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Abstract

In this paper, we describe sufficient conditions when block-diagonal solutions to Lyapunov and H∞
Riccati inequalities exist. In order to derive our results, we define a new type of comparison systems,
which are positive and are computed using the state-space matrices of the original (possibly nonpositive)
systems. Computing the comparison system involves only the calculation of H∞ norms of its subsystems.
We show that the stability of this comparison system implies the existence of block-diagonal solutions
to Lyapunov and Riccati inequalities. Furthermore, our proof is constructive and the overall framework
allows the computation of block-diagonal solutions to these matrix inequalities with linear algebra and
linear programming. Numerical examples illustrate our theoretical results.

1 Introduction

Block-diagonal solutions to Lyapunov and Riccati inequalities are preferable in many control theoretic ap-
plications, e.g., structured model reduction (cf. [1]), decentralised control and analysis (cf. [2]). A class of
systems that is known to admit block-diagonal solutions to these matrix inequalities is the class of positive
systems (cf. [3, 4]), which is one of the reasons why generalisations of this class of systems is an active area
of research [5, 6].

In this paper, we focus on a generalisation of positive systems based on diagonally dominant matrices
since it is known that for this class of systems separable Lyapunov functions exist [7] and can be computed
using linear programming [8]. Recently, the diagonal dominant approach was applied to block-partitioned
matrices, which lead to conditions for the existence of block-diagonal solutions to Lyapunov inequalities [9].
In this paper, we generalise the existence results from [9] and derive conditions on the existence of block-
diagonal solutions to H∞ Riccati inequalities. The main idea of the approach is to partition the state-space
and compute a comparison system, which is positive and its dimension is equal to the number of clusters
in the state partition. Hence its dimension can be substantially smaller than the dimension of the original
system. The computation of the comparison system reduces to the computation of H∞ norms of the systems,
whose size is determined by the size of the individual clusters. We show that the stability of the comparison
system implies stability of the original system (the converse is generally false), and guarantees the existence
of block-diagonal solutions to Lyapunov and Riccati inequalities. The proof of this result is constructive and
computing these solutions can be performed using linear algebra and linear programming methods.

Even though we took inspiration from the linear algebra literature, in our previous work [9] we recon-
structed and generalised some existing control theory results, in particular, the stability criteria in [10].
Therefore, our comparison system approach is tightly related to previous work on comparison systems re-
ported in [11, 12] and more recently in [13]. However, the computation of comparison systems in [11, 13]
requires constructing Lyapunov/storage functions for individual systems in the network, and the overall pro-
cedure is typically non-convex. Our approach, on the other hand, is constructive and provides an algorithm
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to compute comparison systems without Lyapunov function computation. Furthermore, in the context of lin-
ear systems, the existence and construction of block-diagonal solutions to Riccati and Lyapunov inequalities
are not discussed before.

The rest of this paper is organised as follows. In Section 2, we cover some preliminaries of control
theoretic tools, positive systems theory and define a new type of comparison systems. In Section 3, we
derive sufficient conditions for the existence of block-diagonal solutions to H∞ Riccati inequalities. We
illustrate our theoretical results in Section 4. Additional minor technical results and numerical simulations
are available in Appendix.

Notation. The minimal and maximal singular values of a matrix A ∈ Rm×n are denoted by σ(A) and
σ(A), respectively. For a matrix A ∈ Rm×n, AT denotes its transpose. The H∞ norm of an asymptotically
stable transfer function G(s) is computed as ‖G‖H∞ = maxw∈R ‖G(ıω)‖2, where ı is the imaginary unit and
‖A‖2 = σ(A). A positive semidefinite (resp., positive definite) matrix X is denoted by X � 0 (resp., X � 0).
We denote the matrices with nonnegative (resp., positive) entries as A ≥ 0 (resp., A > 0). The nonnegative
(resp., positive) orthant, i.e., the set of all vectors x ≥ 0 (resp., x > 0) in Rn, is denoted by Rn≥0 (resp.,
Rn>0). For matrices Xij , j = 1, . . . , n with compatible dimension, we use Xi,−i to denote

Xi,−i =
[
Xi,1 · · · Xi,i−1 Xi,i+1 · · · Xi,n

]
. (1)

Finally, a block-diagonal matrix with matricesAi, i = 1, . . . , n, on its diagonal is denoted by diag{A1, . . . , An},
i.e.,

diag{A1, . . . , An} =

A1

. . .

An

 .
2 Preliminaries

In this section, we present some preliminaries on positive systems and introduce a new comparison system
that is positive by definition.

2.1 Control Theoretic and Positive Systems Tools

In this paper, we study linear time-invariant systems

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(2)

where A ∈ RN×N , B ∈ RN×Ni , C ∈ RNo×N , and D ∈ RNo×Ni . System (2) is asymptotically stable if and
only if A is a Hurwitz matrix, i.e., all its eigenvalues have negative real parts [14] or equivalently there exists
a positive definite matrix P � 0 such that

PA+ATP ≺ 0. (3)

Using the linear matrix inequality (LMI) (3) (usually called Lyapunov inequality), one can define a Lyapunov
function of the form V (x) = x(t)TPx(t) for system (2) with u(t) = 0. In the context of input-output
behaviour, dissipativity is considered as a typical analysis tool and in particular H∞ analysis is enabled by
the Bounded Real Lemma [14].

Proposition 1. Consider a system (2) where A is Hurwitz. We have

(a) ‖C(sI − A)−1B + D‖H∞ < δ if and only if σ(D) < δ and there exists P � 0 such that the following
Riccati inequality holds

PA+ATP + CTC − (PB + CTD)(DTD − δ2I)−1(DTC +BTP ) ≺ 0. (4)

(b) if (C,A) is observable, then ‖C(sI − A)−1B +D‖H∞ < δ implies that there exists P � 0 such that (4)
holds with equality instead of inequality.
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We refer the interested reader to Corollary 13.24 in [14] for a detailed proof. Note that the converse to
the point b) holds only with additional spectral constraints on the solution P and the system matrices A, B,
C, D. As the reader may notice both analysis methods rely on LMIs with a generally dense positive definite
matrix P � 0. In some cases, analysis can be significantly simplified using vector inequalities, which happens
in the case of positive systems. A system is called (internally) positive, if for any nonnegative control signal
u(t), and any nonnegative initial condition x(0) = x0, the state x(t) and the output y(t) remain nonnegative.
In order to avoid confusion, we will use a different notation for positive systems, namely:

ξ̇ = Fξ +Gυ,

ν = Hξ + Jυ,
(5)

where F ∈ Rn×n, G ∈ Rn×ni , H ∈ Rno×n, and J ∈ Rno×ni . Internally positive systems are fully characterised
by conditions on the matrices F , G, H and J : System (5) is internally positive if and only if the matrices
G, H, J are nonnegative (all their entries Gil, Hkj , Jkl are nonnegative) and the matrix F is Metzler (all
its off-diagonal elements Fij for i 6= j are nonnegative) [15]. In terms of stability and H∞ analyses, two
well-known results, which can be found in [4, 16, 17, 18], showcase the simplification.

Proposition 2. Consider a Metzler matrix F . Then the following statements are equivalent:

(a) F is Hurwitz;

(b) There exists d ∈ Rn>0 such that −Fd ∈ Rn>0;

(c) There exists e ∈ Rn>0 such that −FTe ∈ Rn>0;

(d) There exists a diagonal P � 0 such that PF + FTP ≺ 0.

Proposition 3. Consider system (5) where G, H, J are nonnegative matrices, while F is a Hurwitz and
Metzler matrix. Then the following statements are equivalent for a scalar δ:

(a) ‖H(sI − F )−1G+ J‖H∞ < δ;

(b) δ > σ(J) and there exists a diagonal matrix P � 0 such that

PF + FTP +HTH − (PG+HTJ)(JTJ − δ2I)−1(JTH +GTP ) ≺ 0; (6)

(c) σ(−HF−1G+ J) < δ;

(d) There exist vectors d, e ∈ Rn>0, g ∈ Rno

≥0, f ∈ Rni
>0 such that

Fd+Gf < 0, Hd+ Jf ≤ g, (7)

FTe+HTg < 0, GTe+ JTg < δ2f. (8)

Note that condition (d) can be obtained from condition (1.4) in Theorem 1 in [16] in the case of strict
inequalities. If a certain gk = 0, then the whole row of the matrices H and J is equal to zero. Therefore,
without loss of generality, we can assume that g is a positive vector.

2.2 Definition of a Comparison System

We say that a matrix A ∈ RN×N has α = {k1, . . . , kn}-partitioning with N =
∑n
i=1 ki, if the matrix A is

written with Aij ∈ Rki×kj as follows

A =

A11 . . . A1n

...
. . .

...
An1 . . . Ann

 .
The matrix A ∈ RN×N is α-diagonal if it is α-partitioned and Aij = 0 for i 6= j. The matrix A is α-diagonally
stable, if there exists an α-diagonal positive definite P ∈ RN×N satisfying (3).
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Our goal is to perform analysis of partitioned systems (2) using only meta-information about the system,
such as, the norms of the blocks Aij , Bij , Cij , where the indices of Bij take the values i = 1, . . . , n,
j = 1, . . . , ni, while the indices of Cij take the values i = 1, . . . , no, j = 1, . . . , n. Using this meta-information,
we define an internally positive system (5) with n ≤ N , ni ≤ Ni, no ≤ No that we will call a comparison
system. If we take ni < Ni and no < No it means we lump some of the inputs and outputs into one signal.
The main question is how to choose F , G, H, J so that analysis of the comparison system yields meaningful
properties of system (2). We first present a new comparison matrix inspired by [9, 19].

Definition 1. Given an α-partitioned matrix A with Hurwitz Aii, we define a comparison matrix Mα as
follows:

Mα
ij =

{
−1 if i = j,

‖(sI −Aii)−1Aij‖H∞ otherwise.
(9)

Definition 1 is in the spirit of the generalisations of scaled diagonally dominant matrices discussed in [20,
21, 19] and is a direct generalisation of the definition in [9]. In order to streamline the presentation we
discuss the connection to [9] in the Appendix.

Based on the comparison matrix Mα(A), we define the comparison system as follows:

F =Mα(A), Gil = ‖(sI −Aii)−1Bil‖H∞ ,

Hkj = ‖Ckj‖2, Jkl = ‖Dkl‖2,
(10)

for i, j = 1, . . . , n, k = 1, . . . , no, l = 1, . . . , ni.

3 Block-diagonal Solutions to the H∞ Riccati Inequalities

Our main theoretical result states that the H∞ norm of a system is bounded above by the H∞ norm of its
comparison system.

Theorem 1. Consider system (2) with the comparison system (5) defined in (10). If F is Hurwitz and
‖H(sI − F )−1G+ J‖H∞ < δ, then ‖C(sI −A)−1B +D‖H∞ < δ and there exist Pi � 0 such that (4) holds
with P = diag{P1, . . . , Pn}.

Besides the norm estimation, Theorem 1 provides a sufficient condition for the existence of block-diagonal
solutions to H∞ Riccati inequality (4). The proof of Theorem 1 is constructive and will illustrate how the
block-diagonal P can be constructed using linear programming and linear algebra. It is also straightfor-
ward to show that stability of Mα(A) implies the existence of a block-diagonal solution to the Lyapunov
inequality (3). Again these solutions can be explicitly constructed. To prove Theorem 1, we first present the
following lemma.

Lemma 1. Consider system (2) with the comparison system (5) defined in (10). Let

Ki =
{
k ∈ [1, . . . , no]

∣∣ ‖Cki‖2 6= 0
}
,

Li =
{
l ∈ [1, . . . , ni]

∣∣ ‖Bil‖2 6= 0
}
,

Ii =
{
j ∈ [1, . . . , n]

∣∣ ‖Aij‖2 6= 0, j 6= i
}
.

If F is Hurwitz and
‖H(sI − F )−1G+ J‖H∞ < δ,
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then there exist Pi � 0, Ξki,Γil,Φij ,Υkl,Λkl � 0 such that:

∀i : PiAii +AT
iiPi +

n∑
j=1,j 6=i

Φji +
∑
k∈Ki

CT
kiΞ
−1
ki Cki + Pi

∑
j∈Ii

AijΦ
−1
ij A

T
ij +

∑
l∈Li

BilΓ
−1
il B

T
il

Pi ≺ 0, (11a)

∀k, l :

[
Υkl −DT

kl

−Dkl Λkl

]
� 0, (11b)

∀k :

n∑
i=1

Ξki +

ni∑
l=1

Λkl � I, (11c)

∀l :

n∑
i=1

Γil +

no∑
k=1

Υkl ≺ δ2I. (11d)

Proof. According to Proposition 3 there exist positive scalars ei, di, gi, fi such that (7, 8) hold. Let
ηkj = Hkjdj/gk, γil = Gilei/fl, φij = |Fij |ei/dj , λkl = Jklfl/gkI, and µkl = Jklgk/flI. Since we need to
show the existence of a feasible solution to (11), assume that Φij = φijI, Ξki = ηkiI, Γil = γilI, Υkl = µklI,
and Λkl = λklI, where lower case variables denote scalars. Note that by construction the matrices Φij , Ξki,
Γil, Υkl, Λkl are either zero or positive definite. Let

Bi =
[
Bi1 · · · Bini

]
, CT

i =
[
CT

1i · · · CT
noi

]
,

Υk = diag{Υk1, . . . ,Υkni}, Λl = diag{Λ1l, . . . ,Λnol},
Γi = diag{Γi1, . . . ,Γini}, Ξi = diag{Ξ1i, . . . ,Ξnoi},

and let Ai,−i, Φi,−i be defined as in (1). We define the matrices Φ̃i,−i and Ãi,−i by removing all blocks from

Φi,−i and Ai,−i with j 6∈ Ii. Similarly we define the matrices B̃i, Γ̃i.
First, we prove the following H∞ norm bound for all i:

‖(sI −Aii)−1
[
Ãi,−iΦ̃

−1/2
i,−i B̃iΓ̃

−1/2
i

]
‖2H∞

< φ−1
ii . (12)

This can be shown by recalling (7):

‖(sI −Aii)−1
[
Ãi,−iΦ̃

−1/2
i,−i B̃iΓ̃

−1/2
i

]
‖2H∞

= max
s∈ıR

σ
(∑
j∈Ii

(sI −Aii)−1AijA
T
ij(sI −Aii)−T/φij +

∑
l∈Li

(sI −Aii)−1BilB
T
il(sI −Aii)−T/γil

)
≤
∑
j∈Ii

max
s∈ıR

σ
(
(sI −Aii)−1AijA

T
ij(sI −Aii)−T

)
/φij +

∑
l∈Li

max
s∈ıR

σ
(
(sI −Aii)−1BilB

T
il(sI −Aii)−T

)
/γil

=
∑
j∈Ii

max
s∈ıR

(σ((sI −Aii)−1Aij))
2/φij +

∑
l∈Li

max
s∈ıR

(σ((sI −Aii)−1Bil))
2/γil

=
∑
j∈Ii

Fijdj/ei +
∑
l∈Li

Gilfl/ei

<di/ei = φ−1
ii .

Since (I, A) is always observable, the bounded real lemma (Proposition 1) and (12) imply that for all i
there exist Pi � 0 such that

PiAii +AT
iiPi + φiiIPi

∑
j∈Ii

Aijφ
−1
ij A

T
ij +

∑
l∈Li

Bilγ
−1
il B

T
il

Pi = 0. (13)
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Next, considering (8), we have:

φiiI =
ei
di
I �

n∑
j=1,j 6=i

Fjiej
di

I +

no∑
k=1

Hkigk
di

I �
n∑

j=1,j 6=i

φjiI +
∑
k∈Ki

CT
kiCkigk
Hkidi

=

n∑
j=1,j 6=i

φjiI +
∑
k∈Ki

CT
kiCki
ηki

.

(14)

Substituting (14) into (13) leads to

PiAii +AT
iiPi +

n∑
j=1,j 6=i

φjiI +
∑
k∈Ki

CT
kiη
−1
ki Cki + Pi

∑
j∈Ii

Aijφ
−1
ij A

T
ij +

∑
l∈Li

Bilγ
−1
il B

T
il

Pi ≺ 0.

This means (11a) holds with Φij = φijI, Ξki = ηkiI, Γil = γilI. The coupling constraints (11b)-(11d)
are straightforward.

We are now ready to prove the main result of this note.
Proof of Theorem 1: Using Schur’s complement we can obtain the following LMI for a sufficiently small

ε1 > 0: 
PiAii +AT

iiPi + ε1I +
n∑

j=1,j 6=i
Φji PiAi,−i PiBi CT

i

∗ −Φi,−i 0 0
∗ 0 −Γi 0
∗ 0 0 −Ξi

 � 0.

The inequality is not strict, since some of the columns and rows can be equal to zero. By rearranging the
matrices so that left most corner lies on the i-th diagonal entry, summing the resulting matrices for all i, we
get PA+ATP + ε1I PB CT

BTP −
∑n
i=1 Γi 0

C 0 −
∑n
i=1 Ξi

 � 0. (15)

Multiplying the resulting LMI from the right withI 0 0
0 I 0
0 D I


and from the left with its transpose results in:PA+ATP + ε1I

[
PB + CTD CT

][
BTP +DTC

C

]
Y

 � 0,

where

Y =

[
I DT

0 I

] [
−
∑n
i=1 Γi 0
0 −

∑n
i=1 Ξi

] [
I 0
D I

]
.

We can complete the proof if we show that for a small positive ε2 the following inequality holds:

Y �
[
DTD − (δ2 − ε2)I 0

0 −I

]
. (16)
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In this case, we get PA+ATP + ε1I PB + CTD CT

BTP +DTC DTD − (δ2 − ε2)I 0
C 0 −I

 � 0,

and δ > σ(D). Setting ε2 = 0, application of the Schur complement and Proposition 1 will complete the
proof. Multiplying condition (16) from the right with[

I 0
−D I

]
and from the left with its transpose we obtain an equivalent condition:[

−
∑n
i=1 Γi 0
0 −

∑n
i=1 Ξi

]
�
[
−(δ2 − ε2)I DT

D −I

]
.

According to (11c) and (11d), for a small ε2 > 0 we have

−
n∑
i=1

Γi + (δ2 − ε2)I �
no∑
k=1

Υk,

−
n∑
i=1

Ξi + I �
ni∑
l=1

Λl,

and we need to show that [∑no

k=1 Υk −DT

−D
∑ni

l=1 Λl

]
� 0.

The latter LMI follows from composing and adding the LMIs in (11b) in an appropriate manner.

Remark 1 (Construction of Lyapunov Functions). The proof of Theorem 1 provides a constructive way to
find a block-diagonal solution P = diag{P1, . . . , Pn} to the H∞ Riccati inequality, provided the comparison
system is stable:

Step 1: Compute the comparison system (10) and its H∞ norm;
Step 2: Solve the linear program (7) and (8);
Step 3: Solve the individual Riccati equation (13) to find Pi.
This procedure clearly shows that a block-diagonal solution P = diag{P1, . . . , Pn} can be constructed

using linear programs and linear algebra if the comparison system is stable. This requires less memory and
computational power than solving an SDP ( e.g., (4) or (11)), which will be demonstrated using numerical
examples in Section 4.2.

Remark 2 (Small-gain Interpretation). If B, C, D are zero matrices, condition (11a) leads to the following
small-gain type condition: The matrix A is α-diagonally stable if there exist Φji � 0 such that

‖Φ1/2
ii (sI −Aii)−1Ãi,−iΦ̃

−1/2
i,−i ‖H∞ < 1,∀i,

where Ai,−i, Φi,−i are defined as in (1), Ãi,−i Φ̃i,−i are obtained by removing all blocks from Φi,−i, Ai,−i
with j 6∈ Ii (i.e., zero blocks), and Φii �

∑n
j=1,j 6=i Φji. This interpretation shows that our conditions can

take implicitly into account scaling factors, which are common in small-gain type results.

Remark 3 (SDP Conditions (11)). These conditions are clearly less conservative than the comparison
system approach, as in the proof of Lemma 1 we used several relaxations to obtain the SDP conditions from
LP conditions (7) and (8). On the other hand, solving (11) is more computationally expensive as it involves
SDP constraints. We note that conditions (11) are of lower dimensions than (4), which can be potentially
taken advantage of. However, how to exploit the structure in (11) is not trivial and requires further research.
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We conclude this section by presenting some additional results for positive systems, which are straight-
forward to show using the proof of Theorem 1.

Corollary 1. Consider a stable positive system (5), then the following statements hold:

(a) The solution to the Riccati inequality (6) can be computed as P = diag{e1/d1, . . . , en/dn}, where ei and
di satisfy (7, 8);

(b) Given positive vectors d, e satisfying Fd < 0 and e > −F−THTHd, we have FTQ + QF + HTH ≺ 0
with Q = diag{e1/d1, . . . , en/dn};

(c) Given positive vectors d, e satisfying FTd < 0 and e > −F−1GGTd, we have FP + PFT + GGT ≺ 0
with P = diag{e1/d1, . . . , en/dn}.

Note that in points (b) and (c), the computed solutions are not generally minimum trace solutions to
these Lyapunov inequalities.

4 Numerical Examples

4.1 H∞ Performance Analysis with α = {2, 3}
Since the comparison system is computed using linear algebraic tools in a completely distributed manner,
the scalability of the approach cannot be questioned. However, the conservatism of the obtained solutions
is a valid concern. In order to illustrate some issues, consider a simple example with a {2, 3}-partitioned
system matrix. We consider systems with state-space matrices Ai, B, Cj and D = 0.

Ai =

[
Ai11 A12

A21 A22

]
, A1

11 =

[
−60 30
20 −50

]
, A2

11 = A1
11/4, A12 =

[
6 6 5
0 3 1

]
, A21 =

 4 2
7 −5
−1 1

 ,
A22 =

−90 20 20
0 −10 5
−1 1 50

 , B =
[
3 2 5 1 0

]T
,

C1 =
[
2 1 5 1 2

]
, C2 =

[
−2 1 5 1 2

]
.

One can easily verify that the corresponding comparison systems are all stable. Therefore, Theorem 1
guarantees the existence of a block-diagonal solution to the Riccati inequality for all these systems. Now,
we compute several estimates on the H∞ norm using block-diagonal solutions to the Riccati inequalities. In
particular, we consider the following optimisation programs:

δbd = min
P,δ

δ (17)

subject to: P � 0 is α-diagonal and satisfies (4),

Table 1: Relative Errors of Sparse Estimates with Respect to H∞ norm

A1, C1 A1, C2 A2, C1 A2, C2

δbd

‖Ci(sI −Aj)−1B‖H∞

1 1.2914 1 1.7652

δsdp

‖Ci(sI −Aj)−1B‖H∞

1 1.9448 1 4.6133

δscal

‖Ci(sI −Aj)−1B‖H∞

1.0747 2.0948 1.2545 5.9495

‖H(sI − F )−1G‖H∞

‖Ci(sI −Aj)−1B‖H∞

1.2947 3.3578 1.6210 12.4408

8



δsdp = min
Pi,Ξki,Γil,Φij ,δ

δ (18)

subject to: Pi � 0,Ξki,Γil,Φij � 0 satisfy (11),

δscal = min
Pi,ξki,γil,φij ,δ

δ (19)

subject to: Pi � 0,Ξki,Γil,Φij � 0 satisfy (11),

Ξki = ξkiI,Γil = γilI,Φij = φijI.

Table 1 lists the values δbd, δsdp, δscal, as well as ‖H(sI − F )−1G‖H∞ , normalised by the H∞ norm of
the system. The results in Table 1 indicate that the values provided by the program (17) are significantly
less conservative than the comparison system approach. However, by employing the program (11) we can
bridge the gap between the values δbd and ‖H(sI −F )−1G‖H∞ . Note that for some systems the values δsdp

are equal to ‖Ci(sI − Aj)−1B‖H∞ , while for others the gap between δbd and δsdp is not substantial. The
SDPs (11) are of lower dimensions than (4), which can be potentially exploited by distributed optimisation
methods. However, this work is not trivial and requires further research. We perform additional simulations
in Appendix.

4.2 Computational Time Comparison

To demonstrate the scalability, we compare the CPU time required for computing a block-diagonal solution to
the Riccati equation using 1) the comparison systems and 2) the direct approach using the systems matrices.
We assume that D = 0 and generate the matrices A, B and C randomly where B and C are block-diagonal,
the block sizes ki are random integers between 2 and 5. For the comparison system approach, we first
compute the scalars φij , γil, ηki ei, di, gk, fl as described in the proof of Lemma 1. Then, we compute a
positive-definite solution to the following Riccati equation

PiAii +AT
iiPi + ei/diI + Pi

∑
j∈Ii

AijA
T
ij/φij +

∑
l∈Li

BilB
T
il/γil

Pi = 0. (20)

According to Theorem 1, the solution to (20) gives us a block-diagonal solution P = diag{P1, . . . , Pn} to the
Riccati inequality for the original system.

Figure 1 shows the computational time required for various number of subsystems N . We note that all the
computations for the comparison system approach can easily be parallelised, while the direct approach does
not generally allow for parallelisation. As shown in Figure 1, even without parallelisation, the comparison
system approach scales significantly better with the number of subsystems taking at worse 77.3 seconds
to compute versus 92.2 minutes for the direct approach. The computational results are obtained using
Sedumi [22] and YALMIP [23] on a 4-core Intel i7 3GHz processor with 16GB of RAM. Due to heavy
numerical computations for 200 subsystems we compute every H∞ norm only once, however, the overall
trend in these curves did not significantly change when we repeated the computations.

4.3 Distributed Stability Tests

In [9], it was proposed to use the comparison matrices and related Riccati equation in (11) to derive stability
tests. In this note, we generalise these tests and let

Φi,−i = diag{
[
φi,1I · · · φi,i−1I φi,i+1I · · · φi,nI

]
},

where φij with i, j = 1, . . . , n and i 6= j are nonnegative scalars. The diagonal elements φii are defined as
follows:

φii = ‖(sI −Aii)−1Ai,−iΦ̃
−1/2
i,−i ‖

−2
H∞

+ ε,

where ε > 0, Φ̃i,−i is obtained by removing all blocks from Φi,−i with with j 6∈ Ii. Now we compose the
matrix F = {φij}ni,j=1. If the matrix F is Hurwitz then the matrix A is Hurwitz and α-diagonally stable.
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Figure 1: Computational time comparison in Subsection 4.2. The black and magenta curves with triangle markers
depict the total computational time for the comparison system and direct approaches, respectively. The black curve
includes the computational time for the composition of the comparison system itself and the matrices Pi. The blue
curve with square markers depicts the computational time for the Riccati equations and the scalars ei, di, gk, fl,
which are obtained using a linear program.

Note that stability of F can also be verified in a distributed manner using the conditions in Proposition 2
(see [4] for details). Our stability tests are obtained by choosing appropriately φij ; we present a few ad-hoc
choices.

Test I. The matrix Mα(A) is Hurwitz, which implies that φij = ‖(sI − Aii)−1Aij‖H∞ei/dj for j 6= i,
φii = 1 and the positive scalars di, ei are such that

∑n
j=1,j 6=i ‖(sI−Aii)−1Aij‖H∞dj < di and

∑n
j=1,j 6=i ‖(sI−

Ajj)
−1Aji‖H∞ej < ei.

Test II. φij = ‖(sI −Aii)−1Aij‖H∞ for j 6= i.
Test III. φij = σ(Aij) for j 6= i.

Test IV. For j 6= i φij =

{
1 σ(Aij) > 0,

0 σ(Aij) = 0.

In Tests I and II, we need to compute at most O(n2) H∞ norms, while in Tests III and IV we need to
compute at most O(n2) matrix norms and n H∞ norms. We note that if α = {k1, k2} then all the tests
are equivalent. Note that there is no contradiction with [9] since the presented tests are not equivalent to
the tests in [9]. However, in general, the set of matrices satisfying Test I, II, III and IV intersect without
inclusions, which we show by providing examples. Consider the matrices AI , AII , AIII and AIV :

AI =


−2 6 6 2 0 2
0 −8 −5 −4 1 0
2 −1 −12 −8 0 2
1 −1 −5 −6 1 1
0 1 −1 0 −11 −7
0 1 1 −2 −9 −10

 , AII =


−4 2 −1 −1 0 −1
9 −16 3 8 −1 −1
1 −1 −3 −1 1 −2
−1 1 4 −2 −2 1
−1 2 0 1 −9 4
−2 2 −1 0 −3 −4

 ,

AIII =


−5 3 −1 −1 −1 −1
9 −14 8 1 −1 0
2 −1 −7 −7 0 1
1 −1 4 −9 −1 2
1 −1 1 0 0 4
0 −1 −1 1 −4 −5

 , AIV =


−9 7 −3 3 1 2
−6 −4 2 −3 −1 0
−1 −1 −2 5 1 0
2 2 −4 −4 −2 1
2 −1 0 3 −9 −4
0 2 0 0 2 −7

 .

Every matrix satisfies the test with the corresponding letter and fails the other ones. For instance, matrix
AI satisfies Test I and fails Test II, III and IV. We note that it was harder to generate matrices failing either
of Tests I and II, and satisfying any other test.
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Note that all the tests also guarantee that a block-diagonal solution to Lyapunov inequality exists and
can be constructed using Riccati equations similar to (13). Similar ideas can be used to derive other algebraic
conditions for the existence of block-diagonal solutions to H∞ Riccati inequalities.

5 Conclusion and Discussion

In this paper, we have considered a comparison system approach to the analysis of a class of systems.
The comparison system is positive and can have a much lower dimension than the original system. If the
comparison system is stable, then we can guarantee several strong properties of the original system: the
existence of block-diagonal solutions to Lyapunov, Riccati inequalities; efficient, but conservative estimates
of norms. The gap between the set of systems admitting block-diagonal solutions to Lyapunov and Riccati
inequalities and the set of systems satisfying our sufficient conditions is not entirely clear. In fact, a similar
gap is not characterised in the more studied diagonal case either and still constitutes an interesting theoretical
question. Nevertheless, our conditions are relatively easy to verify as they require only linear algebra and
linear programming methods. We present several examples illustrating our theoretical work. We provide
additional, but minor theoretical results, as well as additional numerical examples in Appendix.

Our definition of the comparison matrix results (under additional assumptions) in a decomposition of
the Lyapunov and Riccati inequalities into a set of smaller LMIs. This decomposition is similar to the
decomposition obtained by chordal sparsity [24, 25]. However, there are a few crucial differences between
these decompositions. The major one being that chordal decomposition cannot be applied to dense matrices,
while diagonal dominance can. On the other hand, chordal decomposition provides necessary and sufficient
conditions for the LMI to hold, which is not the case with diagonal dominance. Nevertheless, such a
connection can potentially be exploited to derive efficient computational algorithms for large-scale system
analysis using the techniques in [25, 26] and the recently proposed methods in [27, 28].

Finally, some generalisations of our results were not discussed in the note due to their triviality. Instead
of the 2-norms in the definition of comparison matrix Mα(A), one can also use other p-induced norms
for off-diagonal terms. However, we would need to compute the p-induced norms of the transfer matrices
obtained by the matrices on the block-diagonal, which by itself is not an easy task in general unless α = 1,
or the blocks Aii are Metzler.
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A Relating Comparison Systems

In this appendix we present an explicit relationship between our new comparison matrix (10), the optimisation-
based comparison matrix obtained from Lemma 1, and the comparison matrix from [9].

Definition 2. Given an α-partitioned matrix A with Hurwitz Aii, we define the matrix M̃α(A) as follows:

M̃α
ij(A) =

{
−‖(sI −Aii)−1‖−1

H∞
if i = j,

‖Aij‖2 otherwise.
(21)

Our second comparison matrix comes from contraction theory for nonlinear systems [29].
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Definition 3. Given an α-partitioned matrix A with Hurwitz Aii, we define the matrix Nα(A) as follows

Nα
ij(A) =

{
min{µ2(Aii), 0} if i = j,

‖Aij‖2 otherwise,
(22)

where µ2(X) = limh→0+
1
h (‖Ik + hX‖2 − 1) = λ(X + XT)/2 and X ∈ Rk×k, where λ(Z) denotes the

maximum eigenvalue of a symmetric matrix Z.

We also consider the class of matrices A satisfying Lemma 1, that is, the matrices for which there exist
Pi � 0, Ψij ,Φij � 0 satisfying the following constraints:

PiAii +AT
iiPi + Φii + Ψii ≺ 0 ∀i, (23a)[

Ψij PiAij
AT
ijPi Φji

]
� 0 ∀i 6= j, (23b)

Φii �
n∑

j=1,j 6=i

Φji, Ψii �
n∑

j=1,j 6=i

Ψij ∀i. (23c)

In order to formalise how these comparison matrices are related, we define the following classes of matrices

Cα0 = {A ∈ RN×N
∣∣∣Nα(A) is Hurwitz},

Cα1 = {A ∈ RN×N
∣∣∣M̃α(A) is Hurwitz},

Cα2 = {A ∈ RN×N
∣∣∣Mα(A) is Hurwitz},

Cα3 = {A ∈ RN×N
∣∣∣∃Pi � 0,Ψij ,Φij � 0 : A satisfies (23)},

Cα4 = {A ∈ RN×N
∣∣∣A is α-diagonally stable}.

Proposition 4. We have the following inclusions:

Cα0 ⊆ Cα1 ⊆ Cα2 ⊆ Cα3 ⊆ Cα4 .

for a given α. If α = 1, then Cα0 = Cα1 = Cα2 = Cα3 .

Proof. (i) Since M̃α(A) is Hurwitz there exist positive scalars di such that

‖(sI −Aii)−1‖−1
H∞

di >

n∑
j=1,j 6=i

‖Aij‖2dj .

Now it is straightforward to get:

di >

n∑
j=1,j 6=i

‖(sI −Aii)−1‖H∞‖Aij‖2dj ≥
n∑

j=1,j 6=i

‖(sI −Aii)−1Aij‖H∞dj , (24)

therefore Mα(A) is Hurwitz.
(ii) The inclusions Cα2 ⊆ Cα3 ⊆ Cα4 follow from Theorem 1.
(iii) Since Nα(A) is Metzler and Hurwitz, then µ2(Aii) < 0. We can show that with P = −µ2(Aii)I, the

following inequality holds:

PAii +AT
iiP + (µ2(Aii))

2I + P 2 � 0.

Indeed, using the inequality Aii +AT
ii � 2µ2(Aii)I, we get

−(Aii +AT
ii)µ2(Aii) + (µ2(Aii))

2I + (µ2(Aii))
2I � −2(µ2(Aii))

2I + (µ2(Aii))
2I + (µ2(Aii))

2I = 0.
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Therefore, ‖(sI − Aii)−1‖H∞ ≤ −1/µ2(Aii), where the equality is attained, e.g., for scalar Aii. This

leads to Nα(A) ≥ M̃α(A). Since Nα(A) is Hurwitz, there exists v � 0 such that Nα(A)v � 0. Due to

Nα(A) ≥ M̃α(A) the same vector v can be used to show stability of M̃α(A).

(iv) In the trivial partitioning case, N 1(A) = M̃1(A). Furthermore, the nonstrict inequality in (24)

becomes an equality. Therefore, if the matrix M1(A) is Hurwitz, so is the matrix M̃1(A).

Since in the trivial partitioning case the comparison matrices are equivalent, the comparison matrix
Nα(A) can also be seen as a block-generalisation of scaled diagonal dominance.

Finally, using Proposition 4 we have the following implication from Theorem 1.

Corollary 2. The results of Lemma 1 and Theorem 1 hold if we set F̃ = M̃α(A) (or F̃ = Nα(A)) and

G̃il = ‖Bil‖2, while H and J defined in the same way. In particular, if

‖H(sI − F̃ )−1G̃+ J‖H∞ < δ,

then ‖C(sI −A)−1B +D‖H∞ < δ and there exist Pi � 0 such that (4) holds with P = diag{P1, . . . , Pn}.

B Bounds on the Outputs and States

Using the matrix Nα, we can define another comparison system

F = Nα(A), Gil = ‖Bil‖2, Hkj = ‖Ckj‖2, Jkl = ‖Dkl‖2. (25)

As we will show below the comparison matrix Nα provides additional relations between the original sys-
tem (2) and the comparison system (5).

B.1 Main Results

As shown in Corollary 2, the result of Theorem 1 applies to the case of a comparison system with the matrix
Nα. Moreover, this case opens the door of exploiting additional properties of the comparison systems. For
instance, it is possible to bound the state and the output of system (2) using its comparison system.

Theorem 2. Consider system (2) with x(0) = x0 and its comparison system (5) defined in (25) with
F = Nα(A), ξi(0) = ξ0

i = ‖x0
i ‖2 and υl(t) = ‖ul(t)‖2 with i = 1, . . . , n, l = 1, . . . , ni. Then for all

i = 1, . . . , n, k = 1, . . . , no:

‖xi(t)‖2 ≤ ξi(t), ‖yk(t)‖2 ≤ νk(t), ∀t ≥ 0.

Proof. For all i, xi ∈ Rki , xj ∈ Rkj and a small ε > 0, we have

n∑
j=1

xTi Aijxj +

ni∑
l=1

xTi Bilul < (Fii + ε)‖xi‖22 +

n∑
j=1,j 6=i

Fij‖xi‖2‖xj‖2 +

ni∑
l=1

Gil‖xi‖2‖ul‖2, (26)

where we use the bounds

zTXz = zT(X +XT)z/2 ≤ −µ2(X)zTz = −µ2(X)‖z‖22,

and
zTY y ≤ ‖Y ‖2‖z‖2‖y‖2

for all vectors z, y and matrices X, Y of appropriate dimensions.

1

2

d(ξεi (t))
2

dt
= (Fii + ε)‖xi(t)‖22 +

n∑
j=1,j 6=i

Fijξ
ε
i (t)ξ

ε
j (t) +

ni∑
l=1

Gilξ
ε
i (t)υl

= (Fii + ε)‖xi(t)‖22 +

n∑
j=1,j 6=i

Fij‖xi(t)‖2ξεj (t) +

ni∑
l=1

Gil‖xi(t)‖2‖ul‖2

≥ (Fii + ε)‖xi(t)‖22 +

n∑
j=1,j 6=i

Fij‖xi(t)‖2‖xj(t)‖2 +

ni∑
l=1

Gil‖xi(t)‖2‖ul‖2.

(27)
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Consider now the system ξ̇ = (F + εI)ξ + Gυ and let ξε(t) denote its solution with ξεi (0) = ‖x0
i ‖2.

Using (26), we get
d‖xi(t)‖22

dt

∣∣∣
t=0

<
d(ξεi (t))

2

dt

∣∣∣
t=0

,

which means that there exists T > 0 such that ‖xi(t)‖2 < ξεi (t) for all t ∈ [0, T ] and all i.
Let there exist s such that ‖xj(σ)‖2 < ξεj (σ) for all σ ∈ [0, s) and all j, however, ‖xj(s)‖2 ≤ ξεj (s) for all

j and there exists an index i such that ‖xi(s)‖2 = ξεi (s). This implies that

0 ≥ d((ξεi (t))
2 − ‖xi(t)‖22)

dt

∣∣∣
t=s

. (28)

On the other hand, the inequality shown in (27) leads to

1

2

d((ξεi (t))
2 − ‖xi(t)‖22)

dt

∣∣∣
t=s

> 0.

We arrived to the contradiction with (28). Therefore, ξεi (t) > ‖xi(t)‖ for all t > 0 and all i. Letting ε → 0
we get ξi(t) ≥ ‖xi(t)‖2 for all t > 0 and all i.

Now we will show the second part of the statement. According to triangle and Cauchy-Schwartz inequal-
ities we have

‖yk(t)‖2 =

∥∥∥∥∥∥
n∑
j=1

Ckjxj(t) +

ni∑
l=1

Dklul

∥∥∥∥∥∥
2

≤
n∑
j=1

‖Ckj‖2 ‖xk(t)‖2 +

ni∑
l=1

‖Dkl‖2‖ul‖2

≤
n∑
j=1

Hkjξj +

ni∑
l=1

Jklυl = νk(t),

which completes the proof.

Using the flow bounds we can use stability analysis tools for positive systems such as ξ̇ = Fξ to study
nonpositive systems such as ẋ = Ax.

Corollary 3. Consider the system (2) and its comparison system (5) defined in (25) with F = Nα(A). Let
F be Hurwitz and let the vectors d, e ∈ Rn>0 be such that −Fd, −eTF ∈ Rn>0, then

Vm(x) = max
i=1,...,n

{‖xi‖2/di}, Vs(x) =

n∑
i=1

ei‖xi‖2, Vd(x) =

n∑
i=1

ei/di‖xi‖22,

are Lyapunov functions for ẋ = Ax.

Proof. According to Theorem 2, with ξi(t) = ‖xi(t)‖2, ẋ = Ax and ξ̇ = Fξ we have that ‖xi(s)‖2 ≤ ξi(s)
for all s > t. Let W (ξ) = max

i=1,...,n
{ξi/di}, then we have

Vm(x(s)) ≤W (ξ(s)) < W (ξ(t)) = Vm(x(t)),

for all s > t. This implies that

V̇m(x) = lim inf
h↘0

Vm(x(t+ h))− Vm(x(t))

h
≤ lim inf

h↘0

W (ξ(t+ h))−W (ξ(t))

h
< 0.

Therefore, Vm(x) is a valid Lyapunov function with V̇m(x) < 0 in the points of differentiability. The cases
of Vs and Vd are treated similarly.
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B.2 Relation to Network Input-to-State Stability

We will show that the Lyapunov function Vd has an input-to-state stability (ISS) interpretation. Consider a
fully observable system:

ẋ(t) = Ax(t) +Bu(t), (29)

and its comparison system ξ̇ = Fξ + Gυ, where F = Nα(RAR−1), Gil = ‖RiBil‖2 for some invertible α-
diagonal R = diag{R1, . . . , Rn}. Using the inequality (26) in Theorem 2 and completion of squares technique
that given Pi = ei/diR

T
i Ri, γil = Gilei/gl, φij = |Fij |ei/ej with positive ei, di, gl satisfying (7) and (8), we

can obtain the following inequalities:

n∑
j=1

xTi PiAijxj +

ni∑
l=1

xTi PiBilul ≤ −φiixTi Pixi +

n∑
j=1,j 6=i

φijx
T
j Pjxj +

ni∑
l=1

γilu
T
l ul, ∀xi, ul,

n∑
j=1,j 6=i

φji < φii.

(30)

Such systems are said to satisfy ISS small gain conditions, see [13] and the references within. Stability of
the interconnected system is shown using a comparison system with F̂ij = φij and Ĝil = γil. Construction
of max- and sum-separable functions will also follow from the ISS conditions. However, in general, the
relationship between the flows of the full and comparison systems can be more complicated than the ones
described in Theorem 2. Furthermore, the linear case is considered in [13] and only a nonlinear comparison
system was derived. Therefore, our results preserve linearity of comparison systems, which is beneficial in the
linear case. The matrix Mα(A) can also be used to derive ISS-type small gain conditions, however, in this
case we cannot derive a linear comparison system as in the case of Nα, where the state-space transformation
R is the key to build P .

Condition (11) from Lemma 1 can be used to derive a similar to (30) set of condition. In particular,
Lemma 1 implies that there exist Pi � 0, Ξki,Γil,Φij ,Υkl,Λkl � 0 such that for all xi ∈ Rki , ul ∈ Rml , we
have:

n∑
j=1

xTi PiAijxj ≤ −xTi Φiixi +

n∑
j=1,j 6=i

xTj Φijxj +

ni∑
l=1

uTj Γilul, (31a)

n∑
j=1,j 6=i

Φji � Φii. (31b)

Note that the right hand side in (31a) does not depend on the Lyapunov functions xTi Pixi, which makes
conditions (31b) conceptually different from the conditions (30) as well as the conditions in [10, 11, 13]
(for nonlinear systems). We note that the conditions (30) (as well as the conditions in [10, 11, 13]) require
optimisation over the gains γil,φij , and storage functions xTi Pixi. These optimisation programs to our best
knowledge are typically non-convex, our approach, on the other hand, leads to polynomial time algorithms.

C Application to Dissipative Networks

In the context of input-output behaviour, dissipativity is considered as a typical analysis tool, which is
defined with the help of the storage function V (x) = xTPx and the supply rate w(y, u):

2xTP (Ax+Bu) ≤ −w(y, u) = −
[
y
u

]T
W

[
y
u

]
,∀x, u, y,

where P is a positive semidefinite matrix and W is symmetric:

W =

[
W11 W12

WT
12 −W22

]
.
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Figure 2: Network of systems modelled by a feedback interconnection

In particular, if we set W12 = 0, W11 = I, W22 = δ2I, then we can estimate the H∞ norm of the system
using the Bounded Real Lemma [14].

One can see the partitioned system (2) as an interconnection of n systems, where the Hurwitz matrices
Aii model the dynamics of individual subsystems, while the terms Aij for i 6= j model their interconnections.
There are a number of ways to model an interconnection of linear systems. For example, consider the setting
in Figure 2, where Gi = Ci(sI −Ai)−1Bi and the constant matrices M , K and N are partitioned according
to the inputs and the outputs to Gi. Let the diagonal block entry Mii equal to zero, meaning that we forbid
direct feedback loops. This setting was considered in [30] and the conditions on dissipativity of the network
were derived using local dissipativity conditions, i.e., dissipativity of the subsystems. Assume that the rows
of the mapping [ zy ]→ wi are linearly independent. Let the local dissipativity conditions for subsystems with
the supply rate defined by Yi and the storage function xTi Pixi:[

PiAi +AT
i Pi + CTi Y i11Ci PiBi + CTi Y i12

∗ −Y i22

]
� 0,

Y i = (Y i)T =

[
Y i11 Y i12

(Y i12)T −Y i22

]
,

(32)

where ∗ stands for the transpose of the upper right corner of the matrix.
Consider the centralised coupling constraint[

MT NT I 0
KT 0 0 I

]
TT
πQTπ

[
MT NT I 0
KT 0 0 I

]T
� 0, (33)

where Q = diag{−Y 1, . . . ,−Y n,W}, W = WT is fixed in advance and specifies the global supply rate, and
the matrix Tπ is a permutation matrix such that[

wT
1 zT1 · · · wT

n zTn uT yT
]

=
[
wT uT zT yT

]
TT
π .

In particular, if Y i12 and W12 are zero matrices, then TT
πQTπ = diag{Y2,W11,−Y1,−W22}, where Y1 =

diag{Y 1
11, . . . , Y

n
11} and Y2 = diag{Y 1

22, . . . , Y
n
22}. One of the main result in [30] states that under some mild

assumptions (32) and (33) hold if and only if the network is dissipative with a storage function
∑n
i=1 x

T
i Pixi

with respect to the supply rate specified by W . These conditions can only be verified with semidefinite
programming with the decision variables Pi � 0, Y i = (Y i)T.

Our framework can also be applied to this case. One can set Ai = Aii, Aij = BiMijCj for i 6= j, while
Ckj = NkjCj and Bil = BjKil with i, j = 1, . . . , n, k = 1, . . . , no, l = 1, . . . , ni and simply apply the theory
to the resulting system. However, we consider the following comparison system

Fij =

{
−1 if i = j,

‖Ci(sI −Ai)−1BiMij‖H∞ otherwise,

Gil = ‖Ci(sI −Ai)−1BiKil‖H∞ , Hkj = σ(Nkj).

(34)
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In order to decouple the system information from interconnection information, one can use:

F̃ij =

{
−‖Ci(sI −Ai)−1Bi‖−1

H∞
if i = j,

‖Mij‖2 otherwise,

Gil = σ(Kil), Hkj = σ(Nkj),

(35)

which would lead to more conservative estimates. A positive aspect of these representations is the inde-
pendence on the state-space representations of subsystems Gi. The following result is the consequence of
applying our techniques in this setting.

Proposition 5. Consider the network of the stable subsystems Gi = Ci(sI − Ai)−1Bi (the matrices Ai are
Hurwitz) interconnected through matrices M , N and K as in Figure 2. Consider the comparison system (5)
with the state-space matrices defined in (34) and let there exist positive vectors e, d, g, f , and a scalar δ
satisfying (7,8). Then

(i) the network also satisfies conditions (32, 33), with Y i11 = φiiI � 0, Y i22 � 0 Y12 = 0, W11 = I,
W22 = −δ2I, and W12 = 0.

(ii) there exists P = diag{P1, . . . , Pn} such that

PA+ATP + CTC + PBBTP/δ2 ≺ 0

and ‖C(sI −A)−1B‖H∞ < δ.

Proof. (i) We will only sketch the proof due to similarity to the proof of Theorem 1. We set ηkj = Hkjdj/gk,

γil = Gilei/fl, φij = Fijei/dj , where the scalars ei, di, fl, gk satisfy (7,8). We define Φ̃i, Γ̃i, Ii, Li, Ki as in
Lemma 1, and obtain the bounds

‖Ci(sI −Ai)−1Bi
[
M Φ̃

−1/2
i N Γ̃

−1/2
i

]
‖2H∞

< φ−1
ii ,∑

j∈Ii

φjiI +
∑
k∈Ki

NT
kiNki/ηki ≺ φiiI.

(36)

Using these relations, we get the following Riccati inequalities with coupling constraints:

PiAi +AT
i Pi + CTi Y i11Ci + PiBi(Y i22)−1BTi Pi ≺ 0, (37)

Y i11 �
∑
j∈Ii

Φji +
∑
k∈Ki

NT
kiΞ
−1
ki Nki, (38)

(Y i22)−1 �
∑
j∈Ii

MijΦ
−1
ij M

T
ij +

∑
l∈Li

KilΓ
−1
il K

T
il , (39)

Γil,Φij ,Ξki � 0,

n∑
i=1

Ξki � I,
n∑
i=1

Γil ≺ δ2I, (40)

where Y i11 = φiiI, Φij = φijI, Ξki = ηkiI, and Γil = γilI. The conditions in (38) imply that Y1 � Φ̂ +NTN ,

where Φ̂ = diag{
∑n
j 6=1,j=1 Φj1, · · · ,

∑n
j 6=n,j=1 Φjn}, Y1 = diag{Y 1

11, . . . , Y
n
11}. While the conditions in (39)

imply that

Y−1
2 �M Φ̂−1MT +K

 ni∑
j=1

Γ̂i

−1

KT �M Φ̂−1MT +Kδ−2KT, (41)

where Γ̂i = diag{
∑n
j=1 Γj1, · · · ,

∑n
j=1 Γjni

}, Y2 = diag{Y 1
22, . . . , Y

n
22}. Applying Schur’s complement twice

to (41) and using Y1 � Φ̂ +NTN yields the following chain of inequalities

Y1 −NTW1N � Φ̂ �
[
M
0

]T [Y−1
2 K
KT W2

]−1 [
M
0

]
, (42)
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Figure 3: Mean values (solid lines) and 90% confidence intervals (dashed lines). The left panel: the values δ1cs (red
lines with cross markers), δ1cs−p (blue lines with diamond markers), and δ20cs (black lines with circle markers) against
the number of nonzero elements in 20× 20 matrices. The centre panel: the values δ1bd (red lines with cross markers),
δ1bd−p (blue lines with diamond markers), and δ20bd (black lines with circle markers) against the number of nonzero
elements in 20× 20 matrices. The right panel: the values δ1bd against the size of the full matrices.

where W1 = I, W2 = δ2I. Using Schur’s complement again we get:
Y1 NT MT 0
N W−1

1 0 0
M 0 Y−1

2 K
0 0 KT W2

 � 0⇔ −
[
Y1 0
0 W2

]
+

[
M N
K 0

]T [Y2 0
0 W1

] [
M N
K 0

]
≺ 0,

which after some algebraic manipulations leads to (33) with the matrix Q specified above.
(ii) the proof is straightforward.

As with our previous results, the H∞ norm of the network can be estimated using linear programming
or algebra. The constraints (32, 33) with Q described in Proposition 5 are necessary of stability of the
comparison system. For sufficiency, at least the existence of an α-diagonal Φ̃ satisfying (42) is required. On
the other hand the constraints (37-39) can be relaxed by replacing scalar variables with positive semidefinite
matrices. Note that all the constraints can be transformed to convex ones using Schur’s complement.
Finally, assume that the systems Gi are single-input-single-output and such that Ci‖(sI − Ai)−1Bi‖H∞ =
‖−CiA−1

i Bi‖2, for example all subsystems are internally positive. In this case the constraint (36) is tight, that

is for any valid choice of φij , γij we can set φ−1
ii to be equal to ‖Ci(sI −Ai)−1Bi

[
M Φ̃

−1/2
i N Γ̃

−1/2
i

]
‖2H∞

.

D Additional Examples

D.1 H∞ Performance Analysis with α = 1

We consider random systems with A ∈ R20×20 such that M1(A) is Hurwitz, Bk ∈ R20×k, Ck ∈ Rk×20

and D = 0. We first generate a random matrix Ã with the fixed number of nonzero entries where all the
nonzero entries are distributed according to the uniform distribution U on the interval [0, 1]. We then define
Mα(A) = Ã− ((1+ε) max(0,maxi(Re(λi(Ã)))))I, where λi(Ã)’s are eigenvalues of Ã and ε is a scalar larger
than zero. After that we obtain the matrix A by flipping with probability 0.5 the signs of the nondiagonal
entries of the matrix Mα(A). We generate full matrices Bk and Ck with entries distributed according to
U(−1, 1) for two cases k = 1 and k = 20. The dominant eigenvalue ofM1(A) will lie close to the origin, but
similar results were observed if the spectrum is shifted farther to the left. We then compute the following
quantities

δkbd−p =
δkbd−p

‖Gkp‖H∞

, δbd =
δkbd

‖Gk‖H∞

, δkcs−p =
‖Gkcs‖H∞

‖Gkp‖H∞

, δcs =
‖Gkcs‖H∞

‖Gk‖H∞

,

where Gk = Ck(sI − A)−1Bk, Gkcs = Hk(sI − F )−1Gk, Gkp = |Ck|(sI − A)−1|Bk|, where |X| stands for

the entry-wise application of the absolute value function to the matrix X, while δkbd and δkbd−p stand for

19



solutions of the program

δbd = min
P,δ

δ (43)

subject to: P � 0 is α-diagonal and satisfies (4)

with matrices A, Bk, and Ck and matrices A, |Bk|, and |Ck|, respectively. We remind the reader that k
denotes the dimension of the matrices Bk and Ck. Since we compare the relative norms of the systems,
we recover the loss of generality by restricting the support of distributions of the entries of the matrices
A, Bk and Ck. That is, similar results are obtained while generating the entries of Ã using U([0, amax]),
Bkij ∼ U([−bmax, bmax]) and Ckij ∼ U([−cmax, cmax]) for some positive amax, bmax, cmax.

For each number of nonzero elements, we generated 10000 matrices as described above. The mean values
of δ1

cs−p, δ1
cs and δ20

cs are depicted in the left panel in Figure 3, while the mean values of δ1
bd, δ1

bd−p and δ20
bd are

depicted in the centre panel in Figure 3. There were two not entirely expected results in these simulations.
Firstly, the values δ1

bd−p, δ20
bd converge to the values close to 1 on average with the number of nonzero entries

increasing, while the values δ1
bd start increasing again with the number of nonzero entries larger than 80.

Secondly, the relative errors δ1
bd−p, δ1

bd, δ20
bd peak between 40 and 50 nonzero entries, and later decrease. We

do not depict the results for δ20
bd−p, δ20

cs−p, since δ20
bd−p has a quite similar performance to δ20

bd, while δ20
cs−p

remarkably has a quite similar performance to δ1
cs−p.

It is not entirely clear why sign-indefinite low-rank matrices Bk and Ck add conservatism to the solution of
the Riccati inequalities on average, however, we can elaborate on the conservatism peak for sparse matrices.
Let Bk and Ck be diagonal matrices, hence PBk(Bk)TP/δ2 + (Ck)TCk is diagonal. In this case, the
conservatism should originate with matrix A. If the matrix A is full and scaled diagonally dominant, then the
values on the diagonal generally have larger magnitudes than the off-diagonal terms. In contrast to sparse
matrices, the off-diagonal elements can have comparable magnitudes with the elements on the diagonal.
Therefore rescaling with a diagonal P may not be sufficient to compensate for PBk(Bk)TP/δ2 + (Ck)TCk

in the case of sparse matrices more often than in the case of full matrices.
Our observations lead to a conclusion that for sparse scaled diagonally dominant matrices using diagonal

matrices P in Lyapunov/Riccati inequalities may not be advisable, even though such P exist. Instead one
should use block-diagonal P in order to reduce the conservatism. Naturally, two questions arise: (a) what
is the size of the blocks on the diagonal of P , and (b) how to choose the pattern of P . Some indications on
how to approach these questions are provided in [24, 25], where chordal sparsity can help to determine the
size of the blocks of P and the pattern of P . In the case of a), we can provide further analysis. Consider
the right panel in Figure 3, where we plot the relative error against the size n of the full matrix A. Note
that the conservatism reduces considerably as n grows and with n approaching 20 disappears with a high
probability. Therefore, it appears that for the block sizes up to 10, it is beneficial to use similar size blocks
in the matrix P . However, if the dimension of the full blocks is larger than 20, then we can employ a sparse
P without a significant loss of performance.

We also note that δkbd−p is not always smaller than δkbd. For example, set k = 1 and

A =

−5 0 0
−7 −7 0
6 3 −4

 B1 =

 4
−4
1

 , C1 =

 6
3
−4

T .
In this case, however, we have that δ1

bd−p < δ1
bd, but at the same time ‖G1

p‖H∞ < ‖G1‖H∞ and δ1
bd−p > δ1

bd.

Therefore, positivity of B1 and C1 is still beneficial for solvability of the LMI in (43). We conclude this
example by indicating that further studies of the systems with HurwitzMα(A) can lead to scalable, but less
conservative analysis methods than the comparison system approach.

D.2 Time and Frequency Responses with α = 1

To illustrate the result in Theorem 2, we consider the time and frequency responses of the following system
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Figure 4: Responses of Systems G1 and G2 in Subsection D.2: (a) Frequency response; (b) Initial condition response.

G1 =

[
A1 B
C D

]
=


−5 −2 −1 0 4 3
0 −5 −3 −1 0 0
0 −2 −9 0 0 1
0 0 −2 −5 1 0
1 3 0 0 −4 1
1 2 0 0 8 1

 ,

where M1(A1) is Hurwitz and hence a diagonal solution to the Riccati inequality (4) exists. We also flip a

sign of the (5, 1) entry of the matrix A1 and get the system G2 =

[
A2 B
C D

]
. First, we perform a similar

analysis as above and compute the norms ant their estimates. In Figure 4(a), we plot the singular values
of the systems and the bounds δ1

bd, δ2
bd, which are the solutions to (43) for systems G1 and G2. Our main

observation is that a flip of a sign drastically changes the magnitude of the frequency response of the systems.
Yet the bounds δbd are still surprisingly close to the actual H∞ norm.

Next, we evaluate the flow bounds provided by Theorem 2. We compute the initial condition responses
of the systems G1 and G2 and their comparison system to the initial conditions x01 =

[
−1 0 0 0 0

]
and x02 =

[
−1 1 −1 1 −1

]
. As shown in Figure 4(b), the initial condition responses (with u = 0) can

be conservative also for the system G1, especially if the initial state does not belong to the orthants Rn≥0 or
−Rn≥0, where the bound is tightest.
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