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Adaptive Semiglobal Nonlinear Output Regulation:

An Extended-State Observer Approach

Lei Wang, Christopher M. Kellett

Abstract— This paper proposes a new extended-state
observer-based framework for adaptive nonlinear regulator
design of a class of nonlinear systems, in the general nonequi-
librium theory. By augmenting an extended-state observer with
an internal model, one is able to obtain an estimate of the term
containing uncertain parameters, which then makes it possible
to design an adaptive internal model in the presence of a general
nonlinearly parameterized immersion condition.

I. INTRODUCTION

The output regulation problem aims at controlling a dis-

turbed system so as to achieve boundedness of the resulting

trajectories and asymptotic convergence of the output to-

wards a prescribed trajectory. Several frameworks have been

established for this problem. Due to its ability to cope with

uncertainties, the internal model-based method has been re-

garded as one of the most promising approaches, particularly

since the milestone contributions for linear systems in [5] and

nonlinear systems in [2]. The main idea of this method is to

appropriately incorporate the controller with the structure of

an exosystem that generates the disturbance and the tracking

trajectory.

In the design of an internal model-based regulator, a key

step is to design an appropriate internal model to generate

the steady state input such that the internal model property

is fulfilled. Several systematic design methods have been

developed such as in [10], [13], [14], [16], [17]. Among

them, in terms of a constructive design, significant attention

has been attracted by the “immersion condition”, which re-

quires the solution of the regulator equations to satisfy some

specific differential equations (i.e., the immersed dynamics).

It is noted that, if there exist parameter uncertainties in the

exosystem, the corresponding immersed dynamics would be

uncertain in general, which makes the design of internal

model challenging. To cope with parameter uncertainties,

in [3] the internal model is augmented with an identifier,

which is appropriately designed via the adaptive design

methodology [19]. Motivated by this adaptive framework,

several relevant results have been reported that differ in the

kind of exosystems (linear [23], [22] and nonlinear [21]

exosystems), in the kind of available information (state and

output feedback), and in the kind of controlled systems

(linear [20] and nonlinear [8] systems). On the other hand,

the above mentioned “immersion conditions” are formulated

on an extra assumption that the regulator equations are
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solvable. This fundamentally limits the class of controlled

systems that can be handled. In [6], [7], this extra assumption

is removed by taking advantage of the nonequilibrium theory

of nonlinear output regulation. In [9], the corresponding ex-

tension to adaptive nonlinear output regulation is addressed.

Despite the aforementioned efforts, research on adaptive

internal model design is still at quite an early stage. In fact,

the immersion conditions in the existing design methods are

quite restrictive, at least in the following two aspects. Firstly,

the immersed dynamics is usually required to be linear, hence

limiting the exosystem to be linear generally. It is noted that

the only exception is [9], where the immersed dynamics is

assumed to be in the output-feedback form. Besides, as in

[19], the design of all adaptation laws, to the best knowledge

of the authors, is based on the idea of “cancellation”, that

is to cancel the term containing the unknown parameters

when computing the derivative of the Lyapunov function,

which usually requires a linearly parameterized immersion

condition. This in turn fundamentally limits the class of

exogenous and controlled systems.

In order to deal with a broad class of exogenous and

controlled systems, this paper studies the adaptive nonlinear

output regulation problem with a general immersion condi-

tion, in the general nonequilibrium theory of nonlinear output

regulation developed in [6], [9]. Inspired by [15], [12], [18],

a new extended-state observer-based design paradigm is de-

veloped to construct an adaptive nonlinear internal model. By

taking advantage of the extra state provided by the extended-

state observer, one is able to obtain an estimate of the term

containing the uncertain parameter to be estimated, which

then can be utilised to achieve asymptotic identification.

It is noted that the proposed method allows a nonlinearly

parameterized immersion condition. More specifically, the

uncertain parameters in the immersed dynamics can appear

in a “monotonic-like structure”, with linear parameterization

as a particular case.

The paper is organized as follows. Section II gives the

problem formulation and some standing assumptions. In

Section III, the main results are addressed by presenting

the design of the adaptive internal model and the stability

analysis of the resulting closed-loop system. An illustrative

example is presented in Section IV to show the validity of

the prosed method. A brief conclusion is made in Section V.

Notations: For any positive integer d, (Ad, Bd, Cd) is

used to denote the matrix triplet in the prime form. Namely,

Ad denotes a shift matrix of dimension d × d whose all

superdiagonal entries are one and other entries are all zero,
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Bd denotes a d× 1 vector whose entries are all zero except

the last one which is equal to 1, and Cd is a 1 × d vector

whose entries are all zero except the first one which is equal

to 1. A function f : R+ := [0,∞) → R+ is of class K,

if it is continuous, positive definite, and strictly increasing.

A class K function is of class K∞ if it is unbounded. A

continuous function δ : R+ × R+ → R+ is of class KL
if, for each fixed t ≥ 0, the function δ(·, t) is of class K
and, for each fixed s > 0, δ(s, ·) is strictly decreasing and

limt→∞ δ(s, t) = 0.

II. PRELIMINARIES

A. Problem Statement

Consider the system

ż = f0(ρ, w, z) + f1(ρ, w, z, x)x
ẋ = q(ρ, w, z, x) + b(ρ, w, z, x)u
ye = x

(1)

with state z ∈ R
n and x ∈ R, control input u ∈ R, regulated

output ye ∈ R, and in which ρ ∈ R
p and w ∈ R

s denote the

exogenous input, generated by the exosystem

ρ̇ = 0
ẇ = s(ρ, w) ,

(2)

with the initial conditions ρ and w0 taking values from

compact sets P ⊂ R
p and W ⊂ R

s, respectively. As

customary in the field of output regulation, it is assumed

that P ×W is invariant for (2), and there exists a constant

b0 > 0 such that

b(ρ, w, z, x) ≥ b0 (3)

holds for all (ρ, w, z, x) ∈ P × W × R
n × R. Addition-

ally, functions f0(·), f1(·), q(·), b(·), s(·) are assumed to be

sufficiently smooth.

In this framework, the output regulation problem of in-

terest can be summarized as below. Given any compact

sets Cz ⊂ R
n, Cx ⊂ R, all trajectories of system (1)-(2),

controlled by an output feedback regulator of the form

ẋc = ϕc(xc, ye) , xc ∈ R
nc

u = γc(xc, ye) ,
(4)

with all initial conditions ranging over P×W×Cz×Cx×Cxc

with Cxc
being any given compact set in R

nc , are bounded

and lim
t→∞

ye(t) = 0.

With this in mind, it is observed that by viewing x as

the output, system (1) cascaded with (2) has a well-defined

relative degree one, and the corresponding zero dynamics,

driven by the control input

u = −
q(ρ, w, z, 0)

b(ρ, w, z, 0)
,

is given by
ρ̇ = 0
ẇ = s(ρ, w)
ż = f0(ρ, w, z) .

which, with z := (ρ, w, z), can be compactly rewritten as

ż = f(z) (5)

Accordingly, we set Z := P ×W ×Cz with Cz ⊂ R
n being

any given compact set.

Remark 1: This paper is mainly interested in nonlinear

systems having normal form. Although system (1) has rela-

tive degree one, its extension to higher relative degree can be

trivially achieved as in [1] by redefining a regulated output

so as to reduce the relative degree to one.

B. Standing Assumptions

In order to deal with a more general class of nonlinear

systems, following [9] we make some assumptions on the

zero dynamics (5).

Assumption 1: There exist a nonempty, compact set Az ⊂
R

n, and a class KL function δ1(·, ·) such that for all z0 ∈
P ×W × R

n,

dist(z(t, z0),Zc) ≤ δ1(dist(z0,Zc), t) for all t ≥ 0

where Zc := P ×W×Az , and z(t, z0) denotes the solution

of system (5) passing through z0 at time t = 0.

Assumption 2: There exist constants M ≥ 1, a > 0, and

δ2 > 0 such that for all z0 ∈ P ×W × R
n,

dist(z0,Zc) ≤ δ2 ⇒ dist(z(t, z0),Zc) ≤Me−a tdist(z0,Zc) .

Remark 2: Assumption 1 indicates that Zc is an invari-

ant and asymptotically stable compact set under (5). More

specifically, in the sense of [6], Zc is the ω-limit set of

P × W × R
n under (5). It can also be seen that there

exists a compact set Z such that the solution of (5) satisfies

z(t, z0) ∈ Z for all t ≥ 0, so long as z0 ∈ Z . Assumption

2 implies that Zc is locally exponentially stable for (5),

which plays a significant role in the subsequent analysis of

asymptotic stability.

Remark 3: Assumption 1 can be regarded as the

minimum-phase assumption in general nonequilibrium the-

ory. Compared with the conventional minimum-phase as-

sumption such as in [3], [14], the main benefit is that the

extra assumption on the solvability of the regulator equations

is removed, which broadens the class of systems that can be

addressed.

To this end, a general nonlinearly parameterized immer-

sion condition will be proposed, which leads to a constructive

design of the internal model.

Assumption 3: There exist positive integers d and q, a C0

map
θ : P → R

q ,

ρ 7→ θ(ρ) ,

a Cd map
τ : Z → R

d ,

z 7→ τ(z) ,

and a C2 map φ : Rp × R
d → R such that the following

identities

∂τ
∂z

f(z) = Adτ(z) +Bdφ(θ(ρ), τ(z))
q0(z) = Cdτ(z)

(6)

with q0(z) = −
q(ρ, w, z, 0)

b(ρ, w, z, 0)
, hold for all z ∈ Zc and ρ ∈ P .



Remark 4: In Assumption 3, the immersed dynamics (6)

is allowed to be dependent on the uncertain parameter ρ,

which motivates us to incorporate the internal model with

an identifier. Since ρ appears only in the function θ(·),
for convenience we regard θ as an uncertain parameter

to be estimated in the sequel, though this may result in

overparameterization.

In the literature, several immersion conditions for adaptive

output regulation have been proposed. It is worth noting

that compared to the existing ones, Assumption 3 is much

weaker, at least in the following two aspects. In previous

work, the immersion map τ is required to satisfy either a

linear equation (e.g. [3]), or a nonlinear equation but in

the “output-feedback form” (e.g. [9]). Fundamentally, all

these forms in [3], [9] can be transformed to the form (6).

Moreover, in all the previous related literature, the immersed

dynamics (6) is required to be linearly parameterized, while

this paper permits a nonlinear parameterization, with linear

parameterization as a particular case.

In this paper, we aim to handle a more general immersion

property having a nonlinearly parameterized function φ(θ, τ)
in the uncertain parameter θ. We require the following

properties on φ(·, ·).
Assumption 4: There exists a smooth function β(·) :

R
d → R

p having the properties:

(i) There exist ǫ0,i > 0, i = 1, . . . , q such that for any

r ∈ τ(Zc)
1, and any s1, s2 ∈ Bq

0 := {θ ∈ R
q : |θi| ≤

a0,i + ǫ0,i} with a0,i = maxρ∈P |θi(ρ)|, the inequality

(s1 − θ)⊤β(r)
∂φ(s2, r)

∂s2
(s1 − θ) ≤ 0 (7)

holds, with θi denoting the i-th entry of vector θ;

(ii) For any z0 ∈ Zc and s1, s2 ∈ Bq
0, the persistent

excitation (PE) condition

φ(s1, τ(z(t, z0))) − φ(s2, τ(z(t, z0))) = 0
=⇒ s1 = s2

(8)

is fulfilled, where z(t, z0) denotes the trajectory of (5)

passing through z0 at t = 0.

Remark 5: Assumption 4.(i) means that there exists a

smooth function β(r) such that for all r ∈ τ(Zc), the

function β(r)φ(s, r) is monotonically decreasing in s ∈
Bq
0. In this respect, we say that the function φ(s, r) satis-

fying Assumption 4.(i) is in the monotonic-like structure.

If as in [3], [9], the function φ is linearly parameter-

ized, that is φ(s, r) has the form of s⊤ψ(r) for some

function ψ(·), then Assumption 4.(i) can always be ful-

filled by choosing β(r) = ψ(r). Indeed, the class of

functions φ(r, s) satisfying such a monotonicity condi-

tion includes not only all linearly parameterized functions,

but also some nonlinearly parameterized functions, such

as arctan(s⊤ψ(r)) or
ψ0(r)

∑p
i=1 θiψi(r) + ψp+1(r)

, where the

corresponding function β(r) can be chosen as ψ(r) or

− (ψ0(r)ψ1(r) · · · ψ0(r)ψp(r) )
⊤

, respectively.

1For simplicity, we use τ(Zc) to denote the set of τ(z) for all z ∈ Zc.

It is observed that the maps φ(s, r) and β(r) are continu-

ously differentiable and Assumption 3 and 4 are respectively

made over the compact sets s ∈ Bq
0 and (s, r) ∈ Bq

0×τ(Zc).
In view of this, there is no loss of generality to suppose

that functions φ(·, ·) and βi(·) are globally Lipschitz and

bounded, i.e., there exist a1 > 0 and a2,i > 0, i = 1, . . . , q
such that inequalities

|φ(s, r)| ≤ a1 , |βi(r)| ≤ a2,i (9)

with βi denoting the i-th entry of vector β, hold for all s ∈
R

q , r ∈ R
d.

III. ADAPTIVE REGULATOR DESIGN

A. Adaptive Internal Model

With Assumption 3, if θ were known, then we could design

an internal model of the form

η̇ = Adη +Bdφ(θ, η) + vη (10)

in which η ∈ R
d, and vη ∈ R

d denotes the input of the

internal model, and the control input can be chosen as

u = vu + Cdη (11)

where vu is the residual input.

However, since θ is unknown, the internal model (10)

is not implementable. To overcome this obstacle, an extra

identifier can be used to provide an estimate of θ, denoted

by θ̂ ∈ R
q . It is worth noting that, due to the presence of

the nonlinear parameterization, we cannot take advantage of

the usual “cancellation” idea (e.g. [3], [9]).

Inspired by various important results on the design of

extended-state observers (e.g. [15], [12], [18]), we propose

a new adaptive internal model, having the form

η̇ = Adη +Bdφ(θ̂, η)− satv((Ad + λI)ξ̂)−Bdsatd+1(σ̂)
˙̂
θ = β(η)satd+1(σ̂)− dzv(θ̂)
˙̂
ξ = Adξ̂ +Bdσ̂ − satv((Ad + λI)ξ̂)−Bdsatd+1(σ̂)

−ΛℓG(vu + ξ̂1)
˙̂σ = −ℓd+1gd+1(vu + ξ̂1)

(12)

where ξ̂ := col (ξ̂1, . . . , ξ̂d), λ > 0, Λℓ = diag(ℓ, . . . , ℓd),
G = col(g1, . . . , gd), functions sati(·) for i = 1, . . . , d + 1
have the form

sati(s) =











s , |s| ≤ li

s− sign(s)
(|s| − li)

2

2
, li < |s| < li + 1

li +
1
2 , |s| ≥ li + 1 ,

with saturation level li, satv(·) : Rd → R
d denotes a vector-

valued saturation function, defined by satv(s1, . . . , sd) =
col (sat1(s1), . . . , satd(sd)), and dzv(·) denotes a vector-

valued dead-zone function, each element of which is a

function of the form

dzi(s) =



















0 , |s| ≤ a0,i

ci
(|s| − a0,i)

2

2ǫ0,i
sign(s) , a0,i < |s| < a0,i + ǫ0,i

cis− ci

(

a0,i +
ǫ0,i

2

)

sign(s) , |s| ≥ a0,i + ǫ0,i .



As it can be seen from Fig. 1, functions sati and dzi are

constructed to be smooth. All design parameters gi, li, and

ci will be defined later in Proposition 1, (31), and (20),

respectively.
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Fig. 1. Left: plot of function sati with li = 3; and right: plot of function
dzi with ci = 1.2, a0,i = 4, ǫ0,i = 2.

By cascading system (1) with the adaptive internal model

(12) and the control input (11), we obtain a cascaded system

of the form

ρ̇ = 0
ẇ = s(ρ, w)
ż = f0(ρ, w, z) + f1(ρ, w, z, x)x

η̇ = Adη +Bdφ(θ̂, η)− satv((Ad + λI)ξ̂)−Bdsatd+1(σ̂)
˙̂
θ = β(η)satd+1(σ̂)− dzv(θ̂)
˙̂
ξ = Adξ̂ +Bdσ̂ − satv((Ad + λI)ξ̂)−Bdsatd+1(σ̂)

−ΛℓG(vu + ξ̂1)
˙̂σ = −ℓd+1gd+1(vu + ξ̂1)
ẋ = q(ρ, w, z, x) + b(ρ, w, z, x)(Cdη + vu)

(13)

It is observed that system (13), viewing vu as control input

and x as output, has a well-defined relative degree one, and

the corresponding extended zero dynamics, forced by

vu = −Cdη −
q(ρ, w, z, 0)

b(ρ, w, z, 0)
, (14)

can be given by

ρ̇ = 0
ẇ = s(ρ, w)
ż = f0(ρ, w, z)

η̇ = Adη +Bdφ(θ̂, η)− satv((Ad + λI)ξ̂)−Bdsatld+1
(σ̂)

˙̂
θ = β(η)satd+1(σ̂)− dzv(θ̂)
˙̂
ξ = Adξ̂ +Bdσ̂ − satv((Ad + λI)ξ̂)−Bdsatd+1(σ̂)

−ΛℓG

(

−Cdη −
q(ρ, w, z, 0)

b(ρ, w, z, 0)
+ ξ̂1

)

˙̂σ = −ℓd+1gd+1

(

−Cdη −
q(ρ, w, z, 0)

b(ρ, w, z, 0)
+ ξ̂1

)

(15)

By simple calculations, it is observed that under Assump-

tions 1 and 3, the adaptive controller (11)-(12) fulfills the

internal model property, relative to the set Zc. Therefore,

in light of previous analysis, according to [6], the desired

adaptive output regulation problem can be solved by the

adaptive controller (11)-(12) with the residual control vu
having the form vu = −κx, if the extended zero dynamics

(15) can be shown to to possess an asymptotically (locally

exponentially) stable compact attractor.

Remark 6: As will be shown in next subsection, (12)

contains an extended state observer, i.e., the (ξ̂, σ̂) dynamics,

in which σ̂ denotes the extra estimate. Using this extra

estimate, we are able to take advantage of the nonlinear

parameterization structure given in Assumption 4, which thus

enables the identifier θ̂-dynamics to achieve an asymptotic

estimate of the uncertain parameters θ.

B. Stability Analysis of Extended Zero Dynamics (15)

In the previous subsection, with the design of (12) for

system (13), we obtain an extended zero dynamics (15),

whose stability analysis will be presented in the sequel.

As before, we write z = (ρ, w, z). Consider the change

of coordinates η̃ = η − τ(z). This, recalling (5), transforms

(15) to the form

ż = f(z)
˙̃η = Adη̃ +Bd[φ(θ̂, η̃ + τ) − φ(θ, τ)]

−satv((Ad + λI)ξ̂)−Bdsatd+1(σ̂) + ς(z)
˙̂
θ = β(η̃ + τ)satd+1(σ̂)− dzv(θ̂)
˙̂
ξ = Adξ̂ +Bdσ̂ − satv((Ad + λI)ξ̂)−Bdsatd+1(σ̂)

+ΛℓG(η̃1 − ξ̂1)
˙̂σ = ℓd+1gd+1(η̃1 − ξ̂1)

(16)

where

ς(z) = Adτ(z) +Bdφ(θ, τ(z)) −
∂τ(z)

∂w
s(w)

−
∂τ(z)

∂z
f0(z)

is a term which vanishes in Zc by Assumption 3.

Let ςi(z) denote the i-th element of the vector ς(z), and

then set ξ := col (ξ1, . . . , ξd) with

ξ1 = η̃1
ξ2 = η̃2 + ς1(z)

ξi = η̃i +
∑i−2

j=1 L
i−j−1
f

ςj+1(z) + ςi−1(z) , 3 ≤ i ≤ d

with L denoting the Lie derivative, which also suggests that

η̃ = ξ − ς̄(z) for an appropriately defined function ς̄(z),
satisfying ς̄(z) = 0 for all z ∈ Zc.

In view of the previous analysis, (16) can be rewritten as

ż = f(z)

ξ̇ = Adξ +Bd[φ(θ̂, ξ + τ(z) − ς̄(z)) − φ(θ, τ(z))]

−satv((Ad + λI)ξ̂)−Bdsatd+1(σ̂) +Bdν(z)
˙̂
θ = β(ξ + τ(z) − ς̄(z))satd+1(σ̂)− dzv(θ̂)
˙̂
ξ = Adξ̂ +Bdσ̂ − satv((Ad + λI)ξ̂)−Bdsatd+1(σ̂)

+ΛℓG(ξ1 − ξ̂1)
˙̂σ = ℓd+1gd+1(ξ1 − ξ̂1)

(17)

where ν(z) =

d−1
∑

i=1

Ld−i
f

ςi(z)+ςd(z). It is noted that ν(z) = 0

for all z ∈ Zc and there exists a constant a3 > 0 such that

for all z ∈ Z,

|ν(z)| ≤ a3 . (18)



It then can be seen that the (ξ̂, σ̂) dynamics in (17) can be

viewed as an extended-state observer of the ξ dynamics, with

observer states ξ̂ and σ̂ respectively being used to estimate

the variables ξ, and the “perturbation” term

σ := φ(θ̂, ξ + τ(z) − ς̄(z)) − φ(θ, τ(z)) + ν(z) . (19)

This observation thus motivates us to analyse the asymptotic

stability of the extended zero dynamics (17) by using the

nonlinear separation principle [1], but in the general nonequi-

libirum theory.

Fix all coefficients of the dead-zone function dzv(·) as

ci >
4a1a2,i + 2a2,ia3

ǫ0,i
, i = 1, . . . , d , (20)

with constants a1, a2,i, a3, and ǫ0,i being given by (9), (18),

and Assumption 4.(i).

With the above choice of ci’s in mind, to apply the

nonlinear separation principle to analyze the asymptotic

stability of system (17), it is natural to first consider the

auxiliary system

ż = f(z)

ξ̇ = −λξ
˙̂
θ = β(ξ + τ(z) − ς̄(z))[φ(θ̂, ξ + τ(z) − ς̄(z)) − φ(θ, τ(z))]

+β(ξ + τ(z) − ς̄(z))ν(z) − dzv(θ̂)
(21)

whose stability properties can be characterized as below.

Lemma 1: Suppose Assumptions 1, 3, and 4 hold. Then

the set Aa := Zc×{0}×{θ} is asymptotically stable under

the flow (21), for every initial condition (z0, ξ0, θ̂0) ranging

over the set M := Z × R
d × R

p.

Proof: The proof is given in Appendix A.

Lemma 2: Suppose Assumptions 2, 3, and 4 hold. Then

the set Aa under the flow (21) is locally exponentially stable.

Proof: The proof is given in Appendix B.

By setting θ̃ = θ̂ − θ and letting z(t) denote the solution

of system ż = f(z) with initial condition ranging over Z ,

system (21) can be rewritten as a nonautonomous system

ξ̇ = −λξ
˙̃
θ = β(ξ + τ(z(t)) − ς̄(z(t)))·

·
[

φ(θ̃ + θ, ξ + τ(z(t)) − ς̄(z(t))) − φ(θ, τ(z(t)))
]

+β(ξ + τ(z(t)) − ς̄(z(t)))ν(z(t)) − dzv(θ̃ + θ) .

(22)

With Lemma 1, and recalling Assumption 1 and the

fact that z(t) are captured by the compact set Z, we can

conclude the following result, whose proof can be obtained

by simply adapting the proof of [3, Theorem 3.1] to the

present framework and is thus omitted.

Corollary 1: Suppose Assumptions 1, 3, and 4 hold. The

zero equilibrium of nonautonomous system (22) is uniformly

asymptotically stable, for all z0 ∈ Z .

By letting xa = col (ξ, θ̃), system (22) can be compactly

rewritten as

ẋa = fa(z(t),xa) (23)

where fa(z(t),xa) is continuously differentiable. It is worth

noting that by constructing functions β(·) and φ(·, ·) to be

globally bounded and Lipschitz, and since z(t) ∈ Z for all

t ≥ 0, there exists a ̟0 > 0 such that
∥

∥

∥

∥

∂fa(z(t),xa)

∂xa

∥

∥

∥

∥

≤ ̟0 .

According to [11, Theorem 4.16], this property, together with

Lemma 1, indicates that there exist a smooth, positive definite

function Wa(t,xa), and class K∞ functions α1, α2, α3, and

α4 such that

α1(|xa|) ≤Wa(t,xa) ≤ α2(|xa|)
∂Wa

∂t
+
∂Wa

∂xa

ẋa ≤ −α3(|xa|)
∣

∣

∣

∣

∂Wa

∂xa

∣

∣

∣

∣

≤ α4(|xa|) .

(24)

With this in mind, we turn to system (17) and define the

rescaled estimate errors as

ξ̃ = ℓd+1Λ−1
ℓ (ξ − ξ̂) , σ̃ = σ − σ̂ . (25)

Taking time derivatives of these errors along (17) yields

˙̃
ξ = ℓ(Ad −GCd)ξ̃ + ℓBdσ̃ (26)

and

˙̃σ = −ℓgd+1ξ̃1 + φ̇(θ̂, ξ + τ(z) − ς̄(z)) − φ̇(θ, τ(z))

= −ℓgd+1ξ̃1 +∆e

(27)

where the term ∆e is defined by

∆e =
∂φ(θ̂, ξ + τ)

∂θ̂

˙̂
θ +

∂φ(θ̂, ξ + τ)

∂ξ
ξ̇

+

[

∂φ(θ̂, ξ + τ − ς̄)

∂τ
−
∂φ(θ, τ)

∂τ

]

τ̇ (z)

−
∂φ(θ̂, ξ + τ − ς̄)

∂ς̄
˙̄ς(z) .

(28)

It is worth noting that ∆e = 0 for all (z,xa) ∈ Aa and

e = 0, and due to the presence of saturation functions, |∆e|
is bounded for all bounded (z,xa), uniformly in (ξ̃, σ̃).

Putting these equations together and letting e = col (ξ̃, σ̃),
we can compactly obtain

ė = ℓFee+Bd+1∆e (29)

where Fe is defined by

Fe =

(

−G Id
−gd+1 0

)

This allows us to rewrite (17) as

ż = f(z)
ẋa = fa(z,xa) + Ξ(z(t),xa, e)
ė = ℓFee+Bd+1∆e .

(30)

Thus, given any compact set Cx ∈ R
p+d, choose c such

that Ac ⊃ Cx with

Ac = {xa : α1(|xa|) ≤ c} ,

and let

Ωc+1 = {xa : α1(|xa|) ≤ max
xa∈Ac

α2(|xa|) + 1} .



It is clear that Ac ⊂ Ωc+1. Then, choose the saturation levels

as

li = max
xa∈Ωc+1

|λξi + ξi+1|+ 1 , 1 ≤ i ≤ d− 1

ld = max
xa∈Ωc+1

|λξd|+ 1

ld+1 = max
(z,xa)∈Z×Ωc+1

∣

∣

∣
φ(θ̂, ϕη(ξ + τ(z) − ς̄(z(t))))

−φ(θ, τ(z))| + 1 .
(31)

With the above choice of li’s, it can be observed that for all

(z,xa) ∈ Z× Ωc+1, Ξ(z,xa, e) is bounded uniformly in e,

and Ξ(z,xa, 0) = 0.

Therefore, from the standard arguments of nonlinear sep-

aration principles [1], semiglobal asymptotic stability of the

closed-loop system (17) can be easily concluded as below.

Proposition 1: Suppose Assumptions 1, 2 and 4 hold.

Given any compact sets Cx ∈ R
q+d and Ce ∈ R

d+1, and

choosing gi’s such that matrix Fe is Hurwitz, there exists

ℓ∗ > 1 such that for all ℓ ≥ ℓ∗ the set

{(z, θ̂, ξ, ξ̂, σ̂) : z ∈ Zc, ξ = 0, θ̂ = θ, ξ̂ = 0, σ̂ = 0}

under the flow (17) is locally exponentially stable, and

asymptotically stable for all initial conditions in Z×Cx×Ce.

C. Adaptive Output Regulation

We now turn to the extended system (13). As mentioned

before, this system, viewed as a system with input vu and

output ye = x, has relative degree one. By taking the change

of variables

ξ̌ := ξ̂ + ΛℓG

∫ x

0

1

b(ρ, w, z, s)
ds

σ̌ := σ̂ + ℓd+1gd+1

∫ x

0

1

b(ρ, w, z, s)
ds

system (13) can be rewritten in “normal form” as

ρ̇ = 0
ẇ = s(ρ, w)
ż = f0(ρ, w, z) + f1(ρ, w, z, x)x

η̇ = Adη +Bdφ(θ̂, η)− satv((Ad + λI)ξ̌)

−Bdsatd+1(σ̂) + µ1(ρ, w, z, θ̂, η, ξ̌, σ̌, x)x
˙̂
θ = β(η)satd+1(σ̌) + µ2(ρ, w, z, θ̂, η, ξ̌, σ̌, x)x
˙̌
ξ = Adξ̌ +Bdσ̌ − satv((Ad + λI)ξ̌)−Bdsatd+1(σ̌)

+ΛℓG

(

Cdη +
q(ρ, w, z, 0)

b(ρ, w, z, 0)
− ξ̂1

)

+ µ3(ρ, w, z, θ̂, η, ξ̌, σ̌, x)x

˙̌σ = ℓd+1gd+1

(

Cdη +
q(ρ, w, z, 0)

b(ρ, w, z, 0)
− ξ̌1

)

+µ4(ρ, w, z, θ̂, η, ξ̌, σ̌, x)x

ẋ = q(ρ, w, z, x)− b(ρ, w, z, x)
q(ρ, w, z, 0)

b(ρ, w, z, 0)

+b(ρ, w, z, x)

(

Cdη +
q(ρ, w, z, 0)

b(ρ, w, z, 0)

)

+ b(ρ, w, z, x)vu

(32)

in which µi(·), i = 1, . . . , 4 are continuous functions.

Bearing in mind the results in Proposition 1 and recalling

[9, Proposition 4], we can choose vu for system (32) as the

form

vu = −κx , (33)

and the following conclusion can be easily made.

Proposition 2: Consider system (1) with exosystem (2)

and controller (4) having the form (12) and (33). Suppose

Assumptions 1-4 hold. Given any compact sets Cz ⊂ R
n,

Cx ⊂ R and Cxc
⊂ R

2d+q+1, and choosing gi’s such that

matrix Fe is Hurwitz, there exist ℓ∗ > 1 and a positive

function κ∗(·) such that for all ℓ > ℓ∗ and κ ≥ κ∗(ℓ), the

resulting trajectories of the closed-loop system are bounded

and x(t) → 0 as t → ∞, with the domain of attraction that

contains Cz × Cx × Cxc
.

IV. AN ILLUSTRATIVE EXAMPLE

Consider the output regulation problem for the nonlinear

system

ζ̇1 = ρζ1 − (ζ1 + w1)
3 + w2 + ζ2

ζ̇2 = ζ3
ζ̇3 = −w1 + ζ1ζ2 + u

ye = ζ1

(34)

in which (ζ2, ζ3) are measurable states, and the exogenous

variables w1, w2 are generated by an uncertain nonlinear

oscillator

ẇ1 = w2

ẇ2 = −w1 + (1− w2
1)

w2

1 + ρw1

(35)

where ρ is a constant unknown parameter satisfying

ρ ∈ [−0.2, 0.2]. The trajectories of (35) at each ρ ∈
{−0.2, 0, 0.2} are given in Fig.2. It can be seen that for any

ρ ∈ [−0.2, 0.2] there exists a limit cycle, that is an invariant

set W for (35), and particularly W ⊂ {(w1, w2) : |wi| ≤
3, i = 1, 2}.
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Fig. 2. Phase portrait of (35) at ρ = 0.2, ρ = 0 and ρ = −0.2.

Note that, when w1 = w2 ≡ 0, system (34), regarded as a

system with input u and output ye, has relative degree 2 and

a zero dynamics as ζ̇1 = ρζ1 − ζ31 , whose zero equilibrium

point is unstable when ρ > 0 and stable when ρ ≤ 0. Thus,

the conventional methods [14], [3] based on equilibrium

theory cannot be applied.

Following the design paradigm proposed in this paper, we

first set z1 = ζ1, z2 = ζ2 and x = ζ2+ζ3, which reduces the

relative degree of system (34) to one, leading to the form

ż1 = ρz1 − (z1 + w1)
3 + w2 + z2

ż2 = −z2 + x

ẋ = −w1 − z2 + z1z2 + x+ u .

(36)



The zero dynamics of system (35)-(36) with respect to input

u and output x, forced by the control input u = w1 + z2 −
z1z2, can be described as

ρ̇ = 0
ẇ1 = w2

ẇ2 = −w1 + (1− w2
1)

w2

1 + ρw1

ż1 = ρz1 − (z1 + w1)
3 + w2 + z2

ż2 = −z2 .

Then, by some simple calculations, it can be seen that As-

sumptions 1 and 2 are fulfilled for some ω-limit set on which

z2 = 0. In view of this, we proceed to verify Assumptions

3 and 4. Observe that in the present setting, Assumption 3

is fulfilled with the map τ := (τ1, τ2) = (w1, w2) satisfying

the equations

τ̇1 = τ2 , τ̇2 = φ(θ, τ)

where θ = ρ and function φ(θ, τ) = −ϕs(τ1) + (1 −

ϕ2
s(τ1))

ϕs(τ2)

1 + ϕs(θ)ϕs(τ1)
with

ϕs(τi) = τi , for |τi| ≤ 3
ϕs(θ) = θ , for |θ| ≤ 0.2 .

Moreover, by choosing β(τ) = (1−ϕ2
s(τ1))ϕs(τ1)ϕs(τ2), it

can be easily found that the function β(τ)φ(θ, τ) is strictly

decreasing in |θ| ≤ 0.25, for all τ ∈ W . In this way,

Assumption 4 is also fulfilled.

Therefore, the adaptive internal model-based regulator (12)

and (11) can be employed to handle the nonlinear output

regulation problem at hand. Figure 3 shows simulation results

for ρ = 0.2, and the design parameters ℓ = 10 and κ = 30. It

demonstrates that the regulated output ye converges to zero

asymptotically and the parameter estimate θ̂ converges to the

real value.
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Fig. 3. Trajectories of regulated output ye(t) and parameter estimate θ̂(t).

V. CONCLUSION

This paper studies the adaptive output regulation problem

for a class of nonlinear systems using the general nonequilib-

rium theory developed in [6]. By incorporating an extended-

state observer into the adaptive internal model, a new ap-

proach is proposed to deal with adaptive nonlinear regulation,

which allows for more general nonlinearly parameterized

immersion conditions.

APPENDIX

A. Proof of Lemma 1

The proof mainly follows the nonequilibrium theory de-

veloped in [6]. First, we will show that the trajectories of

system (21) are bounded, i.e. there is no finite-time escape.

By Assumption 1 and the choice of λ > 0, it can be easily

seen that z(t) and ξ(t) are bounded. To show θ̂(t) is also

bounded, we let θ̂i denote the i-th element of vector θ̂ and

choose V
θ̂,i

= 1
2 |θ̂i|

2, i = 1, . . . , p. Taking the time derivative

of V
θ̂,i

along the bottom equation of (21) yields that

V̇
θ̂,i

= θ̂iβi[φ(θ̂, ξ + τ(z) − ς̄(z)) − φ(θ, τ(z))]

+θ̂iβiν(z) − θ̂idzi(θ̂i)

≤ −θ̂idzi(θ̂i) + (2a1a2,i + a2,ia3)|θ̂i|

where (9) and (18) are used to get the inequality.

If |θ̂i| ≥ a0,i + ǫ0,i, then

V̇
θ̂,i

≤ −ciθ̂i[θ̂i − (a0,i +
ǫ0,i
2 )] + (2a1a2,i + a2,ia3)|θ̂i|

≤ −
ǫ0,i
2 (ci −

4a1a2,i+2a2,ia3

ǫ0,i
)|θ̂i| .

From (20), we can conclude that V̇
θ̂,i

< 0 for all |θ̂i| ≥
a0,i + ǫ0,i with i = 1, . . . , d. This then indicates that in the

presence of dead-zone functions dzv(θ̂), the trajectory θ̂(t)
of (21) is globally uniformly bounded, and will enter and

stay inside the closed cube Bq
0.

With the boundedness of trajectories of system (21), it thus

can be deduced that there exists an ω-limit set, denoted by

ω(M), of M = Z ×R
d×R

q under the flow of (21), which

is nonempty, compact and invariant, and uniformly attracts

all trajectories of (21) with initial conditions in M.

Now we proceed to investigate the structure of this ω-

limit set ω(M). Due to the special triangular structure of

(21), and by Assumption 1 and the fact that the ξ-subsystem

is globally exponentially stable at the origin, it immediately

follows that on the points of ω(M), necessarily z ∈ Zc and

ξ = 0. As a consequence, on the ω-limit set ω(M), ς̄(z) = 0
and ν(z) = 0. In view of the previous analysis, to specify the

structure of ω(M), we still need to determine the value of

θ̂. On the other hand, when proving the boundness of θ̂(t),
we have shown that θ̂(t) will enter and stay inside the closed

cube Bq
0. Thus, by recalling that Zc is invariant under (5),

the value of θ̂ on ω(M) is determined by the properties of

the system

ż = f(z)
˙̂
θ = β(τ(z))[φ(θ̂, τ(z)) − φ(θ, τ(z))] − dzv(θ̂)

(37)

where the initial condition z0 ∈ Zc and θ̂0 ∈ Bq
0. It is noted

that θ̂(t) ∈ Bq
0 for all t ≥ 0 under (37).

Then, choose Vθ̃ = 1
2 |θ̃|

2 with θ̃ = θ̂ − θ, whose time

derivative along (37) can be given by

V̇θ̃ = (θ̂− θ)⊤β(τ(z))[φ(θ̂, τ(z))−φ(θ, τ(z))]− θ̃⊤dzv(θ̂) .

Bearing in mind the definition of dzv(·), observe that

(θ̂ − θ(ρ))⊤dzv(θ̂) ≥ 0 for all θ̂ ∈ R
p and ρ ∈ P . (38)



This, together with the first part of Assumption 4, implies

that under the flow (37),

V̇θ̃ ≤ 0 , (39)

where the equality holds if and only if

(θ̂ − θ)⊤β(τ(z))[φ(θ̂, τ(z)) − φ(θ, τ(z))] = 0

(θ̂ − θ)⊤dzv(θ̂) = 0 .

Thus, θ̂(t) converges to some constant value θ̂∞ as t goes to

infinity. By LaSalle’s invariance theorem, this θ̂∞ necessarily

is such that

(θ̂∞ − θ)⊤β(τ(z))[φ(θ̂∞ , τ(z)) − φ(θ, τ(z))] = 0

(θ̂∞ − θ)⊤dzv(θ̂∞) = 0

β(τ(z))[φ(θ̂∞ , τ(z)) − φ(θ, τ(z))] − dzv(θ̂∞) = 0 .
(40)

It is noted that the second of (40) indicates that dzv(θ̂∞) = 0.

This further reduces (40) to

β(τ(z))[φ(θ̂∞ , τ(z)) − φ(θ, τ(z))] = 0 .

By Assumption 4.(ii), we have θ̂∞ = θ. This completes the

proof. �

B. Proof of Lemma 2

Due to the special cascaded-structure of system (21) and

since functions β and φ are constructed to be globally

Lipschitz and bounded, with the choice of λ > 0 and

Assumption 2, it is clear that the proof is completed if for

any z0 ∈ Zc, the origin of the linear time-varying system

˙̃
θ = β(τ(z(t, z0)))

∂φ(θ, τ(z(t, z0)))

∂θ
θ̃ (41)

with θ̃ = θ̂ − θ, is shown to be uniformly exponentially

stable.

Since z(t, z0) is the solution of the autonomous system

(5) passing through z0 at t = 0, (41) can be rewritten as a

cascaded autonomous system, having the form

ż = f(z)

˙̃
θ = β(τ(z))

∂φ(θ, τ(z))

∂θ
θ̃ .

(42)

We then calculate the derivative of Vθ̃ as

V̇θ̃ = θ̃⊤β(τ(z))
∂φ(θ, τ(z))

∂θ
θ̃ ≤ 0

where the inequality is obtained by using Assumption 4.(i).

Then, similar to the proof of Lemma 1, by LaSalle’s in-

variance theorem and Assumption 4.(ii), we can conclude

that system (42) is uniformly asymptotically stable at the set

Zc × {0}, for any initial condition (z0, θ̃0) ∈ Zc × Rq . In

other words, for any ε > 0 and (z0, θ̃0) ∈ Zc × Rq , there

exists Tε > 0 such that

|θ̃(t)| = dist
(

(z(t), θ̃(t)),Zc × {0}
)

≤ ε for all t ≥ Tε .

(43)

Therefore, the zero equilibrium of the linear time-varying

system (41) is uniformly asymptotically stable, which also

indicates the desired exponential stability. �
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