

AT
pPp + PpAp < 0, p ∈ {1, . . . , N} (25)

eA
T
pτminPme

Apτmin < Pp, p,m ∈ {1, . . . , N}. (26)
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Let us consider densities for each subsystem as

ρp = (xTPpx)−γ , (27)

where Pp’s are n × n positive definite symmetric matrices
and γ ≥ 2 is sufficiently large. We want to show that, for this
particular choice of densities, Lemma 6 generalizes conditions
(25) and (26): The integrability condition (20) in Lemma 6 is
satisfied since ‖fp(x)‖ρp(x) = ‖Apx‖(xTPpx)−γ is of the
same order as ‖x‖−(2γ−1) ≤ ‖x‖−3. In order to see that (25)
implies (21), observe that (25) implies

∃ε > 0 : xT (AT
pPp + PpAp

)
x ≤ −εxTPpx. (28)

Set γ :=
κp−trace(Ap)

ε , which is positive, because trace(Ap) <
0 by the stability of subsystems. Multiplying both sides of (28)
by −γ

(
xTPpx

)−γ−1
, we get

−γ(xTPpx)−γ−1xT (AT
pPp + PpAp

)
x+ (xTPpx)−γ trace(Ap)

≥ κp(xTPpx)−γ .

which is equivalent to (21) under (27), in view of ∇·(ρpfp) =
∇ρpfp + ρp∇ · fp, where fp = Apx and ∇ · fp = trace(Ap).
Note that, γ can be made arbitrary large as ε in (28) can be
chosen arbitrarily small, therefore the integrability condition
is not violated. Now, assume that (26) is satisfied for some
τmin < τ. Then, there exists a β ∈ (0, 1) arbitrarily close to 1
such that

xTeA
T
pτminPme

Apτminx ≤ βxTPpx. (29)

Set γ :=
−trace(Ap)τmin

ln β . Then, (29) implies

xTeA
T
pτminPme

Apτminx ≤ e
trace(Ap)τmin

γ xTPpx. (30)

Applying the state transformation x = e−Apτmin x̂ and taking
to the power −γ, we get(
x̂Te−A

T
pτminPpe

−Apτmin x̂
)−γ

det(e−Apτmin) ≤
(
x̂TPmx̂

)−γ
,

which is equivalent to (22) under (27), in view of (14). Note
that, γ can be made arbitrary large by choosing β sufficiently
close to one, therefore γ’s in the above discussion can be
chosen identically.

V. CONCLUSION

We have derived sufficient conditions for the almost global
stability of nonlinear switched systems with time-dependent
switching. Our method is based on multiple Lyapunov densi-
ties and can be seen as the analogue of the multiple Lyapunov
function technique, for the framework of almost global stabil-
ity.

After this work, new directions in the field of almost
global stability may open up. Firstly, the use of Lyapunov
densities for the verification of temporal properties such as
safety, reachability, eventuality and avoidance, studied in [20],
can be considered for switched nonlinear systems. Secondly,
following the ideas presented in [43] and [44] for the graph-
based estimations of the average dwell time, the techniques
in this paper can be used to obtain graph-based estimations
of the average dwell time for the almost global stability of
nonlinear switched systems.
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