
MIT Open Access Articles

On the stability analysis of mixed traffic with 
vehicles under car-following and bilateral control

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Wang, Liang and Berthold K.P. Horn. “On the stability analysis of mixed traffic with 
vehicles under car-following and bilateral control.” IEEE Transactions on Automatic Control, 65, 
7 (October 2019): 3076 - 3083 © 2019 The Author(s)

As Published: 10.1109/TAC.2019.2945888

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/129433

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/129433
http://creativecommons.org/licenses/by-nc-sa/4.0/


1

On the stability analysis of mixed traffic with
vehicles under car-following and bilateral control

Liang Wanga and Berthold K.P. Hornb∗

Abstract—In this paper, we study a mixed traffic flow in which
some cars are under car-following control and others are under
bilateral control. We also provide the necessary (modular string)
stability condition for this type of mixed traffic, which can be
viewed as an extension of the condition for pure car-following
control based traffic. This necessary stability condition provides
some indication of how the introduction of self-driving cars
(under bilateral control) will affect today’s traffic.

Index Terms—bilateral control, car-following model, mixed
traffic, stability analysis, adaptive cruise control (ACC).

I. INTRODUCTION AND RELATED WORK

WE are all familiar with “stop-and-go” traffic and so-
called “phantom traffic jams.” These are “emergent

behaviors” of a dynamic system comprised of human-driven
cars according to the so-called “car following” model (CFM).
Models of this type of traffic flow have been studied since the
1930s [1], and several ways have been proposed to explain the
origin of this highly undesirable phenomenon [2]–[4]. Some
suggestions have also been made about how to suppress such
traffic flow instabilities. One well-known approach is known
as the platoon [5]–[8]. In brief, the platoon controller tries to
bind successive cars together and force them to move in lock-
step like “carriages” in a train. A single lead vehicle controls a
whole vehicular chain and plays the same role as a locomotive
in a train. New platoon models, e.g., decentralized platoon,
bi-directional platoon, multi-neighbor platoon, are continuing
to be proposed [9]–[17]. See also [18], [19] for theoretical
analyses of various platoon models.

Another approach is to let vehicles themselves solve the
traffic flow problems by designing new adaptive cruise control
(ACC) systems. In order to make vehicles under such modified
ACC systems move independently like cars, rather than like
“carriages” in a train, global-control parameters are not al-
lowed: No preset desired speed for the whole traffic, or preset
desired space between cars (i.e., preset relative position in the
traffic), and the control system (including control commands)
in one car is not accessible to ACC systems in other cars.
The ACC system’s input comes from the vehicle’s on-board
sensors, and control of the vehicle is based entirely on the
outputs of its own sensors. One such new ACC system is
known as bilateral control model (BCM) [20]–[23], in which
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the vehicle is controlled to stay as far from the leading car as
from the following car. See also [24]–[26] for previous efforts
involving use of bi-directional information flow.

Although the traffic flow purely under car-following control,
or purely under bilateral control, is similar in some respects
to special cases of platooning, in particular a decentralized
platoon with infinite boundaries, here, we should mention that
both car-following control and bilateral control are applied
to individual vehicles, and thus, there is no requirement that
all vehicles use the same control strategy. One result is that
cars under car-following control and vehicles under bilateral
control can run independently and coexist in the same traffic
flow. Realistically, not all cars will be converted to bilateral
control at once, so the question arises as to how a mixture
of cars under car following control and cars under bilateral
control will behave. That is, will they “play well together?”

In this paper, we study such mixed traffic in which some
vehicles are under car-following control and others are under
bilateral control. We focus on a particular type of mixed
traffic in which K successive cars under car-following control
and L successive cars under bilateral control appear in the
traffic flow alternately. We provide the necessary condition
for the modular string stability of such mixed traffic, which
is an extension of the condition for pure car-following control
traffic. The stability analysis also provides some indication on
how self-driving cars (under BCM) will affect traffic. In brief,
one important cause of the “stop-and-go” traffic instabilities is
the tailgating behavior of human drivers. By adding bilateral
control cars, the impact of such tailgating behavior can be
weakened, and thus constraints on control-system gains for
stability can be reduced. How much such stability condition
can be relaxed depends on 1). the percentage of bilateral-
control vehicles in the mixed traffic and 2). the distribution
of bilateral-control cars (i.e., concentrated or dispersed). The
conditions developed in Section IV provide more details.

II. CAR-FOLLOWING CONTROL AND BILATERAL CONTROL

Let yn(t) be the position of the n−th car, and vn(t) = ẏn(t)
be its velocity1. The pair {yn(t), vn(t)} gives the state of the
n−th car, which is adjusted through the acceleration an(t) =
ÿn(t) commanded by the control system. In this paper, control
of car n is provided by a simple linear feedback system2

an = kd(dn − sn) + kv(rn − un), (1)

1The positive direction is chosen as the direction in which cars are moving,
thus, yn−1 − yn > 0 (see Figure 1).

2The simplified “decision-making module” (1) of the ACC system is widely
used for traffic-flow analysis. Delay and non-linearity can also be considered
to build more accurate and complicated car models [27].
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(a) Car-following model (b) Bilateral control model

(c) A physical analog of the BCM traffic

Fig. 1. The car-following model (CFM) and bilateral control model
(BCM). The blocks with “L”, “C” and “F” denote the leading car,
current car and following car. (a) CFM is based only on the state of
the leading car “L”. (b) BCM uses the states of both leading car “L”
and following car “F”. (c) A physical analog of the traffic flow under
bilateral control is a big “spring-damper-mass” system.

where dn = yn−1 − yn − ℓ denotes the space between
the current car and its leading car (with car length ℓ), and
rn = vn−1 − vn denotes the relative velocity between the
current car and its leading car. The proportional gain kd and
derivative gain kv are both positive. The desired space sn
and desired speed difference un are specified differently in
different vehicle-control models as explained next.

In this paper, the car-following model (CFM) implements
“constant time headway” control [2], [4], [27], i.e.,

sn = vnT and un = 0, (2)

where T is known as the reaction time. In this model, control
of car n is based only on the relative position and relative
velocity of car n− 1 immediately ahead.

For self-driving cars, a second pair of sensors can be used
to measure space and speed difference between the current car
and the car following. These two new measurements dn+1 and
rn+1 can then be used for control. For instance, we can set

sn = dn+1 and un = rn+1. (3)

Then, eq. (1) becomes

an = kd
(
dn − dn+1

)
+ kv

(
rn − rn+1

)
. (4)

We call this new control strategy the bilateral control model
(BCM). Here, control of car n is based on the relative positions
and relative velocities of both car n− 1 ahead and car n+ 1
behind. The control objective of BCM is to stay in the middle
between the “front and back” neighbors, and run at the average
speed of these two neighbors. Fig. 1 shows the car-following
control model and bilateral control model. See [20], [21] for
more details about BCM implementation.

III. STABILITY CONDITION FOR PURE TRAFFIC

In the equilibrium state, all the cars are spaced the safe
distance s = v0T apart and move at the same speed v0. In this
case, all the accelerations an in eqs. (1) and (4) are zero3, and
the traffic flow continues in the equilibrium state. The impor-
tant question then is whether this equilibrium is stable, meta-
stable, or unstable. If there is a small perturbation in xn(t) or

3In eq. (4), an = 0 for all n indicates that dn = dn+1 and rn = rn+1

for all n. Let rn = r for all n, then vn = v0−n r and dn(t) = r t+dn(0).
In practice, vn and dn(t) are bounded (for all n and t). Thus, r = 0.

vn(t), will the traffic system return to the equilibrium state or
will there be increasing departures from the equilibrium state,
which ultimately lead to a traffic jam?

For the traffic flow purely under constant-time headway
CFM, the stability (and string stability) requires4

1

2
kdT

2 + kvT > 1. (5)

In consideration of passengers’ comfort, in general, kd and kv
are chosen to be relatively small. If most of the drivers try to
tailgate, i.e., effectively choosing smaller values for T , then
(5) will be easily violated, and traffic jams will appear. When
an ACC system is used, even though sensor’s response can be
much faster than that of human beings, still, relatively large
values for T (e.g., T = 1.5 sec. [18]) should be used.

Traffic flow under bilateral control is stable for all kd > 0
and kv > 0 [20]–[22]. A physical analog of a line of traffic
under BCM is a big “spring-damper-mass” system shown in
Fig. 1(c) [20]. Intuitively, a perturbation will lead to damped
waves travelling outward in both directions from the point
of perturbation, and the amplitude of these waves will decay
as they travel [21]. Ref. [22] also proves that BCM traffic is
stable under any and all of the various boundary conditions5:
infinite line, circular boundaries, fixed-fixed boundaries, free-
free boundaries and fixed-free boundaries. Thus, traffic flow
instabilities can be suppressed by automated control systems
in individual vehicles without global control.

As bilateral control is introduced, the mixed traffic — in
which some cars are under CFM control while others are under
BCM control — will be of interest.

IV. STABILITY ANALYSIS OF MIXED TRAFFIC

Intuitively, mixed traffic flow can be cut into “single mode
segments.” In each segment, the vehicles are either all under
CFM (called a CFM chain) or all under BCM (called a BCM
chain). The BCM chains in themselves are always stable, while
the CFM chains are not stable if (5) is not satisfied. However,
the CFM chains and BCM chains interact with one another,
thus, this simple intuition does not provide a stability statement
about traffic flow as a whole. Moreover, the CFM chains and
BCM chains could be very short. In an extreme case, such
chains may consist of single cars, i.e., CFM vehicles and BCM
vehicles alternating. What is the stability requirement for this
particular form of mixed traffic and how does it generalize?

In this paper, we focus on a special type of mixed traffic
shown in Fig. 2(a). The CFM chains and BCM chains appear
alternately in the traffic flow. Suppose each CFM chain con-
tains K vehicles and each BCM chain contains L vehicles. In
such mixed traffic, we can combine the BCM chain and its
successive CFM chain into a BCM-CFM module (containing
L+K cars). Then the whole traffic is a cascade of such BCM-
CFM modules (See Fig. 2(b)). For each BCM-CFM module

4The string stability condition and stability condition might be different
[13]. For instance, eigenvalue decomposition might not work due to some
boundary conditions [22]. For infinite boundaries, both stability analysis and
string stability analysis provide the same condition (5) [21], [22].

5The boundaries in platooning are used to control the desired states of all
vehicles in the platoon.The boundary condition in BCM is just to design the
ACC system such that the car can run on the road alone.
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(c) Input/Output of each module

Fig. 2. The mixed traffic studied in this paper. The white “blocks” denote
cars under BCM, and the black “blocks” denote cars under CFM. (a). The
CFM chains and BCM chains appear alternatively in the traffic. (b). The BCM
chain and its successive CFM chain are combined as a BCM-CFM module.
(c). For each BCM-CFM module, the input is the state of the car immediately
ahead of this BCM-CFM module, and the output is the state of the last car
in this BCM-CFM module.

(e.g., car n, car n+1, · · · , car n+L+K−1), the input is the
state of the last vehicle in the BCM-CFM module ahead of it
(i.e., car n − 1), and the output is the state of the last car in
this BCM-CFM module (i.e. car n+L+K − 1). The output
of this BCM-CFM module will become the input to the next
BCM-CFM module (See Fig. 2(c)).

Breaking the overall traffic flow into BCM-CFM modules
has the advantage that the resulting traffic flow can be analyzed
using tools similar to those used for analysing pure CFM
traffic, because information can only flow “upstream,” since
the CFM vehicle at the tail end of the BCM-CFM module
only considers information about the car ahead of it.

A. the “B-C” module

First, let’s analyze a special case where CFM vehicles and
BCM vehicles appear alternately, i.e.,

· · · BC, B C, B C, B C, B C, · · ·

That is, K = 1 and L = 1. The BCM-CFM module in Fig. 2
becomes a “B-C” module. Each “B-C” module provides two
ordinary differential equations (ODEs):

ẍn = kd(xn+1 + xn−1 − 2xn)

+ kv(ẋn+1 + ẋn−1 − 2ẋn), (6)
ẍn+1 = kd(xn − xn+1) + kvẋn − (kv + kdT )ẋn+1, (7)

where xn = yn − nℓ. By Fourier analysis, i.e., analyzing
the response Xn(ω)e

jωt to pure oscillatory input, we find the
following two linear equations:

c(ω)Xn+1 + d(ω)Xn + c(ω)Xn−1 = 0, (8)
a(ω)Xn+1 + b(ω)Xn = 0. (9)

The four coefficients are: a(ω) = −ω2 + (kv + kdT )jω + kd,
b(ω) = c(ω) = −jkvω− kd and d(ω) = −ω2+2jkvω+2kd.
By solving eqs. (8) and (9), we can find

Xn+1 = H(ω)Xn−1. (10)

Definition 1: For the mixed traffic flow system, if

∥H(ω)∥2 < 1 (for all |ω| > 0), (11)

then the system is called modular string stable 6.
Note that H(0) = 1 when ω = 0. Rewrite H(ω) as

H(ω) =
M(ω)

N(ω)
, (12)

where both M(ω) and N(ω) are polynomial functions of ω.
Thus, the function

D(ω) = ∥M(ω)∥2 − ∥N(ω)∥2 (13)

has the following form:

D(ω) = w1|ω|2 + w2|ω|4 + · · · (14)

Definition 2: The necessary condition for the modular string
stability of the mixed traffic system is w1 < 0. That is, low-
frequency perturbations will be suppressed.

In this paper, we focus on the necessary (modular string)
stability condition, i.e., w1 < 0, for the mixed traffic flow.

Theorem 1: The necessary (modular string) stability condi-
tion for the cascaded “B-C” modules is:

kvT + kdT
2 >

3

2
. (15)

Proof of Theorem 1: By solving (8) and (9), we find

H(ω) =
b(ω)c(ω)

a(ω)d(ω)− b(ω)c(ω)
. (16)

Thus, D(ω) = ∥b(ω)c(ω)∥2 − ∥a(ω)d(ω) − b(ω)c(ω)∥2. By
tedious calculation, we find

w1 = 2k3d(−2kdT
2 − 2kvT + 3). (17)

The necessary stability condition w1 < 0 provides (15). �

The feedback gains used in BCM and the ones used in CFM
need not be the same. Let τ be the ratio of the gains used in
BCM to the gains used in CFM, that is, replace kd and kv in
(6) by τkd and τkv respectively7. We then find:

Proposition 1: The necessary stability condition of the traffic
line of cascaded B-C modules is:

kvT + kdT
2 >

(
1 +

1

2τ

)
. (18)

Proof of Proposition 1: the same analysis as the proof of
Theorem 1 by changing the 4 coefficients to

a(ω) = −ω2 + (kv + kdT )jω + kd, (19)
b(ω) = −jkvω − kd, (20)
c(ω) = −jτkvω − τkd, (21)

d(ω) = −ω2 + j2τkvω + 2τkd. (22)

6Modular string stability indicates that the perturbations on the tail-end
vehicle of each BCM-CFM module are bounded. Each BCM-CFM module
contains a finite number of vehicles. Thus, perturbations on each vehicle in
the BCM-CFM module will also be bounded.

7The ratio used for kd and the one used for kv could be different. In this
paper, in order to emphasize that the architectures of ACC systems for CFM
and BCM are almost the same, we just scale the ACC system’s output, i.e.,
desired acceleration/deceleration, by τ , rather than redesign new feedback
gains for BCM. Thus, the same τ is used for the two gains kd and kv .
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Correspondingly, the coefficient w1 in D(ω) = ∥b(ω)c(ω)∥2−
∥a(ω)d(ω)− b(ω)c(ω)∥2 becomes

w1 = 2k3dτ
2(−2kdT

2 − 2kvT + 2 + 1/τ). (23)

The necessary stability condition, i.e., w1 < 0, provides (18).�

Comparing (18) to (5), the stability condition for pure CFM
traffic can be relaxed by adding BCM vehicles, only if

τkd >
1

T 2
. (24)

The larger τ is, the easier (24) can be satisfied, and the more
(5) is relaxed. Thus, larger τ , e.g., τ = 2 or 3, should be used.
We will see later that (18) is a special case of the necessary
stability condition in (83) when K = 1 and L = 1.

B. the “B-C-· · · -C” module
Now, let’s extend the “B-C” module to a somewhat more

general case: in each BCM-CFM module, the first vehicle is
under BCM and the next K vehicles are under CFM, i.e.

· · · BC · · · C, B C · · · C, B C · · ·C, B C · · · C, · · ·

The necessary (modular string) stability condition for such
“B-C-· · · -C” module case can be analyzed using a similar
approach to that in the proof of Theorem 1. Now, the K + 1
cars in each module gives K + 1 linear equations, i.e.,

TXn = C. (25)

The (K + 1)× (K + 1) matrix T is

T =



d c

b a

b a

. . . . . .

b a


, (26)

where a b c and d are in (19) to (22). The two vectors are

Xn = (Xn, Xn+1, · · · , Xn+K)
T
, (27)

C = (−cXn−1, 0, · · · , 0)T . (28)

Linear equations (8) and (9) are the special case when K = 1.
By backward substitution, i.e., starting from the last equation
and working backward to the first one [28], we find

Xn+K = H(ω)Xn−1, (29)

where

H(ω) =
b(ω)c(ω)

a(ω)d(ω)− b(ω)c(ω)

(
− b(ω)

a(ω)

)K−1

. (30)

By tedious calculation, we find the necessary (modular string)
stability condition for several different K, i.e.,

K = 1 : kdT
2 + kvT > 1 + 1/(2τ),

K = 2 : (5/6)kdT
2 + kvT > 1 + 1/(3τ),

K = 3 : (3/4)kdT
2 + kvT > 1 + 1/(4τ), (31)

K = 4 : (7/10)kdT
2 + kvT > 1 + 1/(5τ),

K = 5 : (2/3)kdT
2 + kvT > 1 + 1/(6τ).

We can find the following pattern:
Theorem 2: the necessary (modular string) stability condi-

tion for the cascaded B-C-· · · -C modules (i.e., one BCM car
followed by K CFM cars in each module) is

1

2
kdT

2 + kvT > 1− 1

K + 1

(
kdT

2 − 1

τ

)
. (32)

Proof of Theorem 2: Now, the D(ω) in (13) is

D(ω) = ∥c∥2
(
∥b∥2

)K − ∥ad− bc∥2
(
∥a∥2

)K−1
. (33)

Note that D(0) = 0 (see eq. (30)), thus D(ω) must have
the form in (14). The necessary (modular string) stability
condition is a straightforward result of (34) in Lemma 1. �

Lemma 1: The coefficient w1 = SK for the D(ω) in (33),
where SK has the following expression:

SK =k2K+1
d τ2×(
(K + 1)

(
2− kdT

2 − 2kvT
)
− 2kdT

2 +
2

τ

)
. (34)

Proof of Lemma 1: From (19) to (22) we find

∥a∥2 = k2d +
(
(kv + kdT )

2 − 2kd
)
ω2 + ω4, (35)

∥b∥2 = k2d + k2vω
2. (36)

By tedious calculation, we find ∥bc∥2 = k4dτ
2+2k2dk

2
vτ

2ω2+
k4vτ

2ω4 and ∥ad−bc∥2 = k4dτ
2+o(ω2)+2k2dτ(k

2
vτ−2kdτ−

kd + 2T 2k2dτ + 2Tkdkvτ)ω
2.

Prove by induction. When K = 1, we find ∥bc∥2 − ∥ad −
bc∥2 = 2k3dτ(2τ + 1 − 2T 2kdτ − 2Tkvτ)ω

2 + o(ω2). The
coefficient w1 matches S1 in (34) (by substituting K = 1).
Suppose that w1 = Sn when K = n. That is, ∥c∥2

(
∥b∥2

)n
=

An+Bnω
2+o(ω2) and ∥ad−bc∥2

(
∥a∥2

)n−1
= An+(Bn−

Sn)ω
2 + o(ω2), where An = k

2(n+1)
d τ2, i.e., the constant

term in ∥c∥2
(
∥b∥2

)n, can be calculated directly. Then we
can calculate ∥c∥2

(
∥b∥2

)n+1 − ∥ad − bc∥2
(
∥a∥2

)n
, That is

An(∥b∥2 − ∥a∥2) + Sn∥b∥2ω2 + o(ω2). Thus, we find

w1 = k2n+3
d τ2(2− 2kvT − kdT

2) + Snk
2
d = Sn+1, (37)

which matches the expression in (34) when K = n+ 1. �

C. the “B-· · · -B-C” module

Let’s consider another special case. Only one vehicle in each
CFM chain and L vehicles in each BCM chain, i.e.

· · · B · · · BC, B · · · BC, B · · ·BC, B · · · BC, · · ·

By similar analysis used above, the L + 1 vehicles in the
“B-· · · -B-C” module provide L + 1 linear equations in (25).
Now, T becomes a (L+1)× (L+1) tri-diagonal matrix, i.e.,

T =



d c

c d c

. . . . . . . . .

c d c

b a


. (38)
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Again, we can solve the system by backward substitution [28].
From the last (i.e., the (L+ 1)-th) equation, we find

Xn+L−1 =
−a

b
Xn+L = f1Xn+L, (39)

then from the L-th equation, we find Xn+L−2 =
−
(
d
cXn+L−1 +Xn+L

)
= −

(
d
c f1 + 1

)
Xn+L = f2Xn+L,

then go to the (L − 1)-th equation, and we find Xn+L−3 −(
d
cXn+L−2 +Xn+L−1

)
= −

(
d
c f2 + f1

)
Xn+L = f3Xn+L,

and so on. We then find the following recursive formula:

fl = −
(
d

c
fl−1 + fl−2

)
, (for l = 2, 3, · · ·L+ 1) (40)

with two initial values f0 = 1 and f1 = −a/b. And finally,

fL+1Xn+L = Xn−1. (41)

Thus, the transfer function is:

H(ω) =
1

fL+1(ω)
. (42)

Note that f1(0) = −a(0)/b(0) = 1, and −d(0)/c(0) = 2 (see
eq. (19) to (22)), thus, the recursive formula (40) provides
fl(0) = 1 (for all l = 2, 3, · · ·L + 1). That is, H(0) = 1. In
order to figure out the necessary stability condition, we need
to find polynomial functions Nl+1(ω) and Ml+1(ω) such that

fl+1(ω) =
Nl+1(ω)

Ml+1(ω)
. (43)

From the recursive definition of fl in (40), we can do some
calculations. First, let p = −d/c, then we find fl = pfl−1 −
fl−2 = p(pfl−2 − fl−3) − fl−2 = (p2 − 1)fl−2 − pfl−3 =
(p3 − 2p)fl−3 − (p2 − 1)fl−4 = · · · . That is,

fl = qk(p)fl−k − qk−1(p)fl−k−1, (44)

where qk(p) is a k-th order polynomial of p, i.e.,

qk(p) = αk,0p
k + αk,1p

k−1 + · · ·+ αk,k−1p+ αk,k. (45)

Lemma 2: the polynomial qk(p) in (44) satisfies the recur-
sive form:

qk+1(p) = pqk(p)− qk−1(p). (46)

Proof of Lemma 2: Substitute fl−k = pfl−k−1 − fl−k−2

(see (40)) into (44), we find the expression of qk+1 in
fl = qk+1(p)fl−k−1 − qk(p)fl−k−2, which is exact (46). �

Thus, we find the closed form of fL+1(ω) by (44), i.e.,

fL+1 = qL(p)f1 − qL−1(p)f0 = −a

b
qL(p)− qL−1(p). (47)

Then, we can figure out Ml+1(ω) and Nl+1(ω). That is8,

Ml+1(ω) =− b(−c)l, (48)

Nl+1(ω) =
l∑

k=0

(
aαl,k + bαl−1,k−1

)
dl−k(−c)k. (49)

8Here, we define αk,m = 0 for both m < 0 and m > k. That is, the
coefficients for the terms pk+1, pk+2, pk+2, · · · , and p−1, p−2, p−3, · · ·
are all zeros, thus, these terms will not appear in qk(p) in (45).

By tedious calculation, we find the necessary (modular
string) stability condition for several different L, i.e.,

L = 1 : kdT
2 + kvT − 1− 1/(2τ) > 0,

L = 2 : (3/2)kdT
2 + kvT − 1− 1/τ > 0,

L = 3 : 2kdT
2 + kvT − 1− 3/(2τ) > 0, (50)

L = 4 : (5/2)kdT
2 + kvT − 1− 2/τ > 0,

L = 5 : 3kdT
2 + kvT − 1− 5/(2τ) > 0.

It’s easy to find the following “patten”:
Theorem 3: the necessary (modular string) stability condi-

tion for the cascaded B-· · · -B-C modules (i.e., L BCM cars
followed by one CFM car in each module) is

1

2
kdT

2 + kvT > 1− L

2

(
kdT

2 − 1

τ

)
. (51)

Proof of Theorem 3: First, note that

∥Ml+1(ω)∥2 = τ2lk
2(l+1)
d +(l+1)τ2lk2ld k2vω

2+o(ω2). (52)

Then, we need to write Nl(ω) as the following form

Nl+1(ω) = Pl+1 +Ql+1jω +Rl+1ω
2 + o(ω2). (53)

Then, we find

∥Nl+1(ω)∥2 = P 2
l+1+

(
2Pl+1Rl+1+Q2

l+1

)
ω2+o(ω2). (54)

Note that fl+1(0) = 1 and thus Nl+1(0) = Ml+1(0) = Pl+1.
From eqs. (48), (20) and (21), we can calculate Ml+1(0). Thus,
we find (by using eqs. (19) and (22)):

Pl+1 = τ lkl+1
d . (55)

We first calculate {αl,k} for several l and k, and then we
further find the following pattern:

Ql+1 =(l + 1)kldτ
l(kv + Tkd), (56)

Rl+1 =− l + 1

2
(kdτ)

l−1×(
lτk2v + 2lTkdτkv + lkd + 2kdτ). (57)

We will prove the above two conjectures (56) and (57) in the
following Theorem 4 and Theorem 5, respectively. Substitute
eqs. (52), (54), (56) and (57) into (13), we find

D(ω) = ∥Ml+1(ω)∥2 − ∥Nl+1(ω)∥2 = o(ω2)− (58)

(L+ 1)k2L+1
d τ2L

(
2kvT + (L+ 1)kdT

2 − L

τ
− 2

)
ω2.

Thus, the necessary stability condition provides (51). �

In order to prove the conjectures (56) and (57), let’s first
calculate the Pl+1 in (55) directly. The constant term Pl+1 in
Nl+1(ω) can be computed from (49) by substituting a, b, c, d
as a(0), b(0), c(0) and d(0), respectively. That is,

Pl+1 =

(
l∑

k=0

(
αl,k − αl−1,k−1

)
2l−k

)
kl+1
d τ l (59)

=

(
l∑

k=0

αl,k2
l−k −

l−1∑
k=0

αl−1,k2
l−1−k

)
kl+1
d τ l (60)

=(ql(2)− ql−1(2)) k
l+1
d τ l. (61)
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Substitute p = 2 into (46), we find

ql+1(2) = 2ql(2)− ql−1(2). (62)

Thus, ql(2)−ql−1(2) = ql−1(2)−ql−2(2). Repeat this process,
we finally find ql(2) − ql−1(2) = · · · = q1(2) − q0(2) = 1.
Note that {ql(2)} forms an arithmetic sequence with common
difference 1 and initial value q0(2) = 1. Thus,

ql(2) =
l∑

k=0

αl,k2
l−k = l + 1. (63)

The above analysis provides us with some suggestion for
proving the two conjectures in eqs. (56) and (57) by using
the recursive relation (46). The details are summarized in the
Theorem 4 and Theorem 5.

Theorem 4: The coefficient Ql+1 corresponding to the jω
term in Nl+1(ω) is as shown in (56).

Proof of Theorem 4: First, note that dl−k = (2τkd)
l−k+(l−

k)(2τ)l−kkl−k−1
d kvjω+o(ω2)−(l−k)(2τ)l−k−1kl−k−2

d

(
kd+

(l − k − 1)τk2v
)
ω2 and (−c)k = τkkkd + kτkkk−1

d kvjω −
k(k−1)

2 τkkk−2
d k2vω

2 + o(ω2). Thus,

dl−k(−c)k = 2l−kτ lkld + l2l−kτ lkl−1
d kvjω (64)

− 2l−k−1kl−2
d τ l−1

(
(l − k)kd + (l2 − l)τk2v

)
ω2 + o(ω2).

Thus, the coefficient corresponding to the term jω in
adl−k(−c)k is 2l−kτ lkld((l+1)kv +kdT ), and the coefficient
to the term jω in bdl−k(−c)k is −2l−kτ lkld(l+1)kv. Finally,
we find the expression of Ql+1, i.e., Ql+1 = Q̃l+1τ

lkld, with

Q̃l+1 =
(
kv(l + 1)+kdT

) l∑
k=0

αl,k2
l−k

−kv(l + 1)

l−1∑
k=0

αl−1,k2
l−k−1. (65)

Substituting (63), we find

Q̃l+1 = kdTql(2) + kv(l + 1)
(
ql(2)− ql−1(2)

)
= (kv + kdT )(l + 1). (66)

Thus, Ql+1 = Q̃l+1τ
lkld is exact (56). �

Before calculating the Rl+1 in (57), let us first prove the
following result:

Lemma 3: The coefficients {αl,k} (in the polynomial ql(p))
satisfy the following constraint:

l−1∑
k=0

(l − k)αl,k2
l−k−1 =

1

6
l3 +

1

2
l2 +

1

3
l. (67)

Proof of Lemma 3: Take the derivative of ql(p) in (45) (over
p), we find:

q̇l(p) =

l−1∑
k=0

(l − k)αl,kp
l−k−1. (68)

Note that the left hand side term in (67) is exact q̇l(2). By
taking the derivative of the recursive formula (46), we find

q̇l+1(p)− pq̇l(p) + q̇l−1(p) = ql(p). (69)

Substituting p = 2 and eq. (63), we find

q̇l+1(2)− 2q̇l(2) + q̇l−1(2) = l + 1. (70)

It’s well-known how to solve such inhomogeneous (second
order) linear difference equation (70) (e.g., using z-transform)
[29]. By using the initial conditions q̇0(2) = 0 and q̇1(2) = 1,
the solution is exact (67). �

From (67), we can further calculate:

q̇l(2)− q̇l−1(2) =
1

2
l(l + 1). (71)

Now, let’s prove the following result, i.e.,
Theorem 5: The coefficient Rl+1 corresponding to the ω2

term in Nl+1(ω) is as shown in (57).
Proof of Theorem 5: From (64), we can further compute

the coefficients Ul+1,k of the term ω2 in adl−k(−c)k and the
coefficients Vl+1,k of the term ω2 in bdl−k(−c)k. By tedious
calculation, we find

Ul+1,k =− 2l−k−1(kdτ)
l−1× (72)(

(l2 + l)τk2v + 2Tτkdkvl + (l − k)kd + 2τkd
)

Vl+1,k =2l−k−1(kdτ)
l−1
(
τ(l2 + l)k2v + (l − k)kd

)
(73)

Substituting Ul+1,k and Vl+1,k into Nl+1(ω) in (49), i.e.,

Rl+1 =

l∑
k=0

αl,kUl+1,k +

l−1∑
k=0

αl−1,kVl+1,k+1, (74)

we find the expression of Rl+1, i.e.

Rl+1 =− (kdτ)
l−1kd

(
q̇l(2)− q̇l−1(2)

)
− (kdτ)

l−1

2
τ(l2 + l)k2v

(
ql(2)− ql−1(2)

)
(75)

− (kdτ)
l−1

2

(
2Tτkdkvl + 2τkd

)
ql(2).

Substituting (63) and (71), we finally find the expression of
Rl+1, which is exactly the same as (57). �

D. the “B-· · · -B-C-· · · -C” module
Now, we are ready to analyze the general case shown in

Fig. 2. Each CFM chain contains K vehicles and each BCM
chain contains L vehicles, i.e.,

· · · B · · · BC · · · C, B · · · BC · · ·C, B · · · BC · · · C, · · ·
By similar analysis to that used above, the L+K vehicles in

the “B-· · · -B-C-· · · -C” module provide L+K linear equations
in (25). Now, T becomes a (L+K)× (L+K) matrix, i.e.,

T =



d c

c d c

. . . . . . . . .

c d c

b a

b a

. . . . . .

b a


(76)
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Again, we can solve the system by backward substitution [28].
First, note that the bottom-right K ×K block in T is lower
triangular with only two diagonals. Thus, we find

Xn+L+K−1 = H1(ω)Xn+L, (77)

with transfer function

H1(ω) =

(
− b

a

)K−1

. (78)

The top-left (L+ 1)× (L+ 1) block in T is the same as the
matrix in (38), thus,

Xn+L = H2(ω)Xn−1, (79)

with transfer function

H2(ω) =
1

fL+1(ω)
=

ML+1(ω)

NL+1(ω)
(80)

obtained by the recursive iteration of fL+1(ω) in (44). Thus,
the transfer function of the whole module is

H(ω) = H1(ω)H2(ω) =
ML+1(ω)

NL+1(ω)

(
− b

a

)K−1

. (81)

Then, the D(ω) in (13) is:

∥ML+1(ω)∥2∥b∥2(K−1) − ∥NL+1(ω)∥2∥a∥2(K−1). (82)

Note that H1(0) = 1 and H2(0) = 1. Thus, H(0) = 1. That
is, D(0) = 0. Finally, we find:

Theorem 6: The necessary stability condition for the cascad-
ed “B-· · · -B-C-· · · -C” modules (i.e., L BCM cars followed by
K CFM cars in each module) is:

1

2
kdT

2 + kvT > 1− L(L+ 1)

2(L+K)

(
kdT

2 − 1

τ

)
. (83)

Proof of Theorem 6: From (35) and (36), we find

∥a∥2(K−1) =k
2(K−1)
d + o(ω2)

+(K−1)k
2(K−2)
d

(
(kv + kdT )

2 − 2kd
)
ω2, (84)

∥b∥2(K−1) =k
2(K−1)
d + (K − 1)k

2(K−2)
d k2vω

2 + o(ω2) (85)

From (52) and (54), we can then calculate w1 in (82), i.e.,

w1 = −P 2
L+1(K − 1)k2K−3

d

(
2kvT + kdT

2 − 2
)
+ (86)

− k
2(K−1)
d

(
2PL+1RL+1 +Q2

L+1 − (L+ 1)τ2Lk2Ld k2v
)
.

By substituting (55), (56) and (57), finally, we find

w1 =− k
2(K+L)−1
d τ2L

[
2(K + L)kvT − 2(L+K)

+ (L2 + 2L+K)kdT
2 − (L2 + L)/τ

]
. (87)

The necessary stability condition w1 < 0 provides (83). �

Note that (32) in Thm. 2 and (51) in Thm. 3 are exactly two
special cases of (83) when L = 1 and K = 1, respectively.
When L = 0, Fig. 2 becomes pure CFM based highway
traffic, and (83) becomes the well-known stability condition
(5) correspondingly. When K = 0, Fig. 2 becomes the pure
BCM traffic. Note that the topology of pure BCM traffic is not
a one-directional cascade of control systems of successive cars

[20]. Thus, (83) can not be used directly by simply substituting
K = 0. That is, (83) is correct for K ≥ 1 and L ≥ 0.

Let ρ = L/(L+K) be the percentage of BCM cars in the
mixed traffic, then condition (83) becomes:

1

2
kdT

2 + kvT > 1− ρ
L+ 1

2

(
kdT

2 − 1

τ

)
. (88)

In [30], we provide some numerical simulations (and MAT-
LAB codes) to verify the theoretical analysis. Eq. (88) also
provides suggestion for designing ACC system.

V. SUGGESTION FOR ACC-SYSTEM DESIGN

Comparing (88) to (5), only if kdT
2 > 1/τ , the stability

condition can be relaxed by involving BCM cars in the traffic
also. Thus, the ACC system should first be designed such that

kdT
2 =

1

τ
+ ϵ, (with ϵ > 0). (89)

Then the necessary stability condition (88) becomes

1

2
kdT

2 + kvT > 1− L+ 1

2
ρϵ. (90)

How much (5) can be relaxed (by involving BCM vehicles)
depends not only on the percentage ρ, but also on the topology.
The longer the BCM chain is (with the same ρ), the more the
necessary stability condition can be relaxed. Thus, even if the
percentage of BCM cars is small, e.g., only 20%, if L is not
too small, e.g., L = 20, some noticeable improvement can
still be achieved (in which the requirement for 1

2kdT
2 + kvT

reduces form 1 to 1 − 2.1ϵ). On the other hand, even if L is
small, e.g., L = 5, if the percentage of BCM cars is not small
(e.g., ρ = 50%), some noticeable improvement can also be
achieved (in which the requirement for 1

2kdT
2 + kvT reduces

form 1 to 1 − 1.5ϵ). Substituting (89) into (90), we find that
if we choose ϵ = 2−1/τ

(L+1)ρ+1 , then (90) can be satisfied by any
kv > 0. If L is large enough, e.g., L > 100, and ρ is not
too small, e.g., ρ > 50%, then such ϵ will be very small, e.g.,
less than 0.04. Thus, we can set a small threshold ϵ0, e.g.,
ϵ0 = 0.05, and choose ϵ in (89) as

ϵ = min

(
2− 1/τ

(L+ 1)ρ+ 1
, ϵ0

)
. (91)

We can make kd in (89) smaller by choosing larger τ . Note
that the gains in BCM is τkd and τkv, and the coefficient

τkd =
1 + τϵ

T 2
(92)

increases with the increase of τ . Thus, τ can not be arbitrarily
large. However, since ϵ is small, the increase in τkd (for BCM)
is negligible comparing to the decrease in kd (for CFM) by
choosing relatively large τ , e.g., τ = 2 or 3. One reasonable
choice is to control the value of τϵ in (92). That is, τϵ = ηϵ0,
or equivalently τ = ηϵ0/ϵ, with some preset η, e.g., 1 < η ≤ 2.

Speed-difference sensors are considerably more expensive
than simple range sensors. If only range sensors are used by
the ACC system, i.e., kv = 0, then (5) becomes kd > 2/T 2 for
the traffic purely under CFM. For mixed traffic, when ϵ < ϵ0,
the gain requirement for CFM cars is kd > 1/(τT 2), and the
one for BCM cars is τkd > 1/T 2. We can see the obvious
advantage of introducing BCM vehicles.
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VI. CONCLUSION

In today’s traffic, drivers generally focus only on the car
ahead of them. This results in traffic flow instabilities including
alternating “stop-and-go” driving conditions. Such traffic flow
instabilities can be suppressed effectively if the vehicle also
take into account of the state of its following. Different from
human drivers, ACC system equipped with suitable sensors
can implement BCM easily. Thus, we can expect smooth traffic
in the future when BCM vehicles are widely used.

Between today’s pure CFM traffic and pure BCM traffic
in the future, there is a transition period of mixed traffic in
which some vehicles are under car-following control while
others are under bilateral control. In this study, we analyze a
particular type of such mixed traffic. This is where CFM chains
and BCM chains alternate in mixed traffic, with each CFM
chain containing K vehicles and each BCM chain containing
L vehicles. We provide a necessary (modular string) stability
condition for such mixed traffic, which can be viewed as an
extension of the one for the pure CFM traffic. Unsurprisingly,
how much the stability condition for pure CFM traffic can be
relaxed by adding BCM vehicles depends on 1). the percentage
of BCM vehicles, and 2). the distribution of BCM vehi-
cles. The necessary stability condition (88) provides detailed
mathematical descriptions. Moreover, this condition (88) also
provides suggestions for the design of extended ACC system.
The two most important rules are:

• Use a large value for the “reaction time” T , e.g., T = 1.5
sec. [18]. (Even if the real “reaction time” needed by the
sensor based control system can be much smaller.)

• Use larger gains for BCM than CFM by setting τ > 1.
In this paper, we focus on the mixed traffic flow with CFM

cars and BCM cars. Some ACC system may use asymmetric
weights, the approaches provided in this paper can also be
used. Moreover, the CFM cars and BCM cars may not be
mixed evenly as the special case studied in this paper, or may
even be mixed randomly. In this case, we cannot expect to find
closed form formulae such as (83) for the stability analysis,
and thus can study mixed traffic flow only using numerical
simulations. Another interesting problem is to explore the
sufficient conditions for stability analysis. Theorem 6 is just
a preliminary attempt to explore mixed traffic flow, in which
the ideally simplified linear feedback control (1) is used for
analysis. To build more accurate car model, delay and non-
linearity should also be considered [27]. The analysis of the
corresponding traffic flow will be topics for future work.
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