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Riemannian Optimal Identification Method for
Linear Systems With Symmetric

Positive-Definite Matrix
Kazuhiro Sato , Member, IEEE, Hiroyuki Sato , Member, IEEE, and Tobias Damm

Abstract—This article develops identification methods
for linear continuous-time symmetric systems, such as
electrical network systems, multiagent network systems,
and temperature dynamics in buildings. To this end, we for-
mulate three system identification problems for the corre-
sponding discrete-time systems. The first is a least-squares
problem in which we wish to minimize the sum of squared
errors between the true and model outputs on the product
manifold of the manifold of symmetric positive-definite ma-
trices and two Euclidean spaces. In the second problem, to
reduce the search dimensions, the product manifold is re-
placed with the quotient set under a specified group action
by the orthogonal group. In the third problem, the manifold
of symmetric positive-definite matrices in the first problem
is replaced by the manifold of matrices with only positive
diagonal elements. In particular, we examine the quotient
geometry in the second problem. We propose Riemannian
conjugate gradient methods for the three problems, and
select initial points using a popular subspace method. The
effectiveness of our proposed methods is demonstrated
through numerical simulations and comparisons with the
Gauss–Newton method, which is one of the most popular
approach for solving least-squares problems.

Index Terms—Riemannian optimization, symmetry, sys-
tem identification.

I. INTRODUCTION

MANY important systems involved in electrical net-
works [1]–[3], multiagent networks [4], [5], and tempe-
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rature dynamics in buildings [6], [7] can be modeled as{
˙̂x(t) = F x̂(t) +Gû(t)

ŷ(t) = Hx̂(t)
(1)

where x̂(t) ∈ Rn, û(t) ∈ Rm, and ŷ(t) ∈ Rp are the state,
input, and output of the system, respectively, and F ∈ Sym(n),
G ∈ Rn×m, and H ∈ Rp×n are constant matrices. Because the
matrix F is symmetric, we call (1) a linear continuous-time
symmetric system. In controlling a system described by (1),
it is important to have an accurate identification of (F,G,H).
Therefore, many identification techniques have been developed,
such as prediction error methods [8]–[13] and subspace identi-
fication methods [14]–[20] for discrete-time systems, as well as
for continuous-time systems [21]–[26].

However, it is difficult to identify a symmetric matrix F from
the K + 1 input/output data {(u0, y0), (u1, y1), . . . , (uK , yK)}
over the sampling interval h by using an indirect method that
estimates a corresponding discrete-time system and, then, trans-
forms to a continuous-time system. Here, y0, y1, . . . , yK are
noisy data observed from the true system, which is different
from (1). This is because no system identification method has
been derived for the corresponding discrete-time system{

x̂k+1 = Ax̂k +Bûk

ŷk = Cx̂k
(2)

where x̂k := x̂(kh), ûk := û(kh), ŷk := ŷ(kh), and

A := exp(Fh) ∈ Sym+(n) (3)

B :=

(∫ h

0

exp(Ft)dt

)
G (4)

C := H. (5)

That is, the existing methods in [8]–[20] for identifying the triplet
(A,B,C) do not provide a symmetric positive-definite matrix
A.

For this reason, we present novel prediction error methods for
identifying

Θ := (A,B,C) ∈M := Sym+(n)×Rn×m ×Rp×n

using the input/output data {(u0, y0), (u1, y1), . . . , (uK , yK)}
under the assumption that the matrix A is stable. That is, we de-
velop an identification method for the matrix A to be symmetric
positive definite. If this is achieved
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1) we can also obtain the matrices F , G, and H by

F = logA/h (6)

G =

(∫ h

0

exp(Ft)dt

)−1
B (7)

H = C. (8)

In particular, the matrix F is symmetric and is
uniquely determined, because the map exp : Sym(n)→
Sym+(n) is bijective [27].

2) we can directly identify discrete-time system (2) with a
symmetric positive-definite matrixA. That is, our method
works well even if the target system to be identified is not
continuous-time system (1) but the discrete-time system.

To develop the prediction error methods, we formalize three
different problems by introducing the Riemannian metric

〈(ξ1, η1, ζ1), (ξ2, η2, ζ2)〉Θ
:= tr(A−1ξ1 A−1ξ2) + tr(η�1 η2) + tr(ζ�1 ζ2) (9)

for (ξ1, η1, ζ1), (ξ2, η2, ζ2) ∈ TΘM , where the metric has also
been used for a model reduction problem [28]. The first problem
is the least-squares problem of minimizing the sum of squared
errors on the Riemannian manifold M . In the second problem,
to reduce the search dimension of the first problem, the manifold
M is replaced by a quotient set. In the third problem, we replace
the Sym+(n) component of M with Diag+(n).

The contributions of this article are summarized as follows.
1) In Section II-B, we show that the quotient set N/O(n) in

the second problem is indeed a manifold, where

N := M ∩ Scon ∩ Sob. (10)

Here, Scon := {(A,B,C) ∈ Rn×n ×Rn×m ×Rp×n | (A,B,
C) is controllable} and Sob := {(A,B,C) ∈ Rn×n ×
Rn×m ×Rp×n | (A,B,C) is observable}, where we say
that (A,B,C) is controllable (resp. observable) if the
corresponding discrete-time system described by (2) is
controllable (resp. observable). Moreover, in Section II-B, we
prove that Riemannian metric (9) on M induces a Riemannian
metric into N/O(n) by using a general theorem, as shown in
Appendix C. That is, the quotient set N/O(n) is shown to be a
Riemannian manifold.

2) In Section IV, we propose Riemannian conjugate gradient
(CG) methods for solving the aforementioned three problems.
In developing the CG method for the first problem, we derive
the Riemannian gradient of the objective function in terms of
Riemannian metric (9), and use the concept of parallel transport.
For the modified second problem on the quotient manifold
N/O(n), the parallel transport in the first problem is replaced
by the projection onto the horizontal space that is a subspace of
a tangent space of the manifold N , although the Riemannian
gradient is the same. In Section III-C1, it is shown that the
projection is obtained using the skew-symmetric solution to a
linear matrix equation. In Appendix E, we prove that there exists
a unique skew-symmetric solution to the equation under a mild
assumption. Moreover, for the third problem, we derive another
Riemannian gradient different from that in the first and second
problems. Furthermore, in Section IV-D, we propose a technique
for choosing initial points in the proposed algorithms for solving
the three problems based on a subspace method such as numer-
ical algorithms for subspace state space system identification

(N4SID) [17], multivariable output-error state space method
(MOESP) [19], canonical variate analysis method (CVA) [15],
orthogonal decomposition subspace method (ORT) [14], or nu-
clear norm subspace identification (N2SID) [20].

3) We demonstrate the effectiveness of our proposed methods
for single-input single-output (SISO) and multi-input multi-
output (MIMO) cases.

a) Our proposed methods for solving the aforementioned
three problems can produce A ∈ Sym+(n), unlike the
Gauss–Newton (GN) method, which has been widely
used for solving least-squares problems. In other words,
we illustrate that the usual GN method as explained in
Section V is not adequate for identifying system (1).

b) Our proposed methods significantly improve the results
produced by a modified MOESP method in terms of
various indices.

c) In MIMO cases, the rate of instability in the estimated
matrix Aest produced by our method when solving the
third problem is much higher than that for solving the
first and second problems. In other words, the proposed
methods for solving the first and second problems have a
high degree of stability.

d) A hybrid approach combining the CG methods for solving
the first and second problems may be more efficient than
the individual CG methods.

The remainder of this article is organized as follows. In
Section II, we formulate the aforementioned three problems
mathematically. In particular, in Section II-B, we show that
the quotient set N/O(n) is a manifold. Moreover, we prove
that Riemannian metric (9) on M induces a Riemannian metric
on N/O(n). In Section III, we discuss Riemannian geome-
tries of our problems. In Section IV, we propose optimiza-
tion algorithms for solving the three problems. In addition,
we propose a technique for choosing an initial point in the
algorithms. In Section V, we summarize the GN method. In
Section VI, we demonstrate the effectiveness of our proposed
methods. Finally, the conclusions of this article are presented in
Section VII.

Notation: The sets of real and complex numbers are de-
noted by R and C, respectively. The symbols Sym(n) and
Skew(n) denote the vector spaces of symmetric matrices and
skew-symmetric matrices in Rn×n, respectively. The symbol
Diag(n) is the vector space of diagonal matrices in Rn×n. The
manifold of symmetric positive definite matrices in Sym(n) is
denoted by Sym+(n). The manifold of matrices with positive
diagonal elements in Diag(n) is denoted by Diag+(n). The
symbol O(n) denotes the orthogonal group in Rn×n. The tan-
gent space atpon a manifoldM is denoted byTpM. The identity
matrix of size n is denoted by In. Given vectors v = (vi), w =
(wi) ∈ Rn, (v, w) denotes the Euclidean inner product, i.e.,
(v, w) =

∑n
i=1 viwi, and ||v||2 denotes the Euclidean norm,

i.e., ||v||2 :=
√

(v,v)=
√

v2
1+v2

2+···+v2
n. Given a matrix A ∈ Rn×n,

||A||F denotes the Frobenius norm, i.e., ||A||F :=
√

tr(A�A),
where the superscript� denotes the transpose and tr(A) denotes
the trace of A, i.e., the sum of the diagonal elements of A.
The symbol λ(A) denotes the set of eigenvalues of A, and
sym(A) and sk(A) denote the symmetric and skew-symmetric
parts of A, respectively, i.e., sym(A) = A+A�

2 and sk(A) =
A−A�

2 . Given a smooth function f between finite dimensional
manifolds M and N , the differential of f at x is denoted by
Df(x).
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II. PROBLEM SETTINGS

This section presents the formulation of the three problems.

A. Problem 1

As described earlier, the aim of this article is to develop
a novel prediction error method for identifying Θ ∈M using
the input/output data. To this end, we consider the following
problem.

Problem 1: Suppose that the input/output data
{(u0, y0), (u1, y1), . . . , (uK , yK)} and state dimension
n are given. Then, find the minimizer of

minimize f1(Θ) := ||e(Θ)||22
subject to Θ ∈M.

Here

e(Θ) :=

⎛
⎜⎜⎜⎝

y1 − ŷ1(Θ)

y2 − ŷ2(Θ)
...

yK − ŷK(Θ)

⎞
⎟⎟⎟⎠ ∈ RpK (11)

and ŷk(Θ) is ŷk obtained by substituting the input data uk into
ûk of (2). The initial state x̂0 ∈ Rn in (2) is arbitrary. Note that
ŷk(Θ) is different from the output data yk, which is obtained
by observing the output of the true system. That is, (2) is a
mathematical model but is not the true system.

In this article, as mentioned in Section I, we endow M
with Riemannian metric (9). Thus, Problem 1 is a Riemannian
optimization problem.

B. Problem 2

It is possible to reduce the dimension of the problem of
minimizing ||e(Θ)||22 under the assumption that the initial state
x̂0 is equal to zero. This is because Θ and

U ◦Θ := (U�AU,U�B,CU)

realize input/output equivalent systems for any U ∈ O(n),
where ◦ denotes a group action of O(n) on M . That is, they
attain the same value of the prediction error, i.e., ||e(Θ)||2 =
||e(U ◦Θ)||2. Moreover, if Θ ∈M , we have U ◦Θ ∈M for
any U ∈ O(n). This leads to the idea of equating Θ with U ◦Θ
to reduce the dimension of the problem of minimizing ||e(Θ)||22.

To this end, we endow M with an equivalence relation ∼,
where Θ1 ∼ Θ2 if and only if there exists some U ∈ O(n)
such that Θ2 = U ◦Θ1. Defining the equivalence class [Θ] by
[Θ] := {Θ1 ∈M |Θ1 ∼ Θ}, we can equate Θ with any Θ1 that
is equivalent to Θ. Thus, instead of Problem 1, we can con-
sider a minimization problem on the quotient set M/O(n) :=
{[Θ]|Θ ∈M}.

However, it is an open problem whether the quotient set
M/O(n) is a manifold, although this set is a Hausdorff space
from [29, Prop. 21.4]. In fact, although there are topological
studies on control systems [30]–[34], there is no existing work
on the quotient set M/O(n). Thus, it is difficult to guarantee
that π−1M ([Θ]) is a submanifold of M for all Θ ∈M , because we
cannot use well-known general results such as [35, Prop. 3.4.4].

Here, the map πM : M →M/O(n) denotes the canonical pro-
jection, i.e., πM (Θ) = [Θ] for any Θ ∈M . If π−1M ([Θ]) is not a
manifold for someΘ ∈M , then TΘπ

−1
M ([Θ]) cannot be defined.

That is, in this case, we cannot consider the vertical space in
TΘM . As a result, it may be impossible to define the horizontal
space that is the orthogonal complement of the vertical space
with respect to metric (9). This makes it difficult to develop an
optimization method for solving the problem.

To resolve this issue, we consider the set N defined by
(10) instead of M . The set N is an open submanifold of
Rn×n ×Rn×m ×Rp×n, because, in addition to M , Scon and
Sob are open sets in Rn×n ×Rn×m ×Rp×n, as shown in [36,
Prop. 3.3.12]. A group action of O(n) on N , as in M , is given
by

U ◦Θ := (U�AU,U�B,CU) (12)

where Θ ∈ N . Then, U ◦Θ ∈ N for any U ∈ O(n). By intro-
ducing the equivalence class [Θ] := {Θ1 ∈ N |Θ1 ∼ Θ}, we
can define the quotient set N/O(n) := {[Θ] |Θ ∈ N}.

UnlikeM/O(n), we can guarantee thatN/O(n) is a manifold
using the quotient manifold theorem [29], which is explained in
Appendix B. To see this, we must confirm that action (12) is free
and proper. Action (12) is proper because the Lie group O(n) is
compact (for a more detailed explanation, see [29, Cor. 21.6]).
Thus, we show that action (12) is free. Suppose that the general
linear group GL(n) acts on N as

T♦Θ := (T−1AT, T−1B,CT ), T ∈ GL(n), Θ ∈ N.

This action is free, as explained in [36, Rem. 6.5.10], i.e.,

{T ∈ GL(n) |T♦Θ = Θ} = {In} (13)

for any Θ ∈ N . Moreover, we have that

{In} ⊂ {U ∈ O(n)|U ◦Θ = Θ} ⊂ {T ∈ GL(n)|T♦Θ = Θ}
(14)

for any Θ ∈ N . From (13) and (14), action (12) is free.
Thus, the following problem is an optimization problem on a

manifold.

Problem 2: Suppose that the input/output data
{(u0, y0), (u1, y1), . . . , (uK , yK)} and state dimension
n are given. Then, find the minimizer of

minimize f2([Θ]) := ||e(Θ)||22
subject to [Θ] ∈ N/O(n).

That is, we also develop a prediction error method on the
quotient manifold N/O(n). Note that this development is dif-
ferent from that in [12], which considered a group action of
the general linear group GL(n) on a manifold instead of that
of O(n). It is not adequate to use the action in [12] for our
problem, because this action does not, in general, preserve the
symmetric positive-definiteness of the matrixA. For this reason,
we consider the group action of O(n) on the manifold N .

To introduce a Riemannian metric into N/O(n), we define
Riemannian metric (9) on N .

Because N/O(n) is a quotient manifold, [35, Prop. 3.4.4]
implies that π−1([Θ]) is an embedded submanifold of N for any
Θ ∈ N , where the mapπ : N → N/O(n) denotes the canonical
projection, i.e., π(Θ) = [Θ] for anyΘ ∈ N . Thus, we can define
the vertical space VΘ := TΘπ

−1([Θ]) in TΘN for any Θ ∈ N .
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Fig. 1. Conceptual diagram of vertical space VΘ, horizontal spaceHΘ,
and horizontal lift ξ̄Θ.

Moreover, from [29, Prop. 3.9], TΘM = TΘN for any Θ ∈ N ,
because N is an open set in M . Hence, we can consider VΘ in
TΘM for any Θ ∈ N ⊂M . Additionally, the horizontal space
HΘ can be defined as the orthogonal complement of the vertical
space VΘ in TΘN with respect to metric (9). Furthermore,
the horizontal lift ξ̄Θ ∈ HΘ of ξ ∈ T[Θ](N/O(n)) is defined
as the unique element of the horizontal space HΘ satisfying
Dπ(Θ)[ξ̄Θ] = ξ. Fig. 1 presents a diagram of these concepts.

In the following, we show that a Riemannian metric on
N/O(n) can be defined by

〈ξ, ζ〉[Θ] := 〈ξ̄Θ, ζ̄Θ〉Θ (15)

where ξ, ζ ∈ T[Θ](N/O(n)), Θ ∈ π−1([Θ]), and ξ̄Θ and ζ̄Θ are
the horizontal lifts of ξ and ζ at Θ ∈ N , respectively. Note that
〈·, ·〉Θ of the right-hand side of (15) is Riemannian metric (9).

To this end, we must prove that

〈ξ̄Θ1
, ζ̄Θ1
〉Θ1

= 〈ξ̄Θ2
, ζ̄Θ2
〉Θ2

(16)

for any Θ1,Θ2 ∈ π−1([Θ]). To prove this, we first note that (9)
yields

〈DφU (Θ)[ξ1],DφU (Θ)[ξ2]〉φU (Θ) = 〈ξ1, ξ2〉Θ (17)

for any ξ1, ξ2 ∈ TΘN and any U ∈ O(n), where φU (Θ) := U ◦
Θ. That is, DφU (Θ) is an isometry in terms of Riemannian
metric (9). Equation (17) implies the following theorem.

Theorem 1: For any U ∈ O(n)

ξ̄φU (Θ) = DφU (Θ)[ξ̄Θ]. (18)

We provide the proof of Theorem 1 in Appendix C.
Using Theorem 1 and (17), we can prove (16) as follows: For

any Θ1,Θ2 ∈ π−1([Θ]), there exists some U ∈ O(n) such that
Θ2 = φU (Θ1). Thus

〈ξ̄Θ2
, ζ̄Θ2
〉Θ2

= 〈ξ̄φU (Θ1), ζ̄φU (Θ1)〉φU (Θ1)

= 〈DφU (Θ1)[ξ̄Θ1
],DφU (Θ1)[ζ̄Θ1

]〉φU (Θ1)

= 〈ξ̄Θ1
, ζ̄Θ1
〉Θ1

where the second and third equalities follow from (18) and (17),
respectively. Note that (16) is based on isometric condition (17)
in terms of Riemannian metric (9). In other words, if (17) is not
satisfied, we cannot conclude that (16) holds.

Based on the above discussion,N/O(n) endowed with (15) is
a Riemannian quotient manifold ofN , and the natural projection
π : N → N/O(n) becomes a Riemannian submersion. That is,
the projection π is a smooth submersion, and for any Θ ∈ N ,
the differential DπΘ is an isometry between the horizontal
space HΘ and Tπ(Θ)(N/O(n)). Moreover, (15) is a unique

Riemannian metric such thatπ : N → N/O(n) is a Riemannian
submersion. This is because, as shown in previously, O(n) is
a Lie group of isometries of the manifold N endowed with
(9) that acts smoothly, freely, and properly on N (for a more
general description, see [37, Prop. 2.28]). This means that if
we introduce Riemannian metric (9) into N , the geometry of
N/O(n) is uniquely determined.

To summarize, Problem 2 is a Riemannian optimization prob-
lem, and most of the geometry of N/O(n) can be studied by
lifting from N/O(n) to N .

C. Problem 3

Moreover, we can consider a simpler problem than Problems
1 and 2. This is because, for any Θ ∈M , there is a unique
Ũ ∈ O(n) such that

Ũ ◦Θ = (Λ, Ũ�B,CŨ)

where Λ ∈ Diag+(n). That is, the above Θ and Ũ ◦Θ realize
input/output equivalent systems, i.e., ||e(Θ)||2 = ||e(Ũ ◦Θ)||2,
under the assumption that the initial state x̂0 is equal to zero.
The simpler problem is formulated as follows.

Problem 3: Suppose that the input/output data
{(u0, y0), (u1, y1), . . . , (uK , yK)} and state dimension
n are given. Then, find the minimizer of

minimize f3(Θ) := ||e(Θ)||22
subject to Θ ∈ M̃.

Here, M̃ := Diag+(n)×Rn×m ×Rp×n. However, we
demonstrate in Section VI that, if the output data y0, y1, . . . , yK
are noisy, the results provided by our algorithm for solving
Problem 3 are more noise-sensitive than those produced by our
algorithms for solving Problems 1 and 2.

Similar to Riemannian metric (9) on M , we define the
Riemannian metric on M̃ as

〈(ξ1, η1, ζ1), (ξ2, η2, ζ2)〉Θ
:= tr(A−1ξ1 A−1ξ2) + tr(η�1 η2) + tr(ζ�1 ζ2)

= tr((A−1)2ξ1ξ2) + tr(η�1 η2) + tr(ζ�1 ζ2) (19)

for (ξ1, η1, ζ1), (ξ2, η2, ζ2) ∈ TΘM̃ . Here, the second equality
follows from the fact that A−1, ξ1, and ξ2 are diagonal matrices.
Thus, Problem 3 is a Riemannian optimization problem.

D. Another Riemannian Metric on M , N/O(n), and M̃

Instead of Riemannian metric (9), we can introduce the
Riemannian metric

〈(ξ1, η1, ζ1), (ξ2, η2, ζ2)〉Θ
:= tr(ξ1ξ2) + tr(η�1 η2) + tr(ζ�1 ζ2) (20)

into the manifolds M and M̃ . Moreover, even if we define Rie-
mannian metric (20) into N , a Riemannian metric on N/O(n)
can be defined by (15). This is because (16) holds under met-
ric (20). That is, in addition to Riemannian metric (9), Rie-
mannian metric (20) also implies that the natural projection
π : N → N/O(n) is a Riemannian submersion. However, this
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Fig. 2. Optimization process on a Riemannian manifoldM.

simple metric is not adequate for solving Problems 1, 2, and 3,
as explained in Section IV-A.

Remark 1: In this article, we assume that the state dimension
n is given. In practice, the dimension n must be determined
before solving Problems 1, 2, and 3. For example, we can
determine n by using Akaike’s information criterion [38] or
calculating the singular value decomposition of a matrix related
to the input and output matrices [39].

Remark 2: As mentioned in Section I, we can identify
(F,G,H) in (1) using (6), (7), and (8) after the identification of
(A,B,C) in (2). In addition to Problems 1, 2, and 3, we consider
the following problem:

minimize || exp(Fh)−A||2F
subject to F ∈ Sym(n).

One may think that, by solving the above problem,F ∈ Sym(n)
for (1) can be obtained even if A ∈ Sym+(n). However, this is
not true. For example, if A = ( 00

0
1 ), then there is no solution

F to the above problem. In fact, the infimum of the objective
function is 0, whereas this value cannot be obtained with any
F ∈ Sym(n).

Remark 3: Note that system (1) does not correspond to a
symmetric continuous-time system discussed in [3] and [40].
Here, system (1) is said to be symmetric in the sense of the
definition in [3] and [40] if there exists some T ∈ GL(n) ∩
Sym(n) such that F�T = TF and H� = TG.

III. GEOMETRIES OF PROBLEMS 1, 2, AND 3

A. Riemannian Optimization

In preparation for subsequent sections, we introduce the con-
cepts of the exponential mapping and the Riemannian gradient
for Riemannian optimization [35], [41], [42], and provide a
brief description of an optimization algorithm. In this section,
we consider a general Riemannian optimization problem of
minimizing an objective function f defined on a Riemannian
manifoldM. That is,M is equipped with a Riemannian metric
〈·, ·〉 that endows the tangent space TxM at each point x ∈M
with an inner product.

Fig. 2 illustrates an optimization process onM. As shown in
this figure, the next point is determined by using geodesics and
search direction vectors. The following explains the details.

1) Exponential Mapping: For the purpose of optimization
on a Riemannian manifoldM, the update formula x+ ξ does
not make sense for x ∈M and ξ ∈ TxM. This is in contrast to
the case of optimization on a Euclidean space E . That is, onE , we
can compute a point x+ ∈ E from the current point x ∈ E and
search direction d ∈ E as x+ = x+ d. Thus, we seek the next
point x+ on a curve called a geodesic onM emanating from x
in the direction of ξ. For any x, y ∈M, on a geodesic between
two points x and y that are sufficiently close, the path along
the geodesic is the shortest among all curves connecting x and
y. It is known that, for any ξ ∈ TxM, there exists an interval
I ⊂ R around 0 and a unique geodesic Γ(x,ξ) : I →M such
that Γ(x,ξ)(0) = x and Γ̇(x,ξ)(0) = ξ. The exponential mapping
Exp at x ∈M can be defined through the geodesic as

Expx(ξ) := Γ(x,ξ)(1)

because the geodesic Γ(x,ξ) has the homogeneity property
Γ(x,aξ)(t) = Γ(x,ξ)(at) for any a ∈ R satisfying at ∈ I .

2) Riemannian Gradient: In addition to the exponential
mapping, we need a Riemannian gradient to solve our problems.
The Riemannian gradient grad f(x) of f at x ∈M is defined
as a tangent vector at x that satisfies

Df(x)[ξ] = 〈grad f(x), ξ〉x
for any ξ ∈ TxM, where Df(x)[ξ] is defined as

Df(x)[ξ] := ξf.

Note that a tangent vector can be identified with a derivative.
3) Algorithm: The update formula of a gradient algorithm

for minimizing the objective function f onM is given by

xk+1 = Expxk
(ξk)

with an initial point x0 ∈M, where ξk ∈ Txk
M is a search

direction defined by using the Riemannian gradients.

B. Geometry of Problem 1

In first-order optimization algorithms such as the steepest
descent (SD) and CG methods on the manifold M equipped
with Riemannian metric (9), we need the Riemannian gradient
of the objective function f1.

Let f̄1 denote the extension of the objective function f1 to
the ambient Euclidean spaceRn×n ×Rn×m ×Rp×n. Then, the
directional derivative of f̄1 at Θ ∈M along ξ = (ξA, ξB , ξC) ∈
TΘM is given by

Df̄1(Θ)[ξ] = 2(De(Θ)[ξ], e(θ)) (21)

where

De(Θ)[ξ] =

⎛
⎜⎜⎜⎜⎝
−Dŷ1(Θ)[ξ]

−Dŷ2(Θ)[ξ]

...

−DŷK(Θ)[ξ]

⎞
⎟⎟⎟⎟⎠ . (22)

Equation (2) implies that

Dŷk(Θ)[ξ] = C
k−1∑
i=0

Ak−i−1(ξAx̂i + ξBui) + ξC x̂k. (23)
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It follows from (21), (22), and (23) that

Df̄1(Θ)[ξ] = tr(ξA sym(GA)) + tr(ξ�BGB) + tr(ξ�CGC)
(24)

where

GA := −2
K∑

k=1

k−1∑
i=0

Ak−i−1C�(yk − ŷk(Θ))x̂�i (25)

GB := −2
K∑

k=1

k−1∑
i=0

Ak−i−1C�(yk − ŷk(Θ))u�i (26)

GC := −2
K∑

k=1

(yk − ŷk(Θ))x̂�k . (27)

Here, we used the property ξA = ξ�A. We can observe that the
Euclidean gradient of f̄1 at Θ is given by

∇f̄1(Θ) = (GA, GB , GC). (28)

In [12], we can find a similar derivation for a more complicated
system. Because we introduced Riemannian metric (9), the
Euclidean gradient in (28) yields the Riemannian gradient

grad f1(Θ) = (A sym(GA)A,GB , GC). (29)

For a detailed explanation, see Appendix A.

C. Geometry of Problem 2

Because the natural projection π : N → N/O(n) is a Rie-
mannian submersion, most of the geometry of N/O(n) can
be studied by lifting from N/O(n) to N , as described in
Section II-B.

1) Orthogonal Projection Onto the Horizontal SpaceHΘ:
In Section IV-B, we need the concept of vector transport (which
is a generalized concept of parallel transport [35]) on the mani-
fold N/O(n) equipped with Riemannian metric (15) to develop
a Riemannian CG method. Here, note that we have introduced
Riemannian metric (9) into N . To this end, for any Θ ∈ N , we
use the orthogonal projection PΘ onto the horizontal spaceHΘ.

To derive PΘ, we need to explicitly describe the vertical
space VΘ and the horizontal space HΘ. First, we specify VΘ.
Consider any curve Θ(t) on π−1([Θ]) ⊂ N with Θ(0) = Θ that
is expressed as

Θ(t) = (U�(t)AU(t), U�(t)B,CU(t))

where U(t) denotes a curve on O(n) with U(0) = In. Differ-
entiating both sides with respect to t, we obtain

Θ̇(0) = (U̇�(0)A+AU̇(0), U̇�(0)B,CU̇(0))

where U̇(0) ∈ TInO(n) ∼= Skew(n). Thus, we have that

VΘ = {(−U ′A+AU ′,−U ′B,CU ′) |U ′ ∈ Skew(n)}.
Next, we characterize the horizontal space HΘ. Let
(A,′B,′ C ′) ∈ HΘ, i.e.,

〈(−U ′A+AU ′,−U ′B,CU ′), (A′, B′, C ′)〉Θ = 0 (30)

for all U ′ ∈ Skew(n). This means that

tr(U ′(2A′A−1 +BB′� + C�C ′)) = 0.

BecauseU ′ ∈ Skew(n) is arbitrary, we conclude that 2A′A−1 +
BB′� + C�C ′ ∈ Sym(n). That is, sk(2A′A−1 +BB′� +
C�C ′) = 0. Thus

HΘ ⊂ {(A′, B′, C ′) | sk(2A′A−1 +BB′� + C�C ′) = 0}.
Conversely, if (A′, B′, C ′) ∈ {(A′, B′, C ′) | sk(2A′A−1 +
BB′� + C�C ′) = 0}, we have that (A′, B′, C ′) ∈ HΘ,
because (30) holds. Hence, we obtain

HΘ = {(A′, B′, C ′) | sk(2A′A−1 +BB′� + C�C ′) = 0}.
(31)

We are in a position to describe the orthogonal projection PΘ

onto the horizontal spaceHΘ.
Theorem 2: The orthogonal projection PΘ ontoHΘ is given

by

PΘ(η) = η + (XA−AX,XB,−CX) (32)

where η = (a, b, c) ∈ TΘN , and X is the skew-symmetric so-
lution to the linear matrix equation

L1(X) + 2L0(X) + β = 0 (33)

where the linear matrix mappings L0,L1 : Rn×n → Rn×n are
defined by L0(X) := AXA−1 +A−1XA− 2X , L1(X) :=
(BB� + C�C)X +X(BB� + C�C), and β := 2 sk(2A−1a
+ bB� + c�C).

We provide the proof in Appendix D.
We can guarantee that there exists a unique solution X ∈

Skew(n) to (33) under the assumption

dim(Ker (λIn −A) ∩KerB� ∩KerC) ≤ 1 for any λ ∈ R.
(34)

Assumption (34) holds if matrix A has only simple eigenvalues,
because then dim(Ker (λIn −A)) ≤ 1 for all λ ∈ R. Further-
more, if (A,C) is observable, i.e.,

rank

(
λIn −A

C

)
= n⇔ Ker (λIn −A) ∩KerC = {0}

for all λ ∈ C, then (34) holds. Analogously, the controllability
of (A,B), i.e.,

rank
(
λIn −A B

)
= rank

(
λIn −A

B�

)
= n

also implies (34).
Theorem 3: Assume that (34) holds, and letL := L1 + 2L0.

Then, KerL = KerL1 ∩KerL0 ⊂ KerL0 ⊂ Sym(n). In par-
ticular, L : Skew(n)→ Skew(n) is an automorphism. That is,
for any Y ∈ Skew(n), there exists a unique X ∈ Skew(n) with
L(X) = Y .

The proof is given in Appendix E.
2) Riemannian Gradient: In numerical computations, we

can use the horizontal lift grad f2Θ as the Riemannian gradient
at [Θ] ∈ N/O(n). The horizontal lift belongs to the horizontal
spaceHΘ, and we have that

grad f2Θ = grad f1(Θ) (35)

as shown in [35, Sec. 3.6.2]. Thus, as the Riemannian gradient
at [Θ] ∈ N/O(n), we can use grad f1(Θ), i.e., (29).
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D. Geometry of Problem 3

We have introduced Riemannian metric (19) into the manifold
M̃ . Let f̄3 denote the extension of the objective function f3 to
the ambient Euclidean spaceRn×n ×Rn×m ×Rp×n. Then, the
directional derivative of f̄3 at Θ ∈ M̃ along ξ = (ξA, ξB , ξC) ∈
TΘM̃ is given by

Df̄3(Θ)[ξ] = tr(ξ�A GA) + tr(ξ�BGB) + tr(ξ�CGC)

= tr(ξA diag(GA)) + tr(ξ�BGB) + tr(ξ�CGC)
(36)

where GA, GB , and GC are defined by (25), (26), and (27), re-
spectively. Here, we used the property that ξA ∈ TADiag+(n) ∼=
Diag(n). Moreover, it follows from (19) and Df3(Θ)[ξ] =
〈grad f3(Θ), ξ〉Θ that

Df3(Θ)[ξ] = tr((A−1)2(grad f3(Θ))AξA)

+tr(ξ�B(grad f3(Θ))B)+tr(ξ�C(grad f3(Θ))C).
(37)

Because Df3(Θ)[ξ] = Df̄3(Θ)[ξ], (36) and (37) yield

grad f3(Θ) = (A2diag(GA), GB , GC).

IV. OPTIMIZATION ALGORITHMS FOR SOLVING

PROBLEMS 1, 2, AND 3

This section describes optimization algorithms for solving
Problems 1, 2, and 3, and introduces a technique for choosing
initial points in the algorithms.

A. Optimization Algorithm for Solving Problem 1

Algorithm 1 describes a Riemannian CG method for solving
Problem 1. Because the Riemannian metric on the manifold M
is defined by (9), the exponential map Exp on M is given by

ExpΘ(A
′, B′, C ′)

= (A1/2 exp(A−1/2A′A−1/2)A1/2, B +B,′ C + C ′)

= (A exp(A−1A′), B +B,′ C + C ′) (38)

and the parallel transport P is given by

PΘ1,Θ2
(A′, B′, C ′)

= ((A2A
−1
1 )1/2A′((A2A

−1
1 )1/2)�, B′, C ′) (39)

where Θi = (Ai, Bi, Ci) ∈M (i = 1, 2), as shown in [43]. We
choose tk in step 4 as the Armijo step size [35]. The parameter
βk+1 in step 5 is called the Dai–Yuan type parameter [44].

Note the if we introduce Riemannian metric (20) instead of
(9), exponential mapping (38) is replaced with

ExpΘ(A
′, B′, C ′) = (A+A′, B +B′, C + C ′).

Thus, ExpΘ(A
′, B′, C ′) ∈M for some (A′, B′, C ′) ∈ TΘM

because A+A′ is not always positive-definite. As a result,
we have to carefully choose (A′, B′, C ′) ∈ TΘM unlike for
Riemannian metric (9).

The computational complexity of calculating the gradient
grad f1(Θ) is higher than that of the other steps in Algorithm 1.
To estimate the complexity, we examine the complexities of

GA, GB , and GC . To this end, we note that GA in (25) can be
rewritten as

GA = −2
K−1∑
i=0

K∑
k=i+1

Ak−i−1C�(yk − ŷk(Θ))x̂�i .

Thus, we can recursively calculate GA as

GA(i+ 1) = GA(i)− 2γ(i)x̂�K−(i+1) (40)

where

GA(0) = 0

γ(i) = C�(yK−i − ŷK−i(Θ)) +Aγ(i− 1)

γ(0) = C�(yK − ŷK(Θ)).

In fact, GA(K) = GA. If p < n, i.e., the number of outputs
is less than that of states, the computational complexity of
γ(i)x̂�K−(i+1) for each i ∈ {0, 1, . . . ,K − 1} in (40) is O(n2),

because that of γ(i) for each i ∈ {0, 1, . . . ,K − 1} is O(n2).
Thus, the complexity of GA is O(Kn2). Similarly, if m < n
and p < n, then the complexity of GB is O(Kn2). Moreover,
if p < n, (27) implies that the complexity of GC is O(Kn2).
Hence, if p,m < n < K, (29) implies that the complexity of
grad f1(Θ) is O(Kn2).

B. Optimization Algorithm for Solving Problem 2

In numerically solving Problem 2, we regard the manifold M
asN , because [36, Prop. 3.3.12] implies that the manifoldN is a
dense set in the manifoldM . The proposed CG-based method for
solving Problem 2 is obtained by replacing the parallel transport
PΘk,Θk+1

in Algorithm 1 with the orthogonal projection PΘk+1

given by (32) onto the horizontal space HΘk+1
. Note that the

orthogonal projection PΘk+1
defines a vector transport on the

quotient manifold N/O(n) [35].

C. Optimization Algorithm for Solving Problem 3

The Riemannian CG method for solving Problem 3 is the
same as Algorithm 1, except for the following:

1) replace M with M̃ ;
2) replace grad f1(Θk) with grad f3(Θk).

However, the computational complexity is lower than in
the case of Problem 1. This is because the matrices Ak (k =
0, 1, . . .) in Algorithm 1 are diagonal when solving Problem 3,
unlike for Problem 1.

D. Initial Points in Algorithm 1

To select an initial point Θ0 in Algorithm 1 for solving
Problems 1 and 2, we propose Algorithm 2 in which rand
denotes a single uniformly distributed random number in the
interval (0, 1). In step 1, we obtain a triplet (A,B,C) using an
existing subspace method such as N4SID [17], MOESP [19],
CVA [15], ORT [14], and N2SID [20]. However, at this stage,
A is not necessarily contained in Sym(n) or in Sym+(n). Thus,
in step 2, we replace A with the symmetric part of A. That
is, at this stage, A ∈ Sym(n), but A ∈ Sym+(n) in general.
In fact, if there is i ∈ {1, 2, . . . , n} such that λi ≤ 0 in step 3,
A ∈ Sym+(n). In steps 4, 5, 6, 7, and 8, any negative eigenvalue
of A is replaced with a random value in (0, 0.01). That is, we
consider negative eigenvalues ofA to be perturbed small positive
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Algorithm 1: Conjugate Gradient Method for Solving
Problem 1.

1: Set input/output data
{(u0, y0), (u1, y1), . . . , (uK , yK)}, the state
dimension n, and an initial point
Θ0 := (A0, B0, C0) ∈M .

2: Set η0 = −grad f1(Θ0) using (29).
3: for k = 0, 1, 2, . . . do
4: Compute a step size tk > 0, and set

Θk+1 = ExpΘk
(tkηk). (41)

5: Set

βk+1 =
||gk+1||2k+1

〈gk+1,PΘk,Θk+1
(ηk)〉k+1 − 〈gk, ηk〉k ,

where gk := grad f1(Θk), and || · ||k and 〈·, ·〉k
denote the norm and the inner product in the tangent
space TΘk

M , respectively.
6: Set

ηk+1 = −gk+1 + βk+1PΘk,Θk+1
(ηk). (42)

7: end for

eigenvalues. Thus, steps 9 and 10 produce A ∈ Sym+(n) and
Θ0 ∈M , respectively.

For Problem 3, we replace step 9 in Algorithm 2 with

A← diag(λ1, λ2, . . . , λn), B ← V �B, C ← CV

where V := (v1 v2 · · · vn). Then, Θ0 in step 10 is con-
tained in M̃ .

Remark 4: A Riemannian SD method for solving Problems
1 and 2 can be derived by replacing steps 5 and 6 in Algorithm
1 with ηk+1 = −grad f1(Θk+1). That is, in contrast to the case
of the CG methods, the SD method for Problem 2 is the same as
that for Problem 1, because (35) holds. However, the SD method
is not more efficient than CG methods [45]. We demonstrate this
fact in Section VI-A.

V. GN METHOD FOR SOLVING THE PROPOSED PROBLEMS

The GN method has been widely used for solving least-
squares problems. Before comparing our proposed meth-
ods with the GN method, this section summarizes the GN
method.

In the GN method [10], [13], we often use the vector parameter

θ :=

⎛
⎝vecsym(A)

vec(B)

vec(C)

⎞
⎠ ∈ Rnθ (43)

with nθ := n(n+1
2 +m+ p), where vec denotes the usual vec-

operator, i.e.,vec(A) ∈ Rn2
is obtained by stacking the columns

of A ∈ Rn×n, and for a symmetric matrix A ∈ Sym(n),
vecsym(A) denotes the 1

2n(n+ 1)-vector that is obtained from
vec(A) by eliminating the redundant elements. For example, if
A = (aij) ∈ Sym(3)

vec(A)

=
(
a11 a21 a31 a12 a22 a32 a13 a23 a33

)�

Algorithm 2: Constructing an Initial Point Θ0 ∈M .

1: Set (A,B,C) using a subspace method.
2: A← sym(A).
3: Let A =

∑n
i=1 λiviv

�
i be the eigenvalue

decomposition. That is, λi is an eigenvalue of A, and
vi is the associated eigenvector.

4: for i = 1, 2, . . . , n do
5: if λi ≤ 0 then
6: λi = 0.01× rand.
7: end if
8: end for
9: A←∑n

i=1 λiviv
�
i .

10: Θ0 := (A,B,C).

vecsym(A)

=
(
a11 a21 a31 a22 a32 a33

)�
.

The parameter θ defined by (43) is a global coordinate system
for the manifold M , and, thus, we regard Θ on M as θ. Hence,
we write the prediction error vector e(Θ) defined by (11) as e(θ)
and the objective function f1(Θ) as V (θ) := ||e(θ)||22. The aim
of the GN method is to minimize V (θ).

The update formula of the GN method is given by

θk+1 = θk + tkΔθk (44)

where tk > 0 is a step size, and Δθk satisfies

J(θk)
�J(θk)Δθk = −J(θk)�e(θk) (45)

with

J(θ) :=
∂e

∂θ
(θ) ∈ RpK×nθ . (46)

Here

∂e

∂θi
(θ)=−

((
∂ŷ1
∂θi

(θ)

)� (
∂ŷ2
∂θi

(θ)

)�
· · ·

(
∂ŷK
∂θi

(θ)

)�)�

and ⎧⎪⎪⎨
⎪⎪⎩

∂ŷj
∂θi

(θ) =
∂C

∂θi
x̂j + C

∂x̂j

∂θi
∂x̂j

∂θi
=

∂A

∂θi
x̂j−1 +A

∂x̂j−1
∂θi

+
∂B

∂θi
uj−1

with ∂x̂0

∂θi
= 0. Note that if θk ∈ N ⊂M and the step size tk is

sufficiently small, then Δθk can be regarded as an element of
TθkN . In this case

e(θk + tkΔθk) ≈ e(θk) + tkJ(θk)Δθk (47)

and

J(θk) : TθkN → RpK . (48)

Note that (43) is an overparameterization. This means that
different θ may have the equivalent input–output properties. In
fact, from Section III-C, each element (A,B,C) of π−1([Θ]) ⊂
N , which can be regarded as different θ, has the same input–
output properties, where the dimension of π−1([Θ]) is

dimπ−1([Θ]) = dimN − dimN/O(n) =
n(n− 1)

2
. (49)
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Equation (49) follows from Proposition 1 in Appendix B and
[35, Prop. 3.4.4]. Hence, if Δθk ∈ Tθkπ

−1([Θk]) ⊂ TθkN un-
der the identification of Θk and θk, it follows from (47) that
J(θk)Δθk = 0, that is, Δθk ∈ Ker J(θk). Therefore

Tθkπ
−1([Θk]) ⊂ Ker J(θk)

and (49) yields

dimKer J(θk) ≥ n(n− 1)

2
. (50)

It follows from (50) that the matrix J(θk) is rank-deficient, and,
thus, there are infinitely many solutions to (45). In the data-
driven local coordinates introduced in [10], Δθk is chosen as

Δθk = −V1S
−1
1 U�1 e(θk) (51)

as shown in [13], where U1S1V
�
1 is the truncated singular value

decomposition of J(θk), andS1 ∈ Rnθ×nθ is a diagonal matrix.
Note that update formula (44) preserves the symmetry of A,

but does not, in general, preserve the positive-definiteness. More
precisely, if θk is contained in the manifold M or N , θk+1 given
by (44) is also contained in M or N by choosing sufficiently
small tk > 0. This is because M and N are open sets. However,
if tk > 0 is too small, the value of the objective function V does
not change very much. Thus, we need to choose sufficiently large
tk > 0, but then θk+1 may not be contained in M nor in N , as
demonstrated in Section VI. That is, it is difficult to determine
an appropriate step size tk for some examples.

Instead of using the full parameterization θ ∈ Rnθ defined
by (43), we can use canonical forms of linear systems, which
reduce the number of free parameters. However, canonical forms
may lead to numerically ill-conditioned problems due to noise,
as pointed out in [10, Sec. 1 and 4]. Moreover, the results
of Section VI-B1 justify this point, because Problem 3 can be
regarded as a case of using a canonical form. Thus, in practice,
the use of canonical forms for system identification may not be
adequate.

To resolve the numerically ill-conditioned problem, the use
of overlapping parameterization has been proposed in [46], and
Hanzon and Ober [33] introduced block-balanced input normal
forms, which are overlapping parameterizations. However, this
approach requires monitoring the condition of the parametriza-
tion and switching to a new structure if the current structure is
bad. That is, this needs a number of extra calculations, which are
not necessary in the case of Algorithm 1 based on Riemannian
optimization.

Remark 5: Although the Jacobian J(θ) is rank-deficient in
our case, if J(θ) is of full-rank, update formula (44) for the GN
method can be regarded as a Riemannian SD method for the
specific choice of the Riemannian metric

gGN
θ (θ̇1, θ̇2) := θ̇�1 R(θ)θ̇2 (52)

with R(θ) := 2J(θ)�J(θ) into Rnθ , as stated in [8] and [11].
The Riemannian gradient of the objective functionV at θ ∈ Rnθ

is given byR(θ)−1 ∂V
∂θ (θ), where the gradient is called the natural

gradient in the Riemannian manifold Rnθ endowed with the
Riemannian metric (52) [47]. Using the natural gradient, update
formula (44) can be expressed as

θk+1 = θk −R(θk)
−1 ∂V

∂θ
(θk). (53)

TABLE I
PARAMETERS OF SYSTEM (54)

VI. NUMERICAL SIMULATIONS

In this section, we demonstrate the effectiveness of the pro-
posed method. To this end, we evaluate the identified systems
using various indices, in addition to the value of the objective
function in Problems 1, 2, and 3, to prevent overfitting to
noisy data. Note that, in the simulations, we used MOESP [19]
as the subspace method for step 1 in Algorithm 2. This was
implemented in the system identification toolbox of MATLAB.
Hence, we can easily implement Algorithm 2.

We consider identification problems of the RC electrical
network system [1], [2] represented as the undirected graph
G = {{1, 2, . . . , n}, E}, which is composed of n nodes and the
set E of k undirected edges. A mathematical model of the system
is described by{

CcapV̇ (t) = −(Lres +Gcon)V (t) + G̃u(t)

y(t) = H̃V (t).
(54)

Table I explains the parameters of system (54). Here, Lres :=
BR−1resB� is a symmetric positive semidefinite matrix, B ∈
Rn×k is the incidence matrix of G, and Rres ∈ Diag+(n) is
the resistance matrix. The incidence matrix B = (Bij) ∈ Rn×k
is defined by

Bij :=
⎧⎨
⎩
1, if i is the source node of edge j

−1, if i is the sink node of edge j

0, otherwise.

System (54) can be transformed into (1) by defining x(t) :=

C
1/2
capV (t); {

ẋ(t) = Fx(t) +Gu(t)

y(t) = Hx(t)
(55)

with

F := −C−1/2cap (Lres +Gcon)C
−1/2
cap ∈ Rn×n

G := C−1/2cap G̃ ∈ Rn×m

H := H̃C1/2
cap ∈ Rp×n.

Note that the matrix−F is contained in Sym+(n), and, thus, F
is stable. That is, all the eigenvalues of F are negative.

Although we consider mathematical model (55) to be noise-
free, measurement noise is inevitable in practice, as explained
in [9, Sec. 4.3]. Thus, we assume that the true system is given
by {

xk+1 = Axk +Buk

yk = Cxk + vk
(56)



4502 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 11, NOVEMBER 2020

where A, B, and C are defined by (3), (4), and (5), respectively,
and vk ∈ Rp is measurement noise. That is, the input/output data
(uk, yk) is generated by (56). Because F is stable, the matrix A
is also stable. That is, all eigenvalues of A are in the interval (0,
1). The signal-to-noise ratio of system (56) is defined as

SNR = 10 log10

(∑K
k=0 ||yk − vk||22∑K

k=0 ||vk||22

)
. (57)

In the following, we present the results of numerical simula-
tions for SISO and MIMO cases. For SISO cases, we illustrate
a frequency response using the Bode plots. For MIMO cases,
the values of various indices are given, because Bode plots of
MIMO cases do not clarify the distance between the true and
estimated systems.

To this end, we setn = 20, and generated the undirected graph
G using the Watts and Strogatz model [48] with 20 nodes of mean
degree 10 and rewiring probability 0.4. Additionally,Ccap,Rres,
and Gcon were given by⎧⎨

⎩
Ccap = 10× diag(rand, rand, . . . , rand)

Rres = 0.1× diag(1, 1, . . . , 1)

Gcon = diag(rand, rand, . . . , rand)

(58)

where each rand denotes a uniformly distributed random num-
ber in the interval (0, 1). Moreover, we generated each compo-
nent of uk from the Gaussian random distribution with mean 0
and variance 100, and the components of vk from the Gaussian
random distribution with mean 0 and variance σ2. The sampling
interval h was 0.1.

We denote the results given by Algorithm 1 for solving
Problems 1, 2, and 3 as CG1, CG2, and CG3, respectively.
Moreover, we write SD to denote the Riemannian SD method,
as briefly explained in Remark 4.

A. SISO Case

First, we considered SISO cases withm = p = 1. The param-
eters G̃ and H̃ were given by

G̃ =

⎛
⎜⎜⎜⎝
1

0
...
0

⎞
⎟⎟⎟⎠ , H̃ =

(
1 0 · · · 0

)
.

1) Identification by the GN Method: Fig. 3 illustrates the
eigenvalues of the true matrix A corresponding to F of system
(55), the estimated matrix A produced by Algorithm 2, and the
estimated matrix A provided by the prediction error method
using the GN method with the update formula (44) and (51), as
explained in Section V, after ten iterations. Here, we used the
result (A,B,C) obtained by Algorithm 2 as the initial point of
the GN method, and the step sizes tk in (44) were tk = 10−9
for all k ∈ {1, 2, . . . , 10}. According to Fig. 3, the prediction
error method using the GN method did not provide Θ ∈M . In
fact, some eigenvalues of A produced by the GN method took
negative values, whereas all eigenvalues of the true matrix A are
positive. Moreover, we confirmed the following results.

1) When tk = 10−9, the positive-definite property of matrix
A produced by the GN method was lost after only a few
iterations.

Fig. 3. Eigenvalues of A in the original system, estimated system
produced by Algorithm 2, and estimated system provided by the GN
method after ten iterations.

Fig. 4. Relative objective values obtained by CG1, CG2, CG3, and
SD.

2) If we set tk > 10−9, the symmetric matrices A produced
by the GN method, in many cases, were unstable after ten
iterations.

3) Even if we set tk < 10−9, some eigenvalues of the sym-
metric matrices A produced by the GN method were
negative after ten iterations.

Thus, the GN method described in Section V is not adequate
for solving our problem. Hence, we hereafter compare CG1,
CG2, CG3, SD, and Algorithm 2.

2) Comparison of CG1, CG2, CG3, and SD: Figs. 4 and 5
illustrate a comparison of CG1, CG2, CG3, and SD with
K = 600, σ2 = 0.1, and SNR = 12.803. Here, Θ0 in Fig. 4
was obtained using Algorithm 2. According to these figures,
the results for CG1 and CG2 completely overlap, and Fig. 4
demonstrates that the convergence speeds of CG1, CG2, and
CG3 are superior to that of SD. Moreover, Fig. 5 shows that
CG1, CG2, CG3, and SD improve the frequency response of
Algorithm 2. In particular, the Bode plots of the estimated
systems obtained by CG1 and CG2 are almost the same as that
of the true system, unlike CG3, SD, and Algorithm 2. Note that
no destabilization occurred for CG1, CG2, or CG3.
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Fig. 5. Bode plots of true and estimated systems obtained by CG1,
CG2, CG3, SD, and Algorithm 2. Because the Bode plot of the estimated
system obtained by CG1 completely overlapped with that obtained by
CG2, the illustration of CG1 was omitted.

TABLE II
NUMBER OF UNSTABLE CASES OVER 20 ITERATIONS WHEN K = 400

B. MIMO Case

Next, we considered the MIMO case with m = p = 2. The
parameters G̃ and H̃ were given by

G̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0

0 1

0 0
...

...
0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, H̃ =

(
1 0 0 · · · 0

0 1 0 · · · 0

)
.

As with the SISO case, the conventional GN method did
not produce Aest ∈ Sym+(n) and the convergence speeds of
CG1, CG2, and CG3 were faster than that of SD. Thus, we
present the results of comparisons among CG1, CG2, CG3, and
Algorithm 2.

1) Stability of the Estimated Matrices A ∈ Sym+(n) Pro-
duced by CG1, CG2, and CG3: Because all of the matrices
Aest [estimates of A in true system (56)] produced by CG1,
CG2, and CG3 are contained in Sym+(n), the eigenvalues of
Aest are positive real numbers, unlike the eigenvalues given by
the conventional GN method. However, even if A is stable, Aest

may be unstable.
Thus, we compared the stability of the estimated matrices

Aest provided byCG1,CG2, andCG3. We performed numerical
simulations 100 times with σ2 = 0.05, σ2 = 0.1, and σ2 = 0.5.
Table II presents the number of unstable cases over 20 iterations
when K = 400. According to Table II, the rate of instability in
Aest produced by CG3 is far higher than when using CG1 or
CG2. Because we used different Ccap, Rres, and Gcon for each
simulation, the SNR defined by (57) was also different. Table III
describes the relation between σ2 and SNR. Here, SNRave and
SNRdev are the average and standard deviation over 10 000

TABLE III
SNRave AND SNRdev WHEN K = 400

simulations, defined by

SNRave :=

∑10000
i=1 SNRi

10 000

SNRdev :=

√∑10000
i=1 (SNRi − SNRave)2

10 000

where SNRi denotes SNR in the ith simulation. According
to Table III, SNRave decreases as σ2 increases, although the
SNRdev values are similar. We also obtained similar results to
those described in Tables II and III for different values of K.
Hence, we conclude that the rate of instability in Aest produced
by CG3 is far higher than those when using CG1 and CG2. This
is in contrast to the SISO case. In addition, the instability rate
for CG1 and CG2 is independent of SNR, unlike that for CG3.

The reason for the high instability rate produced by CG3

is that the noise component of the output directly influences
the diagonal matrix Aest, i.e., eigenvalues of Aest. This is
essentially the same phenomenon observed in system identi-
fication problems, whereby canonical forms lead to numerically
ill-conditioned problems [10]. In contrast, the noise component
does not have a significant effect on the eigenvalues of the
estimated matrices Aest produced by CG1 and CG2, because
the matrices are not diagonal.

2) Evaluation of Proposed Methods: We evaluated the
results with respect to the cost function ||e(Θest)||22, the relative
H2 and H∞ norms, and the maximum eigenvalues λmax(Fest)
of the estimated matrix Fest of F . Here, λmax(F ) was −0.086
in all cases. Note that the maximum eigenvalue λmax(Fest)
is important, because the transient state x̂(t) in system (1) is
dominated by λmax(F ) under û(t) = 0. That is, if λmax(F ) and
λmax(Fest) are closer, we can expect the true and estimated
transient states to be more similar. When we used our proposed
methods CG1, CG2, and CG3, the number of iterations was
set to 20. Increasing the number of iterations would decrease
the value of the objective function ||e(Θest)||22. However, other
indices such as g2, g∞, and λmax(Fest) may become worse due
to overfitting with noisy data.

To define the relative H2 and H∞ norms, we use T and Test

as the transfer functions from the input u to the output y of the
true and estimated systems, respectively. That is

T (s) := C(sIn − F )−1G, s ∈ C

Test(s) := Cest(sIn − Fest)
−1Gest

where Gest and Cest are the estimated matrices of G and C,
respectively. Here, we estimate the matrices Fest and Gest

using (6) and (7), respectively. Using T and Test, we define
the following relative H2 and H∞ norms

g2 :=
||T − Test||H2

||T ||H2

and g∞ :=
||T − Test||H∞
||T ||H∞ .

Tables IV, V, VI, VII, and VIII present values of ||e(Θest)||22,
g2, g∞, and λmax(Fest) for different K, as given by estimating
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TABLE IV
EVALUATION RESULTS WHEN K = 200 AND SNR = 15.043

TABLE V
EVALUATION RESULTS WHEN K = 400 AND SNR = 15.286

TABLE VI
EVALUATION RESULTS WHEN K = 600 AND SNR = 15.669

TABLE VII
EVALUATION RESULTS WHEN K = 800 AND SNR = 16.714

TABLE VIII
EVALUATION RESULTS WHEN K = 1000 AND SNR = 16.380

Θest, Fest, Gest, and Cest using Algorithm 2, CG1, CG2, and
a combined CG approach called Hybrid CG. Hybrid CG is a
combination of CG1 and CG2 obtained by applying CG1 for
the first 15 iterations and CG2 for the next 5 iterations. Note that
in terms of the various indices, we confirmed that Algorithm 2
provides a considerably better initial point Θ0 in Algorithm 1
than randomly choosing Θ0 ∈M .

According to Tables IV, V, VI, VII, and VIII, the results for
||e(Θest)||22, g2, g∞, and λmax(Fest) given by CG1 and CG2 are
better than those given by Algorithm 2 for all K. The results
from CG1 and CG2 are almost the same for all K. However,
with the exception of λmax(Fest), the results from Hybrid CG are
superior to those of CG1 and CG2. Even when the combination
of iterations was changed, the results of Hybrid CG were better
than those ofCG1 andCG2 in many cases. Moreover, we should
note that the evaluation results may be worse as the data length
K increases.

Remark 6: In addition to our proposed methods, the MAT-
LAB command pem can identify F , G, and H in (55), as
explained in [49]. However, for the same initial systems pro-
duced by Algorithm 2, the results of our proposed methods

were considerably better than those of pem in MATLAB in
some cases, whereas in certain other cases, pem yielded better
results. A main reason may be the nonconvexity of the objective
function, that is, because there are many local optimal solutions,
different algorithms produce different solutions. Thus, the mod-
els produced by our proposed methods may be good in some
cases where the model produced by pem in MATLAB is not
satisfactory.

VII. CONCLUSION AND FUTURE WORK

We developed identification methods for linear continuous-
time symmetric systems using Riemannian optimization. For
this, we formulated three least-squares problems of minimiz-
ing the sum of squared errors on Riemannian manifolds, and
described the geometry of each problem. In particular, we
examined the quotient geometry in one problem in depth. We
proposed Riemannian CG methods for the three problems, and
selected initial points using the modified MOESP method. The
results from a series of numerical simulations demonstrated the
effectiveness of our proposed methods with comparisons to the
traditional GN method.

The following problems should be addressed in future studies.
1) As mentioned in Remark 3, system (1) does not corre-

spond to a symmetric continuous-time system discussed
in [3] and [40]. To identify such systems, we need to
develop a novel method that is fundamentally different
from the methods proposed in this article.

2) In Section VI-B2, we confirmed that the results produced
by Hybrid CG, a combination of CG1 and CG2, were
better than those ofCG1 andCG2 in many cases. It would
be interesting to study how the combination of iterations
of CG1 and CG2 should be determined.

3) It is shown in [31, Lem. 2] that the manifold of transfer
functions of SISO systems, i.e.,m = p = 1, is partitioned
into multiple connected components. Thus, it is expected
that N/O(n) with m = p = 1 will have multiple con-
nected components, because each element in N/O(n)
corresponds to a transfer function. If this is the case,
different initial points on the different connected compo-
nents will converge to different points, and, thus, initial
points on N/O(n) may considerably affect the system
identification results. In fact, we have confirmed that
Algorithm 2 provides a better initial point than a random
choice. This provides a practical insight, and so it would
be interesting to study whether or not the expectation is
true.

4) In this article, we proposed methods for identifying a
target system as (1) with no noise. As illustrated in
Section VI, our proposed methods are effective for iden-
tifying (1), even if the output data were noisy. However,
if we were to consider the effect of noise on our methods,
we may be able to derive better algorithms. Thus, it
is desirable to extend our proposed methods under the
consideration of noise.

5) As mentioned in Section I, our proposed method can di-
rectly identify discrete-time system (2) with a symmetric-
positive definite matrix A. Thus, it is desirable to
find a practical example that can be expressed by the
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discrete-time system without going through continuous-
time system (1) with a symmetric matrix F .

APPENDIX

A. Geometry of the Manifold Sym+(n)

We review the geometry of Sym+(n) to develop optimization
algorithms for solving our problems (for a detailed explanation,
see [28] and [50]).

For ξ1, ξ2 ∈ TSSym+(n), we define Riemannian metric into
Sym+(n) as

〈ξ1, ξ2〉S := tr(S−1ξ1S−1ξ2). (59)

Let f : Sym+(n)→ R be a smooth function and f̄ be the
extension of f to Euclidean space Rn×n. Riemannian gradient
grad f(S) with respect to Riemannian metric (59) is given by

grad f(S) = Ssym(∇f̄(S))S (60)

where ∇f̄(S) denotes the Euclidean gradient of f̄ at S ∈
Sym+(n). The exponential map on Sym+(n) is given by

ExpS(ξ) = S
1
2 exp(S−

1
2 ξS−

1
2 )S

1
2

= S exp(S−1ξ) (61)

where exp is the matrix exponential function.
We note that Riemannian metric (59) is essentially the same

with Fisher information metric

gFIMS := E(Dlx(S)⊗Dlx(S))

where

lx(S) := log p(x|S−1).
Here, E is the expectation operator with respect to p(x|S−1),⊗
is the tensor product, and p(x|S−1) denotes the Gaussian distri-
bution with zero mean vector and covariance S−1 ∈ Sym+(n),
i.e.,

p(x|S−1) =
√

detS

(2π)n
exp

(
−1

2
x�Sx

)
.

Thus, lx(S) is the log-likelihood function of p(x|S−1), and

lx(S) = −n

2
log(2π) +

1

2
log detS − 1

2
x�Sx. (62)

To see the relation between (59) and gFIMS , we use

gFIMS = −E(D2 lx(S)) (63)

where D2 lx(S) : Sym(n)× Sym(n)→ R is the second
derivative of lx at S. Equation (63) can be found in [50,
Th. 1]. The directional derivative of lx : Sym(n)→ R at S ∈
Sym+(n) along ξ ∈ TSSym+(n) ∼= Sym(n) is given by

Dlx(S)[ξ] =
1

2
tr(S−1ξ)− 1

2
tr(xx�ξ) (64)

where the first term of the right-hand side is obtained by using
Jacobi’s formula DdetS[ξ] = tr(det(S)S−1ξ). We define the
inner product of Sym(n) as tr(ξ1ξ2) for any ξ1, ξ2 ∈ Sym(n).

Then, from (64), the gradient of lx at S ∈ Sym+(n) is provided
as

∇lx(S) = 1

2
(S−1 − xx�).

Moreover, according to [35], the Hessian of lx at S is given by

Hess lx(S)[ξ] = D∇lx(S)[ξ] = −1

2
S−1ξS−1 (65)

and

D2lx(S)[ξ1, ξ2] = tr(Hess lx(S)[ξ1]ξ2). (66)

Substituting (65) into (66), we obtain that

D2lx(S)[ξ1, ξ2] = −1

2
tr(S−1ξ1S−1ξ2). (67)

That is, D2 lx(S)[ξ1, ξ2] is independent of x. Hence, from (59),
(63), and (67), we obtain that

gFIMS (ξ1, ξ2) = −D2lx(S)[ξ1, ξ2] =
1

2
〈ξ1, ξ2〉S .

Thus, Riemannian metric (59) is essentially the same with Fisher
information metric gFIMS .

B. Quotient Manifold Theorem

This appendix explains how to use the following quotient
manifold theorem as shown in [29, Th. 21.10] in our discussion
of Section III-C.

Proposition 1: Suppose that G is a Lie group acting
smoothly, freely, and properly on a smooth manifoldM. Then,
the orbit space M/G is a topological manifold of dimension
equal to dimM− dimG, and has a unique smooth structure
with the property that the quotient map π :M→M/G is a
smooth submersion.

Here, the action · of Lie group G on a smooth manifoldM is
called

1) free if {g ∈ G | g · p = p} = {e} for each p ∈M, where
e is the identity of G;

2) proper if the map f : G ×M→M×M defined by
(g, p) �→ (g · p, p) is a proper map. That is, for every com-
pact set K ∈M×M, the preimage f−1(K) ⊂ G ×M
is compact.

We can apply the quotient manifold theorem in our case, if
(12) is a free and proper action. This is because the orthogonal
group O(n) is a Lie group, and (12) is a smooth action on the
smooth manifold N . We, thus, confirm that action (12) is free
and proper in Section III-C.

C. Proof of Theorem 1

In this appendix, we provide a proof of Theorem 1 without de-
riving specific expressions of the vertical and horizontal spaces.
More concretely, we prove a more general theorem, and point
out that Theorem 1 is a corollary of the general theorem.

LetM be a Riemannian manifold with the Riemannian metric
〈·, ·〉, and let G be a group that smoothly acts onM. Here, we
call φg :M→M a smooth group action if φg is smooth and
satisfies the following.
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1) For any g1, g2 ∈ G and any x ∈M, φg1g2(x) =
φg1(φg2(x)) holds.

2) For the identity element 1G ∈ G and any x ∈M,
φ1G (x) = x holds.

We write the derivative map of φg at x ∈M as Dφg(x) :
TxM→ Tφg(x)M. By definition

Dφ1G (x) = D(φg−1 ◦ φg)(x)

= Dφg−1(φg(x)) ◦Dφg(x)

and thus

Dφg−1(φg(x)) = (Dφg(x))
−1. (68)

Let M/G be a quotient Riemannian manifold of M
with the canonical projection π :M→M/G. That is,
π(x) = [x] for any x ∈M, where [x] := {x1 ∈M|x =
φg(x1) for some g ∈ G}. Let Vx := Txπ

−1([x]) be the vertical
space in TxM, and let Hx be the horizontal space that is the
orthogonal complement of Vx with respect to the metric 〈·, ·〉.
Let V be a vector space in TxM, and let

Dφg(x)[V ] := {Dφg(x)[ξ] | ξ ∈ V }.
Lemma 1: For any g ∈ G and x ∈M

Vφg(x) = Dφg(x)[Vx]. (69)

Proof: Let ξ ∈ Vφg(x) = Tφg(x)π
−1([φg(x)]). Then, there

exists a curve γ such that γ(0) = φg(x) and γ̇(0) = ξ. Because
G acts on M, γ0(t) := φg−1(γ(t)) is on π−1([x]). We have
thatγ0(0) = φg−1(φg(x)) = x, and γ̇0(t) = Dφg−1(γ(t))[γ̇(t)].
Hence, it follows from (68) that

γ̇0(0) = Dφg−1(φg(x))[ξ]

= (Dφg(x))
−1[ξ] ∈ Txπ

−1([x]) = Vx
and thus ξ ∈ Dφg(x)[Vx]. That is

Vφg(x) ⊂ Dφg(x)[Vx].
Considering the dimension of both sides, we obtain (69). �

Lemma 1 implies the following theorem.
Theorem 4: Suppose that the group action φg is an isometry

in terms of Riemannian metric 〈·, ·〉; i.e., for any g ∈ G and any
ξ1, ξ2 ∈ TxM

〈Dφg(x)[ξ1],Dφg(x)[ξ2]〉φg(x) = 〈ξ1, ξ2〉x. (70)

Then

Hφg(x) = Dφg(x)[Hx]. (71)

Proof: Taking the orthogonal complement of both sides of
(69), we have that

Hφg(x) = (Dφg(x)[Vx])⊥. (72)

Because (70) holds, we obtain that 〈Dφg(x)[ξ1],Dφg(x)
[ξ2]〉φg(x) = 〈ξ1, ξ2〉x = 0 for any ξ1 ∈ Vx and ξ2 ∈ Hx.
This means that Dφg(x)[ξ2] ∈ (Dφg(x)[Vx])⊥, which yields
Dφg(x)[Hx] ⊂ (Dφg(x)[Vx])⊥. Considering the dimension of
both sides, we have that

Dφg(x)[Hx] = (Dφg(x)[Vx])⊥. (73)

It follows from (72) and (73) that (71) holds. �
Theorem 4 yields the following corollary.
Corollary 1: Suppose that the group action φg is an isometry

in terms of Riemannian metric 〈·, ·〉; i.e., (70) holds for any g ∈ G
and any ξ1, ξ2 ∈ TxM. Then

ξ̄φg(x) = Dφg(x)[ξ̄x] (74)

where ξ̄x and ξ̄φg(x) are the horizontal lifts of ξ ∈ T[x](M/G)
at x ∈M and φg(x) ∈M, respectively.

Proof: Because π ◦ φg = π

D(π ◦ φg)(x)[ξ̄x] = Dπ(x)[ξ̄x] = ξ (75)

where the second equality follows from the definition of the
horizontal lift. Moreover, by the chain rule

D(π ◦ φg)(x)[ξ̄x] = Dπ(φg(x))[Dφg(x)[ξ̄x]]. (76)

It follows from (75) and (76) that Dπ(φg(x))[Dφg(x)[ξ̄x]] = ξ,
and Theorem 4 yields Dφg(x)[ξ̄x] ∈ Hφg(x). By the definition
of the horizontal lift, we obtain (74). �

Theorem 1 follows from Corollary 1. This is because the group
action φU (Θ) := U ◦Θ is an isometry, as shown in (17).

D. Proof of Theorem 2

Because TΘN = VΘ ⊕HΘ, η can be uniquely decomposed
into

η = ηv + ηh, ηv ∈ VΘ, ηh ∈ HΘ.

Since ηv ∈ VΘ, there exists X ∈ Skew(n) such that

ηv = (−XA+AX,−XB,CX).

Thus, ηh can be described as

ηh = (a+XA−AX, b+XB, c− CX).

Because ηh ∈ HΘ, we obtain that

sk(2(a+XA−AX)A−1 +B(b+XB)�

+ C�(c− CX)) = 0.

It follows from this equation that (33) holds, because a� = a
and X� = −X .

E. Proof of Theorem 3

Using the Kronecker product and vec-operator, the operators
L0 and L1 have the matrix representations K0 = A−1 ⊗A+
A⊗A−1 − 2In2 and K1 = In ⊗ (BB� + C�C) + (BB� +
C�C)⊗ In, respectively, where⊗ denotes the Kronecker prod-
uct. Both are symmetric, and K1 is positive semidefinite [51].
Thus, L1 ≥ 0. Note also that both summands of K1 and, thus,
of L1 are positive semidefinite, whence

L1(X) = 0⇒ (BB� + C�C)X = 0. (77)

If λj , λk ∈ λ(A) with corresponding orthonormal eigenvec-
tors vj , vk, then

L0(vjv
�
k ) = μjkvjv

�
k
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where μjk :=
(λj−λk)

2

λjλk
. From the n orthonormal eigenvectors

vj , j = 1, 2, . . . , n, of the matrix A, we thus obtain n2 orthonor-
mal eigenvectors vjv

�
k , j, k = 1, 2, . . . , n, of the linear matrix

mapping. Because μjk ≥ 0 for all j, k, it follows that L0 ≥ 0.
Together with L1 ≥ 0, this implies that (see [52, Fact 8.7.3])

KerL = KerL1 ∩KerL0. (78)

Moreover, the kernel of L0 is spanned by the matrices vjv�k +
vkv

�
j and vjv

�
k − vkv

�
j with λj = λk, j, k = 1, 2, . . . , n. That

is

KerL0 ∩ Skew(n) = span{vjv�k − vkv
�
j | λj = λk}.

The matrix A can be expressed as

A = V diag(λn1
In1

, λn2
In2

, . . . , λnl
Inl

)V �

where n1 + n2 + · · ·+ nl = n, λ1 = · · · = λn1
< λn1+1 =

· · · = λn2
< · · · < λn1+n2+···+nl−1+1 = · · · = λnl

, and after
suitable ordering and partitioning, V = (V1 · · · Vl) =
(v1 · · · vn) is orthogonal to ImVj = Ker(λnj

In −A). We,
thus, obtain that

KerL0 ∩ Skew(n)

= {V diag(S1, S2, . . . , Sl)V
�|Sj ∈ Skew(nj)}.

To see this, note that the right-hand side is the linear subspace
of Skew(n), spanned by

vjv
�
k − vkv

�
j = V (eje

�
k − eke

�
j )V

�

where λj = λk and ej is the jth unit vector in Rn. Thus, it
follows from (77) and (78) that U ∈ KerL ∩ Skew(n) implies
U = V diag(S1, S2, . . . , Sl)V

� with (BB� + C�C)U = 0. In
particular, we have that{

0 = B�UVj = B�VjSj

0 = CUVj = CVjSj

for j = 1, 2, . . . , l, and thus

Ker (λnj
In −A) ∩KerB� ∩KerC ⊃ Im (VjSj).

Therefore

dim(Ker (λnj
In −A) ∩KerB� ∩KerC) ≥ rankSj . (79)

Because each Sj ∈ Skew(nj) necessarily has even rank, as-
sumption (34) and (79) yield that rankSj = 0 for j =
1, 2, . . . , l, whence U = 0. This implies that

KerL ∩ Skew(n) = {0} (80)

or equivalently KerL ⊂ Sym(n). Equation (80) implies that
L : Skew(n)→ Skew(n) is an automorphism.
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