This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2953213, IEEE

Transactions on Automatic Control

Abstraction-based Safety Verification and Control of
Cooperative Vehicles at Road Intersections

Heejin Ahn and Alessandro Colombo

Abstract—This paper considers the problem of designing a
centralized controller for vehicle collision avoidance at road
junctions and intersections. The controller supervises a set of
vehicles, and overrides their inputs when necessary to prevent
side and rear-end collisions. By supervising vehicles, rather than
taking full control, we obtain a system that can work with semiau-
tomated human-driven vehicles. The price to pay is in complexity:
an override is only necessary if, without an intervention, all
future input signals will result in a collision. Thus, deciding
overrides requires verification of the full reachability set, rather
than the computation of a single collision-free trajectory. Our
approach to speeding this step up is to use an abstraction of
the (concrete) system, which is suitably discretized to obtain a
mixed-integer programming problem. We deduce the solution
of the original verification problem from that of the abstraction-
based verification problem by proving an approximate simulation
relation between the abstract and concrete systems. The resulting
supervisor provably guarantees safety of the concrete system.
We also evaluate the approximation error of the supervisor
due to the use of an abstraction. Computer simulations show
that the supervisor exhibits computationally better performances
than other existing controllers applicable to realistic intersection
scenarios.

Index Terms—safety verification; abstraction; collision avoid-
ance; road intersection

I. INTRODUCTION

ONTROL design of cooperative and connected vehicles

is receiving increasing attention, as a larger number
of highly automated vehicles appear on roads [1]. In par-
ticular, much attention was recently devoted to the design
of intersection management strategies for fully automated
vehicles [2]-[8]. However, despite the speed at which vehicular
technologies are evolving, human drivers are likely to remain
a key factor in regular city traffic for years. In the shorter term,
therefore, strategies that can reduce the chances of crashes at
intersections, while leaving substantial control to the driver,
constitute a more likely evolution of the existing advanced
driver-assistance systems.

This paper presents the design of a centralized coordinator
at busy road intersections (e.g., Fig. 1) that takes control of
vehicles only when it detects unsafe inputs, with focus on
computational complexity and how to manage it. We refer
to such a coordinator as a supervisor [9], and to the task of
detecting unsafe inputs as safety verification.

Several recent studies have focused on the design of su-
pervisors at road intersections [10]-[18]. Mostly, the cited

This work was done while Heejin Ahn was a Ph.D. Candidate at the
Massachusetts Institute of Technology. (e-mail: heejin.ahn@alum.mit.edu)

Alessandro Colombo is with Department of Electronics, Information, and
Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy.
(e-mail: alessandro.colombo@polimi.it)

o o e e
—t o + (E m

Fig. 1. Example of a large intersection.

studies are based on restrictive assumptions of intersection
complexity or vehicle dynamics. Earlier proposed methods
[10]-[14] define a single conflict area within the intersection,
such as the area enclosed by the dashed curve in Fig. 2,
and avoid side collisions by allowing only one vehicle at a
time in the area. With this simplified model, safety verifi-
cation is translated into a relatively tractable single-machine
scheduling problem. However, the resulting supervisor behaves
conservatively in that, for example in Fig. 2, it prevents cars
1 and 4 from simultaneously being inside the intersection
although their collision is geometrically impossible. More
recent methods [15]-[18] handle a more realistic intersection
model with multiple conflict areas, such as the shaded areas
in Fig. 2, but fixed vehicles’ paths. The works [15], [16]
employ jobshop scheduling and present a computationally
efficient approach by assuming simplified vehicle dynamics,
with the primary focus on the avoidance of side collisions,
ignoring rear-end collisions. The works [17], [18] solve a
time-discretized version of the safety verification problem,
considering both side and rear-end collision avoidance, under
the assumption of linear vehicle dynamics.

The strategy we propose in this paper pushes the limits on
the number of vehicles that can be simultaneously handled
at an intersection, while relaxing the linearity assumptions
on vehicle dynamics, handling side and rear-end collisions,

0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2953213, IEEE

Transactions on Automatic Control

Fig. 2. Intersection with a set of distinct conflict areas (red-shaded regions
for side conflict and gray-shaded segments for rear-end conflict). The notation
defining the conflict areas is introduced in Section II.

and allowing to treat cases where vehicles’ future paths are
uncertain. To achieve this, our strategy is to solve the safety
verification problem based on a simpler abstraction of the
concrete vehicle model, and then use the relation between
abstract and concrete models to synthesize overrides. In the
following, we detail two peculiarities of our strategy.

First, we adopt a space discretization scheme to rewrite
the abstraction-based verification problem as a mixed-integer
programming (MIP) problem. The work [7] considered a
space discretization scheme for coordinating vehicles through
an intersection. However, the formulation was designed for
fully automated intersection management with an assumption
of a constant speed inside the intersection, and thus is not
applicable to the safety verification of the unpredicted inputs
generated by a human driver. A rather commonly used scheme
is to base the coordination problem on a discrete-time model
of the vehicles [17]-[20]. While formally correct, the solutions
are computationally demanding due to the structure of ensuing
optimization problems: we will explain this issue in detail in
Section VII-C.

Second, to prove that the resulting supervisor guarantees
safety of the concrete system, we define an approximate
simulation relation between abstract and concrete systems
[21], [22]. Based on the solution of the abstraction-based
verification problem, which in turn implies the solution of the
original verification problem, we design the supervisor. The
approximate simulation relation implies that the supervisor
prevents any side and rear-end collisions among vehicles, but
in the meantime, results in a restrictive supervisor (i.e., one
that is not minimal in term of number of interventions). We
numerically estimate the approximation error of the supervisor.
We also perform computational experiments to evaluate the
performances of our approach, in terms of computation time
and restrictiveness, and compare it with results in the literature.

Similar approaches to intersection management, which em-
ploy both discretization and abstraction, were presented in
[23]-[25]. The work [23] solved verification based on abstrac-
tion in conjunction with the discretization of time and input,
and exploited differential flatness to compute the solution
of the original verification problem. The works [24], [25]
constructed a discrete event system (DES) abstraction based on
the discretization of time and space, and applied supervisory

7

(b) Highway merging

(a) Roundabout
(c) Lane merging

Fig. 3. These scenarios are classified as the same framework as the
intersection depicted in Fig. 1.

control theory of DES. However, the approaches [23], [24]
targeted a simplified intersection scenario with a single conflict
area, and the approaches [24], [25] considered a first-order
vehicle dynamical model. Our approach can handle nonlinear
second-order dynamics at a complicated intersection scenario
with multiple conflict areas.

The rest of the paper is structured as follows. In Section II,
we formally state the safety verification problem, following
the introduction of vehicle dynamics and collision sets. In Sec-
tion III, we outline our strategy to solve the problem based on
a simpler abstraction of the concrete system. In Section IV, we
rewrite the abstraction-based verification problem as a mixed-
integer optimization problem via the discretization of vehicles’
paths. In Section V, we prove the approximate simulation
relation of the abstraction by the concrete system, and provide
an algorithm that implements a supervisor. In Section VI, we
estimate the approximation errors of the supervisor algorithm
based on another abstraction of the concrete system. We
present numerical simulation results in Section VII.

II. PROBLEM SETUP

We consider n vehicles moving on a planar road network
near an intersection, a road junction, or a lane merging,
such as in Figs. 1 and 3. Vehicles may be human-driven or
autonomous, but we assume that all vehicles are equipped with
control and communication modules that allow a central co-
ordinator (the supervisor) to take control of their longitudinal
dynamics, within a predefined controlled region around the
intersection.

We assume that vehicles move through the controlled region
approximately following a finite number of predetermined
paths (light gray lines in Figs. 1 and 3). The approximation
errors between predetermined and actual paths correspond to
uncertainty in the dynamics. We can handle such uncertainty
by for instance suitably enlarging conflict areas or robustifying
the supervisor tracking controller responsible for generating
the override input. We assume, at first, that the approximate
path each vehicle will follow is known before it enters the
controlled region. This can be a reasonable assumption, when
the path is fixed by road regulation (e.g., when vehicles are on
a lane that allows only right turn) or can be inferred through

0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2953213, IEEE

Transactions on Automatic Control

suitable algorithms [26]. The supervisor presented in this
paper can however handle, with little additional complexity,
multiple possible future paths of each vehicle. This extension
is discussed in Section VII-D.

With the assumption of predetermined paths, the objective
of this work is to design the supervisor that takes control of
vehicles’ longitudinal dynamics along the paths only when
necessary to avoid an imminent rear-end or side collision. We
now introduce the notation necessary to discuss the objective,
and then, formulate the problem statement.

A. Vehicle Dynamics

We call z; € X; = [min, Tjmax] C R the curvilinear
coordinate of vehicle j’s geometric center along its path, and
; € Xj = [£jmin, Tjmax] its velocity, with &; ynin > 0.
The interval [2; min, £j,max] 18 the intersection of the vehicle’s
path with the controlled region, and the non-negative interval
[©,min, &, max) Tepresents the set of velocities that the vehicle
is allowed to take due to physical or legal limitations, assuming
that reversing is not allowed.

With the state s; = (z;,;)T € S; := X; x X;, we assume
input-affine vehicle dynamics:

i.
e 5 = J Vie{l,...,n} (1)
TS (si) 0 (si)uy
where u; € Uj = [Uj,mimuj,max] is the input, f(sj) and

b(s;) are nonlinear functions of the state, and n is the number
of vehicles inside the controlled region. We define the output
function

hj(s;) = ;.

We assume that (1) has a unique solution that continu-
ously depends on the input signal, and that — f(s;)/b(s;) €
(Uj,min, Ujmax) for all s; € S; to ensure that any constant
velocity in X 4 1s attainable. For example, in the simulations
presented in Section VII, we use the dynamics

;= —Cl(i‘j)z + c2 + c3uy 2)

with parameters ¢; > 0, co, and cg > 0. This can be written in
the form of (1) with f(s;) = —c1(%;)? + c2 and b(s;) = cs.

The function s;(t, u;,s;(0)) denotes the state reached after
time ¢ according to the dynamics (1) with input signal u; €
U; starting from an initial state s;(0). Here, U/; is the set
of piecewise continuous functions of time with a countable
number of discontinuities whose values lie in the input space
U;. For notational simplicity, we write s;(t,u;) if the initial
state s;(0) is not relevant.

We call x = (z1,29,...,2,) € X C R” the vector of
the positions of all vehicles in the controlled region, x =
(T1,%2, .., %n) € X = [Xmin, Xmax] C R™ the vector of
corresponding velocities, s = (s1, $2,...,8,) € S = X x X
the vector of the states, u = (u1,us,...,u,) € U C R"
the vector of inputs returned by the supervisor, and uy =
(Ud,15Ud,2; - - -, Udn) € U C R™ the vector of inputs issued
by the drivers. We call U := Uy x ... X U,, the space of the
input signals (i.e., of the vector function of time), and let U |
be the set of signals I/ restricted to the time interval [0, 7].

7 AL
I
]

/

*
Fig. 4. Side conflict area Z; in Fig. 2 (red region) is determined such that side

collisions occur when the geometric centers of the vehicles are simultaneously
inside the area.

B. Bad Set

The supervisor is allowed to communicate with and take
control of any vehicle within the controlled region. We assume
that vehicles entering the region do not cause any immediate
collision with other vehicles (this is achieved, for instance,
by requiring that vehicles entering the controlled region be
sufficiently distant from the vehicle in front and be able to
fully stop before the intersection). This assumption enables
the supervisor to guarantee that no conflict occurs as vehicles
join or depart the region [2], [27]. We refer to a bad set as
a set of position vectors that correspond to a rear-end or side
collision between two vehicles in the controlled region.

To define the bad set B, let us call

Pi(z;): R — R2,

the path followed by vehicle j inside the controlled region,
and

yj = Pilz;)

the planar coordinate corresponding to z;. Let y :=
(Y1,Y2, - - -,Yn) € R?™. For two vehicles j, j’ in the same lane,
let a rear-end conflict area O} j; C R? be a closed set of points
with nonempty interior where paths P; and P;, overlap. For
yi,y;0 € Ojj, call D(y;,y;) the distance between vehicles
j and j' along their common path. Let a side conflict area
Z; C R? be an open set of points where the vehicles’ paths
coming from different roads intersect or start to merge. The
size of a side conflict area is determined such that if the
geometric centers of vehicles are simultaneously inside the
area, the vehicles collide with each other. This is illustrated in
Fig. 4. The total number of side conflict areas is denoted by
m. The above notation is represented in Fig. 2 in a scenario
of four paths Py, P2, Ps, Ps. The four red areas indicate side
conflict areas Z1,75,73,7Z4, and the thick gray lines indicate
rear-end conflict areas Oz 3 and Oy 4. The distance between
vehicles 2 and 3 in the rear-end conflict area is denoted by
D(y2, y3)-

A rear-end collision is a configuration in which two vehicles
in a rear-end conflict area get closer than a minimum safe
distance d, which is larger than the length of vehicles. The set
of points corresponding to rear-end collisions is

B_:={y e R™": Yj Y0 € Oj 1, D(yj,y;0) < d}.

0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2953213, IEEE

Transactions on Automatic Control

Supervisor

(5(0)7ud.[u.r](0)) L.
———*Prediction

Infeasible
Override}—b{u[o.f] (0) # g [0,7] (0)‘

Fig. 5. If the Safety Verification Problem (VP) is infeasible given the
predicted state s, then the supervisor overwrites the requested input signal
(u[o,71(0) # ug,[0,7](0)). Vehicles use the input signal returned by the
supervisor during time interval [0, T].

A side collision is a configuration in which two vehicles meet
inside a side conflict area. The set of points corresponding to
side collisions is

B, = {y e R?" . Y, Yy €L \ Oj,j’}~

Definition 1 (Bad Set). The bad set is the union B := B U
B_.

The control method we propose in this paper utilizes
an approximation of the dynamics of (1) to synthesize the
supervisor. To account for the approximation error, while
guaranteeing that the system remains out of the bad set, we
will use an inflated version of the bad set, defined as the union
of the two sets

B* (¢) :=={y € R* 1 yj,y;» € O;;,D(y;,y;) < d*},
with d* := d + 2¢, and
Bi(e) :={y e R :y;,y;y €7\ O;;}.

with Z} := Z;®{y; € R? : ||y;||2 < €}, where the Minkowski
sum of two sets A and Bis A®B :={a+b:a € A,be B}.

Definition 2 (Inflated Bad Set). The bad set inflated by ¢ is
the union B*(e) := B* (¢) U B (¢).

C. Problem Statement

The supervisor is realized as a discrete-time algorithm
running at sampling time 7. For instance, 7 can be of the order
of 0.1s in Intelligent Transportation Systems applications
based on 10 Hz communication [1]. For the sake of simplicity,
we assume a synchronous algorithm and no communication
delay. Asynchronous and delayed communication can be easily
handled by incorporating an algorithm that estimates a set of
possible states using delayed information [28]. In the notation
we introduced above, the supervisor is a map

(5(0), ug,(0,71(0)) = w0, (0),

where ug[o,-(0) € U, is the input signal requested at
time 0 by drivers for time interval [0,7], and up (0) is
the input signal returned at time 0 by the supervisor for time
interval [0, 7]. At each generic time 0, the supervisor collects
information on each vehicle’s state and on the requested input
signal, predicts the future state s, reached by the requested
input signal, and decides whether the input signal can be
accepted (in which case up) ;(0) = ug,o,7,;(0)) or must
be corrected (in which case ujo ;1,;(0) # ug,j0,7],;(0)). The
current state and requested input signal are measured through

cameras, lidars, and radars on the roadside or through vehicles’
embedded sensors. Note that the requested input signal after
time 7 is unknown to the supervisor. We illustrate the overview
of the supervisor in Fig. 5.

The computational challenge of a supervisor resides chiefly
in the design of the algorithm in charge of deciding
whether an override is required for a given state-input pair
(s(0),u4,(0,71(0)). As a consequence, our attention throughout
the most of this paper will be devoted to solving this problem,
formulated as follows.

Safety Verification Problem (VP). Given a state s, deter-
mine the feasibility of the following:

J(u), 3)
y(t,u,s;) ¢ B, Vvt > 0.

minyey

subject to

Here, y(t,u,s;) is the position vector in the planar coordi-
nate reached after time ¢ with input signal u from the state s,
where s, itself is the state reached after time 7 from s(0) using
U, [0,71(0). If the above problem is infeasible, then ugjo.-1(0)
should be overwritten because this means that the state will
inevitably enter the bad set at some time. If instead it is
feasible, then u, jo ,1(0) is allowed to apply because there will
be an input signal at the next time step that prevents any future
collision. Note that, while this problem concerns the existence
of a feasible solution u, any choice of cost function J(u) can
be used to obtain an optimal input signal, for example, that
minimizes the throughput of the system during overrides.

Given a state s, and a real number ¢ > 0, let us define the
set of input signals

Usate(e) :={u el : y(t,u,s;) ¢ B*(e),Vt > 0},

and let Usage [0,-)(€) be the set of signals in Usage(e) restricted
to time interval [0, 7]. The set Usate(€) consists of an input
signal that allows the state trajectory to maintain distance ¢
from the bad set. If the optimization problem (3) is feasible,
then by definition ug [, +(0) € Usate,[0,1(0).

We say that a supervisor is e-restrictive if it has the
following property.

Definition 3 (e-restrictive Supervisor). For all s(0) € S,

ujo,71(0) # ug0,7(0) = ugo,7)(0) & Usate,[0,r)(€)-

Similarly, we say that a supervisor is least restrictive if it
is e-restrictive with € = 0.

III. OUR APPROACH TO PROBLEM SOLUTION

Our approach to solving the VP is to solve a computa-
tionally more tractable verification problem that is formulated
based on an abstraction of the concrete system (1), and then
deduce the solution of the VP by studying the relation between
the two systems.

A. Abstraction-based Verification Problem

Let us first define an abstraction X, of the concrete system
Y. in (1). Call V; the space of piecewise constant signals
defined on time interval [0, ¢ ;] with N; discontinuities. Here,

0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2953213, IEEE

Transactions on Automatic Control

ty; and N; are the predefined final time and number of
discontinuities, respectively, of the signals in V;. Let ¢;[k] for
k € {0,...,N;—1} be the times at which these discontinuities
occur where t;[0] = 0 and ¢;[N;] = ty ;. Also, let v;[k] for
k e {1,...,N;} be the value taken by the signal between
tjlk — 1] and ¢;[k] with v;[0] indicating an initial velocity at
time ¢;[0]. Let ~ be a vector of functions ;. We define X, ()
as the constrained system

v; €V,
’Yj(’l)j[OL...,’Uj[Nj],tj[O],...

for all j € {1,...,n}. In the above model, z,,; € X; is the
state, and the set X; is the same as the position set of (1). The
values v;[k| of the input signal v; € V; are bounded between
[V min[k], Vj max[k]] where [v; min[k], vj max[K]] is a subset of
[©,min, £jmax), the velocity set of (1). In Section IV, we
will use (4b) to constrain the jumps in the velocity functions
v;, thereby introducing a form of inertia in the otherwise
kinematic model (4a). We define the output function

(4a)
(4b)

Tq,j = vy,
’tj[Nj]) <0,

ha,j(Ta,j) = Ta,j;

which has common domain with the output function of X..
This allows us to define the distance

Ih(s) = ha(xa)([o

between the outputs of the two models.
Now, we formulate a safety verification problem on the
abstraction 3, (). Let y, be the vector with elements

Ya,j = Pj(Za,;)

for all j, where y, ; € R? is the planar coordinate correspond-
ing to the curvilinear coordinate x,, ;.

Abstraction-based Verification Problem (AVP). Given a real
number € > 0 and a state s, determine the feasibility of the
following:

J(v),)
va(t,v,s;) ¢ B*(e),Vt > 0.

minve v

subject to

Here the function y, (¢, v,s;) is the position vector reached
after time ¢ according to the abstraction (4) with velocity signal
veV =V x...xV, starting from an initial position x,
and velocity v[0] = %, where s, = (x,,X,). We can solve
the AVP by reformulating it as a mixed-integer program based
on space discretization. This will be detailed in Section IV.

B. Approximate Simulation Relation

In order to deduce the solution of the VP from the solution
of the AVP, we exploit an approximate simulation relation
[21], [22] between the concrete system (1) and its abstraction
(4). Let s; € S, denote the state, u; € U, the input, and h;(s;)
the output (e.g., position in this paper), for system >; where
i€ {1,2}.

Definition 4 (c-Approximate Simulation). A relation R, C
S1 X Sq is called an approximate simulation relation of ¥; by
35 of precision ¢ > 0, if for all (s1,s2) € R,

5

o [[hi(s1) —ha(s2)]oc < e
o for all £ > 0, for all u; € Uy, there exists an input
uy € U, such that (sq(¢,uq,s1),82(¢, u2,82)) € Re.
3o approximately simulates 31 with precision &, denoted by
Y1 =<¢ Yo, if there is R, such that for all s1(0), there exists
s2(0) such that (s1(0),s2(0)) € R..

In the above definition, we intentionally use the same
parameter ¢ that was used in the AVP. This is because in
Section V, we prove that for any positive real number ¢, a
vector <y can always be chosen such that

Ya ("Y) =e Y, (6)

which tells that for any position trajectory of X,(«), there
exists a position trajectory of ¥, within maximum deviation
. Thus, this indicates that a trajectory of X,(7y) avoiding
the inflated bad set B*(e¢) corresponds to a trajectory of %,
avoiding the bad set B.

IV. REFORMULATION OF THE AVP

Because the dynamics of X, (v) in (4) are constrained to
a piecewise constant velocity, they lend themselves to easy
discretization, in time or space. We will follow this route to
rewrite the abstraction-based verification problem as a mixed-
integer programming (MIP) problem.

We discretize the longitudinal path of vehicle j into N
short segments of possibly unequal length. The discretized
longitudinal path is denoted by a finite sequence of intervals

{6k — 10,6 13,2,
where [(;[k — 1], §[k]] € X, §[k — 1] < &[K], &10] = 2~ 5,
and &;[N;] = @) max- Let AE; 2 {1,2,...,N;} — R, denote
a sequence of the segments’ lengths, that is, A&;[k] = &;[k] -
&k — 1.

To enable simple and exact description of the collision
avoidance constraints, we discretize the longitudinal path in
such a way that all entries in each path segment belong
either to a (inflated side or rear-end) conflict area or to the
outside of the conflict area. This yields that the beginning and
end points of conflict areas coincide with the end points of
path segments. Also, longitudinal paths in the same rear-end
conflict area share a common discretization grid. For each path
segment k of vehicle j in rear-end conflict area O, ;, there is
a path segment 6 (k) of the following vehicle j’ in the rear-end
conflict area that satisfies

Pj(&ilk] — d*) = P (§5:[0(F)]).-

An example of a discretized path is depicted in Fig. 6.

The decision variables in the MIP problem are times nec-
essary for a vehicle to cross each space segment. That is,

A, (k]
At k| = J

=

forall j € {1,2,...,n} and k € {1,2,..., N;}. The fact that
v;|k] is bounded by [v; min[k], Vjmax[k]] gives the bounds of
time interval At;[k],

A, (k]

Uj,max[k]

AL (K]

< Atk <
J[] Uj,min[k]

, Vke{1,2,...,N;}. (D)

0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2953213, IEEE

Transactions on Automatic Control

Fig. 6. The longitudinal path is discretized such that the end points of conflict

areas (O js, L}, and I7;) coincide with the end points of path segments and

the length of some path segments in rear-end conflict areas is equal to the
inflated safe distance d*.

If v min[k] = 0, the constraint becomes Ag; [k]/vj max[k] <
Atj [k] < 00.

Also, in order to encode constraint (4b), which aims to
restrict velocity jumps between two consecutive segments, we
introduce smoothing function g, and write the constraint as
follows:
|A§j[l<: 1] - At,;[k] —

AL K] - Atk — 1] < g x(At[E]),

®)

for all j € {1,2,...,n} and k € {2,...,N,}. For k =
set |£C7—’JAtJ[1] — A§7 [1]‘ < gj71(Atj[1D where)'(T =
(#r1,...,%rn) is a given initial velocity. We will provide a
sufficient condition for the smoothing function in Appendix A
to appropriately represent the dynamical behavior of the con-
crete system X.. Since we want to have a linear constraint
with respect to the decision variable, one favorable option is
to set g; i (At;[k]) = c1At;[k] + co for some constants ¢;
and cs.
We can write the constraint (4b) as a set of

Vik(Vslk — 1], 05 (K], 5[k — 2], ¢k — 1], ¢;[k]) <0

for k € {2,...,N;} that is the same inequality as (8) and
v;,1(v;[0],v5[1],¢;[0],¢;[1]) < O for k = 1, with At;[k] =
ti[k] — t;[k — 1] and AE;[k] = v;[k]At;[k]. Here, ~; is a
vector of ;1 for all k, and +y; 1, is a function of the smoothing
function g j.

We can now describe the constraint for rear-end collision
avmdance In a nonempty rear-end conflict area O; j, let j <
4’ denote that vehicle j precedes vehicle j'. For all K where
P;(&[K]) € O and Py (&:[6(K)]) € Oj v, the rear-end
collision avoidance constraint is as follows:

K 6(K)
if j < g, Y At[k] < D Aty [k]
k=1

k=1
This means that after vehicle j reaches the position P;(&;[K]),
vehicle j' can reach P;(§;[K]— d*). Thus, z, ; and z, ; are
distance d* apart at the end points of each segment, and also
between the end points because trajectories of the abstraction
(4) are (piecewise) linear.
To describe the constraint for the side collision avoidance,
let positive integers K} “‘- and K7 O‘“ denote

(GIEP]&GKM) = {zj : Pia;) € T\ Oj 5}

This means that the path from the K mj -th segment to the K" 0”‘
th segment exactly overlaps with the inflated side conflict area

©))

6

-(I"j,max
A
-—>
At;[1] At;[13]

Fig. 7. A sequence of time intervals At; on the discretized path {[£;[k —
1], &;[k]]}32 , defines a trajectory of the abstraction (red line) by the map
12).

Z;\Oj ;. Such integers exist by construction of the discretized
paths. Vehicle j is inside the inflated side conflict area when

Koul

K,
Z At;] Z At
k=1

To avoid side collisions, two vehicles should never meet inside
the same conflict area. The side collision avoidance constraint
is as follows:

Koul

ZAt

Kn,
5]

<> Atylk
k=1

out
Ko,
»J

Kln
Jor Y At Z At
k=1

(10)

This means that either vehicle j’ enters the side conflict area
after vehicle j exits or the other way around. To encode this
constraint, we introduce a binary variable b;;;/, which takes 1
if vehicle j precedes vehicle j' inside side conflict area ¢ and
0 otherwise. Let b be the vector of all such binary variables

bijj-
MIP Formulation of the AVP (MIP-AVP). Given a state s,
determine the feasibility of the following problem:

J(At;, V),
(1),(8),(9),(10).

(1)

minag; b
subject to

In the problem, constraints (9) and (10) depend on pa-
rameter €, due to the inflated side conflict areas Z] and
inflated safe distance d*. The constraints (7), (9), (10) are
linear with respect to At,;[k], but the MIP-AVP is a mixed-
integer linear programming (MILP) problem only if the
smoothing constraint (8) is also linear, with a linear cost
function J(At;, Vj). We discuss how to compute a smoothing
function g; 1 (At;[k]) that is linear with respect to At;[k] in
Appendix A.

Given a state s, and a feasible solution (At;,V5) to the
MIP-AVP, a feasible solution v € V to the AVP is obtained

0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2953213, IEEE

Transactions on Automatic Control

from the following map:

k—1 k A [k
for t € ZAtj[iLZAtj[iO ,0;(t) = Aiﬁk}’

k—1
Ta;(t) = &k — 1] +v;(t) (t — Z At m) . (12)

for all k € {1,...,N;}, where x, = (Zq,1,...,%q,n) is the
position trajectory of the abstraction ¥,(v). An example of a
trajectory x, ; is illustrated in Fig. 7.

V. PROBLEM SOLUTION

Now, we design the supervisor algorithm and prove that it
prevents the dynamical state s from entering the bad set B.

Algorithm 1 Implementation of the supervisor at step k

1: procedure Supervisor(s(0),ugo,-(0))

2 Prediction: s, < s(T,ug,0,71(0))

3 Verification: Solve the MIP-AVP given s,

4 if Feasible then

5: Store a new safe input signal u”

6 return ug [o ,1(0)

7 else

8 Prediction: s, + s(T, uﬁ);l])

9: Verification: Solve the MIP-AVP given s,
10: if Feasible then

11: Store a new safe input signal u”

12: else

13: Store a previous input signal u* « uf“;olo)
14: return uﬁ)}l]

The supervisor verifies whether an override is required given
a current state-input pair (s(0), ug,[0,-)(0)) (line 3). If there is a
feasible solution in the MIP-AVP (line 4), then the supervisor
allows the requested input (line 6) and stores a safe input
signal u® (i.e., an input signal in Us,s(0)) for a possible use
at future steps (line 5). Otherwise, the supervisor returns the
safe input signal stored at the previous step restricted to time
[0, 7] (line 14). To update the safe input signal, the supervisor
computes a new input signal by solving the MIP-AVP again
(lines 9 and 11), or reuses the previous safe input signal by
translating it by 7 (line 13). The MIP-AVP in line 9 is not
always feasible given s(7, u%;l]) because the formulation is
based on the abstraction X, 37)

Note that the algorithm computes a new safe input signal u”
when the MIP-AVP has a feasible solution. Such a safe input
signal can be obtained as a byproduct during the proof of the
approximate simulation relation. In the following theorem, we
state the approximate simulation relation of X, (v) by X..

Theorem 1. For any € > 0, there exists «y such that ¥, () <.
e

Proof. See Appendix A. [

As a consequence of the above theorem, Algorithm 1 always
returns an input that belongs to Usage, [0,71(0).

7

Corollary 1. Algorithm 1 guarantees safety, that is, it keeps
the system state s outside the bad set B.

Proof. The algorithm allows the requested input if there is a
trajectory x, of X,(v) starting from s. = s(7,u4,[,+(0))
that avoids the inflated bad set B*(e) (i.e., the MIP-AVP
is feasible). This case implies, by Theorem 1, the existence
of a trajectory of 3. that avoids the bad set B because the
approximate simulation relation tells that |z;(t) — x4 ;(¢)| <€
for all t > 0. This assures that the requested input does not
lead to any unavoidable future collision, that is, it belongs to
Usate,j0,-1(0). Note that, when the MIP-AVP is feasible, the
algorithm stores a safe input signal u* of ¥, that makes a
trajectory that avoids B, for example, by using the feedback
control law (21) in Appendix A. When the MIP-AVP is not
feasible, the algorithm overwrites the requested input with a
safe input signal uFoj computed at a previous step and re-
stricted to [0, 7], which belongs to Usage,[0,](0). Therefore, the
algorithm always returns an input that belongs to Usae [0,7](0),
thereby preventing the system state s from entering the bad
set B. O

Corollary 2. Algorithm 1 is free of deadlock, that is, it
guarantees that vehicles eventually exit the controlled region.

Proof. A safe input signal u” makes a trajectory of ¥, that
avoids the bad set B and leaves the controlled region. Because
Algorithm 1 keeps the system in a state where there exists at
least one safe input signal, it is free of deadlock. O

VI. ESTIMATION OF THE APPROXIMATION ERROR

In this section, we prove that the supervisor (Algorithm 1)
is at most ¢-restrictive for some finite value ¢. To do this, we
introduce a second abstraction Y/ (4’) of the concrete system
..

Call V]’- the space of piecewise constant signals defined on
time interval [0,¢ ;] with N} discontinuities. Here, ¢ ; and
N]’ are the predefined final time and number of discontinuities,
respectively, of the signals in V}. Let ;[0],...,¢;[N; — 1] be
the times at which these discontinuities occur with #7[0] = 0
and t;[N;] = t; .. Also, let v[k] for k € {1,..., N;} be the
value taken by the signal between t’[k — 1] and #}[k] with
v%[0] indicating an initial velocity at time #;[0]. Let ¥" be a
vector of functions ~;. We define ¥, (7’) as the constrained
system

i‘;,j =vj, Vj € VJI,
5 (5[0], ..., v [N, £5[0], . .. #5[NF]) < O,

JLEYib oy JEYg

(13a)
(13b)

for all j € {1,...,n}. In this model, the values v}[k] of the
input signal fu§ S VJ’» are bounded between (& min, & max] for
all k, the velocity set of X.. This abstract system is the same
as ¥, (7) except that v represents a more relaxed constraint
on velocity jumps than -y;. We will prove in this section that
there exist a vector 4" and a finite ¢ such that

Ec j¢/2 2:1(’7/)'

This relation leads to the proof that the supervisor is (at most)
¢-restrictive.

(14)

0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2953213, IEEE

Transactions on Automatic Control

Again, we formulate a safety verification problem based on
the abstraction X/, (') as a mixed-integer programming (MIP)
problem. The safety verification on X/ (v’) is the problem of
determining the existence of v € V' := V| x ... x V), such
that

Vot v,57) ¢ B*(),9 > 0

given a real number € > 0 and a state s,. Here, y/ (¢, v,s;) is
the position vector in the planar coordinate reached after time
t according to the dynamics (13) with the velocity signal v
from the state s..

For the MIP reformulation, we uniformly discretize the
longitudinal path of vehicle j into V; ! segments of length

Ak = Ag) for all k. Due to the unlforrn discretization,
the definition of parameters 6(K), K;“J, and K73 change to

the values satisfying

D(P;(&[K]), Py (§[0(K)])) = d* and
(fJ[Km] 5J[KOUt]) 2 {z; : Pi(z;) €I\ Oy 0}

We write the constraint (13b) as a set of

C1 S At][k'] — Atj[k? — 1] S C2 (15)

forallk € {1,..., Nj’-}, and ¢; < At;[1] fAfg-/z‘ﬂj < ¢y for
k = 1. Here, real numbers c; and cs are numerically quantified
as the minimum and maximum time changes allowed over
distance Af; by the dynamics of the concrete system .. The
values of ¢; and cy depend on the discrete step size Af;- but
do not depend on k due to the uniform discretization.

The verification based on X/ (4’) is formulated as the MIP
problem as follows.

MIP Formulation of the X/(4')-based Verification
(MIP-AVP’). Given a state s, determine the feasibility of
the following problem:

minat; b J(At;,Vj), (16)

(1), 9), (10), (15).

The above problem is also MILP given a linear cost function
J(At;,Vj) and is used to estimate an upper bound of the
restrictiveness.

Now, we show that the supervisor is ¢-restrictive for some
finite real number ¢. We define ¢ as the smallest positive
number that satisfies the following two conditions. First,

¢

— 2 max max max
2 J tel0t]u Uy s, ;€0 X

subject to

|z (t, uj, 57.5) — U;t|>

(17)
where t7 = {t : x;(t,uj,s;;) = A&} and vj = A{;/t;‘
Second, for any s,, when the MIP-AVP is infeasible with € >
0, we have

Ya(t,v,s;) € B*(¢/2), Vv eV, vt>0. (18)

We can numerically find the value of ¢ that satisfies (18) by
solving the MIP-AVP’ using a large set of randomly generated
initial states.

Theorem 2. There exists v such that ¥. =4/9 X, (v').

8

Proof. Suppose a position trajectory of ., denoted by
xj(t,u;), is given, starting from the initial state s;(0) =
(x;(0),2,(0)). We define T;[k] as time for the position
trajectory to reach &;[k] where ¢ [k] := x;(0) + kAE). That
is, Tj[k] == {t : 2;(t,u;) = &;[k]}. Let 27, ;(0) = x;(0) and

Lkl =&k —1
(0 = 5K = PP v [k~ 1L T)
J J
19)
for k € {2,...,N;}} with v3[0] = ;(0). Then, a posi-
tion trajectory ;, ;(t,v;) satisfies xy, ;(Tj[k],v;) = &;[K]

for all k. Note that v; is piecew1se constant, v;(t) €
[fj,minaij,max} because Ij(t) € Xj = [i'j,minﬂi'j,max],
and 7;(v;(0),...,T;[0],...) < O if 7} represents a set
of inequalities (15) for all k. Thus, z/, aj 18 @ trajectory of
Y7 (7). For each path segment, |z;(t, uj) -z, (t,v;)| =
Loty (0, (T, & — 1)) — w2)] < 672 by (17, This
proves that 3/ (') approximately simulates . with precision

/2. O

Corollary 3. Algorithm 1 is ¢-restrictive.

Proof. When the MIP-AVP in line 3 of Algorithm 1 is
infeasible (i.e., ujg ,1(0) # ug,o,-(0)), by construction of ¢
in (18), there is no trajectory of Z’ ! (v") that avoids the inflated
bad set B*(¢/2). This implies, by Theorem 2, that there is no
trajectory of 3. that can avoid the inflated bad set B*(¢) (i.e.,
U, 10,71(0) & Usate,[0,1(#)). By Definition 3, this concludes the
proof. O

VII. SUPERVISOR PERFORMANCE

In this section, we implement the supervisor algorithm
(Algorithm 1) using MATLAB on a personal computer with
Intel Core i7 processor at 3.10 GHz and 8 GB RAM. We use
CPLEX [29] to solve mixed-integer programming problems.
We use as our test case the traffic scenario depicted in Fig. 1,
which involves the same ingredients (intersecting, merging and
splitting paths) as the scenarios in Fig. 3, but an overall higher
computational complexity (more distinct conflict regions).

We present the simulation of the supervisor algorithm in
Section VII-A. In Section VII-B, we discuss the computation
time and restrictiveness of the algorithm in terms of the
number of vehicles and the step size of the MIP-AVP. In
Section VII-C, we compare the performance of our approach
with other previous work, especially with one based on time
discretization (provided in [18]). In Section VII-D, we provide
an extension of the algorithm, which relaxes the assumption
that the longitudinal paths of vehicles are determined before
they enter the controlled region.

A. Implementation of the Supervisor Algorithm

We simulate the supervisor algorithm in the scenario illus-
trated in Fig. 1, with 20 vehicles whose longitudinal dynamics
are modeled by (2) with parameters ¢; = 0.005,co = 0,
and c¢3 = 1. We use the parameters [v; min[k], V) max[k]] =
[mins &j.max] = [1,15], [t min, jmax] = [=3, 3], Zjmax =
30 for all j and k, and 7 = 0.1, ¢ = 1. We divide the
longitudinal paths uniformly into segments of length 3 and

0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2953213, IEEE

Transactions on Automatic Control

30 11
10¢
20
gL
10 8
5 5 7
@ O g
g > 6
-10 5
4
-20 —abstract || 3 —abstract
-------- concrete ~--concrete
2
0 5 10 0 5 10
time time
(@) (b)

Fig. 8. By Theorem 1, any position trajectory of ¥4 () can be tracked by
a position trajectory of 3. within € = 1.

then refine them so that the discretized paths satisfy the
specifications given in Section IV. Trajectories of one of the
vehicles through the intersection are illustrated in Figs. 8 and
9, for the purpose of illustrating Theorem 1 and Corollary 1,
respectively.

In Fig. 8, we present a single trajectory of the abstraction
3. (7) computed at time step 0 by solving the MIP-AVP, and
the corresponding trajectory of the concrete system .. Notice
that the position trajectory of the concrete system can track
the position trajectory of the abstraction within € = 1, which
confirms Theorem 1.

In Fig. 9, we run the supervisor algorithm until all vehicle
exit the controlled region and present the resulting trajectory
(solid black line) of vehicle 16 through two rear-end conflict
areas (gray regions) and five side conflict areas (red regions
between position 0 and 20). The dotted lines represent seg-
ments of trajectories of other vehicles that share the same
conflict areas. Notice that due to the overrides of the supervisor
(marked in blue on the time axis), vehicle 16 slows down
before entering the intersection until around time 4.5 and then
accelerates inside the intersection, thereby avoiding collisions
inside the conflict areas; the trajectory would be a concave line
without any overrides of the supervisor because the requested
input at each time step is set to be 0. This confirms Corollary 1.

B. Computation Time and Restrictiveness

1) Effect of the Number of Vehicles: Fig. 10 shows the
maximum computation time required to solve the MIP-AVP
in the scenario of Fig. 1, as the number of vehicles is increased
from 8 to 20. The scenario of 8 vehicles represents, for
example, the arrangement of vehicles 1 through 8 in Fig. 1.
The total number of segments used in each scenario is between
208 and 769 at the first iteration of Algorithm 1. These
values vary at each iteration, depending on a given state of
vehicles. The MIP-AVP takes less than 0.1s for 15 vehicles
and less than 0.46 s for 20 vehicles. The computation time
can possibly be reduced by using more powerful machines
and more efficient programming language, and by using a
larger discretization size AE;[k] (detailed in the next section).

‘‘‘‘‘ Oi69
O16,10

c
K]
=
o
o

O167

11
10 15

time

Fig. 9. Trajectory of vehicle 16 through two rear-end conflict areas (O1¢,9,
coinciding with O16,10, and O16,7) and five side conflict areas. The dotted
lines represent the trajectories of other vehicles that share the same rear-end or
side conflict area. The time axis is colored blue at times when the supervisor
is overriding the drivers, so as to ensure that vehicles maintain a safe distance
of 4 on the rear-end conflict areas and are not simultaneously present inside
each side conflict area.

057

o o I
o w >

computation time (s)

o
e

8 10 12 14 16 18 20
number of vehicles

Fig. 10. Maximum computation time for solving the MIP-AVP in Algorithm 1
as the number of vehicles increases.

Also, a supervisor running at a longer time step of 0.2 to
0.5 is usually acceptable in many scenarios, although 0.1s
is the typical time step in Intelligent Transportation System
applications [1].

2) Effect of the Design Parameters : In the design of the
supevisor, designers can freely choose the step sizes A¢; [k]
and ¢ depending on required system performances. The other
parameters, such as the smoothing function g;j and -,
are then determined as functions of A¢;[k] and ¢. Here, we
show the effects of these independent design parameters on
the restrictiveness and computation time of the supervisor.

Let A¢,,,,, be the maximum size of the step sizes A¢;[K]
in the MIP-AVP. The choice of A& .. significantly affects
the computation time and the restrictiveness of the supervisor.
To numerically show the effects of step sizes on the supervisor
performances, we select a set of 1,000 random initial states
of 8 vehicles (arranged as vehicles 1 through 8 in Fig. 1)
and solve the MIP-AVP for each initial state with various step

0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2953213, IEEE

Transactions on Automatic Control

16 4
O
14 “g’ 5
12 s
10 32
£
8 82
(@]
9
6 -4
3 2 1 0 3 2 1 0
Anax A
(a) (b)

Fig. 11. As the maximum discrete step size (A&, ,,) is reduced, the upper
bound ¢ of the restrictiveness of the supervisor decreases while computation
time increases.

sizes from 0.2 to 3. The maximum computation time and an
upper bound of restrictiveness are illustrated in Fig. 11 as a
function of A¢,,,.. The maximum number of segments used
in the MIP-AVP is in total 254, 310, 352, 434, 646, 1206,
2898 when A, .. = 3,2.5,2,1.5,1,0.5,0.2, respectively.

Fig. 11(a) shows an upper bound ¢ of the restrictiveness of
the supervisor. Here, the upper bound ¢ decreases as A, ..
decreases. Recall that by Definition 3, the supervisor is at most
¢-restrictive if its override implies that there is no input signal
that avoids entering the inflated bad set B*(¢). For example,
¢ = 8 tells that when the supervisor intervenes, vehicles in the
same lane will get closer than 16 + d,,;, in the future or will
not be able to maintain distance 8 away from any side conflict
area that is currently occupied by a conflicting vehicle. The
decreasing ¢ indicates the reduced inflation of the bad set and
thus, a less restrictive supervisor.

In Fig. 11(b), the computation time increases (note that y-
axis is in a logarithmic scale) as the step size decreases. Notice
that Fig. 11 enables the selection of the step size based on
performance requirements; for example, if an alloted time for
computation is shorter than exp(—2) = 0.13s, a step size
larger than 1.5 can be chosen to obtain fast computation time
at the expense of restrictiveness.

We observe that € has a milder effect on the computation
time and ¢ of the supervisor. This is because small € leads to
the reduced inflation of the bad set B*(¢), but at the same time,
affects the smoothing function g; ;, (discussed in Appendix A),
thereby restricting the allowed velocity changes of X, (7).
In the simulations, we choose the value of ¢ that is of the
same order of magnitude as the step sizes; we use € = 1 for
A& = 3,2.5,2,1.5, ¢ = 0.25 for AE, . = 1,0.5, and
e =0.1 for A¢ =0.2.

max

C. Performance Comparison

In this section, we compare the computational complexity
with other approaches, in terms of the number of binary
variables appearing in the mixed-integer programming (MIP)
formulations. In particular, we focus on discussing the ad-
vantages and disadvantages of time discretization and space
discretization to justify our choice of the solution strategy. We
also present the simulation results of the comparison of the
two discretization schemes.

10

Other previous works [10]-[14] require O(n(n — 1)) bi-
nary variables to write the coordination problem as an MIP
formulation, whereas our approach requires O(mn(n — 1))
binary variables. This is because the previous works concern
collision avoidance at a single conflict area, which means
m = 1. Notice that the number of binary variables appearing
in our MIP formulation is different only by the factor of the
number of conflict areas m. Moreover, the methods presented
in the previous works do not apply to the more complex
scenario of this paper unless the whole intersection is lumped
into a single large conflict area, which can be occupied by
only one vehicle at a time. The more complex scenario
with multiple conflict areas is considered in [25] and [18].
However, [25] handles only first-order vehicle dynamics, and
[18] adopts a time discretization scheme which results in
an MIP formulation that requires a much larger number of
binary variables. In the following, we explain why the time
discretization-based MIP formulation requires more binary
variables and what the advantage of time discretization is.
Also, via computer simulation, we compare the performance of
our space discretization-based approach with the performance
of the time discretization-based approach.

In the case of time discretization, let x[k] be a decision
variable where x[k] is the position at time step & (i.e., at time
kAt). The constraints of rear-end collision avoidance and side
collision avoidance respectively take the following form:

o 3P (a;[M]). Py (a0 [k]) € O . then K] 0[] > d:

« if vehicle j precedes vehicle j at side conflict area 7 and

if Pj(x;[k]) € Ti\Oj v, then Py (x:[k+1]) ¢ T\ Oj 5
The first constraint tells that, if two vehicles are in the rear-
end conflict area, the distance between them at kAt must be
no smaller than the minimum safe distance d. The second one
tells that if vehicle j is inside the side conflict area at time
step k, then vehicle j' must not be inside the side conflict area
at the next time step.

Note that the conditional statements in both constraints
require the introduction of binary variables. The truth of “if
Pji(x;k]) € O; ;7 or “if Pj(x;[k]) € Z;\O;, ;. is represented
by a binary variable for each vehicle j at each time step k, for
each conflict area. We can expect O(Nnm) binary variables,
where N is the number of discretization steps, n the number
of vehicles, and m the number of side conflict areas. Also,
the truth of “if vehicle j precedes vehicle j' at side conflict
area 1 is represented by a binary variable for each pair of
vehicles at each side conflict area, which results in a total of
O(mn(n—1)) binary variables. In particular, the total number
of binary variables is nearly proportional to the length of the
time horizon N, whose lower bound is set by the minimum
velocity allowed for vehicles in the controlled region, and
may go to infinity if vehicles are allowed to stop within the
controlled region. On the other hand, the space discretization
scheme requires a total of O(mn(n — 1)) binary variables
which is independent of the horizon length.

Time discretization has some advantages over space dis-
cretization in terms of modeling flexibility. Indeed, for time
discretization, linear dynamics are enough to insure linear
constraints in the optimization problem, and therefore to admit
a formulation as a mixed-integer linear program, with a linear

0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2953213, IEEE

Transactions on Automatic Control

TABLE I
PERFORMANCE OF THE MIP-AVP AND THE TIME
DISCRETIZATION-BASED APPROACH.

Agmax =3 Agmax =1 Aﬁmax =05 At =1|At = 0.5
Accepted 79.8 95 96 90.6 96.2
States (%)
CPU Time 0.22 0.36 1.70 1.93 5.15
(s)

cost function. Space discretization, on the other hand, only
allows a linear program formulation for first order dynamics.
In the light of our need for a computationally light MIP
formulation, this may appear as a deal-breaker. However, by
discretizing the abstraction Y, (+y) rather than the concrete
system X, and then using the approximate simulation relation
to link the resulting trajectories with trajectories of the non-
linear concrete system Y., we can enjoy the computational
advantages of the space discretization, without significant
limitations on the model dynamics.

We compare the performances of the MIP-AVP and the
safety verification formulation given in [18], in terms of
two measures: computation time and ratio of accepted states
(i.e., leading to feasible solutions). To evaluate the ratio, we
estimate the fraction of a given set of 500 random initial
states that is classified as the accepted states by solving the
MIP-AVP and the time discretization-based verification. The
original verification problem (VP) yields the ratio of accepted
states that is larger than that of discretization-based verification
problems, and thus, how large this measure is indicates how
close each verification problem is to the VP. For computation
time, we measure the maximum CPU time taken to solve each
verification problem.

In the comparison, we consider linear vehicle dynamics
Z; = wuy, which is the same as (2) with ¢; = ¢ = 0
and cs = 1. This is because the time discretization approach
requires the assumption of linear vehicle dynamics, while our
approach can handle nonlinearity of vehicle dynamics by using
the abstraction and sliding mode control, which is detailed in
Appendix A.

In Table I, we present the results of our approach (MIP-
AVP) on three different discrete step sizes and the results of
the time discretization-based approach on two different step
sizes. When solving the time discretization-based verification
problem, we select N = [max;(z; max — £;(0))/(Z;minAt)]
and impose the constraints described in [18] with a zero cost
function. The zero cost function is used because CPLEX
tends to solve mixed integer problems with constant cost
functions more quickly than those with nonconstant cost func-
tion. Notice from the comparison between space discretization
with A, ., = 0.5 and time discretization with At = 0.5
that the two verification approaches find feasible solutions
on the similar number of states (96% and 96.2% of the
total number of states in the random set, respectively), while
time discretization takes significantly longer to complete.
This large computation time is mainly due to the number
of required binary variables; in these simulations, 24 binary
variables are involved in our approach, independent of step
sizes, whereas 3160 and 6296 binary variables are involved

11

30 30
25 O3 25
20 i 20
c 15 ’ c 15
S S
210 =210
8 8
5 5
0 0
-5 -5
-10 -10
0 5 10 0 5 10
time time

(a) Path of turning left (b) Path of going straight

Fig. 12. When the path of vehicle 1 is undetermined before entering the
controlled region, we solve Problem 1 so that its solution ensures collision
avoidance in rear-end and side conflict areas of all possible future paths. The
same coloring is used as in Fig.9.

in the time discretization-based approach with At = 1 and
0.5, respectively. The performance comparison shows that our
approach is more than 3 times computationally faster than the
time discretization-based approach, while similarly close to
the VP in terms of the ratio of accepted states.

D. Extension to Undetermined Vehicle Paths

Our approach can handle multiple possible future paths,
when a unique path cannot be identified before a vehicle enters
the controlled region. In the simulations, we consider the
scenario of 8 vehicles, with the same arrangement of vehicles
1-8 in Fig. 1.

When the path of vehicle 1 is unknown, we simultaneously
consider all possible paths (two paths in the scenario), as
if there are two vehicles starting from the same state but
traversing the intersection along different paths. To do this,
we solve the following problem:

Problem 1 (MIP-AVP with Undetermined Paths). Given a
state s, determine the feasibility of the following problem:

J(At], AT, At;, V5 € {2,...,n}), (20)
Ati[k] = At3[k],VEk € {1,..., K}
(1), (8),(9), (10).

Here, we discretize each path of vehicle 1 and find feasible
time sequences At% for path option 1 and Atf for path option
2. A feasible solution of (20) should satisfy Ati[k] = At?[k]
until vehicle 1 reaches the intersection, which is represented
by path segments k for k € {1,..., K}, because the two
paths are identical before the intersection. This modification is
accompanied by additional computational complexity; that is,
considering two possible paths for a vehicle increases compu-
tational complexity as if one additional vehicle is considered.

In Fig. 12, the position trajectories of vehicle 1 (solid lines)
along the two different paths are shown. The left-turn path
consists of one rear-end conflict area (gray region O 3) and
three side conflict areas (red regions), and the straight path
consists of three side conflict areas. Note that in both options,

min

subject to

0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2953213, IEEE

Transactions on Automatic Control

vehicles are not simultaneously inside the side conflict area
and maintain a safe distance of 4 in the rear-end conflict area.
Also, the position trajectories of vehicle 1 along the two paths
are identical until they reach the intersection located between
position 0 and 20. By finding a solution to Problem 1, we
ensure that starting from a state s, there is an input signal that
allows all vehicles to cross the intersection without conflict,
no matter what path vehicle 1 will choose in the future.

VIII. CONCLUSION

We designed a supervisor that takes control of vehicles
when necessary to prevent side and rear-end collisions at busy
road intersections. This supervisor significantly improves our
previous results [10]-[16] in that it now handles more compli-
cated intersection scenarios including multiple conflict areas,
road junctions, and merging lanes. To make it computationally
acceptable, we introduced an abstraction that is approximately
simulated by the concrete system with precision ¢, and de-
termined the timing of overrides by solving the abstraction-
based verification problem. We showed that the supervisor
guarantees no conflict within the controlled region, and we
found an upper bound ¢ to supervisor restrictiveness. Through
the computational experiments, we validated that our approach
is computationally practical for busy intersection scenarios.
The correctness of our result relies on the correct prediction of
vehicles’ states and perfect path following. Integrating robust
prediction and path following, along the line of the result in
[12], remains as future work.

APPENDIX A
PROOF OF THEOREM 1

To prove Theorem 1, we start with designing a feedback
law for the input of X, so as to track, with precision ¢, a
trajectory (x4,Vv) given by (12). Though different feedback
laws could be used, our choice is for sliding mode control,
due to its robustness to model uncertainties, and error bound
guarantees [30]. With reference to the functions f and b in
(1), we set

uj = @1)
R ECIE) N,
b(xj,s'cj)< [, @) nsat(o A& — v;)
if (tj c (ij,minaj;j,max)s and uj = —f(xj,jcj)/b(xj,;tj) if

% = @j min OF Tj = T max. Here, the design parameters A, 7,
and ® are positive real numbers, and a scalar function s is

s(wj, ;) == (5 —v;) + A (¥ — Tay) -

The saturation function sat(s/®) is 1 if s/® > 1, —1 if
s/® < —1, and s/® otherwise. With the input (21), if
&j € (&}min, £j,max), |s(xj,&;)| decreases in time because
1d
2 dt
where we let v; = 0 by neglecting a finite number of

points at which v; jumps. Since we focus on a trajectory
of an individual vehicle, we omit the subscript j for the

|s(2j, &))" < —nls(j, 35)] (22)

12

sake of notational simplicity, which has been used to indicate
vehicle j.

Using sliding mode control, we can easily quantify up-
per bounds of tracking errors |z — z,| and |¢ — v|. If
|s(z(t), z(t))] < S for all t > 0, we have

|z(t) — za(t)| <

, @) —u® <25, (23

>|

for all £ > 0. If there is an input signal for the concrete system
Y. that |z(t) — z4(t)] < e for all ¢, for any z,, then we
prove the e-approximate simulation relation of X, (v) by X..
To enable the existence of such an input signal, we provide
some conditions of A, 7, ® and the smoothing function g; .

Let parameters ® and A\ be constant over all segments,
and parameter 7 be constant at 7 on the k-th segment
and vary between segments. Let Av[k] denote the velocity
difference between two consecutive segments k£ — 1 and %k of
the abstraction trajectory, that is,

Ak -1 AgH
Atlk—1] At/k]

For k =1, set Av[l] := &, — A[1]/At[1].

Av[k] .= v[k — 1] — v[k]

Condition 1. The design parameters 1 and A satisfy the
following:
e n = nr > max(|Av[k — 1]|,|Av[k]|)/At[k] on k-th
segment;
o A > (P + maxy |AVIK]|)/e.

For k = 1, the condition is that n; > |Av[1]|/At[1].
We prove the lemma that Condition 1 ensures the position
tracking error bounded by e¢.

Lemma 1. If n and X\ satisfy Condition 1, the sliding mode
control input (21) makes tracking error |x(t) —x,(t)| bounded
by € for all t € [0, Z,]jzl At[k]).

Proof. We will prove that |s(z,2)] < ® + max(|]Av[k —
1]|,|Avlk]|) on each k-th segment by mathematical induction
on k. On the first segment, |s(z,&)| < |Av][l]| because
24(0) = -, |2, — v(0)] = |Av[1]|, and |s(z,)| does not
increase in time on the segment by (22). Suppose |s(x,z)| <
& +max(|Av[k—2]|,|Av[k—1]|) on the (k—1)-th segment.
We consider three cases depending on whether & reaches the
minimum or maximum velocity.

If & € (Zmin,Tmax), Since 7np_1 > max(|Av[k —
2]|, |Av[k — 1]|)/At[k — 1] and |s(z,)| linearly decreases
in time at rate 7,_1, we have |s(x,)| < & at the end of the
(k — 1)-th segment. Because between the (k — 1)-th and k-
th segments, the velocity of the abstraction trajectory changes
by Avl[k] and the position does not change instantaneously,
|s(z,&)| increases by at most |Avl[k]|, that is, |s(z,)| <
® + |Av]k]|. Since |s(z,4)| does not increase in time on a
segment, |s(x,2)| < ® 4+ |Av[k]| on the k-th segment.

Suppose v[k — 1] = Ak — 1]/Atlk — 1] = & and &
starts to reach @i, in the middle of the (k — 1)-th segment.
In this case, Av[k — 1] > 0 and Av[k] < 0. Also, we have
|s(z,&)| < @ at the end of the (k — 2)-th segment because
of the same reason above for the case of & € (Zmin, Tmax)-
Thus, at the beginning of the (k — 1)-th segment, we have

0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2953213, IEEE

Transactions on Automatic Control

either —® + Av]k — 1] < s(z,2) < 0 or 0 < s(z,4) <
® + Av[k — 1]. In the former, | — ® + Av[k — 1]| < ® and
thus |s(x,4)| < ® over the segment regardless of & because
the magnitude |s(x,2)| is not increasing in time. Thus, in
this case, |s(z,)] < ® + |Av]k]| on the k-th segment. In
the latter, s(x, &) decreases until & reaches &,;;, and remains
constant at . At the beginning of the k-th segment, since
0<5<P+AvEk—-1],

Av[k] < s(z,&) < @+ Av[k — 1] + AvV[K].
Therefore, on the k-th segment, |s(z,z)] < & +
max(|Av[E]|, |Av[k — 1]|) because |Av[k — 1] + Av[k]| <
max(|Av[k]|,|Av[k —1]|) and |s(z,)| does not increase in
time.

When vk — 1] > &pin and & = &, in the middle of
the (k — 1)-th segment, s(x,4) does not remain constant at
5 but decreases further because § = A(¢ — v) < 0. Thus,
the same conclusion as above can be made. The proof when
Al[k — 1]/ Atk — 1] = Zmax follows the same procedure.

This concludes the proof because by (23)

w(t) — za()] < 2F maX(MVE\k — 1], Av[k])

for t € Zf;ll Atli], 25:1 At[i]) , which becomes |z(t) —
xq(t)| < e since A > (P + maxy, |Av[k]|)/e by Condition 1.
O

However, parameters 1 and A cannot be made arbitrarily
large to satisfy Condition 1 because the magnitude of control
input (21) increases with respect to n and A, and should be
bounded by [tmin, Umax]- By appropriately choosing smooth-
ing function gj to restrict velocity changes of x,, we can
enforce the input bound constraint. We provide a condition
for smoothing function gy.

Condition 2. Smoothing function g at the k-th segment is a
map from [AE[k]/Vmax[k], AE[k]/vmin[k]] to R and satisfies
1 . max(gkfl max» gk) 2((1) + gmax)2

— | = + : +
b(z, ©) (f(@,2) At[k] c

S [uminv umax}

for all possible z € X and # € X and for all Atlk] €
[AL[k]/vmax[k], AE[k]/vmin[k]] Where

gr(At[K])

k= ma 9k—1,max ‘= Jk—1,

max
At[k—1],At[k—2]
and Gmax = Maxy Gk max, for all At[k—1] satisfying |A&[k—
1] - Atlk] — A[k] - At[k — 1]| < gr(At[k]) and At[k — 2]
satisfying |A&[k — 2] - At[k — 1] — A&k — 1] - At[k —2]| <
gk—1(At[k — 1]). For k = 1, set g1 as g1(At[1])/At[1] and
go,max as 0.

Since the smoothing function g; appears in the MIP-AVP,
we should determine g before solving the problem. This is
why g; should satisfy the inequalities in Condition 2 for all
possible solutions. The set of smoothing functions g; that

13

satisfy Condition 2 is nonempty because if g = 0 for all
k’

1 207
Umin S b(l‘,fﬂ) (—f(.’l?,l‘) - E))
Umax = % <_f(x’x) + 2;{)2> >

x,)
which are true because ¢ is nonzero, ® is arbitrarily small,
and —f(x,2)/b(x, %) € (Umin, Umax) for all x € X, & € X
by assumption. Therefore, g;, = 0 is in the set.

We prove in the following lemma that if g; satisfies Con-
dition 2, we can find 7 and A satisfying Condition 1 for any
solution (At;,Vy) such that the sliding mode input (21) lies
inl.

Lemma 2. Suppose smoothing function g satisfies Condi-
tion 2. For any solution satisfying the dynamics constraints
(7) and (8) in the MIP-AVP, there exist design parameters 7
and X that satisfy Condition 1 and make the sliding mode
control input (21) bounded by [tumin, Umax)-

Proof. Given any solution At satisfying (7) and (8) of the
MIP-AVP, Condition 1 is satisfied if

g (At 1) gu(At[k]) > 1
Atk — 2JAtlk — 1)’ Atk — 1)At[K]) At[E]

N = max<

and

1 gk (At[k])
A=C (‘I’ +max R 1]At[k]>

because from smoothing constraint (8),

oAl
= At([k — 1) At

Thus, by Lemma 1, the tracking error |x—z,| is bounded by ¢,
and |& — v| < 2eA. Then the control input (21) is bounded by
the expression 1/b(—f £ max(gx—1,max, Jr)/At[k] £ 2(D +
Gmax)?/€) in Condition 2, which implies that the input is
bounded by [tUmin, Umax]- O

|Av[k]

We can numerically obtain smoothing function g;, satisfying
Condition 2 before solving the MIP-AVP. The following
example shows a process to obtain a sequence of smoothing
functions gy.

Example 1. Consider the vehicle dynamics & = —0.00532+u,
which is the same as (2) with ¢; = 0.005,¢co = 0,¢c3 = 1.
Suppose A[k] = 3 and [vpin[k], Umax[K]] = [1,15] for all
k, e = 1, [Umin, Umax] = [—3,3], and ® = 0.001. We want
to find linear smoothing functions gx(At[k]) = ¢ At[k] + c2
that satisfy Condition 2.

Suppose that the velocity decreases between the (k — 1)-
th and the k-th segments, in which case the lower bound of
the control input is important to ensure. We first find g, that
satisfies

gr(At[k])
Atk — 1] At[E]?
where the comparison with gi_1 max iS not yet considered.
From smoothing constraint (8), A&[k — 1] - At[k] — AE[k] -
Atk — 1] < gi(Atlk]), thereby implying At[k — 1] >

—3<0.00542 — —2/(0.001 + Groax)? s

0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2953213, IEEE

Transactions on Automatic Control

Fig. 13. With gmax = 0, the smoothing function that satisfies (24) with
equality is represented by the black solid line, and a linear smoothing function
that satisfies (24) by the red dotted line.

At[k] — $gr(At[k]) in the decelerating case. Also, we have
& > 3/ At[k] — 2(® + Gmax) on the k-th segment because &
decreases over the segment and satisfies |&—v| < 2(®+ giax)
where v = 3/At[k]. In the above inequality, we substi-
tute @ with 3/At[k] — 2(® + Gmax), and At[k — 1] with
At~ Lgi(At[H]):

3 2
—3<0. ——— — 2(0.001 4 Gimax
3_0005(At[k] (0.001 + g))
gk _ 2
— —2(0.001 + gmax)” -
(At~ Lo atgp 2 OO0 G

(24)

Let gmax = 0. The smoothing function g, that satisfies (24)
with equality is depicted as a solid black line in Fig. 13.
Any function that lies below this black line satisfies (24). In
the figure, the red dotted line represents the linear smoothing
function 0.4761At[k] — 0.0751, which satisfies (24), is non-
negative for all At[k] € [A&[E]/vmax[k], AE[K]/Vmin[k]],
and maximizes the trapezoidal area below the linear func-
tion. Similarly, for an increasing velocity, gr(At[k]) =
0.4560At[k] —0.0777. With these two linear smoothing func-
tions, the maximum velocity change is g max = 0.8217. With
Jmax = 0.8217, we again find g, = 0.2708At[k] — 0.0429
for the decelerating case and 0.1958 At[k] — 0.0354 for the
accelerating case. These new smoothing functions yield the
maximum velocity change of 0.4474, which is smaller than
the value (0.8217) used to find the functions. Using these
smoothing functions, we check if

3 2

—-3<0. —— —2(0.001 4 Frmax

3_0005(“%] (0.001 + G,))
gkfl,max o _ 2

AtlH] 2(0.001 + gmax)” (25)

for the decreasing case, and a similar inequality for the
increasing case. In this example, (25) holds, and thus, the

14

constraint (8) becomes

ALk — 1] At[k] — AL[K]- Atk — 1]
< 0.2708At[k] — 0.0429,

— ALk — 1] At[k] + AL[K]- Atk — 1]
< 0.1958At[k] — 0.0354.

If (25) does not hold, lower the value of gi_1 max by recom-
puting smoothing function gx_; (e.g., finding € € [0, 1] such
that eg,—; yields the appropriate value of Gi—1 max)-

Using the lemmas developed in this appendix, we now prove
Theorem 1.
Theorem 1. For any € > 0, there exists v such that ¥, () <.
DI

Proof. For any € > 0, we can find smoothing function g; 1
satisfying Condition 2 (e.g., following the procedure given in
Example 1), and this gives a vector of function sequences -y as
in (8). Because g; i, satisfies Condition 2, by Lemma 2, for any
(At;,Vj) that satisfies the dynamical constraints (7) and (8)
of the MIP-AVP, there exist 7 and A that satisfy Condition 1
and makes the sliding mode feedback control input (21) lie in
the set /. By Lemma 1, this input signal corresponds to the
trajectory x of X, such that |z;(t) — x4 ;(t)| < e for all j for
all ¢, where x,, is the position trajectory of X, (+y) represented
by (At;,V;) that satisfies (7) and (8) by the map (12). By
Definition 4, this completes the proof. O

ACKNOWLEDGMENT

The authors would like to thank Professor Domitilla Del
Vecchio at MIT for her constructive comments and persistent
support in developing the approach presented in this paper.

REFERENCES

[1] U.S. Department of Transportation, “ITS Strategic research plan 2015-
2019,” http://www.its.dot.gov/strategicplan.pdf, 2014.

[2] D. Miculescu and S. Karaman, “Polling-systems-based control of high-
performance provably-safe autonomous intersections,” in Proc. IEEE
Conf. on Decision and Control, Dec. 2014, pp. 1417-1423.

[3] L. Chen and C. Englund, “Cooperative intersection management: A
survey,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 2, pp. 570-586,
Feb. 2016.

[4] R. Tachet, P. Santi, S. Sobolevsky, L. I. Reyes-Castro, E. Frazzoli,
D. Helbing, and C. Ratti, “Revisiting street intersections using slot-based
systems,” PLoS ONE, vol. 11, no. 3, p. e0149607, Mar. 2016.

[5] E. R. Miiller, R. C. Carlson, and W. K. Junior, “Intersection control for
automated vehicles with MILP,” IFAC-PapersOnLine, vol. 49, no. 3, pp.
37-42, 2016.

[6] A.I Morales Medina, N. van de Wouw, and H. Nijmeijer, “Cooperative
intersection control based on virtual platooning,” IEEE Trans. Intell.
Transp. Syst., vol. 19, no. 6, pp. 1727-1740, Jun. 2018.

[71 M. W. Levin and D. Rey, “Conflict-point formulation of intersection
control for autonomous vehicles,” Transportation Research Part C:
Emerging Technologies, vol. 85, pp. 528-547, Dec. 2017.

[8] F. Belkhouche, “Collaboration and optimal conflict resolution at an
unsignalized intersection,” IEEE Trans. Intell. Transp. Syst., Oct. 2018.

[9] T. B. Sheridan, Telerobotics, automation, and human supervisory con-
trol. MIT press, 1992.

[10] A. Colombo and D. Del Vecchio, “Efficient algorithms for collision
avoidance at intersections,” in Proc. Int. Conf. Hybrid Syst.: Computation
and Control (HSCC), Apr. 2012, pp. 145-154.

[11] A. Colombo and D. Del Vecchio, “Least restrictive supervisors for
intersection collision avoidance: A scheduling approach,” IEEE Trans.
Autom. Control, vol. 60, no. 6, pp. 1515-1527, Jun. 2015.

0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2953213, IEEE

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Automatic Control

L. Bruni, A. Colombo, and D. Del Vecchio, “Robust multi-agent
collision avoidance through scheduling,” in Proc. IEEE Conf. Decision
and Control (CDC), Dec. 2013, pp. 3944-3950.

H. Ahn, A. Colombo, and D. Del Vecchio, “Supervisory control for in-
tersection collision avoidance in the presence of uncontrolled vehicles,”
in Proc. American Control Conf. (ACC), Jun. 2014, pp. 867-873.

H. Ahn, A. Rizzi, A. Colombo, and D. Del Vecchio, “Experimental test-
ing of a semi-autonomous multi-vehicle collision avoidance algorithm
at an intersection testbed,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
and Syst. (IROS), Sep. 2015, pp. 4834—4839.

H. Ahn and D. Del Vecchio, “Semi-autonomous intersection collision
avoidance through job-shop scheduling,” in Proc. Int. Conf. Hybrid Syst.:
Computation and Control (HSCC), Apr. 2016, pp. 185-194.

H. Ahn and D. Del Vecchio, “Safety verification and control for collision
avoidance at road intersections,” IEEE Trans. Autom. Control, vol. 63,
no. 3, pp. 630-642, Mar. 2018.

F. Altché, X. Qian, and A. de La Fortelle, “Least restrictive and
minimally deviating supervisor for safe semi-autonomous driving at
an intersection: An MIQP approach,” in Proc. IEEE Int. Conf. Intell.
Transp. Syst. (ITSC), Nov. 2016.

, “An algorithm for supervised driving of cooperative semi-
autonomous vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 12,
pp. 3527-3539, Dec. 2017.

M. A. S. Kamal, J. Imura, T. Hayakawa, A. Ohata, and K. Aihara,
“A vehicle-intersection coordination scheme for smooth flows of traffic
without using traffic lights,” IEEE Trans. Intell. Transp. Syst., vol. 16,
no. 3, Sep. 2014.

F. Altché, X. Qian, and A. de La Fortelle, “Time-optimal coordination
of mobile robots along specified paths,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots and Syst. (IROS), Oct. 2016, pp. 5020-5026.

A. Girard and G. J. Pappas, “Approximation metrics for discrete and
continuous systems,” [EEE Trans. Autom. Control, vol. 52, no. 5, pp.
782-798, May 2007.

A. Girard, A. A. Julius, and G. J. Pappas, “Approximate simulation
relations for hybrid systems,” Discrete Event Dynamic Syst., vol. 18,
no. 2, pp. 163-179, Oct. 2007.

A. Colombo and D. Del Vecchio, “Supervisory control of differentially
flat systems based on abstraction,” in Proc. IEEE Conf. Decision and
Control and European Control Conf. (CDC-ECC), Dec. 2011, pp. 6134—
6139.

E. Dallal, A. Colombo, D. Del Vecchio, and S. Lafortune, “Supervisory
control for collision avoidance in vehicular networks using discrete event
abstractions,” in Proc. American Control Conf. (ACC), Jun. 2013, pp.
4380-4386.

——, “Supervisory control for collision avoidance in vehicular networks
using discrete event abstractions,” Discrete Event Dynamic Syst., vol. 27,
no. 1, pp. 1-44, Mar. 2017.

P. Lytrivis, G. Thomaidis, M. Tsogas, and A. Amditis, “An advanced
cooperative path prediction algorithm for safety applications in vehicular
networks,” IEEE Trans. Intell. Transp. Syst., vol. 12, no. 3, pp. 669-679,
Sep. 2011.

A. Colombo, G. R. de Campos, and F. D. Rossa, “Control of a city road
network: Distributed exact verification of traffic safety,” IEEE Trans.
Autom. Control, vol. 62, no. 10, pp. 4933-4948, Oct 2017.

D. Bresch-Pietri and D. Del Vecchio, “Estimation for decentralized
safety control under communication delay and measurement uncer-
tainty,” Automatica, vol. 62, pp. 292-303, Dec. 2015.

IBM Corporation, “CPLEX User’s Manual,” 2015. [Online].
Available: http://www.ibm.com/support/knowledgecenter/SSSASP_12.6.
3/ilog.odms.studio.help/pdf/usrcplex.pdf

J. E. Slotine and W. Li, “Applied nonlinear control,” Prentice-Hall, 1991.

biomedical applications.

15

Heejin Ahn received the B.S. degree in mechanical
and aerospace engineering from Seoul National Uni-
versity, Seoul, South Korea, in 2012, and the S.M.
and Ph.D. degrees in mechanical engineering from
the Massachusetts Institute of Technology, Cam-
bridge, MA, USA, in 2014 and 2018, respectively.

She was with Mitsubishi Electric Research Lab-
oratories, Cambridge, MA, USA, as a Visiting Re-
search Scientist from 2018 for two years. Her re-
search interests include the analysis and control
of hybrid dynamical systems for transportation and

Alessandro Colombo received the Diplome
D’Ingénieur from ENSTA in Paris in 2005, and
the Ph.D. from Politecnico di Milano in 2009. He
was Postdoctoral Associate at the Massachusetts
Institute of Technology in 2010-2012, and is
currently Associate Professor in the Department
of Electronics, Information and Bioengineering at
Politecnico di Milano. His research interests are in
the analysis and control of discontinuous, hybrid
systems, and networked systems.

