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Abstract—For controller design for systems on manifolds
embedded in Euclidean space, it is convenient to utilize a theory
that requires a single global coordinate system on the ambient
Euclidean space rather than multiple local charts on the manifold
or coordinate-free tools from differential geometry. In this article,
we apply such a theory to design model predictive tracking
controllers for systems whose dynamics evolve on manifolds and
illustrate its efficacy with the fully actuated rigid body attitude
control system.

Index Terms—Model predictive control, Matrix Lie groups,
Tracking control, Attitude control.

I. INTRODUCTION

MODEL predictive control (MPC), which requires solv-

ing a constrained finite time-horizon optimal control

problem, has been initially utilized mostly in slow process

industries [1]. In contrast to conventional control schemes,

MPC is prevalent in safety critical systems due to its ability

to handle state and control constraints for large-scale sys-

tems [2], [3]. Due to the rise in computational power and

sophisticated algorithms, several successful MPC implemen-

tations have recently been reported in various applications

with fast dynamics, including autonomous vehicles [4], [5]

and power electronics [6]. Obviously, MPC designing strate-

gies for continuous-time systems require linearized discrete-

time systems, accounting for the system dynamics. Because

linearization and discretization of the system dynamics are

relatively daunting tasks on manifolds as compared to Eu-

clidean spaces, designing MPC on manifolds is a nontrivial

matter. First, a manifold cannot be entirely covered by one

local coordinate chart unless it is diffeomorphic to a Euclidean

space. As a result, one needs to carry out coordinate changes

when the system trajectory traverses through multiple charts.

Second, linearization and discretization of system dynamics

are both local approximations, so these procedures require use

of local charts as well. In general, coordinate change is an

expensive operation in terms of computation time, and it may
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introduce fairly large discontinuities to the dynamics due to

switchings of local cost functions for MPC that are defined

chartwise on the manifold. As many mechanical systems such

as aerial vehicles and robotic systems evolve on manifolds, it

is essential to have a theory that does not require switching of

charts or unconventional tools from geometric control theory.

In this article, we propose a model predictive controller

design for systems on manifolds by employing a stable em-

bedding technique, which is summarized as follows: Given a

control system on a manifold M , first embed the manifold into

the Euclidean space Rn and extend the system dynamics stably

to the ambient Euclidean space, i.e., the system dynamics are

extended on R
n in such a way that the manifold M becomes

an invariant attractor of the modified dynamics defined on

R
n. Since the system dynamics are now defined in R

n, we

can carry out linearization in one single global Euclidean

coordinate set for Rn and then discretization of the linearized

system in R
n. The stable embedding technique increases the

dimension of the system, and therefore MPC for the ex-

tended dynamics may be computationally more expensive than

the dynamics in minimal coordinates; however, it simplifies

linearization and discretization of the system dynamics to

a large extent. This approach was successfully applied for

linear stabilizing/tracking controller design [7] and structure-

preserving numerical integration [8].

Recent attempts on MPC on manifolds may be found in

[9], [10], which require implicit representation of the system

dynamics or explicit constraints in the optimization to preserve

the manifold structure of SO(3). In addition, these schemes

require switching of charts as the local control law, which

is needed for stability, is defined in charts. In contrast to

these conventional schemes, we take the aforementioned stable

embedding approach to design MPC for systems defined on

manifolds. In our study, we consider a class of systems defined

by fully actuated left invariant vector fields on matrix Lie

groups and stably embed the system dynamics in Euclidean

spaces. Subsequently, to track a reference trajectory, time-

varying tracking error dynamics are defined in the ambient

Euclidean space; those are linearized along the reference

and simplified using symmetry invariance, both in one single

global coordinate system on the ambient Euclidean space, and

the local stabilizability of the original nonlinear tracking error

dynamics to zero is then readily established. For applying

MPC, the error dynamics are linearized and discretized, and

the stabilizability of the discrete-time linear error dynamics

is also proven, for which a fundamental sufficient condi-
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tion is derived in an inequality form that involves the two

parameters: the discretization time step and the transversal

stability parameter that is introduced in the process of stable

embedding. Later, an MPC law is designed for the discrete-

time linear error dynamics and is applied to the original

nonlinear system. It is worth mentioning at this juncture that,

to the best of the authors’ knowledge, the issue of establishing

exponential stability of the time-varying system dynamics

under the synthesized MPC control law remains open. Some

results on the stability of the sampled data systems may

be found in [11], [12]. To demonstrate the efficacy of the

proposed MPC technique, we design a tracking controller for

spacecraft attitude control dynamics and conduct numerical

studies for various real-time scenarios, such as reference track-

ing under tight control constraints and noisy measurements,

to illustrate the validity of the designed controller. Numerical

simulations show that the MPC tracking controller designed

using the discrete-time linear system in the Euclidean space is

robust to unmodeled disturbances and provides good tracking

performance when applied to the actual nonlinear system.

The structure of this article is as follows: We establish

stabilizability of the tracking error dynamics for left invariant

systems on matrix Lie groups and discuss the design procedure

for the MPC controller in Section II . Section III is devoted to

design of an MPC tracking controller for a rigid body attitude

control system. Numerical studies of the designed tracking

controller for attitude dynamics are in Section IV, followed

by our conclusions in Section V.

II. MPC ON MATRIX LIE GROUPS

Let G be a matrix Lie group of dimension m with I as the

group identity and g be the Lie algebra of the Lie group G.

Suppose that a controlled system dynamics on the matrix Lie

group is given by a left invariant vector field:

Σ :

{

ġ = gξ,

ξ̇ = f(ξ, u),
(1)

where g ∈ G, ξ ∈ g and u ∈ R
m. It is assumed that ∂f

∂u
(ξ, u)

is an invertible linear map from R
m to g for each (ξ, u) ∈

g×R
m. Suppose that the matrix Lie group G is embedded into

a Euclidean space R
n×n. The vector space R

n×n is split into

two orthogonal subspaces g and g
⊥ such that Rn×n = g⊕g

⊥,

where g
⊥ is the orthogonal complement of g in R

n×n under

the Euclidean metric defined by 〈A,B〉 = trace(ATB) for all

A,B ∈ R
n×n. In the subsequent discussion, we refer to g as

the parallel direction and g
⊥ as the transversal direction, and

we define orthogonal projection maps from the ambient space

R
n×n to g and g

⊥ as

R
n×n ∋ v 7→ v‖ ∈ g, R

n×n ∋ v 7→ v⊥ ∈ g
⊥.

A detailed discussion on left invariant systems and the differ-

ential geometric tools employed in this article may be found

in [13]–[15]. Let us turn to stably embed the system dynamics

(1) into R
n×n considering the following assumption:

Assumption 1. There exists a C2 function

R
n×n ∋ x 7→ V (x) ≥ 0 ∈ R

with the following properties:

(A-i) V −1(0) = G.

(A-ii) V (xg) = V (x) for all x ∈ R
n×n, g ∈ G.

(A-iii) ∇2V (I) is positive definite in the transversal direction,

i.e., ∇2V (I) · (y, y) > 0 for all y ∈ g
⊥\{0}.

Since V attains its minimum value 0 at each point in G,

∇V vanishes on G. Hence, the system dynamics (1) can be

extended to the ambient Euclidean space R
n×n × g as

Σ̃ :

{

ẋ = xξ − α∇V (x),

ξ̇ = f(ξ, u),
(2)

where α > 0, x ∈ R
n×n, ξ ∈ g and u ∈ R

m. Let

R ∋ t 7→ (g0(t), ξ0(t)) ∈ G× g (3)

be a reference state trajectory and R ∋ t 7→ u0(t) ∈ R
m be

the corresponding control trajectory of the system dynamics

(1).

Assumption 2. There exist constants βgmax
≥ βgmin

> 0 such

that the reference trajectory

R ∋ t 7→ g0(t) ∈ G

satisfies

βgmin
I � g0(t)

(

g0(t)
)⊤

� βgmax
I for all t.

The tracking error trajectory, defined by

R ∋ t 7→ (E(t),Ξ(t))

:=
(

x(t)g−1
0 (t)− I, ξ(t)− ξ0(t)

)

∈ R
n×n × g

such that (E(t),Ξ(t)) = 0 for all t ensures, that the system

dynamics (2) is tracking the reference trajectory, i.e., x(t) =
g0(t), ξ(t) = ξ0(t) for all t. Therefore, the reference tracking

problem is translated to stabilization of the error dynamics to

zero. The error dynamics for a given reference trajectory is

given as

δΣ :

{

Ė =
(

g0 + Eg0
)

Ξg−1
0 − α∇V (g0 + Eg0)g

−1
0 ,

Ξ̇ = f(Ξ + ξ0, u)− f(ξ0, u0).
(4)

To design a linear MPC controller, let us linearize the error

dynamics (4) around zero. The linearized error dynamics

around zero is given by

δΣℓ :

{

Ė = g0Ξg
−1
0 − α

(

∇2V (g0) · (Eg0)
)

g−1
0 ,

Ξ̇ = ∂f
∂ξ

(ξ0, u0)Ξ + ∂f
∂u

(ξ0, u0)δu,
(5)

where δu := u − u0. Before simplifying the error dynamics

Ė in (5) and splitting it further along the parallel and the

transversal direction to gain more geometric insight, let us

discuss some key properties associated with the function V :

Lemma 1. Under Assumption 1, the following hold:

(a) ∇2V (I) · v‖ = 0 for all v‖ ∈ g.

(b) ∇2V (I) · v⊥ ∈ g
⊥ for all v⊥ ∈ g

⊥.

(c) ∇2V (g) · (vg) =
(

∇2V (I) · v
)(

g−1
)⊤

for all v ∈ R
n×n

and g ∈ G.
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Proof. 1) Note that ∇V (g) = 0 for all g ∈ G. Therefore,

∇2V (I) · v‖ =
d

ds

∣

∣

∣

∣

s=0

∇V (exp(sv‖)) = 0.

2) For any v⊥ ∈ g
⊥, ∇2V (I) · v⊥ ∈ g

⊥ if and only if
〈

v‖,∇2V (I) · v⊥
〉

= 0 for all v‖ ∈ g. Therefore, using

the fact that ∇2V (I) is symmetric and then applying

Lemma 1(a) leads to the following:
〈

v‖,∇2V (I) · v⊥
〉

=
〈

∇2V (I) · v‖, v⊥
〉

= 0

for all v‖ ∈ g.

3) For arbitrary vectors w, v ∈ R
n×n,

〈

w,∇2V (g) · (vg)
〉

=
d

dt

d

ds

∣

∣

∣

∣

t=s=0

V (g + tvg + sw)

=
d

dt

d

ds

∣

∣

∣

∣

t=s=0

V (I + tv + swg−1)

=
〈

wg−1,∇2V (I) · v
〉

=
〈

w,
(

∇2V (I) · v
)

(g−1)⊤
〉

.

Therefore, we conclude that

∇2V (g) · (vg) =
(

∇2V (I) · v
)

(g−1)⊤.

Employing the properties discussed in Lemma 1, it is

straightforward to show that the linearized error dynamics in

(5) is transformed to the following:

Ė⊥ = −α
(

(

∇2V (I) ·E⊥
)(

g0g
⊤
0

)−1
)⊥

, (6a)

Ė‖ = g0Ξg
−1
0 − α

(

(

∇2V (I) ·E⊥
)(

g0g
⊤
0

)−1
)‖

, (6b)

Ξ̇ =
∂f

∂ξ
(ξ0, u0)Ξ +

∂f

∂u
(ξ0, u0)δu, (6c)

where the linear error E in (5) has simplified and split into

the transversal direction error R ∋ t 7→ E⊥(t) ∈ g
⊥ and the

parallel direction error R ∋ t 7→ E‖(t) ∈ g.

Theorem 1. Under Assumptions 1 and 2, the system dynamics

(6a) is exponentially stable to zero.

Proof. Let us define a candidate Lyapunov function

g
⊥ ∋ η 7→ V(η) :=

1

2

〈

∇2V (I) · η, η
〉

∈ R.

Then, using the properties of V discussed in Lemma 1, we

obtain:

dV

dt

(

E⊥
)

=

〈

∂V

∂η
(E⊥), Ė⊥

〉

= −α

〈

∇2V (I) · E⊥,
(

(

∇2V (I) ·E⊥
)(

g0g
⊤
0

)−1
)⊥
〉

= −α
〈

∇2V (I) ·E⊥,
(

∇2V (I) ·E⊥
)(

g0g
⊤
0

)−1
〉

≤ −
α

βgmax

〈

∇2V (I) ·E⊥,∇2V (I) ·E⊥
〉

≤ −
2αλmin

βgmax

V
(

E⊥
)

,

where λmin is the smallest eigenvalue of the operator ∇2V (I)
restricted to g

⊥. Therefore,

V
(

E⊥(t)
)

≤ exp
(

−
2αλmin

βgmax

t
)

V
(

E⊥(0)
)

,

and by the definition of V , we know that

λmin‖E
⊥‖2 ≤ 2V(E⊥) ≤ λmax‖E

⊥‖2,

where λmax is the largest eigenvalue of the operator ∇2V (I)
restricted to g

⊥. So,

‖E⊥(t)‖ ≤

√

λmax

λmin
exp

(

−
αλmax

βgmax

t
)

‖E⊥(0)‖.

This proves the assertion.

Remark 1. The proof of Theorem 1 uses the boundedness of

g0(t)
(

g0(t)
)⊤

from above, see Assumption 2.

The linearized error dynamics (6) can be exponentially

stabilized to zero by feedback. Consequently, the original non-

linear tracking error dynamics (4) is exponentially stabilizable.

Theorem 2. Suppose Assumptions 1 and 2 hold. Then, for

any two matrices Kp,Kd ∈ R
n×n such that the matrix

(

0 I

Kp Kd

)

(7)

is Hurwitz, the PD-like controller

δu =
(∂f

∂u
(ξ0, u0)

)−1{

[Ξ, ξ0] + Y −
∂f

∂ξ
(ξ0, u0)Ξ

}

(8)

with

Y := g−1
0

(

− Ẇ +KpE
‖ +Kd(g0Ξg

−1
0 +W )

)

g0 (9)

and

W := −α
(

(

∇2V (I) ·E⊥
)(

g0g
⊤
0

)−1
)‖

,

stabilizes the controlled dynamics (6) exponentially to zero,

where Ẇ in (9) can be expressed in terms of state variables

using (6a) and ġ0 = g0ξ0. Furthermore, the controller u =
u0 + δu exponentially stabilizes (4) to zero.

Proof. Since the exponential stability of the transversal dy-

namics (6a) has been proved in Theorem 1, the exponential

stability of the subsystems (6b) and (6c) with the control

law (8) remains to be proved. Applying the controller (8) to

subsystems (6c) transforms the subsystems (6b) and (6c) to

the following system of differential equations
(

Ė‖

˙̃e

)

=

(

0 I

Kp Kd

)(

E‖

ẽ

)

, (10)

where

ẽ := g0Ξg
−1
0 − α

(

(

∇2V (I) · E⊥
)(

g0g
⊤
0

)−1
)‖

. (11)

Therefore, the linear system (10) is exponentially stable to

zero if the matrix (7) is Hurwitz stable. Since E⊥ and ẽ

are exponentially stable, it follows from (11), Theorem 1 and

Assumption 2 that Ξ is also exponentially stable. By the Lya-

punov linearization method, this control law also exponentially

stabilizes (4) to zero. This proves the assertion.
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To apply the MPC, let us discretize the linearized error

dynamics (6) using Euler’s method as

E⊥
k+1 = E⊥

k − hα
(

(

∇2V (I) ·E⊥
k

)(

g0,kg
⊤
0,k

)−1
)⊥

, (12a)

E
‖
k+1 = E

‖
k + hg0,kΞkg

−1
0,k

− αh
(

(

∇2V (I) · E⊥
k

)(

g0,kg
⊤
0,k

)−1
)‖

, (12b)

Ξk+1 = Ξk + h
∂f

∂ξ
(ξ0,k, u0,k)Ξk + h

∂f

∂u
(ξ0,k, u0,k)δuk,

(12c)

where h is a discretization step, and for a function R ∋
t 7→ Γ(t) ∈ R

n×n, Γk := Γ(kh). The stability of the

MPC for discrete-time systems requires stabilizability of these

discrete-time systems [16]. Therefore, it is crucial to prove

stabilizability of the discrete-time dynamics (12). First, we

prove the exponentially stability of the subsystem (12a) for

an appropriate choice of the discretization step h and the

parameter α. Then, we proceed to the general case and

establish stabilizability of the discrete-time dynamics (12).

In addition, Theorem 3 establishes a relation between the

stabilizing parameter α and the discretization step length h

that is crucial in implementation of MPC.

Theorem 3. Suppose that Assumptions 1 and 2 hold. Then,

the system dynamics (12a) is exponentially stable to zero if the

following holds:

0 < αh <
2λminβ

2
gmin

λ2
maxβgmax

,

where λmin and λmax are the minimum and the maximum eigen-

values of the operator ∇2V (I) restricted to g
⊥, respectively.

Proof. Let us define a candidate Lyapunov function

g
⊥ ∋ η 7→ Vd(η) :=

〈

∇2V (I) · η, η
〉

∈ R.

Then, using the properties of V from Lemma 1 gives

Vd

(

E⊥
k+1

)

=
〈

∇2V (I) · E⊥
k+1, E

⊥
k+1

〉

=
〈

∇2V (I) · E⊥
k , E⊥

k

〉

− 2αh
〈

∇2V (I) · E⊥
k ,
(

∇2V (I) · E⊥
k

)(

g0,kg
⊤
0,k

)−1
〉

+ α2h2
∥

∥

∥

(

∇2V (I) ·E⊥
k

)(

g0,kg
⊤
0,k

)−1
∥

∥

∥

2

∇2V (I)

≤

(

1− 2αh
λmin

βgmax

+ α2h2λ
2
max

β2
gmin

)

Vd

(

E⊥
k

)

≤

{

(

αh
λmax

βgmin

− 1
)2

+ 2αh
(λmax

βgmin

−
λmin

βgmax

)

}

Vd

(

E⊥
k

)

.

Therefore, the system dynamics (12a) is exponentially stable

if

0 ≤
(

αh
λmax

βgmin

− 1
)2

+ 2αh
(λmax

βgmin

−
λmin

βgmax

)

< 1

which leads to the following condition:

0 < αh <
2λminβ

2
gmin

λ2
maxβgmax

.

This proves the assertion.

Theorem 4. Suppose that Assumptions 1 and 2 hold. Then,

for any two matrices Kp,Kd ∈ R
n×n such that the matrix

(

I hI

Kp Kd

)

(13)

is Schur stable, the controller

δuk =
1

h

(∂f

∂u
(ξ0,k, u0,k)

)−1{

Yk −

(

I + h
∂f

∂ξ
(ξ0,k, u0,k)

)

Ξk

}

(14)

where

Yk := g−1
0,k+1

(

KpE
‖
k +Kd

(

g0,kΞkg
−1
0,k+Wk

)

−Wk+1

)

g0,k+1

and

Wk := −α
(

(

∇2V (I) · E⊥
k

)(

g0,kg
⊤
0,k

)−1
)‖

,

stabilizes the controlled dynamics (12) exponentially to zero.

Proof. Since the exponential stability of the transversal dy-

namics (12a) has been proved in Theorem 3, the exponential

stability of the subsystems (12b) and (12c) with the control

law (14) remains to be proved. Applying the controller (14) to

subsystems (12c) transforms the subsystems (12b) and (12c)

to the following system of difference equations
(

E
‖
k+1

ẽk+1

)

=

(

I hI

Kp Kd

)(

E
‖
k

ẽk

)

(15)

where

ẽk := g0,kΞkg
−1
0,k − α

(

(

∇2V (I) ·E⊥
k

)(

g0,kg
⊤
0,k

)−1
)‖

. (16)

Therefore, the linear system (15) is exponentially stable to

zero if the matrix (13) is Schur stable. Since E
‖
k and ẽk

are exponentially stable, it follows from (16), Theorem 3 and

Assumption 2 that Ξ is also exponentially stable. This proves

the assertion.

Equipped with Theorem 4, we are in a position to design

an MPC control law for the system dynamics (12). MPC

computes a static state feedback control law at each time

instant by solving a constrained finite horizon discrete-time

optimal control problem. A typical optimal control problem

for a horizon N is to minimize a performance objective

J(E0:N ,Ξ0:N , δu0:N−1) :=
N−1
∑

k=0

(‖Ek‖
2
QE

+ ‖Ξk‖
2
QΞ

)

+
N−1
∑

k=0

‖δuk‖
2
Qδu

+ ‖EN‖2
Q

f

E

+ ‖ΞN‖2
Q

f

Ξ

,

(17)

where QE , QΞ, Qδu, Q
f
E, Q

f
Ξ ∈ R

n×n are positive semidefi-

nite matrices, while satisfying the system dynamics (12) and

the state and control constraints

Ek ∈ XE
k for all k = 0, . . . , N,

Ξk ∈ XΞ
k for all k = 0, . . . , N,

δuk ∈ Uk for all k = 0, . . . , N − 1,

(18)

where XE
k ,XΞ

k are the admissible state sets and Uk is an

admissible action set at each time instant k.
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Concisely, an optimal control δuj|j at the time instant j

for a fixed given state
(

Ej|j ,Ξj|j

)

is obtained by solving the

following constrained discrete-time optimal control problem:

minimize
{δuj+i|j}

N−1

i=0

J
(

Ej:j+N |j ,Ξj:j+N |j , δuj:j+N |j

)

subject to










dynamics (12) for k = j|j, . . . , j +N − 1|j,

constraints (18) for k = j|j, . . . , j +N − 1|j,
(

Ej|j ,Ξj|j

)

is fixed.
(19)

Then, the control law

u(t) = u0(t) + δuj|j

is applied to the system (1) for t ∈ [jh, (j + 1)h[, where

j = 0, 1, 2, · · · .

Remark 2. Note that the system dynamics (12) is expo-

nentially stabilizable. Therefore, we design an exponentially

stabilizing MPC law for the dynamics (12) in Euclidean

spaces that in turn stabilizes Euler’s approximation of the

error dynamics (4) exponentially to zero [17]. However, to

the best of the authors’ knowledge, the issue of establishing

exponential stability of the time-varying sampled data system

(4) under the synthesized MPC control law remains open.

Some results on the stability of the sampled data systems may

be found in [11], [12].

III. AN ILLUSTRATIVE EXAMPLE: THE RIGID BODY

CONTROL SYSTEM

Let us consider an example of rigid body attitude dynamics

to discuss the theory developed in Section II. The rigid body

attitude control system is defined by

Ṙ = RΩ̂, (20a)

Ω̇ = I
−1(IΩ× Ω) + I

−1u, (20b)

where R ∈ SO(3) (the set of 3 × 3 real orthogonal matrices

with determinant 1) is a rotation matrix that determines the

attitude of the rigid body, Ω ∈ R
3 defines the angular velocity

of the rigid body; u ∈ R
3 is the control torque; I is the moment

of inertial matrix of the rigid body; and the hat map ∧ maps

R
3 vectors to 3 × 3 real skew symmetric matrices such that

x̂y = x× y for all x, y ∈ R
3 with × as the vector product on

R
3.

Note that the manifold SO(3) × R
3 ⊂ R

3×3 × R
3 is an

invariant set of the system dynamics (20). To stably embed

the system dynamics (20) into R
3×3 × R

3, let us consider a

function

W × R
3 ∋ (X,Ω) 7→ V (X,Ω) :=

1

4
‖X⊤X − I‖2 ∈ R,

(21)

where W := {X ∈ R
3×3 | detX > 0}. Then, V −1(0) =

SO(3)× R
3 and

∇XV (X,Ω) = X(X⊤X − I), ∇ΩV (X,Ω) = 0.

It is easy to show that V satisfies Assumption 1, which will

actually be proven in the proof of Theorem 5. With the help

of the function V , the system dynamics (20) is extended to

the Euclidean space R
3×3 × R

3 as defined in (2) to be

Ẋ = XΩ̂− αX(XTX − I), (22a)

Ω̇ = I
−1(IΩ× Ω) + I

−1u, (22b)

where (X,Ω) ∈ R
3×3 × R

3.

Take a reference trajectory

R ∋ t 7→ (R0(t),Ω0(t)) ∈ SO(3)× R
3 (23)

and the corresponding control signal R ∈ t 7→ u0(t) ∈ R
3

such that the trajectory obeys the system dynamics (20). It is

trivial to show that R0(t) satisfies Assumption 2. Define the

error trajectory as

R ∋ t 7→
(

E(t),Ξ(t)
)

:=
(

X(t)R−1
0 (t)− I,Ω(t)− Ω0(t)

)

∈ R
3×3 × R

3

such that E = 0,Ξ = 0 ensures that the system dynamics

follows the reference trajectory. The linearized error dynamics

along the reference state-control trajectory (R0,Ω0, u0) ∈
SO(3)× R

3 × R
3 is therefore given by

Ė = R0Ξ̂R
−1
0 − 2αSym(E), (24a)

Ξ̇ = I
−1(IΞ× Ω0 + IΩ0 × Ξ) + I

−1δu, (24b)

where Sym(E) is the symmetric component of the matrix E

and δu(t) := u(t)−u0(t). Now we are in the position to split

the error dynamics (24a) into the parallel and the transversal

direction. The parallel direction is given by the Lie algebra

so(3) (the set of 3 × 3 skew symmetric matrices) of the Lie

group SO(3) and the transversal direction is given by the

perpendicular space so(3)
⊥

to the Lie algebra so(3) in R
3×3

under the Euclidean norm, i.e., the set of 3 × 3 symmetric

matrices. Consequently, the attitude error dynamics (24a) is

split into the parallel and the transversal direction, simplifying

(24) to

Ė⊥ = −2αE⊥, (25a)

Ė‖ = R0Ξ̂R
−1
0 , (25b)

Ξ̇ = I
−1(IΞ × Ω0 + IΩ0 × Ξ) + I

−1δu, (25c)

where R ∋ t 7→ E⊥(t) ∈ so(3)
⊥

and R ∋ t 7→ E‖(t) ∈ so(3).

Remark 3. It is worth noting that the parallel error dynamics

(25b) and the transversal error dynamics (25a) are decoupled.

Therefore, in the absence of a drift vector field, i.e., α = 0, the

initial error in the transversal direction cannot be mitigated

and that leads to a steady-state error in the transversal

direction. In other words, for α = 0, the linearized error

dynamics (25a) cannot be stabilized to zero.

The discretized dynamics of (25), by Euler’s method, is

given by

E⊥
k+1 = E⊥

k − 2hαE⊥
k , (26a)

E
‖
k+1 = E

‖
k + hR0,kΞ̂kR

−1
0,k, (26b)

Ξk+1 = Ξk + hI−1(IΞk × Ω0,k + IΩ0,k × Ξk) + I
−1δuk,

(26c)



6

where h is the sampling time. The following theorem proves

exponential stability of (26a):

Theorem 5. The transversal error dynamics (26a) is exponen-

tially stable if

0 < αh < 1. (27)

Proof. We employ Theorem 3 to establish the stability of

the dynamics (26a). It is easy to prove that the function

V in (21) satisfies V (XR) = V (X) for all X ∈ R
3×3,

R ∈ SO(3) and ∇2V (I)(X⊥, X⊥) = 2
〈

X⊥, X⊥
〉

for all

X⊥ ∈ so(3)⊥. Therefore the minimum eigenvalue λmin and

the maximum eigenvalue λmax of the operator ∇2V (I) are

equal to 2. Further, using the fact that R⊤
0 (t)R0(t) = I for

all t leads to βgmin
= βgmax

= 1. Applying Theorem 3 to the

dynamics (26a), we obtain (27).

Remark 4. In an identical manner, one can prove exponential

stabilizability of the system dynamics (26) by applying Theo-

rem 4.

A. Model predictive control design

In this section, we design a model predictive tracking

control of the discrete-time attitude control dynamics (26).

Notice that the transversal dynamics (26a) in (26) is decoupled

from (26b) and (26c) and exponentially stable (see Theorem

5). Therefore, it is advantageous to choose QE , Q
f
E in (17)

which decouples the cost (17) along the parallel and the

transversal direction, i.e., ‖EN‖2
Q

f

E

= ‖E
‖
N‖2

Q
f

E

+ ‖E⊥
N‖2

Q
f

E

and ‖Ei‖2QE
= ‖E⊥

i ‖2QE
+ ‖E

‖
i ‖

2
QE

for all k = 0, . . . , N − 1,
so that we can ignore the transversal dynamics as it is not

influencing the optimization problem.
Consequently, an N horizon optimal control problem (19)

at a given time instant k for the system dynamics (26) with

the performance objective (17) and constraints (18) is given

by

minimize
{δuk+i|k}

N−1

i=0

J
(

E
‖
k:k+N |k,Ξk:k+N |k, δuk:k+N |k

)

subject to












































































E
‖
k+i+1|k = E

‖
k+i|k + hR0,k+i|kΞ̂k+i|kR

−1
0,k+i|k

Ξk+i+1|k = Ξk+i|k + hI−1(IΞk+i|k × Ω0,k+i|k)

+hI−1(IΩ0,k+i|k × Ξk+i|k) + I
−1δuk+i|k

δuk+i|k ∈ Uk+i

for all i = 0, . . . , N − 1,
{

E
‖
k+i|k ∈ XE

k+i

Ξk+i|k ∈ XΞ
k+i

for all i = 1, . . . , N,

(

E
‖
k|k,Ξk|k

)

=
(

E
‖
k ,Ξk

)

(28)

where
(

E
‖
k ,Ξk

)

is fixed, and XE
k+i and XΞ

k+i are admissible

sets for E
‖
k+i|k and Ξk+i|k , respectively. The quadratic pro-

gram (28) can be solved in MATLAB using an optimization

modeling toolbox YALMIP [18]. A detailed exposition of

computational complexity of real-time MPC exists in [19]–

[21]. The optimal control problem (28) is solved at each time

instant k and the control

u := u0 + δu,

where δu := δuk|k for [kh, (k+1)h[, is applied to the system

as shown in Figure 1.

ZOH Attitude dynamics

Disturbances

SamplerMPC
(Ek,Ξk)

δu
+

u

(E,Ξ) (X0,Ω0)

−

(X,Ω)

u0

+

+
δuk

Fig. 1: The sampled-data closed-loop system with MPC.

IV. SIMULATION RESULTS

We simulate our MPC in a sampled-data system as shown

in Figure 1. The finite dimensional quadratic programming

problem (28) is solved at each time instant k to calculate a

feedback control law. The moment of inertia matrix of the

rigid body in (28) is

I = diag(4.250, 4.337, 3.664),

which was taken from a satellite from the European Student

Earth Orbiter (ESEO) [22]. Let us track a reference trajectory

R ∋ t 7→ (R0(t),Ω0(t)) ∈ SO(3)× R
3,

where

R0(t) := exp (tê1) exp (tê2) exp (tê3)

with ei as the unit vector along the ith axis, and

Ω0(t) :=
(

1 + cos t, sin t− sin t cos t, cos t+ sin2 t
)⊤

,

using the MPC control law with the corresponding reference

control signal

R ∋ t 7→ u0(t) = IΩ̇0(t)− (IΩ0(t))× Ω0(t) ∈ R
3.

The initial data and parameters considered for the optimiza-

tion (28) are the following:

• E
‖
0 =

(

R0(0.2)−R0(0)
)‖
, Ξ0 = (0, 0, 0)⊤,

• QE = 100I, QΞ = 10I, Qδu = 0.01I ,

• Q
f
E = 100I, Q

f
Ξ = 10I ,

• sampling time: h = 0.2 sec,
• MPC time horizon: N = 4.

The MPC controller takes the tracking error measurements
(

Ek,Ξk

)

for computing the feedback control δuk at the each

iteration k. These tracking error measurements are calculated

as a difference of the reference states
(

R0,k,Ω0,k

)

and the

states obtained from the ODE simulation (we have used the

MATLAB integrator, ode45, with the options, RelT ol =
AbsTol = 10−6) of the rigid body dynamics (20) . In turn,

the ODE simulation is driven by the zero-order hold control

actions generated by the MPC controller, and that forms the

closed-loop MPC system; see Figure 1. We simulate three

different scenarios as follows:
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A. Case 1: Loose constraint and no noise

In the first case study, we consider the following state and

control constraints (18):

XE
k = so(3), XΞ

k = R
3, Uk = U − u0,k for each k,

where U := {y ∈ R
3| − 10 ≤ yi ≤ 10 for i = 1, 2, 3}. The

closed-loop system with the designed MPC shows a successful

tracking performance as the error trajectory (E(t),Ξ(t)) tends

to zero quickly (see Figure 2), and the optimal control profile

obeys the control constraints as shown in Figure 3. It is worth

noting that the angular velocity error Ξ shown in Figure 2

increases initially from zero in order to mitigate the initial

orientation error E.
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Fig. 2: The tracking errors for Case 1.
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Fig. 3: Zero-order hold control for the sampled data system

with MPC for Case 1.

B. Case 2: Tight control constraint

The second case we study is the one with the following

tight constraints:

XE
k = so(3), XΞ

k = R
3, Uk = U − u0,k for each k,

where U := {y ∈ R
3| − 6 ≤ yi ≤ 6 for i = 1, 2, 3}. The

closed-loop system with the designed MPC considering a tight

control bound shows a compromised tracking performance. As

the control trajectory hits the control bounds (see Figure 5),

the error trajectory (E(t),Ξ(t)) deviates from zero, as shown

in Figure 4.
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Fig. 4: The tracking errors for Case 2.
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Fig. 5: Zero-order hold control for the sampled data system

with MPC for Case 2.

C. Case 3: Noisy measurements

In this case study, the state and control constraints are con-

sidered as in Case 1 in Section IV-A; however, a measurement

noise in the tracking error
(

E
‖
k+i+1|k,Ξk+i+1|k

)

∈ so(3)×R
3 for i = 1, . . . , N,

is realized by the independent and identically distributed (i.i.d.)

random variables, i.e., w ∼ N (0, σ2
w), where σw = 0.03.

Due to the noisy state measurements, the error trajectory

(E(t),Ξ(t)) fluctuates around zero instead of stabilizing at

zero; see Figure 6. However, the tracking performance of the
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closed loop system is similar to Case 1, as shown in Figure 6

and Figure 7.
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Fig. 6: The tracking errors for Case 3.
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Fig. 7: Zero-order hold control for the sampled data system

with MPC for Case 3.

V. CONCLUSION

In this paper, we have presented a technique to design model

predictive tracking controllers for control systems evolving on

manifolds in Euclidean spaces. We have applied the proposed

technique to the systems on matrix Lie groups and demon-

strated its potency by designing a linear MPC law for the rigid

body attitude dynamics. Our approach simplifies MPC design

for control systems on manifolds. This development could be

quite useful for control engineers in dealing with nonlinear

mechanical control system applications in practice.
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