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Optimal Output Regulation for Square, Over-Actuated and

Under-Actuated Linear Systems
Sebastian Bernhard and Jürgen Adamy

Abstract—This paper considers two different problems in trajectory

tracking control for linear systems. First, if the control is not unique
which is most input energy efficient. Second, if exact tracking is infeasible

which control performs most accurately. These are typical challenges for

over-actuated systems and for under-actuated systems, respectively. We

formulate both goals as optimal output regulation problems. Then we
contribute two new sets of regulator equations to output regulation theory

that provide the desired solutions. A thorough study indicates solvability

and uniqueness under weak assumptions. E.g., we can always determine
the solution of the classical regulator equations that is most input energy

efficient. This is of great value if there are infinitely many solutions. We

derive our results by a linear quadratic tracking approach and establish

a useful link to output regulation theory.

Index Terms—Trajectory tracking control, output regulation, regulator

equations, over-actuation, under-actuation, linear quadratic, optimal
tracking, infinite horizon.

I. INTRODUCTION

In many practical applications it is desired that the system output

tracks a time-varying reference. In a quite general setting, output

regulation theory states conditions when exact tracking with zero

steady state error is possible and provides a simple way to calculate

and to implement a control that achieves it, see [24], [25], [31], [35].

However, such a solution is not unique for over-actuated processes

as, e.g., hybrid electric vehicles [32]. Then it is of great interest, how

this surplus of actuators can be used beneficially. Many publications

consider this question, e.g., [28], [29], [33]. The converse problem,

when exact tracking is impossible, also drew attention in recent years,

see [12], [14], [20], [31]. The question arises: Which control yields

the highest tracking accuracy? An appropriate answer is of great value

with respect to under-actuated systems such as underwater vehicles

[1] or square systems affected by actuator failures [36].

In this paper, we establish a connection between both questions and

an optimal tracking problem. In this way, we are able to give answers

that are surprisingly concise and universal at the same time. Whereas

results in the literature are often complex, our approach preserves the

simplicity in the control structure and the design. Hence, it qualifies

as a natural extension to output regulation theory for over-actuated

systems as well as a natural bridge to under-actuated systems.

A. Problem Formulation and Main Contribution

We consider linear time-invariant systems of the form

ẋ = Ax+Bu+Edx,

y = Cx+Ddx

(1a)

(1b)

where x(t) ∈ R
n is the state with initial value x(0) = x0, u(t) ∈

R
m is the input and y(t) ∈ R

p is the output for t ∈ [0,∞). We

will consider a feedthrough Du to the output later on. For now,

suppose D = 0. The system is affected by state disturbances Edx
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and output disturbances Ddx. Together with the reference output

trajectory y(t) ∈ R
p, these are generated by an exosystem

ẋ = Ax,

y = Cx

(2a)

(2b)

with state x(t) ∈ R
n and initial value x(0) = x0. The exosystem

is usually block-diagonal in order to account for both tasks.

Then it is desired that the output (1b) tracks the reference (2b) or,

more precisely, we want to solve

Output Regulation Problem 1 (ORP 1): Find the matrices Π ∈
R

n×n, Γ ∈ R
m×n and K ∈ R

m×n for which the control

u = −K(x−Πx) + Γx (3)

guarantees that the tracking error y − y is regulated such that

lim
t→∞

y(t)− y(t) = 0 (4)

holds for all x0 and x0.

To solve this problem, the choice of Π and Γ is essential. Assume

that system (1) is stabilizable and all eigenvalues of A lie in the

closed right half-plane. Then, it is a well known result by [16] that

ORP 1 can be solved by a linear (dynamic) control law such as (3)

if and only if a solution (Π,Γ) to the classical regulator equations

(RE)

{
ΠA = AΠ+BΓ+Ed

C = CΠ+Dd

(5a)

(5b)

exists. Indeed, when we choose a feedback −Kx that stabilizes

system (1), then the state converges to its so-called stationary state

xs(t) := Πx(t), i.e., limt→∞ x(t)−Πx(t) = 0. It is induced by the

stationary control us(t) := Γx(t) in (3) and the disturbance Edx in

(1a). With respect to (2a), we call
(
xs(·),us(·)

)
a stationary solution

of (1a). As a result of (5b), the tracking error vanishes asymptotically

since the stationary output ys := Cxs +Ddx satisfies ys − y ≡ 0.

Considering ORP 1, we are motivated by the following questions

that may arise when we intend to solve the regulator equations:

1) If their solution is not unique, which choice of (Π,Γ) gives

the control us that is most input energy efficient?

2) If (RE) cannot be solved, what control us should be chosen

in order to keep the nonzero tracking error ys − y small?

Question 1) arises in the context of over-actuated system (1) for

which rank (B) > rank (C). Then we are of course interested in a

solution of ORP 1 that uses the additional actuators beneficially. We

have to face question 2) if ORP 1 is infeasible and nonzero tracking

errors are unavoidable. This is typical for under-actuated system (1)

with rank (B) < rank (C). Now, we reformulate the open questions

by two optimal output regulation problems. These state reasonable

goals for over- and under-actuated systems, respectively.

Optimal ORP 1 (OORP 1): Find a pair (Πu,Γu) such that

for every x0,
(
x∗

s (·),u
∗
s (·)

)
=

(
Π

ux(·),Γux(·)
)

is a stationary

solution of (1a) that minimizes the power Pu
(
xs(·),us(·)

)
:=

limT→∞

(
1
T
Ju
T

(
xs(·),us(·)

))
w.r.t. to the stationary input energy

Ju
T

(
xs(·),us(·)

)
= 1

2

∫ T

0

us(t)
T
Rus(t) dt (6)

http://arxiv.org/abs/1810.12231v3
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with R real symmetric positive definite under the constraint

ys(t) = Cxs(t) +Ddx(t) = Cx(t), ∀t ∈ [0,∞). (7)

We discuss the expansion of cost (6) by a state penalty later on.

Optimal ORP 2 (OORP 2): Find a pair (Πy,Γy) such that

for every x0,
(
x∗

s (·),u
∗
s (·)

)
=

(
Π

yx(·),Γyx(·)
)

is a stationary

solution of (1a) that minimizes the power P y
(
xs(·),us(·)

)
:=

limT→∞

(
1
T
Jy
T

(
xs(·),us(·)

))
with stationary error energy

Jy
T

(
xs(·),us(·)

)
= 1

2

∫ T

0

(
ys(t)− y(t)

)
T
Q
(
ys(t)− y(t)

)
dt (8)

with Q real symmetric positive definite.

In fact, both problems are linear quadratic tracking (LQT) problems

over infinite horizons T → ∞ where the admissible solutions are

restricted to be stationary solutions of (1a). We consider an infinite

horizon because our focus lies on the stationary behavior (7) rather

than on the transient response. In more detail, OORP 1 comprises

a state constraint (7). Such kind of “pure” state constrained LQT

problems are difficult to solve, e.g., see [9] and [21]. As for cost

(8), we observe that it is independent of the control us(·) and,

hence, OORP 2 is a singular LQT problem. Singular optimal control

problems are more complicated in general and rather considered as

regulator problems than as tracking problems, e.g., [2], [9], [21], [30].

To the best of our knowledge, neither of the two challenging

optimal output regulation problems has been rigorously solved in

such a general setup yet. In particular, a solution method as simple

as solving algebraic equations such as (RE) is not known for either

of the two problems in general as we will discuss in the next section.

Beforehand, we highlight our main contributions:

Using a unifying linear quadratic tracking approach for the first time,

we give rigorous solutions to both optimal output regulation problems

1 and 2 under suitable assumptions. For each, we derive new regulator

equations that provide the desired solution in the most simple and

natural way. We prove optimality and study conditions for solvability

and uniqueness in detail. Putting our results in a wider context, we

verify that the solution of each problem ORP 1, OORP 1 and 2

is the limit of the solution of a special case of a classical linear

quadratic tracking problem over an infinite horizon. Concluding, we

contribute to output regulation theory by answering questions 1) and

2) thoroughly and by giving a natural extension to account for over-

actuated and under-actuated systems in a general manner.

B. State of the Art

With respect to question 1), problems that are very similar to

OORP 1 are studied in the literature when system (1) is over-actuated.

In [28], the author claims that a pair (Π,Γ) should be chosen

that solves a proposed parametric optimization problem (OP) with

constraints (RE). It was shown in [5] that the solution of this

OP without (5b) is connected to the optimal solution of an LQT

problem. However, under constraint (5b), it has not been proven yet

that the obtained pair is optimal for every x0. Nonetheless, this OP

is frequently used in recent approaches, cf. [19], [33, Sec. V-A].

Another parametric OP is introduced in the context of an optimal

servo-compensator design in [29]. The obtained (Πx,Γx) minimizes

the power of the expected value of a cost similar to (6) over a given

distribution of x0. Again, this implies by no means that the power is

minimized for every x0. In addition, the required computations by

this approach are very involved, cf. [29, Sec. 4.1]. Without additional

proofs, it cannot be conclude that either of the two approaches gives

a suitable solution to our OORP 1.

A different approach aims at deriving explicit degrees of freedom

(DOF) that influence the state x but do not affect the output y.

Similarly to control allocation ([23]), they are used for an online

optimization during tracking. This idea originates from [38] and is

generalized in [13]. With regard to output regulation, results are given

in, e.g., [17], [18] and [33]. Once these DOF are at hand, they shall be

used beneficially. Then, one still faces an optimal tracking problem

if a cost such as (6) is considered. It is suggested in [13], [17]

to solve such problems by an online and dynamic gradient descent

as a part of a dynamic control strategy. For quadratic costs (e.g.,

[13, Sec. VI], [17, Sec. V]), our proposed results could be used

to avoid controller dynamics and the complications of making the

DOF explicitly available. In [7], explicit DOF are obtained by a row-

by-row decoupling control design and are used to explicitly solve

an LQT problem with cost (6). If decoupling is not required, this

causes unnecessary restrictions on the structure of the control and

complications in its derivation.

In the literature, question 2) is usually considered in the context

of the control design for under-actuated systems (1).

Many contributions evaluate the achievable performance of regu-

lating the output y either to an accessible reference y (e.g., [11]) or

to the best ys with respect to the cost (8) when A = 0 (e.g., [20]).

For such constant y, OORP 2 is well understood since it is equivalent

to a parametric OP stated in [37]. This OP is also considered by [14].

For quasi-periodic references, [12] considers OORP 2 when the

input energy (6) with R ≻ 0 is added to the cost (8). The calculation

of the proposed control is rather involved and only valid for diagonal

weights Q, R. The results may be extended to the case R = 0

which will however require additional assumptions. Our approach

avoids these ambiguities and disadvantages. By using a cheap optimal

control approach, [31, Ch. 17] proves that a solution to OORP 2

exists. However, it is not shown how a solution pair (Πy ,Γy) can

actually be derived which is not obvious unfortunately. This is an

essential part of our contribution.

To the best of our knowledge, we conclude that solutions to

OORP 1 and OORP 2, that hold under general assumptions and are

derived as easily as in the case when ORP 1 has a unique solution,

are not known yet.

C. Outline

The next section presents preliminaries that include definitions

and basic assumptions, and we introduce a unifying linear quadratic

tracking approach. Based on this, we derive our main results in

Section III, where we start with OORP 1, proceed with OORP 2

and, eventually, bridge the gap to a classical infinite-horizon LQT

problem. Before our final conclusions, we discuss extensions of our

main results and additional findings in Section IV. For the reader’s

convenience, we shift some prior results and proofs to the appendix.

II. PRELIMINARIES

A. Mathematical Notations

The real part of a complex number c is Re{c} and we write

c ∈ jR if Re{c} = 0. The zero matrix 0 and identity matrix

I have appropriate dimensions. A matrix M is symmetric positive

(semi)definite if M ≻ (�) 0. Its transpose is MT and its spectrum

is σ(M). The conjugate transpose of a complex matrix M ∈ C
a×b

is MH. We define the nullspace by null(M) = {ν ∈ C
b |0 = Mν}

and the left nullspace by leftnull(M) = {ν ∈ C
a |0 = νHM}. We

denote the (induced) 2-norm by ‖ · ‖2 and the Frobenius norm by

‖ · ‖F. We use the big O notation: f(ǫ) = O(g(ǫ)) as ǫ → 0 if

and only if ∃α, ǫ0 > 0 such that |f(ǫ)| ≤ α|g(ǫ)| if |ǫ| < ǫ0. For

the ease of presentation, functions f(x, y, . . .) are often abbreviated

by f(·) if their arguments x, y, . . . are clear from context. Also, the

dependence of a variable x(t) on its argument time t is often dropped.
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A variation of a possibly vector-valued function x(·) is denoted by

δx(·). The i-th variation is written as δix(·) with i ∈ N. For a

system (C,A,B,D) given by (1), the Rosenbrock system matrix is

R (s,C,A,B,D) :=

[
sI −A −B

C D

]

where s ∈ C. For D = 0, we abbreviate R (s,C,A,B).

B. Definitions and Basic Assumptions

The following definitions of admissible solutions and optimality in

a stationary sense are important.

Definition 1 (Admissible solutions): Every stationary solution of

(1a), that is every pair
(
xs(t),us(t)

)
= (Πx(t),Γx(t)) where

(Π,Γ) ∈ R
n×n × R

m×n solves (5a), is admissible.

Definition 2 (Optimality): For a given x0 and the power

P
(
xs(·),us(·)

)
:= limT→∞

(
1
T
JT

(
xs(·),us(·)

))
w.r.t. the cost

JT (·), an admissible solution
(
x∗

s (·),u
∗
s (·)

)
is optimal if for every

admissible solution
(
xs(·),us(·)

)
, the difference of powers satisfies

∆P (·) := P
(
xs(·),us(·)

)
− P

(
x

∗
s (·),u

∗
s (·)

)
≥ 0. (9)

If ∆P (·) > 0 is true for all
(
xs(·),us(·)

)
6≡

(
x∗

s (·),u
∗
s (·)

)
, then(

x∗
s (·),u

∗
s (·)

)
is unique.

Remark 1: The choice of the powers Pu(·) and P y(·) as perfor-

mance indices is beneficial for a stationary analysis: Under standard

assumptions, both are well-defined in contrast to the costs (6) and

(8) for T → ∞ (cf. [2], [3], [6]); the asymptotic transition to the

stationary state is disregarded; and any difference in power implies

a difference in cost that grows linearly with time T which is a

strong optimality property over infinite horizons. For these reasons,

the power concept is used in [12], [29] and [31], too.

Remark 2: Due to the framework of output regulation theory, we

only consider stationary solutions here. However, this restriction is

not substantial in our case as we will discuss in Section IV-C. There

we will discuss that our results satisfy a strong overtaking property

[3] even if more general admissible solutions are considered.

Throughout this paper, our basic assumptions are:

Assumption 1: The pair (A,B) is stabilizable.

Assumption 2: For all λ ∈ σ
(
A
)

it holds Re{λ} = 0 and the

algebraic and geometric multiplicities are equal.

By the first assumption, we may assume that the feedback −Kx

in control (3) stabilizes (1a) and that the state converges from all x0

to a desired stationary state xs(·) on which we focus in the sequel.

The second assumption is important. It is necessary for ensuring

that references and disturbances are bounded for all x0 which are thus

constant and (quasi)periodic. Only then the powers Pu(·) and P y(·)
are bounded in general and it is easy to see that the limit defining

them exists. Anyhow, asymptotically stable dynamics in (2a) are of

no interest since they do not contribute to the stationary behavior,

cf. [35, Sec. 9.1]. To exclude polynomial and exponentially unstable

dynamics is also reasonable as we will discuss in Section IV-D. We

emphasize that Asmp. 2 or even stricter assumptions are standard in

the relevant literature, e.g., [12], [18], [28], [31, Ch. 17] and [33].

C. A Unifying Linear Quadratic Tracking Approach

In this section, we present a unifying linear quadratic tracking

(LQT) approach. In Section III, the techniques developed here will

serve to find solution candidates to both, OORP 1 and 2, and to prove

the main results. We consider the

LQT Problem 1: For a given x0, find an admissible solution(
x∗

s (·),u
∗
s (·)

)
that minimizes P (·) = limT→∞

1
T
JT (·) w.r.t.

JT (·) =
1
2

∫ T

0

(ys − y)TρQ(ys − y) + us
TǫRus dt (10)

where ρ > 0 and ǫ > 0 as wells as Q ≻ 0 and R ≻ 0.

We formulated LQTP 1 in accordance with the problems in

Section I-A. For ρ > 0 and ǫ > 0, a solution can be constructed as in,

e.g., [6], [27], and its optimality follows from the results in [6], [3]

under weak assumptions. It balances the error energy versus the input

energy based on the cost (10) and, thus, depends on the introduced

parameters ρ, ǫ. In Section III-C, we will show that OORP 1 and 2

are special cases of LQTP 1 as ρ → ∞ and ǫ → 0, respectively.

At this point, we want to obtain conditions that a solution candidate

(x∗
s (·),u

∗
s (·)) to LQTP 1 should satisfy. In this respect, we use the

calculus of variations, see [4, Ch. 5] and [9, Ch. 2] for details on the

developments of this section. These techniques will essentially help

us to derive and to prove our main results.

For every admissible solution (xs,us) and every γ ∈ R, there ex-

ists a stationary variation (δx, δu) := (δΠx, δΓx) where (δΠ, δΓ)
satisfies δΠA = AδΠ+BδΓ such that xs(·) = x∗

s (·)+γδx(·) and

us(·) = u∗
s (·) + γδu(·). This is easily verified since (5a) depends

affinely on Π and Γ. We emphasize that δx(0) 6= 0 in general. The

i-th variation of a cost functional JT (·) is defined by

δiJT (δx, δu,x
∗
s ,u

∗
s ) :=

diJT (x∗

s + γδx,u∗

s + γδu)

dγi

∣∣∣
γ=0

.

Then JT (·) can be equivalently written as its Taylor series at γ = 0
which reads JT (xs,us) = JT (x

∗
s ,u

∗
s ) + ∆JT (·) with the cost

difference ∆JT (·) given by

∆JT (δx, δu, γ,x
∗
s ,u

∗
s ) = δ1JT (·)γ + 1

2
δ2JT (·)γ

2. (11)

In the next sections, we will choose γ = 1 without loss of generality.

In view of (10), we introduce the Hamiltonian function

H(xs,us,φs,x(t)) :=
1
2

(
(ys − y)TρQ(ys − y)

+us
TǫRus

)
+φ

T

s (Axs +Bus +Edx)

where the costate φs(t) : [0,∞) → R
n is some arbitrary function

for now. By using integration by parts, we are able to rewrite (10):

JT (xs(·),us(·)) =

∫ T

0

(
H(xs,us,φs,x)− φ

T

s ẋs

)
dt

=

∫ T

0

(
H(·) + φ̇s

T

xs

)
dt+ φs(0)

T
xs(0)− φs(T )

T
xs(T )

On the basis of this form of JT (·), the first variation of JT (·) in (11)

is calculated:

δ1JT (·) =

∫ T

0

(
∂H(xs,us, ·)

∂xs

∣∣∣
∗
+ φ̇s

)T

δx+ ∂H(xs,us, ·)
∂us

T
∣∣∣
∗
δu dt

+ φs(0)
Tδx(0) −φs(T )

Tδx(T ),

where we used the notation: f(xs,us, ·)|∗ := f(x∗
s ,u

∗
s , ·). The

second variation of JT (·) is directly obtained from (10):

δ2JT (·) =

∫ T

0

δxT
C

TρQCδx+ δuTǫRδu dt. (12)

As we see, only the first variation δ1JT (·) depends on the candi-

date
(
x∗

s (·),u
∗
s (·)

)
and the costate φs(·). Hence, we may choose(

x∗
s (·),u

∗
s (·)

)
and φs(·) such that

0 =
(

∂H(xs,us,φs,x)

∂xs

∣∣∣
∗
+ φ̇s

)T

δx,

0 =
∂H(xs,us,φs,x)

∂us

T
∣∣∣
∗
δu

(13a)

(13b)

hold for all
(
δx(·), δu(·)

)
6≡ (0,0) and some φs(0) ∈ R

n. Since

neither an initial value xs(0) is given nor any transversality condition

is available, δ1JT (·) does not vanish by using (13), but it reduces to

δ1JT (·) = φs(0)
Tδx(0)− φs(T )

Tδx(T ). (14)
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The coefficients of δx and δu in (13) vanish if we choose the costate

dynamics φ̇s = −ATφs −CTρQ(ys − y) and ǫRu∗
s +BTφs = 0

as a constraint. The costate dynamics together with (1a) are called

the Hamiltonian system. Following [5] and [6], the costate dynamics

and this constraint are satisfied for
(
x∗

s ,u
∗
s ) = (Πx,Γx) and the

approach φs(·) = Πφx(·) if the triple (Π,Πφ,Γ) solves (5a) and

ΠφA = −A
T
Πφ −C

TρQ(CΠ+Dd −C),

0 = ǫRΓ +B
T
Πφ.

(15a)

(15b)

In view of [6],
(
x∗

s ,u
∗
s ) can also be derived by the minimum principle

for an infinite horizon [22]. Hence, (Πx,Γx) qualifies as an optimal

solution if general variations are considered which we discuss in

Section IV-C. Since we only consider stationary variations at first,

the conditions (13) may not be necessary for optimality. Nonetheless,

choosing (Πx,Γx) in order to satisfy (13) is favorable as we show:

Lemma 1: Suppose both conditions (13a) and (13b) hold for an ad-

missible solution (x∗
s ,u

∗
s ) = (Πx,Γx) and the costate φs = Πφx.

Then, for every admissible solution (xs,us), the power difference

satisfies ∆P (xs,us,x
∗
s ,u

∗
s ) = limT→∞

1
2T

δ2J(δx, δu).

Proof: The cost difference ∆JT (·) is given by (11) and, thus,

it results ∆P (·) = limT→∞
1
T

(
δ1JT (·) +

1
2
δ2JT (·)

)
for γ = 1. By

(13a) and (13b), (14) is true. Due to Asmp. 2, ‖φs(t)‖2, ‖δx(t)‖2
and, hence, |δ1JT (·)| are bounded functions on [0,∞) for all x0

which implies limT→∞
1
T
|δ1JT (·)| = 0.

Due to this lemma, the optimality analysis of such (x∗
s ,u

∗
s ) is

very promising. In the proofs of our main results, we exploit this

and the quadratic nature of δ2J(δx, δu) in (12) by applying the

useful Lemma A.1 given in Appendix A.

III. OPTIMAL OUTPUT REGULATION FOR

LINEAR SYSTEMS

In this section, we derive our main results that are two new sets

of regulator equations which provide solutions to the optimal output

regulation problems 1 and 2, respectively. We investigate solvability

conditions, the connection to the classical regulator equations (RE)
and how LQTP 1 unifies both problems.

A. If Regulator Equations (RE) Have Infinitely Many Solutions

. . . then we want to answer question 1), i.e., we seek an optimal

solution (x∗
s ,u

∗
s ) = (Πux,Γux) to OORP 1. This is generally

desired for over-actuated systems: rank (B) > rank (C).

To find a suitable candidate (Πux,Γux), we carry out the analysis

in Section II-C with respect to OORP 1. First, we note that OORP 1

is equivalent to LQTP 1 with additional state constraint (7) and for

the choice ǫ = 1. Since ys(t) − y(t) ≡ 0, an admissible solution

(Πx,Γx) is feasible only if (Π,Γ) solves the regulator equations

(RE), see [16]. Hence, a variation (δx, δu) = (δΠx, δΓx) defined

by δΠ = Π − Π
u and δΓ = Γ − Γ

u (choose γ = 1) must also

satisfy Cδx(t) = CδΠx(t) ≡ 0 ∀x0 6= 0 and, accordingly,

δΠA = AδΠ+BδΓ,

0 = CδΠ.

(16a)

(16b)

We remark that a nontrivial solution of (16) exists if and only if

the solution of (RE) is not unique. Next, we construct a candidate

(Πux,Γux) such that Lemma 1 can be applied, i.e., conditions (13a)

and (13b) hold. In Section II-C, we had to regard arbitrary stationary

variations and, thus, we chose the coefficient of δx in (13a) equal

zero. However, here we may require instead

∂H(xs,us,φs,x)

∂xs

∣∣∣
∗
+ φ̇s = C

T
Γ

u
φx (17)

with arbitrary Γ
u
φ ∈ R

p×n. Then (13a) equals xT
Γ

uT

φ Cδx = 0

which is always true since Cδx(t) ≡ 0. Since ys ≡ y, it follows

H(·) = 1
2
uT

s Rus + φT

s (Axs +Bus +Ed). Then to satisfy (17), we

choose φs = Π
u
φx and obtain Π

u
φA = −AT

Π
u
φ +CT

Γ
u
φ. Though

(δΠ, δΓ) is now constrained by (16), we still choose (15b) to satisfy

(13b). For ǫ = 1, this gives Γ
u = −R−1BT

Π
u
φ.

Taking these equations together with (RE) into account, we are

able to present the new regulator equations (REu):

(REu)





Π
u
φA = −A

T
Π

u
φ +C

T
Γ

u
φ

Π
u
A = AΠ

u −BR
−1

B
T
Π

u
φ +Ed

C = CΠ
u +Dd.

(18a)

(18b)

(18c)

A solution (Πu,Πu
φ,Γ

u
φ) of (REu) provides our solution candidate

(Πu,−R−1BT
Π

u
φ) to OORP 1. Before we verify its optimality, we

state the powerful result that we can always solve (REu) if ORP 1

has at least one solution.

Lemma 2: A triple (Πu,Πu
φ,Γ

u
φ) solving the new regulator

equations (REu) exists if and only if a pair (Π,Γ) solving the

classical regulator equations (RE) exists.

The proof is given in Appendix B. Now, we are ready to derive our

first main result:

Theorem 1: A solution to OORP 1 exists if and only if a

triple (Πu,Πu
φ,Γ

u
φ) exists that solves the new regulator equations

(REu). The optimal solution is (x∗
s ,u

∗
s ) = (Πux,Γux) where

Γ
u = −R−1BT

Π
u
φ, which minimizes Pu(·) under constraint (7)

for every x0. It is unique if and only if the following condition

holds:

rank
([
λI −AT CT

])
= n, ∀λ ∈ σ

(
A
)
. (19)

Proof: The solvability of OORP 1 requires that the constraint (7)

is satisfied for some (Πx,Γx) and all x0. This implies that (RE)
has a solution under the present assumptions 2, cf. [16]. By Lemma 2,

(REu) has a solution which proves the only if.

Following the discussion at the beginning of this section, for a

candidate (x∗
s ,u

∗
s ) = (Πux,Γux) and φs = Π

u
φx obtained by

(REu) all conditions of Lemma 1 hold. Hence, for every feasible

variation obtained from (16) it results

∆Pu(δx, δu,x∗
s ,u

∗
s ) = lim

T→∞

1

2T

∫ T

0

x(t)TδΓT
RδΓx(t) dt. (20)

Since R ≻ 0, we find ∆Pu(·) ≥ 0 for all feasible (δx, δu) and all

x0. Thus, (Πux,Γux) is an optimal solution.

In order to verify uniqueness if (19) holds, we show by an

exhaustive three-part case study that ∆Pu(·) > 0 is satisfied for

all nontrivial variations (δΠx, δΓx) 6≡ (0,0). As a consequence

of Lemma A.1, ∆Pu(·) > 0 is true for all nontrivial variations

for which the system (R1/2δΓ,A) is completely observable (for

some R1/2: R = RT
1/2R1/2). Suppose instead that not all but

some eigenvalues of A are observable and assume that the system

(R1/2δΓ,A) is given in form of the decomposition (A.1). Since

R1/2 is invertible, it results δΓ =
[
δΓ1 0

]
, i.e., δΓ2 = 0.

Based on (16), it follows that δΠ2A22 = AδΠ2 and 0 = CδΠ2.

Because A22 is diagonal, for each column δπ2,i of δΠ2 it must

hold δπT

2,i

[
λI −AT CT

]
= 0 for its associated λ ∈ σ(A22).

By condition (19), it results δπ2,i = 0 for all columns which leads

to δΠ2 = 0. Hence, every such variation reads (δΠx, δΓx) =
(δΠ1x1, δΓ1x1). It is nontrivial only if x1(0) 6= 0 which implies

∆Pu(·) > 0 by Lemma A.1. Completing the case study, we notice

that any variation for which (R1/2δΓ,A) is completely unobservable

implies δΓ = 0 and, hence, is trivial since δΠ = 0 due to (19).

To show necessity of condition (19), suppose (x∗
s ,u

∗
s ) is unique

and (19) does not hold for some λ ∈ σ(A). Hence, for some C
n ∋



PREPRINT OF FINAL VERSION, NOVEMBER 27, 2019 5

δπ 6= 0 it results δπT
[
λI −AT CT

]
= 0. Due to Asmp. 2, we

suppose that A is diagonal without loss of generality and the above

holds for λ being the first element on the diagonal. Then we construct

the feasible variation (δπx1, 0) that is nontrivial if x1(0) 6= 0 and

for which ∆Pu(·) = 0 holds which contradicts uniqueness.

To guarantee the solvability of (REu), we consider the well known

non-resonance condition [25]:

Assumption 3: For all λ ∈ σ
(
A
)
, it holds

rank
(
R

(
λ,C,A,B

))
= n+ p. (21)

Actually, this condition is true for most over-actuated systems if

rank (B) = m > p = rank (C) since these systems usually do not

have any invariant zeros, see [15, Thm. 5]. By [24, Thm. 1.9], we

recall that (RE) is solvable for all Ed, Dd and C if and only if

Asmp. 3 holds. Hence, the next result is immediate due to Lemma 2:

Corollary 1: The new regulator equations (REu) have a solution

(Πu,Πu
φ,Γ

u
φ) for all matrices Ed, Dd and C if and only if Asmp. 3

holds. This solution is unique if and only if condition (19) is satisfied

in addition.

Remark 3: When condition (19) does not hold, one may wonder

if some (Πux,Γux) among the optimal stationary solutions exists

that performs better with respect to Ju
T (·) (since ∆Pu(·) = 0 for

all of them). Following the proof of Theorem 1, all these are of the

form
(
(Πu + δΠ)x,Γux

)
and, clearly, it holds ∆Ju

T (·) = 0.

B. If Regulator Equations (RE) Have No Solution At All

. . . then we want to answer question 2) and seek a solution

(x∗
s ,u

∗
s ) = (Πyx,Γyx) to OORP 2 which is very important for

under-actuated systems, i.e., for rank (B) < rank (C).
Comparing (8) with (10) for a given pair (Π,Γ), both costs

coincide for all x0 if we choose ρ = 1 and ǫ = 0. Thus, to carry out

the analysis in Section II for OORP 2 is equivalent to the substitution

of ρ = 1 and ǫ = 0 in (15a) and (15b). Accordingly, we derive the

new regulator equations (REy):

(REy)






Π
y
A = AΠ

y +BΓ
y +Ed

Π
y
φA = −A

T
Π

y
φ −C

T
Q(CΠ

y +Dd −C)

0 = −B
T
Π

y
φ.

(22a)

(22b)

(22c)

For the same reasons as in the discussion preceding Lemma 1, a

solution to OORP 2 may not necessarily satisfy (REy). However,

to the best of our knowledge, necessary optimality conditions are

not available for OORP 2. Hence, we focus on showing that if a

solution of (REy) exists, then (x∗
s ,u

∗
s ) = (Πyx,Γyx) is an optimal

solution among all stationary solutions. These can always be written

as (xs,us) = (x∗
s + δΠx,u∗

s + δΓx) where (δΠ, δΓ) has to solve

(16a). Solvability of (22) is shown under the very general

Assumption 4: For all λ ∈ σ
(
A
)
, it holds

rank
(
R

(
λ,C,A,B

))
= n+m. (23)

Lemma 3: The new regulator equations (REy) have a unique

solution (Πy ,Πy
φ,Γ

y) for all matrices Ed, Dd and C if and only

if Asmp. 4 holds.

We prove this in Appendix B. Remarkably, Asmp. 4 is true for

most under-actuated systems if rank (B) = m < p = rank (C)
since these systems usually do not have any invariant zeros, see [15].

Hence, by considering OORP 2 for the most important case of under-

actuated systems, it is reasonable to assume that (REy) is solvable.

In this light, we state our second main result:

Theorem 2: Suppose the triple (Πy ,Πy
φ,Γ

y) solves the new

regulator equations (REy). Then the pair (Πy,Γy) solves OORP 2

and (x∗
s ,u

∗
s ) = (Πyx,Γyx) is an optimal solution that minimizes

P y(·) for every x0. It is unique if and only if Asmp. 4 holds.

Proof: The proof is based on similar arguments as the proof of

Theorem 1. By construction, our candidate (x∗
s ,u

∗
s ) = (Πyx,Γyx)

and φs = Π
y
φx solves (5a) and (15) for ρ = 1 and ǫ = 0. Thus, we

can apply Lemma 1 and find for every variation given by (16a) that

∆P y(·) = lim
T→∞

1

2T

∫ T

0

x(t)TδΠT
C

T
QCδΠx(t) dt. (24)

Then we note that ∆P y(·) ≥ 0 for all feasible (δx, δu) and every

x0 since Q ≻ 0, and (Πyx,Γyx) is optimal.

We verify uniqueness if Asmp. 4 holds by a three-part case

study. Consider every (δΠ, δΓ) given by (16a) such that the system

(Q
1/2CδΠ,A) is completely observable (for some Q

1/2 such that

Q = QT

1/2Q1/2). It follows ∆P y(·) > 0 for all x 6= 0 as a

consequence of Lemma A.1. If (Q
1/2CδΠ,A) is not completely ob-

servable instead, we may assume that the system is decomposed as in

(A.1). An analogous decomposition of δΠ gives G1 = Q
1/2CδΠ1

and CδΠ2 = 0 since Q
1/2 is invertible. Hence, (δΠ2, δΓ2) has to

satisfy δΠ2A22 = AδΠ2 + BδΓ2 and 0 = CδΠ2. By Asmp. 4,

we find that R
(
λ,C,A,B

)
ν = 0 implies C

n+m ∋ ν = 0 for all

λ ∈ σ(A22). Because A22 is diagonal, both together implies that all

columns of δΠ2 and δΓ2 must vanish, i.e., (δΠ2, δΓ2) = (0,0).
Hence, every such feasible variation (δΠ1x1, δΓ1x1) 6≡ (0,0) is

nontrivial only if x1(0) 6= 0 for which it always results ∆P y(·) > 0
based on Lemma A.1. Eventually, we observe that a nontrivial

variation for which (Q
1/2δΠ,A) is completely unobservable does

not exist since CδΠ = 0 implies (δΠ, δΓ) = (0,0) by the analysis

above. This completes the exhaustive case study and shows that

∆P y(·) > 0 for all nontrivial variations.

Regarding necessity of Asmp. 4, we suppose (23) is not satisfied

for some λ ∈ σ(A) and (x∗
s ,u

∗
s ) is unique. Then we find some

C
n+m ∋ ν 6= 0 such that R

(
λ,C,A,B

)
ν = 0 from which we

obtain
[
δπT δγT

]T
= ν. Without loss of generality, we assume that

A is diagonal and λ is the first element on the diagonal. Hence, we

can construct the feasible variation (δπx1, δγx1) that is nontrivial if

x1(0) 6= 0 and for which ∆P y(·) = 0 holds since Cδπx1(t) ≡ 0.

This contradicts the uniqueness.

Remark 4: Based on this proof, ∆P y(·) = 0 occurs only for

stationary solutions (xs,us) = (x∗
s + δΠx,u∗

s + δΓx) where

CδΠx ≡ 0 for the given x0. Referring to Remark 3, we easily

see that then ∆Jy
T (·) = 0 holds for all optimal solutions, too.

Remark 5: Asmp. 4 requires that B has full rank. If instead

rank (B) < m, without loss of generality, we equivalently rewrite

system (1) with virtual inputs such that the associated new input

matrix has full rank, apply Theorem 2 and use techniques of, e.g.,

[23], to allocate the original control inputs.

C. Relation to Classical Infinite-Horizon LQ Tracking Problems

In this section, we investigate that OORP 1 and OORP 2 are special

cases of LQTP 1, and put them as well as ORP 1 in a greater context.

This insight is useful when it suffices to satisfy the constraint (7) with

(potentially arbitrarily) small errors or when the input energy should

be considered in cost (8) by a (potentially arbitrarily) small weight.

To this end, the cost (10) in LQTP 1 (for ǫ = 1) takes (7) implicitly

into account by adding the error energy to (6) which corresponds to

an “integral penalty function”, see [9, Sec. 3.4]. Forcing the error to

zero as ρ → ∞ gives OORP 1 as a special case of LQTP 1.

Similarly, OORP 2 results from LQTP 1 (for ρ = 1) as ǫ → 0. As

in [31, Ch. 17] , this cheap optimal control problem cannot be treated

by known approaches (such as [2] and [30]) because the augmented

system composed of (1a) and (2) is not stabilizable.
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We consider a typical assumption in optimal tracking:

Assumption 5: The pair (C,A) is detectable.

Let Q = QT

1/2Q1/2 ≻ 0, then (Q
1/2C,A) is detectable.

Following the discussion, we present our third main result.

Theorem 3: Suppose that Asmp. 5 holds. It exists a unique optimal

solution
(
Π(ǫ, ρ)x,Γ(ǫ, ρ)x

)
to LQTP 1 for every ǫ > 0 and ρ > 0.

a) If Asmp. 3 and the condition (19) are satisfied, then, as ρ → ∞,

‖Π(1, ρ)−Π
u‖F = O(1/ρ) and ‖Γ(1, ρ)− Γ

u‖F = O(1/ρ)
where (Πu,Γu) uniquely solves OORP 1.

b) If Asmp. 4 holds, then ‖Π(ǫ, 1) − Π
y‖F = O(ǫ) and

‖Γ(ǫ, 1) − Γ
y‖F = O(ǫ) as ǫ → 0 where (Πy,Γy) uniquely

solves OORP 2.

Proof: Under Asmp. 1, 2 and 5, it exists a unique triple(
Π(ǫ, ρ),Πφ(ǫ, ρ),Γ(ǫ, ρ)

)
that solves the system of equations (5a)

and (15) for all ǫ, ρ > 0 (see [5, Thm. 1] for a proof). From this, we

obtain the unique optimal solution
(
Π(ǫ, ρ)x,Γ(ǫ, ρ)x

)
to LQTP 1.

Basically implied by [6], it can be proven similarly as Theorem 1.

We consider a), i.e., LQTP 1 for ǫ = 1. By (15b), we replace

Γ(1, ρ) = −R−1BT
Πφ(1, ρ) in (5a). The resulting equation and

(15a) can be equivalently rewritten by introducing an auxiliary

variable Γφ(ρ) : (0,∞) → R
p×n (dropping the arguments):

ΠφA = −A
T
Πφ +C

T
Γφ

ΠA = AΠ−BR
−1

B
T
Πφ +Ed

C = CΠ+Dd + 1
ρ
Q

−1
Γφ.

(25a)

(25b)

(25c)

Clearly, the set (25) results from (REu) by disturbing (18c) by
1/ρQ−1

Γφ(ρ). Hence, we are able to apply Lemma A.2 which proves

a). In view of Section III-B, we regard the two sets: (REy) and (5a),

(15a) for ρ = 1, (15b) which is disturbed by ǫRΓ(ǫ, 1). Again, we

can apply Lemma A.2 that proves b).

IV. DISCUSSION

In this section, we shortly discuss extensions of our main results,

e.g., for systems with feedthrough or for general admissible solutions.

A. Feedthrough and Additional State Penalty

So far, we disregarded a feedthrough: y = Cx+Du+Ddx for

the purpose of a concise presentation. When D 6= 0, then we modify

(REy) by replacing (22b) and (22c) by:

Π
y
φA = −A

T
Π

y
φ −C

T
Q(CΠ

y +DΓ
y +Dd −C),

0 = −B
T
Π

y
φ −D

T
Q(CΠ

y +DΓ
y +Dd −C).

Occasionally, contributions like [28], [33] consider an additional state

penalty in OORP 1 by adding 1/2
∫ T

0
xT

s Qxxs dt with Qx � 0 to

cost (6). Then, we modify (REu) by replacing (18) completely by

Π
u
φA = −QxΠ

u −A
T
Π

u
φ +C

T
Γ

u
φ,

Π
u
A = AΠ

u +BΓ
u +Ed,

C = CΠ
u +DΓ

u +Dd

(26a)

(26b)

(26c)

where it must hold: Γ
u = R−1(−BT

Π
u
φ + DT

Γ
u
φ). We also

substitute R
(
λ,C,A,B

)
with R

(
λ,C,A,B,D

)
in Asmp. 3

and 4. With respect to the modified two sets of equations, all results

on solvability (for every choice of Qx � 0) and on optimality of

(Πy,Γy) and (Πu,Γu) in Section III hold. Especially Lemma 2

holds, where (RE) for D 6= 0 equals (26b), (26c) in the free

variables Π, Γ. These facts can be checked by properly taking Qx

and D in the proofs in Section III and Appendix B into account.

B. If Regulator Equations (RE) Have a Unique Solution

. . . given by (Π,Γ) then it solves OORP 1 uniquely. This is a

consequence of Lemma 2 (see also the part of the proof covering

necessity), Theorem 1 and the fact that (16) is only satisfied for

(δΠ, δΓ) = (0,0). The latter and Theorem 2 imply that (Π,Γ)
also solves OORP 2 uniquely. We remark that each solution of (RE)
solves OORP 2 if there are more than one. Of course, (Π,Γ) can

also be obtained from LQTP 1 referring to Theorem 3. Hence, in this

case, ORP 1 is nothing else but a special case of LQTP 1.

C. General Admissible Solutions

We regard general admissible solutions of (1a) that include contin-

uous and piecewise continuously differentiable xs(·) (with arbitrary

xs(0)) and piecewise continuous us(·) such that us(t) is bounded

on each finite interval. Our optimality definition based on the power

difference (9) can only distinguish differences ∆JT (·) that grow at

least linearly with T . In this more general context, a higher precision

is desirable. Thus, we use ∆JT (·) itself as a measure as T → ∞.

Let us consider LQTP 1 under the assumption that (C,A) is

completely observable. For a solution (Πx,Γx) obtained from (5a)

and (15), it holds limT→∞ ∆JT (xs,us, 1,Πx,Γx) = ∞ for any

(xs,us) such that lim supt→∞ ‖xs − Πx‖2 > 0, see [6, Coroll.

10]. By Theorem 3, we expect similar results for our candidates with

respect to OORP 1 and OORP 2, respectively.

In view of OORP 1, a pair (Πu,Γu) given by (REu) satisfies

limT→∞ ∆Ju
T (xs,us, 1,Π

ux,Γux) = ∞ for any (xs,us) such that

(7) and lim supt→∞ ‖xs −Π
ux‖2 > 0 hold. This can be similarly

proven as [6, Thm. 9] if (C,A) is completely observable.

With respect to OORP 2 and a pair (Πy ,Γy) given by (REy),
it follows that limT→∞ ∆Jy

T (xs,us, 1,Π
yx,Γyx) = ∞ for any

(xs,us) such that ‖xs(t)‖2 and ‖us(t)‖2 are bounded for every t ∈
[0,∞) and lim supt→∞ ‖C(xs −Π

yx)‖2 > 0. This can be proven

by a contradiction argument using Barbalat’s Lemma [26].

In this sense, cf. [3], (Πux,Γux) and (Πyx,Γyx) overtake any

feasible (xs,us) that differs in the stationary behavior of the state and

the output, respectively. Hence, our results show strong properties in

a general infinite-horizon optimal tracking setup. This underlines that

the control structure (3) in output regulation theory is not restrictive

but rather necessary to obtain such a desirable performance.

D. If Assumption 2 Does Not Hold

This is true, e.g., for every nonconstant polynomial or unstable

reference y(t). Of course, it results P (·) = limT→∞
JT (·)/T = ∞

generally. Hence, we seek an overtaking optimal stationary solution

which overtakes any other stationary solution in the sense of Sec-

tion IV-C. But, it is easy to construct counter examples to illustrate

that, in general, such a solution does not exist for our problems.

For simplicity, we only give a counter example for LQTP 1 and

a polynomial reference. Consider JT (·) =
∫ T

0
(xs − x1)

2 + u2
s dt

for ẋ = x − u and xT =
[
t2/2 t 1

]
. For an admissible control

us = Γx = γ1t
2

/2+γ2t+γ3, we obtain xs = Πx = γ1t
2

/2+(γ1+
γ2)t+(γ1 + γ2 + γ3) from ẋs = xs −us where constant γi ∈ R are

left to choose. By integration, JT (xs, us) is a fifth-order polynomial

in T , where the coefficients are functions of γi. Since T can be

arbitrarily large, the best one can do is to choose γ1, γ2, γ3 such

that the coefficients are minimized stepwise starting from the highest

order. This forces γ1 = 0.5 and γ2 = −0.125. Then the coefficient

that depends on γ3 and belongs to the highest order, which is T 2 in

this case, is a linear function of γ3. For large T , JT (xs, us) behaves as

a linear function of γ3 and an overtaking optimal stationary solution

cannot exist.
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These considerations justify to require Asmp. 2 because we cannot

expect to find adequate stationary solutions without it.

Remark 6: Nonetheless, when Asmp. 2 is violated as above, then

our derived candidates might still be a favorable choice. We could

verify this by checking if the candidate
(
Π(ǫ, ρ)x,Γ(ǫ, ρ)x

)
for

LQTP 1 is a so-called agreeable plan for x0 = Π(ǫ, ρ)x0 (see [10]

and [6] for details) if either ρ is exceedingly large or ǫ is exceedingly

small. This can be expected if Re{λ} = 0 holds for all λ ∈ σ(A).

V. CONCLUSION

Under common assumptions, we derived new design methods for a

trajectory tracking control (3) for linear systems that are square, over-

actuated or under-actuated. In this respect, we contributed two new

sets of regulator equations (REu) and (REy) to the output regulation

theory. By solving (REu), we easily obtain the solution (Π,Γ) of

the classical regulator equations (RE) that uses additional actuators

most efficiently. If (RE) have no solution because exact tracking is

infeasible, then (REy) provide a pair (Π,Γ) that optimally saves

tracking error energy. Our thorough study of solvability conditions

also yielded a significant insight: The classical output regulation

problem (ORP 1) can always be solved by using our new equations

(REu) instead of the classical (RE). Furthermore, we established a

link to optimal tracking by showing that both optimal ORP (OORP 1

and OORP 2) are in fact special cases of a classical infinite-horizon

LQ tracking problem (LQTP 1). This is useful, e.g., if tracking with

(arbitrarily) high precision is sufficient instead of exact tracking.

APPENDIX A

The following lemmata are used to prove our main results.

Lemma A.1: For G ∈ C
nG×n with nG ≥ 1, consider the system

(G,A) for which some but not all eigenvalues of A are observable.

Due to Asmp. 2, let the exosystem (2a) be given by a diagonalization:
[
ẋ1

ẋ2

]
=

[
A11 0

0 A22

] [
x1

x2

]
(A.1)

where A11 and A22 are diagonal such that G =
[
G1 0

]
and

(G1,A11) is completely observable. For all x2(0), it holds

lim
T→∞

1

T

∫ T

0

x(t)T
G

T
Gx(t) dt

{
> 0 if x1(0) 6= 0, (A.2a)

= 0 if x1(0) = 0. (A.2b)

Proof: From the structure of A and G, we observe that

1

T

∫ T

0

x1(t)
T
G

T

1G1x1(t) dt =
1

T
x1(0)

T
W (T )x1(0)

where W (T ) is the observability gramian of the system (G1,A11).
We trivially conclude (A.2b). With (G1,A11) completely observable,

it holds W (T ) ≻ 0, ∀T > 0 [34], and the integrand satisfies

x1(t)
TGT

1G1x1(t) 6≡ 0 for all x1(0) 6= 0. Taking Asmp. 2 into

account, the components of x(t) are sinusoids for all x0. Hence, for

every given x1(0) 6= 0, we can rewrite the left side of (A.2):

∑

i

(
lim

T→∞

1

T

∫ T

0

(∑

j

Aij cos(ωijt+ αij)

)2

dt

)
,

where Aij , ωij , αij ∈ R and Aij 6= 0. Then, (A.2a) follows

straightforwardly since it is well known that the signal power of

such sums of sinusoids is larger than zero.

The next lemma is a consequence of standard results:

Lemma A.2: Consider a system of nn ≥ 1 equations given by

AX +XA = B, where A ∈ R
n×n, A ∈ R

n×n and B ∈ R
n×n,

and its disturbed version (A + ǫ∆)X̃ + X̃ (A + ǫ∆) = B, where

∆ ∈ R
n×n, ∆ ∈ R

n×n and ǫ > 0. Suppose X ∈ R
n×n and

X̃ (ǫ) : (0,∞) → R
n×n are their unique solutions (for every ǫ > 0).

Then, it holds ‖X̃ (ǫ)−X‖F = O(ǫ) as ǫ → 0.

Proof: By using the Kronecker sum ⊕ and column-stacking

operator vec(·), both systems can be equivalently rewritten, e.g.,

(A
T

⊕A)vec(X ) = vec(B). Due to the uniqueness of the solutions,

which implies invertibility of A
T

⊕A, we exploit [8, Fact 9.15.2] to

conclude that if ǫ < 1/‖(AT
⊕ A)−1(∆

T
⊕ ∆)‖2, then

‖vec(X̃ (ǫ)−X )‖2 ≤ ǫ ‖(A
T
⊕ A)−1‖2‖(∆

T
⊕ ∆)‖2‖vec(X)‖2

1−ǫ‖(A
T
⊕ A)−1(∆

T
⊕ ∆)‖2

(A.3)

holds. This implies the big O notation with ‖ · ‖F = ‖vec(·)‖2.

APPENDIX B

Here, we present the proofs of Lemma 2 and 3. First, let us define

the system matrices of the system (1) by Rs (s) := R (s,C,A,B)
and of the costate system associated with (18a) for an artificial output

−BTφs by Rc (s) := R
(
−s,−BT,AT,−CT

)
. By merging both,

the Hamiltonian system associated with (REu) is obtained. After

simple manipulations, its system matrix can be given by

R
u
H (s) :=




0 −sI −AT CT

sI −A BR−1BT
0

C 0 0


 .

Proof of Lemma 2: From a triple (Πu,Πu
φ,Γ

u
φ) solving (REu)

we construct the pair (Πu,−R−1BT
Π

u
φ) that solves (5) due to

(18b), (18c) which verifies necessity.

Before we show sufficiency, let us reformulate the sets of equations

in question. Due to Asmp. 2, assume that A is diagonal without loss

of generality. By [24, Thm. 1.9], it is well known that solving (RE)
is equivalent to solving βi = Rs

(
λi

)
zs,i for zs,i ∈ C

n+m for each

λi ∈ σ
(
A
)
, i = 1, . . . , n. Each βi ∈ C

n+p depends on Edvi, Cvi

and Ddvi with the eigenvector vi ∈ C
n of A associated with the

eigenvalue λi. Accordingly, solving (REu) is equivalent to solving[
0 βT

i

]T
= R

u
H

(
λi

)
zH,i for zH,i ∈ C

2n+p and ∀i = 1, . . . , n.

In order to prove the sufficiency, it clearly suffices to show that

for all λ ∈ σ
(
A
)

the equation
[
0 βT

]T
= R

u
H

(
λ
)
zH has a

solution if β = Rs

(
λ
)
zs has a solution for some β ∈ C

n+p. By

[8, Fact 2.10.6], the latter is true if and only if νH
s β = 0 for all

νs ∈ leftnull
(
Rs

(
λ
))

= {ν ∈ C
n+p |0 = νH

Rs

(
λ
)
}. Now, let us

consider the set

Sλ =

{
ν̂ :=

[
νc

ν s

]
∈ C

2n+p

∣∣∣∣ ν s ∈ leftnull
(
Rs

(
λ
))}

.

Suppose leftnull
(
R

u
H

(
λ
))

⊂ Sλ holds. By this assumption, we find

ν̂
H

[
0

β

]
=

[
νc

νs

]H [
0

β

]
= ν

H

s β = 0, ∀ν̂ ∈ Sλ,

which implies that
[
0 βT

]T
= R

u
H

(
λ
)
zH has a solution if a

solution of β = Rs

(
λ
)
zs exists.

To complete the proof, it only remains to show that ∀λ ∈ σ(A)
leftnull

(
R

u
H

(
λ
))

⊂ Sλ holds indeed. Let ν̂ =
[
νH

c νH
s1 νH

s2

]
, this is

true if ∀λ ∈ σ(A): ν̂H
R

u
H

(
λ
)
= 0 implies

[
νH

s1 νH
s2

]
Rs

(
λ
)
= 0.

By introducing ν̃H

s1 = −νH
s1BR−1 with ν̃ s1 ∈ C

m, we may rewrite

ν̂
H
R

u
H

(
λ
)
= 0 equivalently:

[
νH

c ν̃H

s1

]
Rc

(
λ
)
= 0,

[
νH

s1 νH
s2

]
Rs

(
λ
)
=

[
0 ν̃H

s1R
]
,

(A.4a)

(A.4b)

which corresponds to a decomposition of the Hamiltonian system

into a series of costate system and original system.
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Since Rc

(
λ
)
= Rs

(
λ
)H

∀λ ∈ σ(A), due to λ ∈ jR based on

Asmp. 2, we find that
[
νH

c ν̃
H

s1

]H
∈ null

(
Rs

(
λ
) )

by taking the

conjugate transpose of (A.4a). Thus, we obtain from (A.4b):

[
0 ν̃H

s1R
] [ νc

ν̃s1

]
= ν̃

H

s1Rν̃ s1 = 0.

Hence, (A.4) necessarily implies ν̃ s1 = 0 because of R ≻ 0 and[
νH

s1 νH
s2

]
Rs

(
λ
)
= 0 follows from (A.4b) as desired.

Before we proceed to prove Lemma 3, we define the system matrix

of the Hamiltonian system associated with (REy) by

R
y
H (s) :=




0 sI −A B

−sI −AT −CTQC 0

−BT
0 0



 .

Proof of Lemma 3: By using similar techniques as in the proof

of Lemma 2, showing that (REy) always has a unique solution

is equivalent to showing that a unique solution zH ∈ C
2n+m to[

βT

s βT

c C 0
]T

= R
y
H

(
λ
)
zH exists for all λ ∈ σ

(
A
)
, all βs ∈ C

n

and all βc ∈ C
p. This is true if and only if R

y
H

(
λ
)

has full rank

∀λ ∈ σ(A), i.e., R
y
H

(
λ
)
ν̂ = 0 with ν̂ ∈ C

2n+m admits only

a trivial solution ν̂ = 0. Let ν̂T =
[
νT

s νT
c1 νT

c2

]
, we rewrite

R
y
H

(
λ
)
ν̂ = 0 by a similar decomposition as in the proof above:

Rs

(
λ
) [νc1

νc2

]
=

[
0

−Q−1ν̃c1

]
,

Rc

(
λ
) [ ν s

ν̃c1

]
= 0

(A.5a)

(A.5b)

where ν̃c1 ∈ C
p such that ν̃c1 = −QCνc1. From (A.5b) and the

fact that Rc

(
λ
)H

= Rs

(
λ
)
∀λ ∈ σ(A) due to Asmp. 2, we find

that
[
νH

s ν̃H

c1

]
Rs

(
λ
)
= 0. Then, (A.5a) has a solution only if

[
νH

s ν̃
H

c1

] [ 0

−Q−1ν̃c1

]
= −ν̃

H

c1Q
−1

ν̃c1 = 0

holds. Clearly, this requires ν̃c1 = 0 and, consequently,

Rc

(
λ
) [νs

0

]
= 0 and Rs

(
λ
) [νc1

νc2

]
= 0.

Since −λ
H

= λ ∈ jR holds for all λ ∈ σ(A) due to Asmp. 2, the

first equation gives νH
s

[
λI −A −B

]
= 0. This forces νs = 0

by Asmp. 1. The second equation admits only the trivial solution

νc1 = 0 and νc2 = 0 ∀λ ∈ σ
(
A
)

if and only if Asmp. 4 holds.
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