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The Time-Invariant Multidimensional Gaussian
Sequential Rate-Distortion Problem Revisited

Photios A. Stavrou, Takashi Tanaka, and Sekhar Tatikonda

Abstract—We revisit the sequential rate-distortion (SRD)
trade-off problem for vector-valued Gauss-Markov sources with
mean-squared error distortion constraints. We show via a coun-
terexample that the dynamic reverse water-filling algorithm
suggested by [1, eq. (15)] is not applicable to this problem,
and consequently the closed form expression of the asymptotic
SRD function derived in [1, eq. (17)] is not correct in general.
Nevertheless, we show that the multidimensional Gaussian SRD
function is semidefinite representable and thus it is readily
computable.

Index Terms—Sequential rate distortion (SRD) function,
semidefinite programming (SRD), multidimensional, Gauss-
Markov process, counterexample.

I. INTRODUCTION

The sequential rate-distortion (SRD) trade-off problem, for-

mally introduced by Tatikonda et. al. in [1, Section IV] based

on the earlier works of Gorbunov and Pinsker [2], [3], can

be viewed as a variant of the classical rate-distortion trade-

off problem [4] in which causality constraints are strictly

imposed. Tatikonda et. al. also introduced the concept of

SRD function, which is defined similarly to the classical

rate-distortion function (RDF) with an additional requirement

that the reconstructed random process depends on the source

random process only in a causal manner.
In [1, Section IV], the authors also studied the operational

interpretations of the SRD function in the analysis of zero-

delay communication systems. In particular, it was shown that

the SRD function provides a lower bound to the smallest

data-rate achievable by the class of zero-delay source codes

satisfying the given distortion constraints. This result was fur-

ther exploited to evaluate fundamental performance limitations

of feedback control systems over communication channels.

Derpich and Østergaard in [5] showed that the SRD function

is a lower bound to both the operational causal RDF and the

operational zero-delay RDF1. Moreover, they showed that this

lower bound is achievable by a zero-delay source coder with

lattice quantizers up to a constant space-filling loss. Additional

works on the operational meaning of the SRD function can

be found, for instance, in [10], [11].
These results show that the SRD function plays an important

role to characterize the fundamental performance limitation
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of real-time communication systems and feedback control

systems over communication channels. The purpose of this

note is to revisit the existing results regarding the computation

of the SRD function and correct an error in the literature.

A. Related Literature

Gorbunov and Pinsker [3] characterized the finite-time

SRD function for time-varying and stationary vector-valued

Gauss-Markov processes with per-letter mean-squared error

(MSE) distortion. For scalar-valued Gauss-Markov processes,

they gave the expression of the finite-time SRD using the

reverse-waterfilling optimization at each time instant. Bucy

[12] considered the sensor-estimator joint design problem for

Gauss-Markov processes in which the mean-square estimation

error is minimized subject to the data-rate constraint. The

optimal solution derived in [12] turned out to coincide with the

optimal solution to the corresponding SRD problem derived in

[1]. This result shed light on the “sensor-estimator separation

principle,” asserting that an optimal solution to the SRD

problem for Gauss-Markov processes can always be realized

as a two-stage mechanism comprised of a linear memoryless

sensor with Gaussian noise followed by the Kalman filter.

Derpich and Østergaard [5] derived bounds of the asymptotic

SRD function for stationary, stable scalar-valued Gaussian

autoregressive models with per-letter MSE distortion. They

have also derived the closed form expression of the asymptotic

SRD function of a stationary, stable scalar-valued Gaussian

autoregressive model with unit memory. To our knowledge,

the most general expression of the optimal solution to the SRD

problem (with general sources and general distortion criteria)

is given by Stavrou et. al. in [13, Theorem 1]. Tanaka et

al. [14] studied the multidimensional Gaussian SRD problem

subject to the weighted per-letter MSE distortion constraint

by revisiting the sensor-estimator separation principle. They

showed that the considered SRD problem can be reformulated

as a log-determinant maximization problem [15], which can

be solved by the standard semidefinite programming (SDP)

solver.

B. Contributions

In this technical note, we revisit the SRD framework of [1,

Section IV] and re-examine some of the fundamental results

derived therein for time-invariant multidimensional Gauss-

Markov processes subject to a per-letter MSE distortion.

As the first contribution, we prove via a counterexample,

that the dynamic reverse-waterfilling algorithm of [1, p. 14,

http://arxiv.org/abs/1711.09853v1
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eq. (15)] cannot be applied to the considered problem,2 and

consequently the expression [1, eq. (17)] of the asymptotic

limit of the SRD function is not correct in general.

As the second contribution, we provide a correct expression

of the asymptotic limit of SRD function using a semidefinite

representation, based on an earlier result [14]. This means

that the value of the asymptotic limit of SRD function can

be computed by semidefinite programming (SDP).

The rest of this technical note is structured as follows. In

Section II, we formulate the finite-time SRD function of time-

invariant vector-valued Gauss-Markov processes under per-

letter MSE distortion criteria and its per unit time asymptotic

limit. In Section III, we review some structural results on the

considered SRD problem. Section IV presents the main results

of this technical note and in Section V we draw conclusions.

Notation: Let X be a complete separable metric space,

and BX be the Borel σ-algebra on X . Let the triplet (Ω,F ,P)
be a probability space and x : (Ω,F) 7−→ (X ,BX ) be a

random variable. We use lower case boldface letters such as x,

to denote random variable while x ∈ X denotes the realization

of x. For a random variable x, we denote the probability

distribution induced by x on (X ,BX ) by PX(dx) ≡ P(dx).
We denote the conditional distribution of y given x = x
by Py|x(dy|x = x) ≡ P(dy|x). We denote random vectors

xn = (x0, . . . , xn) and x−1 = (x−∞, . . . ,x−1). We denote

by A ≻ 0 (respectively, A � 0) a positive-definite ma-

trix (respectively, positive-semidefinite matrix). We denote by

Ip ∈ R
p×p the p-dimensional identity matrix. For a positive-

semidefinite matrix Θ, we write ‖x‖Θ ,
√
xTΘx.

II. PROBLEM FORMULATION

In this section, we recall the definition of the finite time

SRD function with per-letter MSE distortion criteria and its per

unit time asymptotic limit. Let the distributions of the source

random process x and the reconstruction random process y

be given by

P(dxn) ,
∏n

t=0
P(dxt|xt−1), (1)

P(dyn||xn) ,
∏n

t=0
P(dyt|yt−1, xt). (2)

We assume that P(dx0|x−1) = P(dx0) and

P(dy0|y−1, x0) = P(dy0|x0). Denote by P(dxn, dyn) ,

P(dxn) ⊗ P(dyn||xn) the joint distribution, and let

P(dyt|yt−1) be the marginal on yt ∈ Yt induced by the

joint distribution P(dxn, dyn). In the general SRD problem,

the source distribution (1) is given, while the reconstruction

distribution (2) is to be synthesized to minimize the

mutual information I(xn;yn) subject to a certain distortion

2We note that Kostina and Hassibi in [11] questioned the correctness of
the expressions of [1, p. 14, eq. (15), eq. (17)] without, however, giving the
precise reasons of their observations.

constraint. Notice that the mutual information under the

considered setting admits the following expressions:

I(xn;yn) ,
∑n

t=0
I(xn;yt|yt−1), t < n

(a)
=
∑n

t=0
I(xt;yt|yt−1), (3a)

=
∑n

t=0
E log

(
P(dyt|yt−1,xt)

P(dyt|yt−1)

)
, (3b)

where (a) follows from the condition independence

P(dyt|yt−1, xn) = P(dyt|yt−1, xt), ∀(xn, yt−1), and

E{·} is the expectation with respect to the joint probability

distribution P(dxn, dyn).

A. Finite-time Gaussian SRD function

Next, we formally introduce the finite-time SRD function

of time-invariant vector-valued Gauss-Markov sources subject

to weighted per-letter MSE distortion criteria studied by

Tatikonda et al. in [1, Section IV]. Let xt be a time-invariant

R
p-valued Gauss-Markov process

xt+1 = Axt +wt, t = 0, . . . , n, (4)

where A ∈ R
p×p is a deterministic matrix, x0 ∼ N (0; Σx0

) is

the initial state with Σx0
≻ 0, and wt ∈ R

p ∼ N (0; Σw), is

a white Gaussian noise process independent of x0. The finite-

time SRD function is defined by

RSRD
0,n (D) , inf

P(dyn||xn)

1

n+ 1
I(xn;yn), (5a)

s.t. E‖xt − yt‖2Θt
≤ D, ∀t = 0, . . . , n (5b)

provided the infimum exists. For simplicity, we assume Θt =
Ip in the sequel. The extension of the results to general Θt � 0
is straightforward.

B. Asymptotic Limits

Let xt be the time-invariant Rp-valued Gauss-Markov pro-

cess of (4). The per unit time asymptotic limit of (5) is defined

by

RSRD(D) , lim
n−→∞

RSRD
0,n (D), (6)

provided the limit exists.

Remark 1. For unstable Gauss-Markov processes (i.e., matrix

A in (4) has eigenvalues with magnitude greater than one),

then we must have [1], [16]:

RSRD(D) ≥
∑

λi(A)>1

log |λi(A)|, (7)

where λi(A) denotes the ith eigenvalue of matrix A.

If we interchange the lim and inf in (6), we obtain the

following expression:

R̂SRD(D) , inf
P(dy∞||x∞)

lim
n−→∞

1

n+ 1
I(xn;yn), (8)

s.t. E‖xt − yt‖2 ≤ D, ∀t (9)

where P(dy∞||x∞) denotes the sequence of conditional prob-

ability distributions P(dyt|yt−1, xt), t = 0, 1, . . .. Note that

RSRD(D) ≤ R̂SRD(D) holds trivially.
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III. PRIOR WORK ON SRD FUNCTION FOR

TIME-INVARIANT GAUSS-MARKOV SOURCES

In this section, we provide some structural results derived

in [1] and [14] for the optimization problem (5). We also

summarize explicit expressions of RSRD(D) and R̂SRD(D)
that are available in the literature.

A. Structural results of the optimal solution

Lemma 1. Let the source xt ∈ R
p be the Gauss-Markov

process described by (4). Then, the minimizer for (5) can be

chosen with the form

P∗(dyt|yt−1, xt) ≡ P∗(dyt|yt−1, xt), t = 0, . . . , n. (10)

Moreover, for each t, (10) is conditionally Gaussian proba-

bility distribution that can be realized by a linear equation of

the form

yt = Ātxt + B̄ty
t−1 + vt, t = 0, . . . , n, (11)

where Āt ∈ R
p×p and B̄t ∈ R

p×tp are matrices, and vt ∼
N(0; Σvt

) is a random variable independent of (x0,w
t,vt−1)

and Σvt
� 0 for each t = 0, . . . , n.

Proof. The proof is found in [1, Lemma 4.3].

The following two lemmas strengthen Lemma 1.

Lemma 2. In Lemma 1, the minimizer process (11) can also

be written as

qt = Ātxt + vt, (12a)

yt = E(xt|qt), (12b)

where vt ∼ N(0; Σvt
) is independent of (x0,w

t,vt−1) and

Σvt
� 0 for t = 0, . . . , n. Here, the matrices Āt,Σvt

, t =
0, . . . , n are chosen equally to those in (11).

Proof. The derivation is given in [14]. For completeness we

include the proof in Appendix A. (Author’s comment: In the

final version, Appendix A may be omitted.)

Lemma 3. If RSRD
0,n (D) < ∞, then the minimizer process (11)

can be written as

pt = Etxt + zt, (13a)

yt = E(xt|pt), (13b)

where zt ∼ N(0,Σzt) is independent of (x0,w
t, zt−1) and

Σzt ≻ 0 for t = 0, . . . , n.

Proof. The derivation is given in [14]. For completeness, we

include the proof in Appendix B. (Author’s comment: In the

final version, Appendix B may be omitted.)

Notice that the result of Lemma 3 is stronger than that of

Lemma 2 in that the covariance matrix Σzt can always be

chosen as a strictly positive-definite matrix. Lemma 2 and 3

are also different in that the dimension of qt is always p, while

the dimension of pt can be smaller than p.

B. Expressions of SRD functions

The authors of [1] obtained the following explicit form

of RSRD(D) for time-invariant scalar-valued Gauss-Markov

processes subject to the MSE distortion3:

RSRD(D) = max

{
0,

1

2
log

(
A2 +

Σw

D

)}
. (14)

In [1], it is also claimed that RSRD(D) for time-invariant Rp-

valued Gauss-Markov processes admits an explicit form

RSRD(D) =
1

2
log
∣∣∣AAT +

p

D
Σw

∣∣∣ (15)

over the low distortion region of D satisfying

D

p
≤ min

i
λi

(
D

p
AAT +Σw

)
(16)

where λi(·) denotes the ith eigenvalue. Based on a dynamic

reverse-waterfilling algorithm, Stavrou et. al. in [13] con-

structed an iterative numerical algorithm to compute RSRD(D)
for time-varying and time-invariant Rp-valued Gauss-Markov

processes, which extends (15) to the entire positive region of

D. Tanaka et. al. [14], on the other hand, derived the following

semidefinite representation of R̂SRD(D) for all D > 0:

R̂SRD(D) = min
P,Q≻0

− 1

2
log detQ+

1

2
log detΣw. (17)

s.t. P � APAT +Σw

trace(P ) ≤ D[
P −Q PAT

AP APAT +Σw

]
� 0.

Unfortunately, the following simple numerical experiment

shows that the results (14), (15), and (17) cannot be true

simultaneously. Figure 1 shows RSRD(D) for an R
2-valued

Gauss-Markov process (4) with A =

[
6 0
0 1

]
and Σw = I2,

plotted using the results of [1], [13], [14]. The plot shows that

(17) takes smaller values than (15) and its extension to D > 0
obtained in [13]. However, this is a contradiction to our earlier

observation that RSRD(D) ≤ R̂SRD(D).

IV. MAIN RESULTS

In this section, we establish the following statements.

(i) The expression (15) of RSRD(D) for R
p-valued Gauss-

Markov process is not correct, even in the region of D
satisfying (16). Consequently, its extension derived in

[13] does not compute the value of RSRD(D) correctly.

(ii) For Rp-valued Gauss-Markov processes, it turns out that

R̂SRD(D) = RSRD(D). Thus, (17) provides a semidefi-

nite representation of RSRD(D).

We first show (i) by means of a simple counterexample.

3This closed form expression is also obtained for stationary stable Gaussian
autoregressive sources with unit memory and per-letter MSE distortion in [3],
[5] and for time-invariant stable or unstable Gaussian autoregressive sources
with unit memory and average MSE distortion in [10].
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Fig. 1. RSRD(D) plotted based on the methods of [1], [13], [14] for an
unstable time-invariant R2-valued Gauss-Markov source.

A. Counterexample

In what follows, we show that if (14) holds then (15) does

not hold. To see this, consider an R
2-valued process (4) with

A =

[
a 0
0 0

]
and Σw = I2. If (15) holds, we have

RSRD(D) =
1

2
log

∣∣∣∣AA
T +

2

D
Σw

∣∣∣∣ ,

=
1

2
log

(
a2 +

2

D

)
2

D
. (18)

According to (16), the above expression (18) is valid for all

D ≤ 2. On the other hand, notice that the considered R
2-

valued Gauss-Markov process can be viewed as two individual

scalar Gauss-Markov processes:

x1,t+1 = ax1,t +w1,t, w1,t ∼ N(0, 1),

x2,t+1 = w2,t, w2,t ∼ N(0, 1).

Applying (14) to each process, we have

RSRD
1 (D1) = max

{
0,

1

2
log

(
a2 +

1

D1

)}
,

RSRD
2 (D2) = max

{
0,

1

2
log

(
1

D2

)}
.

Notice that for all D1 and D2 satisfying D1 +D2 = D, we

must have

RSRD(D) ≤ RSRD
1 (D1) +RSRD

2 (D2). (19)

Now, if the expression (18) is correct, the left hand side (LHS)

of (19) is

RSRD(1.5) =
1

2
log

(
a2 +

4

3

)
4

3

=
1

2
log

(
4

3
a2 +

16

9

)
. (20)

The right hand side (RHS) of (19) is

RSRD
1 (0.5) +RSRD

2 (1) =
1

2
log
(
a2 + 2

)
+ 0

=
1

2
log
(
a2 + 2

)
. (21)

(Notice that D2 = 1 is achievable with zero-rate.) However,

(20)>(21) whenever a2 > 2
3 . This is a contradiction to (19).

Remark 2. The above counterexample implies that there is a

flaw in the dynamic reverse-waterfilling argument in [1, Eg.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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Fig. 2. RSRD(D) plotted based on the methods of [1], [13], [14] for time-
invariant R2-valued i.i.d. Gaussian sources, i.e., when A = 0.

(15)]. More precisely, unless the source process is i.i.d., (i.e.,

A = 0) assigning equal distortions to each dimension is not

optimal. Fig. 2 shows that all the results coincide when A = 0.

B. Semidefinite representation

As the second main result of this paper, we show the

statement (ii).

Theorem 1. For Rp-valued Gauss-Markov processes, we have

RSRD(D) = R̂SRD(D).

Proof. See Appendix C.

Notice that while a semidefinite representation of R̂SRD(D)
has been obtained in [14], no such expression is available for

RSRD(D) in the literature. Hence, Theorem 1 is a new result

obtained in this paper for the first time. While we are not aware

of an analytical expression of RSRD(D) for multidimensional

Gauss-Markov processes, Theorem 1 shows that RSRD(D) can

be computed easily by semidefinite programming.

It is straightforward to verify that for scalar Gauss-Markov

processes, the left hand side of (17) simplifies to (14). This

shows the correctness of (14). Thus, the counterexample in the

previous subsection implies that the formula (15) reported in

[1] is not correct.

V. CONCLUSIONS

We revisited the problem of computing the asymptotic

limit of SRD function for time-invariant vector-valued Gauss-

Markov sources subject to a per-letter MSE distortion, intro-

duced in [1]. We showed, via a counterexample, that the closed

form expression of the SRD function derived in [1, eq. (17)]

using the dynamic reverse-waterfilling algorithm suggested in

[1, eq. (15)] is not correct even in the low distortion region.

We also showed that the the SRD function is semidefinite

representable and thus it can be computed numerically.

APPENDIX A

PROOF OF LEMMA 2

Suppose the minimizer process yt defined by (11) is given.

Construct a new process ỹt by

qt = Ātxt + vt, (22a)

ỹt = E(xt|qt), (22b)
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where vt is the same random process as in (11). Notice that

ỹt can be written in a recursive form as

ỹt = Aỹt−1 + Lt(qt − ĀtAỹt−1) (23a)

= LtĀtxt + (I − LtĀt)Aỹt−1 + Ltvt, (23b)

where Lt, t = 0, . . . , n are the Kalman gains.

It is sufficient to show that

I(xn;yn) = I(xn; ỹn), and (24)

E‖xt − yt‖2 ≥ E‖xt − ỹt‖2, ∀t = 0, . . . , n. (25)

First, we show (24).

Proof of (24): Notice that

I(xn;yn)
(a)
=

n∑

t=0

I(xt;yt|yt−1)
(b)
=

n∑

t=0

I(xt;yt|yt−1),

(26a)

I(xn; ỹn)
(c)
=

n∑

t=0

I(xt; ỹt|ỹt−1)
(d)
=

n∑

t=0

I(xt; ỹt|ỹt−1).

(26b)

Equalities (a) and (c) follow from the problem formulation (3),

(b) follows from (11), and (d) follows from (23b). Hence, it

is sufficient to show that

I(xt;yt|yt−1) = I(xt; ỹt|ỹt−1), ∀t = 0, . . . , n, (27)

holds. By (11) and (22a), we have yt = qt + B̄ty
t−1. Thus,

for all t = 0, . . . , n, yt and qt are related by an invertible

linear map



Ip 0 · · · 0

∗ Ip
. . .

...
...

. . .
. . . 0

∗ · · · ∗ Ip







y0

...

yt


 =




q0

...

qt


 . (28)

Thus, we have

I(xt;yt|yt−1) = I(xt;qt + B̄ty
t−1|yt−1)

= I(xt;qt|yt−1)

(e)
= I(xt;qt|qt−1), (29)

where (e) holds since yt−1 and qt−1 are related by an

invertible map (28). Since ỹt is the output of the Kalman

filter, we have the following conditional independence:

ỹt ↔ qt ↔ xt, qt ↔ ỹt ↔ xt. (30)

The first relationship holds since ỹt is a deterministic

function of qt. The second relationship holds because of the

orthogonality principle Eqt(xt − ỹt)
T = 0 (which, together

with the Gaussian property, implies that qt and xt − ỹt are

independent) of the minimum MSE. Similarly, we have

ỹt−1 ↔ qt−1 ↔ xt, qt−1 ↔ ỹt−1 ↔ xt. (31)

Thus, by the data processing inequality, we have

I(xt;q
t) = I(xt; ỹ

t) and I(xt;q
t−1) = I(xt; ỹ

t−1). (32)

Therefore,

I(xt;qt|qt−1) = I(xt;q
t)− I(xt;q

t−1) (33a)

= I(xt; ỹ
t)− I(xt; ỹ

t−1) (33b)

= I(xt; ỹt|ỹt−1). (33c)

Equality (32) is used in step (33b). From (29) and (33), we

obtain (27).

Next, we prove (25).

Proof of (25): Denote by σ(qt) the σ-algebra generated by

the RV qt. Observe that ỹt is σ(qt)-measurable, since it is

the output of the Kalman filter (23a). Since ỹt is the least

MSE estimate of xt given qt, ỹt is the minimizer of MSE
E‖xt − y′

t‖2 in the class of all σ(qt)-measurable functions

y′
t. However, because of the invertible relationship (28), yt is

also a σ(qt)-measurable function. Therefore, yt cannot attain

a strictly smaller MSE than ỹt. Thus, we obtain (25).

This completes the proof.

APPENDIX B

PROOF OF LEMMA 3

If RSRD
0,n (D) < ∞, then, matrices Āt and Σvt

in (12) must

satisfy

Im(Āt) ⊆ Im(Σvt
), ∀t = 0, . . . , n. (34)

(Otherwise there exists a subspace component of qt that

deterministically depends on xt, implying (29) is unbounded.)

Let

Σvt
=
[
u1,t u2,t

] [ Σvt
0

0 0

] [
u

T

1,t

u
T

2,t

]
,

be the singular value decomposition such that ut ,[
u1,t u2,t

]
is an orthonormal matrix and Σvt

≻ 0. By

(34), we have u
T

2,tĀt = 0. Now, if we set Et , u
T

1,tĀt,

zt , u
T

1,tvt, and pt , Etxt + zt, it is easy to check that

zt ∼ N(0,Σzt) and

u
T

tqt =

[
u

T

1,t

u
T

2,t

]
qt =

[
pt

0

]
. (35)

Moreover, yt defined by (12) can be written as

yt = E(xt|qt)

(a)
= E(xt|u

T

kqk : k = 0, . . . , t)

(b)
= E(xt|pt),

where equality (a) holds because ut is invertible, and (b) is

due to (35). This completes the proof.

APPENDIX C

PROOF OF THEOREM 1

Notice that the process yt in Lemma 3, (13) can be

recursively computed by the Kalman filter

yt = yt|t−1 + Pt|t−1E
T

t (EtPt|t−1E
T

t +Σzt)
−1(pt − Etyt|t−1)

yt|t−1 = Ayt−1,
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where Pt|t−1 is the solution to the Riccati recursion

Pt|t−1 = APt−1|t−1A
T +Σw

Pt|t = (P−1
t|t−1 + ET

tΣ
−1
zt

Et)
−1.

Since Pt|t−1 and Pt|t can be interpreted as MSE covariance

matrices, we have

I(xt;qt|qt−1)

(a)
= I(xt;pt|pt−1) (36a)

= h(xt|pt−1)− h(xt|pt) (36b)

=
1

2
log det(APt−1|t−1A

T +Σw)−
1

2
log detPt|t, (36c)

where (a) is due to (35). Combining (26), (29) and (36), we

have shown that I(xn;yn) can be written using variables

Pt|t, t = 0, . . . , n. Since we can also write E‖xt − yt‖2 =
trace(Pt|t), the finite-time horizon Gaussian SRD problem

(5) can be written as a non-convex optimization problem in

terms of variables Pt|t, Et,Σzt , t = 0, . . . , n. Nevertheless, by

employing the variable elimination technique discussed of [14,

Section IV], we can show that (5) is semidefinite representable

as follows.

RSRD
0,n (D) = min

Pt|t

t=0,...,n

1
n+1

[
1
2 log detΣx0

− 1
2 log detP0|0

+

n∑

t=1

(
1
2 log det(APt−1|t−1A

T

+Σw)− 1
2 log detPt|t

)]
.

(37a)

s.t. 0 ≺ Pt|t � APt−1|t−1A
T

+Σw, t = 1, . . . , n (37b)

0 ≺ P0|0 � Σx0
(37c)

trace(Pt|t) ≤ D, t = 0, . . . , n (37d)

This can be reformulated as a convex optimization problem in

terms of {Pt|t, Qt : t = 0, . . . , n}:

RSRD
0,n (D) = min− 1

n+1

(
n∑

t=0

1

2
log detQt + c

)
, (38)

s.t. Qt ≻ 0, trace(Pt|t) ≤ D, t = 0, . . . , n

Pt|t � APt−1|t−1A
T +Σw, t = 1, . . . , n

P0|0 � Σx0
, Pn|n = Qn[

Pt|t −Qt Pt|tA
T

APt|t APt|tA
T +Σw

]
� 0, t = 0, . . . , n− 1

Here, c is a constant given by

c =
1

2
log detΣx0

+
n

2
log detΣw.

Next, we make a few observations regarding (38). First, (38) is

in the form of determinant-maximization problem [15]. There-

fore, standard SDP solvers can be used to solve it numerically.

Second, once the optimal solution Pt|t, t = 0, . . . , n of (38)

is found, the minimizer process (13) for the Gaussian SRD
problem can be constructed by arbitrarily choosing matrices

Et and Σzt ≻ 0 satisfying

ET

tΣ
−1
zt

Et = P−1
t|t − (APt−1|t−1A

T +Σw)−1. (39)

Since the rank of the RHS of (39) can be different for each

t, the size of the matrix Σzt is also different for each t. Thus,

the dimension of the random vector pt in (13) is in general

time-varying.

Next, we prove the following lemma.

Lemma 4.

There exist non-negative sequences {ǫn} and {δn} such that

ǫn ց 0 and δn ց 0 as n → ∞, and

RSRD
0,n (D) ≥ f(D; ǫn, δn), (40)

where

f(D; ǫn, δn) ,

min
P

1

2
log det(APAT +Σw)− 1

2
log detP − ǫn. (41a)

s.t. 0 ≺ P � APAT +Σw + δnIp (41b)

trace(P ) ≤ D (41c)

Proof. Let {Pt|t}nt=0 be the minimizer sequence for (37), and

define P , 1
n+1

∑n
t=0 Pt|t. We first show that there exists

a sequence δn ց 0 such that (41b) holds for each n. From

(37b), we have

P � APAT +Σw +
1

n+ 1
P0|0.

Thus, (41b) is feasible with a choice δn = σmax(
1

n+1P0|0) (the

maximum singular value of 1
n+1P0|0).

Next, we show that there exists a sequence ǫn ց 0 such

that for each n the objective function (41a) is a lower bound

of the objective function (37a). Notice that (37a) without the

minimization can be written as follows.

(37a) = 1
n+1

[
1
2 log detΣx0

− 1
2 log detP0|0

+

n∑

t=1

(
1
2 log det(APt−1|t−1A

T +Σw)− 1
2 log detPt|t

)]

= 1
n+1

[
1
2 log detΣx0

− 1
2 log det(APn|nA

T +Σw)

+
n∑

t=0

(
1
2 log det(APt|tA

T +Σw)− 1
2 log detPt|t

)]

= 1
n+1

(
1
2 log det Σx0

− 1
2 log det(APn|nA

T +Σw)

)

(42a)

+ 1
n+1

n∑

t=0

(
1
2 log detΣw − 1

2 log det(P
−1
t|t +ATΣ−1

w A)
)
.

(42b)

Using the identity detX ≤ trace((X)/p)p) for general X ∈
S
p
++,

det(APn|nA
T +Σw) ≤

(
trace(APn|nA

T) + trace(Σw)

p

)p

≤
(
σmax(AA

T)D + trace(Σw)

p

)p

.
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Hence, there exists a positive constant γ such that

(42a) ≥ 1

n+ 1

(
1

2
log detΣx0

− 1

2
log

(
σmax(AA

T)D + trace(Σw)

p

)p
)

≥ − 1

n+ 1
γ

= −ǫn. (43)

In the last line, we defined ǫn , 1
n+1γ. Moreover, (42b) is

lower bounded as follows:

(42b)
(a)

≥ 1

2
log detΣw +

1

2
log det(P−1 +ATΣ−1

w A)

=
1

2
log det(APAT +Σw)− 1

2
log detP, (44)

where (a) follows from the fact that log det(P−1 +ATΣ−1
w A)

is convex in P , and Jensen’s inequality [17, Theorem 2.6.2].

Moreover, from (43) and (44), we have

(37a) ≥ 1

2
log det(APAT +Σw)−

1

2
log detP − ǫn, (45)

which gives the desired inequality. This completes the proof.

Suppose the conditions of Lemma 4 hold. Then, by taking

the limit in both sides of (40) we obtain RSRD(D) ≥
limn−→∞ f(D; , ǫn, δn). However, limn−→∞ f(D; , ǫn, δn) =
R̂SRD(D). This implies that R̂SRD(D) ≤ RSRD(D).

The converse inequality, i.e., R̂SRD(D) ≥ RSRD(D), holds

in general, however, it can be shown following the steps of [18,

Section IV]. Hence, we omit it. This completes the proof.
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