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Abstract—This paper studies the parameter tuning problem of
positive linear systems for optimizing their stability properties.
We specifically show that, under certain regularity assumptions
on the parametrization, the problem of finding the minimum-cost
parameters that achieve a given requirement on a system norm
reduces to a geometric program, which in turn can be exactly and
efficiently solved by convex optimization. The flexibility of geo-
metric programming allows the state, input, and output matrices
of the system to simultaneously depend on the parameters to be
tuned. The class of system norms under consideration includes
the H2 norm, H∞ norm, Hankel norm, and Schatten p-norm.
Also, the parameter tuning problem for ensuring the robust
stability of the system under structural uncertainties is shown to
be solved by geometric programming. The proposed optimization
framework is further extended to delayed positive linear systems,
where it is shown that the parameter tunning problem jointly
constrained by the exponential decay rate, the L1-gain, and the
L∞-gain can be solved by convex optimization. The assumption
on the system parametrization is stated in terms of posynomial
functions, which form a broad class of functions and thus allow
us to deal with various interesting positive linear systems arising
from, for example, dynamical buffer networks and epidemic
spreading processes. We present numerical examples to illustrate
the effectiveness of the proposed optimization framework.

Index Terms—Positive systems, geometric programming, H2

norm, H∞ norm, Hankel norm, robust stabilization, delayed
linear systems

I. INTRODUCTION

Positive systems refer to, roughly speaking, the class of
dynamical systems whose response signals to nonnegative
input signals are constrained to be nonnegative [21], [43].
The application areas in which positive systems naturally arise
include pharmacology [23], [27], [30], epidemiology [34],
[35], population biology [3], [38], and communication net-
works [49]. In this context, several important advances towards
the analysis and control of positive systems have been made
in the last decade. For example, the authors in [48] showed
that stability of a positive linear system and the existence of
a diagonal Lyapunov function are equivalent. It was shown
in [22] and [2] that structured stabilization problems for pos-
itive linear systems can be efficiently solved by linear matrix
inequalities and a linear program, respectively. The authors
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in [51] showed that the celebrated Kalman-Yakubovich-Popov
lemma admits a significantly simple representation in terms of
diagonal quadratic storage functions.

Besides the aforementioned results concerning static-gain
state-feedback control of positive linear systems, it has been
observed in the literature that synthesis problems for positive
linear systems often exhibit interesting convexity properties.
For example, it was shown in [13] that positive linear forms
on the state variables of a time-varying positive linear system
are convex with respect to the diagonals of its state matrix.
The authors in [19] established the convexity of a symmetric
modification of a class of steady-state disturbance attenu-
ation problems. The authors in [14] showed the convexity
of the power norm of output signals with respect to the
diagonals of the state matrix. The authors in [18] presented
an intrinsic convexity property of H2 and H∞ state-feedback
control problems for positive linear systems. A similar result is
obtained in [15] for robust state-feedback stabilization under
structured uncertainties. However, the practical applicability
of the aforementioned results is not necessarily enough to
cover the wide range of applications of positive linear systems
because the convexity properties in these results are mostly
with respect to the diagonals of the state matrix of the system.

In this paper, we develop computationally efficient frame-
works for tuning the parameters of a positive linear system,
in which any entry of any of the state, input, and output
matrices are allowed to be dependent on the parameter to be
synthesized. We specifically show that, under certain regu-
larity conditions on the parameterizations of these coefficient
matrices, the optimal parameter tuning problems constrained
by the H2 norm, H∞ norm, Hankel norm, and Schatten p-norm
(for an even p) can be solved by geometric programming [6].
We also show that the problem of tuning the parameters for
ensuring the robust stability of the system under structural
uncertainties can be solved by geometric programming. We
furthermore extend our framework to show that a class of
mixed-constraint optimization problems for delayed positive
linear systems can be solved by convex optimization. A
geometric program is a nonlinear optimization problem in
which all the variables are positive and the objective function
and constraints are described by monomial and posynomial
functions (see Section II for details). Due to the log-log
convexity of monomial and posynomial functions, a geometric
program can be easily converted to an equivalent convex op-
timization problem, whose optimal solution can be efficiently
found. Furthermore, packages for directly formulating and
solving geometric programs are available in various standard
softwares including MATLAB, Python, and MOSEK. As an
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illustration of our theoretical results, we study the buffer
network optimization problem with H∞ norm constraints,
and also the optimal medical resource allocation problem for
robustly eradicating epidemic spreading processes taking place
over uncertain complex networks [28], [42].

Geometric programming has been successfully applied in
various engineering areas including digital circuit design [7],
[44], chemical engineering [54], power control in wireless
networks [12], information theory [11], and structural de-
sign [1] (see [6] for an extensive list of applications). Since
geometric programming offers a powerful tool for optimally
tuning positive parameters, it would be natural to expect that
this optimization framework allows us to synthesize positive
systems as well. Despite this expectation, we find in the litera-
ture relatively few works for utilizing geometric programming
to the synthesis of positive systems. An exception is the
sequence of works [36], [37], [42], in which the authors study
resource allocation problems for maximizing the exponential
decay rate of the infection size within a networked epidemic
spreading model. Although it was shown in [37] that a class
of L1-gain optimization problem for networked positive linear
systems can be solved by geometric programming, it was not
fully discussed in the reference if geometric programming
applies to other classes of synthesis problems. It is finally
remarked that other applications of geometric programming
in the context of systems and control theory can be found
in [50], [55].

In this paper, we use the following notations. Let R, R+,
and R++ denote the set of real, nonnegative, and positive
numbers, respectively. For a positive integer n, let {e1, . . . ,en}
denote the canonical basis of Rn. We let 1 denote a column
vector with all entries equal to one. The identity and the zero
matrix of order n is denoted by In and On, respectively. A
real matrix A is said to be nonnegative (positive), denoted
by A≥ 0 (A > 0), if all entries of A are nonnegative (positive,
respectively). We write A ≤ B if B− A ≥ 0. The notations
A < B, A ≥ B, and A > B should be understood in the same
manner. The maximum singular value of A is denoted by ‖A‖.
Let A be a real and square matrix. We say that A is Hurwitz
stable if the eigenvalues of A have negative real parts. We
say that A is Metzler if the off-diagonal entries of A are
nonnegative. By the Perron-Frobenius theorem [29], a Metzler
matrix A has a real eigenvalue that is greater than or equal to
the real parts of the other eigenvalues of A. This maximum
real eigenvalue is denoted by λmax(A). Let A⊗ B denote
the Kronecker product of matrices A and B. If A and B
are square, then the Kronecker sum of A and B is defined
by A⊕B = A⊗ Im + In⊗B, where n and m denote the orders
of A and B, respectively. The diagonal matrix having block
diagonals A1, . . . , An is denoted by diag(A1, . . . ,An). For a
vector a having scalar entries a1, . . . , an, we often use the
shorthand notation

Da = diag(a1, . . . ,an).

This paper is organized as follows. In Section II, we
formulate the class of optimization problems studied in this
paper. Then, in Sections III–V, we present geometric programs

for tuning the parameters of positive linear systems constrained
by the H2 norm, the H∞ norm, and the Hankel singular values,
respectively. In Section VI, we present a geometric program
for tuning the parameters so that the robust stability of the
system under structural uncertainties is guaranteed. In Sec-
tion VII, we show that a class of mixed-constraint parameter
tuning problem for delayed positive linear systems reduces
to a convex optimization problem. We illustrate the obtained
theoretical results in Sections VIII and IX. We finally provide
the conclusion of the paper as well as some discussions in
Section X.

II. PROBLEM FORMULATION

In this section, we formulate the problems studied in this
paper. Let us consider the linear time-invariant system

Σθ :


dx
dt

= A(θ)x+B(θ)w,

y =C(θ)x,

which is parametrized by the parameter θ belonging to a
subset Θ ⊂ Rnθ . We suppose that the matrix functions A, B,
and C are defined on Θ and have dimensions nx×nx, nx×nw,
and ny×nx, respectively.

To guarantee the (internal) positivity of the system Σθ , we
assume that, for all θ ∈Θ, the matrix A(θ) is Metzler and the
matrices B(θ) and C(θ) are nonnegative (see, e.g., [21]). Un-
der these assumptions, for all nonnegative initial condition x(0)
and nonnegative input signal u(t) (t ≥ 0), the values of the
state x(t) and output y(t) remain nonnegative at every time
instant t. Also, we say that the system Σθ is internally stable
if the matrix A(θ) is Hurwitz stable.

The parametrized positive model Σθ arises in various con-
texts including drug therapy and leader selection [18], as
well as dynamical buffer networks [43] and networked epi-
demics [34], [41] (see Sections IX and VIII for these examples,
respectively). In this paper, we consider the following general
parameter optimization problem:

minimize
θ∈Θ

L(θ)

subject to Σθ is internally stable,
J(Σθ )≤ γ,

(1)

where θ is the parameter to be tuned, the mapping

L : Θ→ [0,∞)

represents the cost for realizing the parameter θ , and the
constraint J(Σθ ) ≤ γ is our requirement on the system Σθ in
terms of a functional J and a constant γ . For example, we
allow the functional J to be the H2 norm of the system Σθ

defined by

‖Σθ‖2 =

√∫
∞

0
tr(Φθ (t)Φθ (t)>) dt,

where Φθ (t) =C(θ)exp(A(θ)t)B(θ) ∈ Rny×nw is the impulse
response of the system Σθ and tr(·) denotes the trace of a
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matrix. Another functional that we consider is the L2-gain
(i.e., the H∞ norm) of the system defined by

‖Σθ‖∞ = sup
w∈L2(Rnw )\{0}

‖Φθ ∗w‖2

‖w‖2
,

where ∗ denotes a convolution product and L2(Rn) =
{ f : [0,∞) → Rn |

∫
∞

0 ‖ f (t)‖2 dt < ∞} denotes the space of
Lebesgue-measurable square-integrable functions equipped
with the norm ‖ f‖2 = (

∫
∞

0 ‖ f (t)‖2 dt)1/2.
Throughout this paper, we place a certain regularity as-

sumption on the coefficient matrices in the system Σθ . To
state the assumption, we introduce the class of posynomial
functions [6].

Definition 2.1: Let v1, . . . , vn denote positive variables and
define v = (v1, . . . ,vn).

1) We say that a real function h of v is a monomial if
there exist c > 0 and a1, . . . ,an ∈ R such that h(v) =
cva1

1 · · ·v
an
n .

2) We say that a real function f of v is a posynomial if f
is the sum of monomials of v.

Monomials and posynomials are closely related to a class
of optimization problems called geometric programs. Given
posynomials f0, . . . , fp and monomials h1, . . . , hq, the
optimization problem

minimize
v∈Rn

++

f0(v)

subject to fi(v)≤ 1, i = 1, . . . , p,

h j(v) = 1, j = 1, . . . ,q,

(2)

is called a geometric program [6]. It is known [6] that a ge-
ometric program can be converted into a convex optimization
problem via the logarithmic variable transformation

v = exp[z], z ∈ Rn (3)

where exp[·] stands for entrywise exponentiation of a real
vector. Specifically, this transformation yields the following
equivalent optimization problem

minimize
z∈Rn

log f0(exp[z])

subject to log fi(exp[z])≤ 0, i = 1, . . . , p,

logh j(exp[z]) = 0, j = 1, . . . ,q,

which can be efficiently solved using, for example, interior-
point methods (see [6], for more details on GP). Specifically,
the geometric program (2) can be solved with computational
cost polynomial in p, q, and the maximum of the numbers of
monomials contained in each of posynomials f0, · · · , fp [32,
Section 10.4]. Furthermore, packages for directly formulating
and solving geometric programs are available in various stan-
dard softwares including MATLAB, Python, and MOSEK.

We now state our assumptions on the parametrization of the
coefficient matrices in the system Σθ .

Assumption 2.2 (Coefficient matrices): The following con-
ditions hold true:

1) There exists a diagonal matrix function

R(θ) = diag(r1(θ), . . . ,rnx(θ)) (4)

having monomial diagonals r1(θ), . . . , rnx(θ) such that
each entry of the matrix

Ã(θ) = A(θ)+R(θ)

is either a posynomial of θ or zero.
2) Each entry of the matrices B(θ) and C(θ) is either a

posynomial of θ or zero.

Remark 2.3: Assumption 2.2 implicitly limits the parameter
set Θ to the positive orthant. This limitation allows us to
employ the framework of the geometric programming. Also,
Assumption 2.2.1) states that the off-diagonals of A(θ) are
either a posynomial or zero, while the diagonals of A(θ) are
signomials with at most one negative coefficient (see [10] for
the details).

Let us also place the following assumptions on the param-
eter θ .

Assumption 2.4 (Parameter θ and cost L(θ)): The following
conditions hold true:

1) L(θ) is a constant shift of a posynomial, that is, there
exists a constant L0 such that

L̃(θ) = L(θ)+L0 (5)

is a posynomial of θ .
2) There exist posynomials f1(θ), . . . , fp(θ) such that the

constraint set Θ satisfies

Θ = {θ ∈ Rnθ | θ > 0, f1(θ)≤ 1, . . . , fp(θ)≤ 1}. (6)

III. H2 NORM-CONSTRAINED PARAMETER OPTIMIZATION

Let us consider the following H2 norm-constrained param-
eter optimization problem:

minimize
θ∈Θ

L(θ)

subject to Σθ is internally stable,
‖Σθ‖2 < γ2,

(7)

where γ2 > 0 is a constant. In this section, we show that
this optimization problem can be solved by geometric pro-
gramming. To state the result, let us introduce the following
notations. For each i = 1, . . . ,ny and j = 1, . . . ,nw, let Ci(θ)
and B j(θ) denote the ith row and jth column of the matri-
ces C(θ) and B(θ), respectively. Define the n2

x-dimensional
column and row vectors

B̃(θ) =
nw

∑
j=1

B j(θ)⊗B j(θ),

C̃(θ) =
ny

∑
i=1

Ci(θ)⊗Ci(θ).

The following theorem states that we can solve the H2

norm-constrained parameter optimization problem if the ma-
trix R(θ) in Assumption 2.2.1) can be chosen in a specific
form.

Theorem 3.1: Assume that there exist a monomial r(θ) and
a diagonal matrix R0 with positive diagonals such that the
matrix R(θ) given in (4) satisfies

R(θ) = r(θ)R0. (8)
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Then, the solution of the H2 norm-constrained parameter
optimization problem (7) is given by the solution of the
following geometric program:

minimize
θ∈Rnθ

++,ω∈R
n2
x

++

L̃(θ) (9a)

subject to γ
−2
2 C̃(θ)ω < 1, (9b)

D−1
ω (R0⊕R0)

−1
[(

Ã(θ)⊕ Ã(θ)
)

ω + B̃(θ)
]

r(θ)
< 1,

(9c)
fi(θ)≤ 1, i = 1, . . . , p. (9d)

Remark 3.2: Geometric programs in standard form do not
allow strict inequality constraints appearing in the optimization
problem (9). For this reason, in practice, we would relax the
strict inequality constraints into non-strict counterparts by, for
example, replacing the constraint (9b) with γ

−2
2 C̃(θ)ω ≤ 1−ε

for a small constant ε > 0.
For the proof of Theorem 3.1, we start by showing the

following lemma.
Lemma 3.3 ([9, Lemma 1]): Let F ∈ Rn×n, g ∈ Rn, H ∈

Rm×n, and v ∈ Rm. Assume that F is Metzler, and g and H
are nonnegative. The following conditions are equivalent.

1) F is Hurwitz stable and −HF−1g < v.
2) There exists a positive vector ω ∈Rn such that Hω < v

and Fω +g < 0.

We then present the following proposition that characterizes
the H2 norm of a positive linear system

Σ :


dx
dt

= Fx+Gw,

y = Hx,
(10)

where F is a Metzler nx×nx matrix, and G and H are nx×nw
and ny×nx nonnegative matrices.

Proposition 3.4: Let γ > 0 be a constant. Define the
n2

x-dimensional row and column vectors H̃ = ∑
ny
i=1 Hi ⊗ Hi

and G̃ = ∑
nw
j=1 G j⊗G j, where Hi and G j denote the ith row

and jth column of the matrices H and G, respectively. Then,
the following conditions are equivalent:

1) Σ is internally stable and ‖Σ‖2 < γ .
2) There exists a positive vector ω ∈ Rn2

x such that

H̃ω < γ
2,

(F⊕F)ω + G̃ < 0.
(11)

Proof: Assume that Σ is internally stable and ‖Σ‖2 < γ .
By [20, Theorem 2], we have ‖Σ‖2

2 = −H̃(F ⊕F)−1G̃. Ap-
plying Lemma 3.3 to the inequality −H̃(F ⊕ F)−1G̃ < γ ,
we can show the existence of a positive vector ω ∈ Rn2

satisfying inequalities in (11). The other direction of the proof
is straightforward, and, therefore, is omitted.

Let us prove Theorem 3.1.
Proof of Theorem 3.1: Assumptions 2.2 and 2.4 show

that the optimization problem (9) is a geometric program.
For example, Assumption 2.4 shows that the objective func-
tion L̃(θ) is a posynomial. Also, to confirm that each entry
of vector on the left-hand side of the constraint (9c) is a

posynomial, we first notice that any entry of D−1
ω , (R0⊕R0)

−1,
Ã(θ)⊕ Ã(θ), B̃(θ), and 1/r(θ) is either a posynomial with the
variables θ and ω or a nonnegative constant. Then, by using
the fact that the set of posynomials is closed under addition
and multiplications [6], we can confirm that the constraint (9c)
is indeed written in terms of posynomials.

Let us show that the H2 norm-constrained parameter opti-
mization problem (7) reduces to the geometric program (9).
Proposition 3.4 implies that the solution of the optimization
problem (7) is given by the solution of the following optimiza-
tion problem:

minimize
θ∈Θ,ω∈Rn2

x
++

L(θ) (12a)

subject to C̃(θ)ω < γ
2
2 , (12b)

(A(θ)⊕A(θ))ω + B̃(θ)< 0. (12c)

In this optimization problem, the minimization of L(θ) is
equivalent to minimizing L̃(θ) by the relationship (5). The
constraint (12b) is clearly equivalent to the constraint (9b).
Furthermore, since we have A(θ)⊕ A(θ) = Ã(θ)⊕ Ã(θ)−
r(θ)(R0⊕R0) and D−1

ω ω = 1, the constraint (12c) is equiv-
alent to (9c). Finally, (6) implies that θ ∈ Θ if and only if
constraints (9d) hold true. Therefore, we conclude that the op-
timization problem (12) reduces to the geometric program (9),
as desired.

Remark 3.5: Theorem 3.1 has a few immediate conse-
quences. For example, one can easily confirm that the H2

norm-constrained parameter optimization problem (7) is solv-
able for all γ2 ≥ γ?2 , where γ?2 is the solution of the following
geometric program:

minimize
θ∈Rnθ

++,ω∈R
n2

x
++,γ2>0

γ2

subject to (9b)–(9d).

Similarly, we can show that the following cost-constrained
counterpart of the H2 norm-constrained parameter optimiza-
tion problem (7):

minimize
θ∈Θ

‖Σθ‖2

subject to Σθ is internally stable,
L(θ)≤ L̄,

where L̄ > 0 is a given constant, is solved by the following
geometric program:

minimize
θ∈Rnθ

++,ω∈R
n2
x
++,γ2>0

γ2

subject to L̃(θ)≤ L̄+L0, (9b)–(9d).

IV. H∞ NORM-CONSTRAINED PARAMETER OPTIMIZATION

In this section, we show that the H∞ norm-constrained
parameter optimization problem

minimize
θ∈Θ

L(θ)

subject to Σθ is internally stable,
‖Σθ‖∞ < γ∞,

(13)
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for a positive constant γ∞ can be solved by geometric pro-
gramming, as stated in the following theorem.

Theorem 4.1: The solution of the H∞ norm-constrained
parameter optimization problem (13) is given by the solution
of the following geometric program:

minimize
θ∈Rnθ

++,

u∈Rnw
++,v∈R

ny
++,

ξ ,ζ∈Rnx
++

L̃(θ) (14a)

subject to γ
−1
∞ D−1

v C(θ)ξ < 1, (14b)

D−1
ξ

R(θ)−1(Ã(θ)ξ +B(θ)u)< 1, (14c)

γ
−1
∞ D−1

u B(θ)>ζ < 1, (14d)

D−1
ζ

R(θ)−1(Ã(θ)>ζ +C(θ)>v)< 1, (14e)

fi(θ)≤ 1, i = 1, . . . , p. (14f)

For the proof of Theorem 4.1, we start by recalling the
Perron-Frobenius theorem for Metzler matrices.

Lemma 4.2 ([29]): Let M be an n×n Metzler matrix and γ

be a real number. We have λmax(M) < γ if and only if there
exists a positive vector v ∈ Rn such that Mv < γ v.

Then, we state the following lemma for characterizing the
maximum singular value of nonnegative matrices.

Lemma 4.3: Let M be a nonnegative matrix and γ be a
positive number. Then, the following conditions are equivalent:

1) ‖M‖< γ .
2) There exist positive vectors u and v such that

Mu < γ v, (15a)

M>v < γ u. (15b)

Proof: Assume ‖M‖< γ . This implies λmax(M>M)< γ 2.
By Lemma 4.2, there exists a positive vector u such that
M>Mu < γ 2u and, hence, M>Mu/γ < γ u. Therefore, we can
take an ε > 0 such that M>M u

γ−ε
< γ u. If we define v =

Mu/(γ−ε), then this inequality implies inequality (15b). Also,
by the definition of the vector v, we have Mu = (γ−ε)v < γ v,
which yields inequality (15a).

Conversely, assume that there exist positive vectors u and v
satisfying (15). Then, we have M>Mu < γ 2u. This inequality
and Lemma 4.2 show λmax(M>M) < γ 2. Hence, we ob-
tain ‖M‖< γ , as desired.

Using Lemma 4.3, we can prove the following proposition
for characterizing the H∞ norm of a positive linear system.

Proposition 4.4: Consider the linear system Σ given in (10).
Let γ > 0. The following statements are equivalent:

1) Σ is internally stable and ‖Σ‖∞ < γ .
2) There exist positive vectors u ∈Rnw , v ∈Rny and ξ ,ζ ∈

Rnx such that the following inequalities hold true:

Hξ < γ v, (16a)
Fξ +Gu < 0, (16b)

G>ζ < γ u, (16c)

F>ζ +H>v < 0. (16d)

Proof: Assume that Σ is internally stable and ‖Σ‖∞ < γ .
Then, by [52, Theorem 2], we have ‖M̂(0)‖< γ for the transfer

function M̂(s) = H(sI − F)−1G. Since M̂(0) = −HF−1G,
Lemma 4.3 shows the existence of positive vectors u and v
such that

−HF−1Gu < γ v, (17)

−G>(F>)−1H>v < γ u. (18)

Since F is Hurwitz stable, we can apply Lemma 3.3 to
inequality (17) to show the existence of a positive vector ξ

for which inequalities (16a) and (16b) hold true. Similarly,
applying Lemma 3.3 to inequality (18), we can show the
existence of a positive vector ζ satisfying inequalities (16c)
and (16d). The proof of the other direction is omitted.

We can now prove Theorem 4.1.
Proof of Theorem 4.1: Proposition 4.4 implies that the so-

lution of the H∞ norm-constrained optimization problem (13)
is given by the solution of the following optimization problem:

minimize
θ∈Θ,u∈Rnw

++,v∈R
ny
++,

ξ ,ζ∈Rnx
++

L(θ)

subject to C(θ)ξ < γ∞v,

A(θ)ξ +B(θ)u < 0,

B(θ)>ζ < γ∞u,

A(θ)>ζ +C(θ)>v < 0.

An algebraic manipulation and equalities (5) and (6) show
that this optimization problem is equivalent to the optimization
problem (14). Furthermore, Assumptions 2.2 and 2.4 show that
the optimization problem (14) is indeed a geometric program.
This completes the proof of the theorem.

A few remarks are in order. First, as stated in Remark 3.5
for the case of the H2 norm, we can derive geometric programs
for 1) finding the minimum achievable H∞ norm of the system
and 2) solving a cost-constrained H∞ norm optimization
problem. Since their derivations are straightforward, we do
not explicitly state them in this paper. We also remark that, by
using Theorem 4.1 as well as Theorem 3.1, we can show that
a class of mixed H2/H∞ optimization problems for positive
linear systems reduces to a geometric program. Let us consider
the following optimization problem:

minimize
θ∈Θ

L(θ) (19a)

subject to Σθ is internally stable, (19b)
α(‖Σθ‖2,‖Σθ‖∞)< γ, (19c)

where α : R2
++→ R++ is a function representing a trade-off

between the H2 and H∞ norm of the system. Let us place the
following assumption on the trade-off function.

Assumption 4.5: The function α is a posynomial, and
nondecreasing with respect to each variable.

Examples of the function α(‖Σθ‖2,‖Σθ‖∞) satisfying these
assumptions include the sum ‖Σθ‖2 + ‖Σθ‖∞ and the prod-
uct ‖Σθ‖2‖Σθ‖∞. Under this assumption, the following corol-
lary shows that the solution of the mixed H2/H∞ optimization
problem (19) is obtained by geometric programming.

Corollary 4.6: If there exist a monomial r(θ) and a diagonal
matrix R0 with positive diagonals satisfying (8), then the
solution of the mixed H2/H∞ norm-constrained parameter
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optimization problem (19) is given by the solution of the
following geometric program:

minimize
θ∈Rnθ

++,ω∈R
n2
x
++,

u∈Rnw
++,v∈R

ny
++,ξ ,ζ∈R

nx
++

γ2,γ∞>0

L̃(θ) (20a)

subject to γ
−1

α(γ2,γ∞)< 1, (20b)
(9b), (9c), (14b)–(14e), (20c)
fi(θ)≤ 1, i = 1, . . . , p. (20d)

Proof: The optimization problem (20) is a geometric pro-
gram by Assumptions 2.2, 2.4, and 4.5. Let θ ∈Θ and γ > 0 be
arbitrary. We need to show that the constraints (19b) and (19c)
hold true if and only if there exist vectors ω ∈Rn2

x
++, u∈Rnw

++,
v ∈ Rny

++, and ξ ,ζ ∈ Rnx
++ as well as positive constants γ2

and γ∞ satisfying constraints (20b) and (20c).
Assume that (19b) and (19c) hold true. Then, by the

continuity of posynomials, there exist constants γ2 and γ∞

satisfying ‖Σθ‖2 < γ2, ‖Σθ‖∞ < γ∞, and (20b). Then, Proposi-
tions 3.4 and 4.4 show the existence of the vectors ω ∈Rn2

x
++,

u ∈ Rnw
++, v ∈ Rny

++, and ξ ,ζ ∈ Rnx
++ satisfying (20c) as well.

Conversely, assume that there exist ω ∈ Rn2
x
++, u ∈ Rnw

++,
v ∈ Rny

++, and ξ ,ζ ∈ Rnx
++ as well as positive constants γ2

and γ∞ satisfying (20b) and (20c). Then, Propositions 3.4
and 4.4 show that the system Σθ is internally stable and
satisfies ‖Σθ‖2 < γ2 and ‖Σθ‖∞ < γ∞. Furthermore, since α

is non-decreasing with respect to both arguments, we ob-
tain α(‖Σθ‖2,‖Σθ‖∞)≤ α(γ2,γ∞)< γ from (20b), as desired.
This completes the proof of the corollary.

V. HANKEL SINGULAR VALUES-CONSTRAINED
PARAMETER OPTIMIZATIONS

In this section, we show that the parameter optimization
problem (1) reduces to a geometric program when constrained
by system norms induced from Hankel singular values. As-
sume that the system Σθ is internally stable. The Hankel
singular values of Σθ , denoted by

σ1(θ)≥ ·· · ≥ σnx(θ)≥ 0,

are defined as the singular values of the Hankel operator asso-
ciated with the system Σθ (see, e.g., [24]). It is well known that
σi(θ) =

√
λi(WO(θ)WC(θ)) holds for all i = 1, . . . ,nx, where

WC(θ) and WO(θ) denote the controllability and observability
Grammians defined by

WC(θ) =
∫

∞

0
eA(θ)tB(θ)B>(θ)eA(θ)>t dt,

WO(θ) =
∫

∞

0
eA>(θ)tC(θ)>C(θ)eA(θ)t dt,

and λ1(WO(θ)WC(θ)) ≥ ·· · ≥ λnx(WO(θ)WC(θ)) ≥ 0 denote
the eigenvalues of the matrix WO(θ)WC(θ).

The Hankel singular values induce several interesting sys-
tem norms. An important example is the Hankel norm

‖Σθ‖H = σ1(θ).

Another example is the Schatten p-norm (see, e.g., [39])
defined by

‖Σθ‖Sp =

( nx

∑
i=1

σi(θ)
p
)1/p

for a positive integer p, which generalizes the Hilbert-Schmidt
norm

√
∑

nx
i=1 σi(θ)2 and the nuclear norm ∑

nx
i=1 σi(θ).

In this section, we first show that the Hankel norm-
constrained parameter optimization problem

minimize
θ∈Θ

L(θ)

subject to Σθ is internally stable,
‖Σθ‖H < γ,

(21)

can be solved by geometric programming. To state the result,
we define the matrix functions

B̌1(θ) =
nx

∑
k=1

(
e>k B(θ)

)
⊗ e>k ,

B̌2(θ) =
nx

∑
k=1

ek⊗
(
B(θ)>ek

)
,

Č1(θ) =
nx

∑
k=1

(
e>k C(θ)>

)
⊗e>k ,

Č2(θ) =
nx

∑
k=1

ek⊗
(
C(θ)ek

)
,

(22)

where {e1, . . . ,enx} is the canonical basis of Rnx . Then, let us
define

B̄1(θ) =

e>1 ⊗ B̌1(θ)
...

e>nx ⊗ B̌1(θ)

 ,
B̄2(θ) =

[
B̌2(θ)⊗ e1 · · · B̌2(θ)⊗ enx

]
,

C̄1(θ) =

e>1 ⊗Č1(θ)
...

e>nx ⊗Č1(θ)

 ,
C̄2(θ) =

[
e>1 ⊗Č2(θ) · · · e>nx ⊗Č2(θ)

]
.

(23)

Theorem 5.1: Assume that there exist a monomial r(θ) and
a diagonal matrix R0 with positive diagonals such that the
matrix R(θ) given in (4) satisfies (8). Then, the solution of the
Hankel norm-constrained parameter optimization problem (21)
is given by the solution of the geometric program (24).

For the proof of Theorem 5.1, we state the following
extension of Lemma 3.3.

Lemma 5.2: Let q be an even integer. For each i = 1, . . . ,q,
let Fi ∈Rni×ni and Hi ∈Rni−1×ni be real matrices. Let v ∈Rn0

and g∈Rnq be real vectors. Assume that F1, . . . , Fq are Metzler
and H1, . . . , Hq, g are nonnegative. The following conditions
are equivalent.

1) The matrices F1, . . . , Fq are Hurwitz stable and

(H1F1) · · ·(HqFq)g < v. (25)

2) There exist positive vectors ωi ∈ Rni (i = 1, . . . ,q) such
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minimize
θ∈Rnθ

++,v∈R
nx
++

ω1∈R
n2
x nw
++ ,ω2∈R

n2
x ny

++

L̃(θ) (24a)

subject to γ
−2D−1

v B̄1(θ)ω1 < 1, (24b)

D−1
ω1
(R0⊕Onw ⊕R0)

−1 B̄2(θ)C̄1(θ)ω2 +(Ã(θ)⊕Onw ⊕ Ã(θ)>)ω1

r(θ)
< 1, (24c)

D−1
ω2
(R0⊕Ony ⊕R0)

−1 (Ã(θ)
>⊕Ony ⊕ Ã(θ))ω2 + B̄2(θ)v

r(θ)
< 1, (24d)

fi(θ)≤ 1, i = 1, . . . , p. (24e)

that the following system of inequalities hold true:

H1ω1 < v,

Fiωi +Hi+1ωi+1 < 0, (i = 1, . . . ,q−1)
Fqωq +g < 0.

(26)

Proof: If inequality (25) holds true, then applying
Lemma 3.3 to (25) iteratively q times show the existence of
positive vectors ωi ∈ Rni satisfying the inequalities in (26).
The proof of the opposite direction is straightforward and,
therefore, is omitted.

We also collect basic facts on Kronecker products and sums
in the following lemma.

Lemma 5.3 ([8]): The following claims hold true.

1) Let M be a real square matrix. Then, we have exp(M)⊗
exp(M) = exp(M⊕M).

2) Let M and N be n× n real square matrices having
eigenvalues {µi}n

i=1 and {σi}n
i=1, respectively. Then,

the set of the eigenvalues of M ⊕ N coincides with
{µi +σ j}n

i, j=1.
3) Let M1, M2, N1, and N2 be matrices. Assume that

the products M1M2 and N1N2 are well-defined. Then,
(M1M2)⊗ (N1N2) = (M1⊗N1)(M2⊗N2).

Let us prove Theorem 5.1.

Proof of Theorem 5.1: Notice that the matrix func-
tions B̄1, B̄2, C̄1, and C̄2 are posynomials with the variable θ

by equations (22) and (23). Therefore, it is easy to see
that the constraints (24b)–(24e) are in terms of posynomials
under Assumptions 2.2 and 2.4. Therefore, the optimization
problem (24) is indeed a geometric program. Hence, to prove
Theorem 5.1, it is sufficient to show that Σθ is internally
stable and satisfies ‖Σθ‖H < γ if and only if there exist
positive vectors v ∈Rnx , ω1 ∈Rn2

xnw , and ω2 ∈Rn2
xny such that

inequalities (24b)–(24d) hold true.

Assume that Σθ is internally stable and satisfies ‖Σθ‖H < γ .
Let us derive alternative expressions for the Grammian matri-
ces. Let i, j,k, ` ∈ {1, . . . ,nx} and define the scalar function

wC,i jkl(θ) = e>i eA(θ)tek(e>k B(θ))(B(θ)>e`)e>` eA(θ)>te j.

Since B(θ)B(θ)> = ∑
nx
k,`=1 ek(e>k B(θ))(B(θ)>e`)e>` , we can

write the (i, j)th entry of the controllability Grammian WC(θ)

as

[WC(θ)]i, j =
nx

∑
k,`=1

∫
∞

0
wC,i jkl(θ)dt. (27)

Since the scalar (e>k B(θ))(B(θ)>e`) equals its transpose
(e>` B(θ))(B(θ)>ek), we can rewrite the function wC,i jkl(θ) as

wC,i jkl(θ)

=
[
e>i eA(θ)tek

][
(e>` B(θ))(B(θ)>ek)

][
e>` eA(θ)>te j

]
=
[
e>i eA(θ)tek

]
⊗
[
(e>` B(θ))Inw(B(θ)

>ek)
]
⊗
[
e>` eA(θ)>te j

]
by using the fact that the product of scalars equals the
Kronecker product of the scalars. Then, Lemma 5.3.3 shows
that

wC,i jkl(θ) =
[
e>i ⊗ (e>` B(θ))⊗ e>`

][
eA(θ)t ⊗ Inw ⊗ eA(θ)>t][ek⊗ (B(θ)>ek)⊗ e j

]
.

(28)

We then use Lemma 5.3.1 twice to obtain

eA(θ)t ⊗ Inw ⊗ eA(θ)>t = eA(θ)t ⊗ eOnw t ⊗ eA(θ)>t

= e(A(θ)⊕Onw⊕A(θ)>)t .
(29)

Since the matrix A(θ) is Hurwitz stable by our assumption, the
eigenvalues of the Kronecker sum A(θ)⊕Onw ⊕A(θ)> have
negative real part by Lemma 5.3.2. Therefore, from (29) we
obtain

∫
∞

0 eA(θ)t⊗Inw⊗eA(θ)>t dt =−(A(θ)⊕Onw⊕A(θ)>)−1.
Hence, equations (27) and (28) show that

[WC(θ)]i, j

=−
nx

∑
k,`=1

(
e>i ⊗ (e>` B(θ))⊗ e>`

)(
A(θ)⊕Onw ⊕A(θ)>

)−1

(
ek⊗ (B(θ)>ek)⊗ e j

)
= −

(
e>i ⊗ B̌1(θ)

)(
A(θ)⊕Onw ⊕A(θ)>

)−1(B̌2(θ)⊗ e j
)
,

which yields WC(θ) =−B̄1(θ)(A(θ)⊕Onw⊕A(θ)>)−1B̄2(θ).
Similarly, we can show that the observability Gram-
mian admits the representation WO(θ) = −C̄1(θ)(A(θ)> ⊕
Ony ⊕ A(θ))−1C̄2(θ). Now, since λmax(WO(θ)WC(θ)) =
λ1(WO(θ)WC(θ)) = ‖Σθ‖2

H < γ 2, Lemma 4.2 shows the exis-
tence of a positive vector v ∈ Rnx such that

C̄1(θ)
(
A(θ)>⊕Ony ⊕A(θ)

)−1C̄2(θ)

B̄1(θ)
(
A(θ)⊕Onw ⊕A(θ)>

)−1B̄2(θ)v < γ
2v.
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minimize
θ∈Rnθ

++,γi>0,

ωi,2k−1∈R
n2
x nw

++ ,

ωi,2k∈R
n2
x ny

++

L̃(θ) (31a)

subject to γ
−p

nx

∑
i=1

γi < 1, (31b)

γ
−1
i e>i C̄1(θ)ω1 < 1, (31c)

D−1
ωi,2k−1

(R0⊕Onw ⊕R0)
−1 B̄2(θ)C̄1(θ)ωi,2k +(Ã(θ)⊕Onw ⊕ Ã(θ)>)ωi,2k−1

r(θ)
< 1, k = 1,2, . . . , p

2 (31d)

D−1
ωi,2k

(R0⊕Ony ⊕R0)
−1 C̄2(θ)B̄1(θ)ωi,2k+1 +(Ã(θ)>⊕Ony ⊕ Ã(θ))ωi,2k

r(θ)
< 1, k = 1,2, . . . , p

2 −1 (31e)

D−1
ωi,p

(R0⊕Ony ⊕R0)
−1 (Ã(θ)

>⊕Ony ⊕ Ã(θ))ωi,p + B̄2(θ)ei

r(θ)
< 1, (31f)

fi(θ)≤ 1, i = 1, . . . , p. (31g)

Hence, Lemma 5.2 shows the existence of positive vec-
tors ω1 ∈ Rn2

xnw and ω2 ∈ Rn2
xny such that

C̄1(θ)ω1 < γ
2v,

(A(θ)>⊕Ony ⊕A(θ))ω1 +C̄2(θ)B̄1(θ)ω2 < 0,

(A(θ)⊕Onw ⊕A(θ)>)ω2 + B̄2(θ)v < 0.

Finally, an algebraic manipulation shows that these inequalities
are equivalent to the constraints (24b)–(24d), as desired.

We can similarly prove that the existence of positive vec-
tors v∈Rnx , ω1 ∈Rn2

xnw , and ω2 ∈Rn2
xny satisfying (24b)–(24d)

shows the internal stability of Σθ and inequality ‖Σθ‖H < γ .
The details are omitted.

Let us then consider the following Schatten p norm-
constrained parameter optimization problem:

minimize
θ∈Θ

L(θ)

subject to Σθ is internally stable,
‖Σθ‖Sp < γ,

(30)

for a constant γ > 0. The following theorem shows that this
optimization problem can be solved by geometric program-
ming under the assumption that p is an even integer, which
covers the interesting case of the Hilbert-Schmidt norm.

Theorem 5.4: Suppose that p is an even integer. Assume
that there exist a monomial r(θ) and a diagonal matrix R0
with positive diagonals such that the matrix R(θ) given in (4)
satisfies (8). Then, the solution of the Schatten p norm-
constrained parameter optimization problem (30) is given by
the solution of the geometric program (31).

Proof: Suppose that Σθ is internally stable. Let us first
show that ‖Σθ‖Sp < γ if and only if there exist positive
numbers γ1, . . . , γnx satisfying (31b) and

e>i (WO(θ)WC(θ))
p/2ei < γi (32)

for all i = 1, . . . ,nx. Assume ‖Σθ‖Sp < γ . Since the definition

of the Schatten p-norm shows

‖Σθ‖Sp =
[
tr
(
(WO(θ)WC(θ))

p/2)]1/p
, (33)

we obtain tr((WO(θ)WC(θ))
p/2) < γ p. From this inequal-

ity, we can take positive numbers γ1, . . . , γnx such that
[(WO(θ)WC(θ))

p/2]ii < γi for all i and γ1 + · · ·+ γnx < γ p, as
desired. On the other hand, if there exist positive numbers γ1,
. . . , γnx such that (31b) and (32) hold true, then (33) shows
‖Σθ‖Sp = (∑n

i=1[(WO(θ)WC(θ))
p/2]ii)

1/p < (∑
nx
i=1 γi)

1/p < γ , as
desired.

From the above observation, to prove the theorem, we
need to show that inequality (32) holds true if and only if
there exist positive vectors ωi,2k−1 ∈ Rn2

xnw and ωi,2k ∈ Rn2
xny

(k = 1, . . . , p/2) satisfying constraints (31c)–(31f). We can
show this equivalence by applying Lemma 5.2 to the inequal-
ity (32) because the product on the left hand side of (32)
is rewritten as e>i (WO(θ)WC(θ))

p/2ei = (H1F1) · · ·(HpFp)g for
the matrices Hi,Fi given by

H1 = e>i C̄1(θ),

H3 = H5 = · · ·= Hp−1 = B̄2(θ)C̄1(θ),

H2 = H4 = · · ·= Hp = C̄2(θ)B̄1(θ),

F1 = F3 = · · ·= Fp−1 = A(θ)>⊕Ony ⊕A(θ),

F2 = F4 = · · ·= Fp = A(θ)⊕Onw ⊕A(θ)>,

and the vector g = B̄2(θ)ei. The further details of the proof is
omitted.

VI. STABILIZATION UNDER STRUCTURED UNCERTAINTY

In this section, we show that a class of robust stabilization
problems under structural uncertainties can be solved by
geometric programming. Throughout this section, we place
the following assumption for simplicity:

Assumption 6.1: The system Σθ has the same number of
inputs and outputs, that is, ny = nw =m for a positive integer m.
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This assumption simplifies the notation and is not restrictive
because we can insert the input and output matrices with
zero columns and rows to realize nw = ny, without affecting
the robust stability notions we shall discuss below (see also,
e.g., [16]). We then consider the situation in which the open-
loop system Σθ is closed with the relationship

w = ∆y, (34)

where ∆∈∆∆∆⊂ [0,∞)m×m represents a static uncertainty matrix.
In this section, we are interested in the stability of the closed-
loop system arising from the interconnection, that is, the
internal stability of the system

dx
dt

= (A(θ)+B(θ)∆C(θ))x. (35)

To quantify the robust stability of this closed-loop system, let
us introduce the quantity

η(θ) = sup
∆∈∆∆∆,‖∆‖≤ε

λmax(A(θ)+B(θ)∆C(θ)),

where ε > 0 represents the maximum size of the uncertainty
matrix ∆. In this context, we consider the following robust
stabilization problem:

minimize
θ∈Θ

L(θ) (36a)

subject to η(θ)<−γ, (36b)

where γ > 0 denotes the desired exponential decay rate for the
closed-loop system (35).

Following the formulation in [16], this paper focuses on the
structural uncertainties belonging to

D = {diag(∆1, . . . ,∆φ ,δφ+1, . . . ,δφ+σ ) |
∆k ∈ Rmk×mk

+ , k = 1, . . . ,φ ,
δk ≥ 0, k = φ +1, . . . ,φ +σ} ⊂ Rm×m.

Then, the following theorem shows that we can solve the
robust stabilization problem (36) by geometric programming.

Theorem 6.2: Define the set

P = {diag(π1Im1 , . . . ,πφ Imφ
,πφ+1, . . . ,πφ+σ ) |

πk > 0, k = 1, . . . ,φ +σ} ⊂ Rm×m.

Then, the solution of the robust stabilization problem (36) is
given by the following geometric program:

minimize
θ∈Rnθ

++,Π∈P ,
u,v∈Rm

++,

ξ ,ζ∈Rnx
++

L̃(θ) (37a)

subject to
√

εD−1
v Π

1/2C(θ)ξ < 1, (37b)

D−1
ξ

R(θ)−1(Ã(θ)ξ + γξ +
√

εB(θ)Π−1/2u)< 1,
(37c)

√
εD−1

u Π
−1/2B(θ)>ζ < 1, (37d)

D−1
ζ

R(θ)−1(Ã(θ)>ζ + γζ +
√

εC(θ)>Π
1/2v)< 1,

(37e)
fi(θ)≤ 1, i = 1, . . . , p. (37f)

In order to prove Theorem 6.2, we present the following

proposition.
Proposition 6.3: Consider the positive linear system Σ

given by (10). Let γ > 0. The following two conditions are
equivalent:

1) The following inequality holds true:

sup
∆∈∆∆∆,‖∆‖≤ε

λmax(F +G∆H)<−γ. (38)

2) There exist positive vectors u,v ∈ Rm and ξ ,ζ ∈ Rnx

as well as a matrix Π ∈ P such that the following
inequalities hold true:

√
εΠ

1/2Hξ < v,

(F + γI)ξ +
√

εGΠ
−1/2u < 0,

√
εΠ
−1/2G>ζ < u,

(F>+ γI)ζ +
√

εH>Π
1/2v < 0.

(39)

Proof: Let us prove the necessity. Assume that inequal-
ity (38) holds true. Then, the system

Σγ :


dx
dt

= (F + γI)x+
√

εGw,

y =
√

εHx,

with the feedback (34) is internally stable for all ∆ ∈ ∆∆∆ satis-
fying ‖∆‖ ≤ 1. Let M̂γ(s) denote the transfer function of the
system Σγ . Then, by [16, Theorem 10], there exists Π∈P such
that ‖Π1/2M̂γ(0)Π−1/2‖< 1. Therefore, Lemma 4.3 shows the
existence of positive vectors u,v ∈ Rm such that

−Π
1/2√

εH(F + γI)−1√
εGΠ

−1/2u < v,

−Π
−1/2√

εG>(F>+ γI)−1√
εH>Π

1/2v < u.

In the same way as in the proof of Proposition 4.4, applying
Lemma 3.3 to these inequalities shows the existence of positive
vectors ξ ,ζ ∈Rnx satisfying the inequalities in (39), as desired.
The proof of sufficiency is omitted.

Let us prove Theorem 6.2.
Proof of Theorem 6.2: Proposition 6.3 implies that the

solution of the robust stabilization problem (36) is given by
the solution of the following optimization problem:

minimize
θ∈Θ,Π∈P ,

u,v∈Rm
++,ξ ,ζ∈R

nx
++

L(θ)

subject to
√

εΠ
1/2C(θ)ξ < v,

(A(θ)+ γI)ξ +
√

εB(θ)Π−1/2u < 0,
√

εΠ
−1/2B(θ)>ζ < u,

(A(θ)+ γI)>ζ +
√

εC(θ)>Π
1/2v < 0.

A simple algebraic manipulation reduces this optimization
problem to the optimization problem (37), which is indeed
a geometric program by Assumptions 2.2 and 2.4 as well
as the fact that Π is a diagonal matrix whose diagonals are
monomials with respect to the variables πk. The further details
of the proof are omitted.

Finally, as a direct corollary of Theorem 6.2, we below
present a geometric program for identifying the maximum
allowable size of the uncertainty matrix ∆ for the robust
stabilization problem (36) to be feasible.
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Corollary 6.4: The robust stabilization problem (36) is
solvable for all ε ∈ [0,ε?], where ε = ε? solves the following
geometric program:

minimize
θ∈Rnθ

++,Π∈P ,
u,v∈Rm

++,ξ ,ζ∈R
nx
++,ε>0

1/ε

subject to (37b)–(37f).

VII. TIME-DELAY SYSTEMS

In the previous sections, we have presented geometric
programming-based frameworks for efficiently solving various
classes of norm-constrained parameter optimization problems
for positive linear systems. The aim of this section is to extend
the frameworks to delayed positive linear systems [26]. Let
us consider the following parametrized positive linear system
with time-delays:

Σd,θ :


dx
dt

= A(θ)x(t)+Ad(θ)x(t−h)+B(θ)w(t),

y =C(θ)x(t)+Cd(θ)x(t−h),
x|[−h,0] = φ ∈ C([−h,0],Rnx

+ ),

where h > 0 represents a constant delay and C([−h,0],Rnx
+ )

denotes the set of Rnx
+ -valued continuous functions defined on

the interval [−h,0]. We denote the solutions of the system Σd,θ
with the initial condition φ and the disturbance signal w
by x(t;φ ,w) and y(t;φ ,w), when we need to emphasize their
dependence on φ and w. We suppose that, for all θ ∈ Θ,
the matrix A(θ) is Metzler and the matrices Ad(θ), B(θ),
C(θ), and Cd(θ) are nonnegative. This guarantees [31] that
the system Σd,θ is internally positive, that is, the values of the
state x(t) and output y(t) remain nonnegative at every time
instant t if φ(t) ≥ 0 for all t ∈ [−h,0] and w(t) ≥ 0 for all
t ≥ 0.

We are concerned with the following three quantities on
the delayed positive linear system Σd,θ . The first one is the
exponential decay rate defined by

ρθ =− sup
φ∈C([−h,0],Rn

+)

limsup
t→∞

log‖x(t;φ ,0)‖
t

.

The second quantity of interest is the L1-gain of the sys-
tem [9], [17], [57]. Assume that ρθ > 0. For a positive
integer n, let L1(Rn

+) = { f : [0,∞)→ Rn |
∫

∞

0 ‖ f (t)‖1 dt < ∞}
denote the space of Lebesgue-measurable integrable functions
equipped with the norm ‖ f‖1 =

∫
∞

0 ‖ f (t)‖1 dt, where ‖ f (t)‖1
denotes the 1-norm of the vector f (t). Then, we define the
L1-gain of Σd,θ by

‖Σd,θ‖L1 = sup
w∈L1(Rnw

+ )\{0}

‖y(·;0,w)‖1

‖w‖1
.

The third and last quantity of our interest is the L∞-gain [17],
[45]. Let L∞(Rn

+) = { f : [0,∞)→Rn | esssupt≥0‖ f (t)‖∞ <∞}
denote the space of Rn

+-valued essentially bounded Lebesgue-
measurable functions equipped with the norm ‖ f‖∞ =
esssupt≥0‖ f (t)‖∞, where ‖ f (t)‖∞ denotes the ∞-norm. Then,

we define the L∞-gain of Σd,θ by

‖Σd,θ‖L∞ = sup
w∈L∞(Rnw

+ )\{0}

‖y(·;0,w)‖∞

‖w‖∞

.

Then, the parameter optimization problem that we study in
this section is stated as follows:

minimize
θ∈Θ

L(θ) (40a)

subject to ρθ > 0, (40b)
β (ρθ ,‖Σθ‖L1 ,‖Σθ‖L∞)< γ, (40c)

where β : R3
++→R++ is a function representing the trade-off

between the exponential decay rate, L1-gain, and L∞-gain of
the system.

Let us place the following assumption, which corresponds
to Assumptions 2.2 and 4.5 in the delay-free case.

Assumption 7.1: The following conditions hold true:

1) There exists a diagonal matrix function R(θ) having
monomial diagonals such that each entry of the matrix

Ãd(θ) = A(θ)+Ad(θ)+R(θ)

is either a posynomial of θ or zero.
2) Each entry of the matrices B(θ), Bd(θ), C(θ),

and Cd(θ) is either a posynomial of θ or zero.
3) The function β is a posynomial, nonincreasing with

respect to the first variable, and nondecreasing with
respect to the left two variables.

Under these assumptions, the following theorem shows that
the mixed-constraint optimization problem (40) can be solved
by convex optimization.

Theorem 7.2: Let γ > 0 be given. Define the function g by

g(ρ) = eρh−1

for ρ > 0. The solution of the parameter optimization prob-
lem (40) is given by the solution of the following optimization
problem:

minimize
θ∈Rnθ

++,

ξ ,u,v∈Rnx
++,

ρ,γ1,γ∞>0

L̃(θ) (41a)

subject to γ
−1

β (ρ,γ1,γ∞)< 1, (41b)

D−1
ξ

R(θ)−1(Ãd(θ)+ρI +g(ρ)Ad(θ)
)
ξ < 1,

(41c)

D−1
u R(θ)−1(Ãd(θ)

>u+(C(θ)+Cd(θ))
>1
)
< 1,
(41d)

γ
−1
1 B(θ)>u < 1, (41e)

D−1
v R(θ)−1(Ãd(θ)v+B(θ)1)< 1, (41f)

γ
−1
∞ (C(θ)+Cd(θ))v < 1, (41g)

fi(θ)≤ 1, i = 1, . . . , p. (41h)

Moreover, this optimization problem reduces to a convex
optimization problem by logarithmic variable transformations
of the form (3).

Remark 7.3: The optimization problem (41) is not a ge-
ometric program because the function g appearing in the
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constraint (41c) is not a posynomial. However, as stated in
Theorem 7.2 shall be shown below in the proof of the theorem,
the optimization problem can be still reduced to a convex
optimization problem.

Proof of Theorem 7.2: Assumptions 2.4 and 7.1 show
that the optimization problem (41) is a geometric program if
the function g was a posynomial. However, because g is not a
posynomial, the optimization problem (41) is not a geometric
program. However, the function g is a limit of the sequence
of posynomials {gk}∞

k=1 given by gk(ρ) = ∑
k
`=1(ρh)`/`!.

Therefore, logarithmic variable transformations of the form (3)
in fact convert the optimization problem (41) into a convex
optimization problem (see [6, Section 7.1] for further details).

As in the proof of Corollary 4.6, we need to show that θ ∈Θ

satisfies inequalities (40b) and (40c) if and only if there exist
positive vectors ξ ,u,v ∈ Rnx and positive numbers ρ,γ1,γ∞

satisfying constraints (41b)–(41g).
In this proof, we only show the sufficiency. Suppose the

existence of positive vectors ξ ,u,v ∈ Rnx and positive num-
bers ρ,γ1,γ∞ satisfying (41b)–(41g). By the monotonicity
property of the function β (see Assumption 7.1.3) and inequal-
ity (41b), it is sufficient to show the following inequalities

ρθ > ρ, (42)
‖Σd,θ‖L1 < γ1, (43)
‖Σd,θ‖L∞ < γ∞. (44)

Let us first show (42). Let φ ∈ C([−h,0],Rnx
+ ) be arbitrary.

Since inequality (41c) implies (A(θ)+ρI + eρhAd(θ))ξ < 0,
Lemma 4.2 shows that the matrix A(θ) + ρI + eρhAd(θ) is
Hurwitz stable. Therefore, Theorem 3.1 in [33] shows that the
solution y of the following delayed positive linear system

dx̃
dt

= (A(θ)+ρI)x̃+ eρhAd(θ)x̃(t−h)

converges to zero exponentially fast. On the other hand, the
function x̃(t) = eρtx(t;φ ,0) satisfies this differential equation
for t ≥ h. Therefore, we conclude that the function x(·;φ ,0)
converges to zero exponentially fast with its rate being greater
than ρ , as desired. We then show inequalities (43) and (44). In-
equalities (41d) and (41e) show (A(θ)+Ad(θ))

>u+(C(θ)+
Cd(θ))

>1 < 0 and B>(θ)u− γ11 < 0. These inequalities and
Lemma 2 in [57] show (43). In a similar manner, Theorem 2
in [45] shows that inequalities (41f) and (41g) imply (44). This
completes the proof of the theorem.

VIII. EXAMPLE: DYNAMICAL BUFFER NETWORKS

In this section, we illustrate the theoretical results presented
in the previous sections. Let G be a weighted and directed
graph with the node set V = {1, . . . ,N} and edge set E =
{e1, . . . ,eM} ⊂ {1, . . . ,N}×{1, . . . ,N}, respectively. For each
edge e` we use the notation e` = (e`(1),e`(2)), where the
nodes e`(1) and e`(2) denote the origin and the destination
of the edge, respectively. Since the graph G is weighted,
a positive and fixed weight we` is assigned on an edge e`.
By abusing the notation, we often write the weight we` as
we`(1)e`(2). Therefore, the weight of an edge (i, j) is denoted

by wi j. We define the adjacency matrix AG ∈ RN×N of the
graph G by

[AG ]i j =

{
w ji, if ( j, i) ∈ E ,
0, othereise.

Also, let us define the set of in-neighborhood of node i as
N in

i = { j ∈ V : ( j, i) ∈ E}. Similarly, we define the set of out-
neighborhood of node i as N out

i = { j ∈ V : (i, j) ∈ E}.
We assume that the network G contains at least one origin

(i.e., a node having an empty in-neighborhood) and at least one
destination (i.e., a node having an empty out-neighborhood).
Let Vo and Vd denote the set of origins and destinations of the
network, respectively. Without loss of generality, we assume
that Vo = {1, . . . , |Vo|}, where |Vo| denotes the size of the
set Vo. We allow the network to have multiple origins and/or
neighbors. Then, we consider a dynamical buffer network
described by the following set of differential equations (see,
e.g., [43]):

dxi

dt
=



f in
i − ∑

j∈N out
i

ui j, if i ∈ Vo,

∑
j∈N in

i

u ji− ∑
j∈N out

i

ui j, if i /∈ Vo∪Vd ,

∑
j∈N in

i

u ji− f out
i , if i ∈ Vd ,

(45)

where xi represents the buffer content of node i, ui j represents
the volume of flow from node i to j, f in

i (i∈ Vo) describes the
effect of local production or an external disturbance, and f out

i
(i∈ Vd) describes the decay of the buffer content at destination
nodes. The flows are assumed to be in the following linear
form:

f out
i = φixi, ui j = ψiwi jxi,

where φi > 0 (i ∈ Vd) and ψi > 0 (i ∈ V\Vd) are constants
dependent on node i. For convenience of notation, we set φi =
0 for all i ∈ V\Vd and ψi = 0 for all i ∈ Vd . Also, let us set
the measurement output of the system as

y =
[

x
αu

]
, (46)

where α > 0 is a weight constant and the M-dimensional
vector u is obtained by vertically stacking the flows ui j as
u = [ue1(1)e1(2) · · · ueM(1)eM(2)]

>. Let us denote the dynamical
system (45) and (46) by Σφ ,ψ , which we can rewrite as

Σφ ,ψ :


dx
dt

=
(

AGΨ−diag(1>AGΨ)−Φ

)
x+

[
I|Vo|

On−|Vo|,n

]
f in,

y =

[
In

αHΨ

]
x,

where f in = [ f in
1 · · · f in

|Vo|]
>, Ψ = diag(ψ1, . . . ,ψN), Φ =

diag(φ1, . . . ,φN), and the matrix H ∈ RM×N is defined by

H`i =

{
we` , if i = e`(1),
0, otherwise,

for all ` ∈ {1, . . . ,M} and i ∈ {1, . . . ,N}.
In this example, we study the problem of tuning the local
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Fig. 1. A directed acyclic graph. Triangles: origins. Squares: destinations.

constants φi and ψi for achieving a small H∞ norm of the
dynamical buffer network Σφ ,ψ . Let us introduce the vari-
ables φ = (φi)i∈Vd and ψ = (ψi)i∈V\Vd

. We measure the cost
for tuning the system by the sum

L(φ ,ψ) = ∑
i∈Vd

φi + ∑
i∈V\Vd

ψi. (47)

We further allow the following forms of upper-bounds on the
parameters to be tuned:

φi ≤ φ̄i, ψi ≤ ψ̄i (48)

for positive constants φ̄i and ψi, which may arise from physical
restrictions. We can now formulate our optimization problem
as follows.

Problem 8.1 (Buffer network optimization): Let γ > 0 be
given. Find the set of parameters φ and ψ satisfying the con-
straints in (48) as well as the H∞ norm-constraint ‖Σφ ,ψ‖∞ < γ ,
while the cost L(φ ,ψ) is minimized.

Let us show that the buffer network optimization problem
can be solved by geometric programming. It is easy to see
that the system Σφ ,ψ satisfies Assumption 2.2.2). In order
to show that Assumption 2.2.1) is satisfied, we define the
matrix R(θ) = diag(1>AGΨ) + Φ. Then, each entry of the
matrix Ã(θ) = A(θ)+R(θ) = AGΨ is either a posynomial in
the variables φ and ψ or zero. Moreover, R(θ) is a diagonal
matrix and has the monomial diagonals:

[R(θ)]ii =

{
ψi ∑ j∈N out

i
wi j, if i ∈ V\Vd ,

φi, otherwise.

Therefore, Assumption 2.2.1) is satisfied as well. Also, it
is trivial to see that the cost function (47) is a posynomial
in the variables and, therefore, satisfies Assumption 2.4.1).
Finally, Assumption 2.4.2) holds true because one can rewrite
the constraints (48) in terms of posynomials as φ̄

−1
i φi ≤ 1

and ψ̄
−1
i ψi ≤ 1. Therefore, we can use Theorem 4.1 to

solve the buffer network optimization problem via geometric
programming.

For numerical simulations, let us consider a synthetic di-
rected acyclic graph shown in Fig. 1. The graph has two
origins (indicated by triangles) and two destinations (indicated
by squares). We assume that the weights of edges originating
from a node are equal and sums to one. Therefore, we set

Fig. 2. The amount of optimal investments for various values of γ . The darker
the colors, the bigger the optimized parameters φi and ψi.

wi j = 1/|N out
i | for all node i. Also, let us set φ̄i = ψ̄i = 5 for

all nodes and use the weight α = 1/10 in the measurement
output (46). Using an H∞ norm-counterpart of Remark 3.5, we
first identify the minimum achievable H∞ norm of the system
as γ? = 0.388. Then, for various values of γ within the interval
[γ?,4γ?], we solve the buffer network optimization problem
and obtain the optimal values of the local parameters φ and ψ .
We show the values of the optimal cost L for various values
of γ . For the cases when γ = 1.5γ?, 2γ?, and 4γ?, we illustrate
the obtained values of the constants φ and ψ in Fig. 2.

IX. EXAMPLE: NETWORKED EPIDEMICS

In this section, we consider the Susceptible-Infected-
Susceptible (SIS) model for describing networked epidemic
processes taking place in human and animal social net-
works [34], [41]. In the SIS model, at a given (continuous)
time t ≥ 0, each node can be in one of two possible states:
susceptible or infected. When a node i is infected, it can
randomly transit to the susceptible state with an instantaneous
rate δi > 0, called the recovery rate of node i. On the
other hand, an infected node j can infect node i with the
instantaneous rate βiwi j, where βi > 0 is called the infection
rate of node i. The SIS model is a Markov process having a
total of 2N possible states [53] (two states per node).

Throughout this section, we consider the situation where
the connectivity of the network is not completely known, as
is often the case in practice [28]. In this paper, let us model
this uncertainty as an additive uncertainty in the weights of
edges, that is, let us assume that the adjacency matrix of the
graph takes the form

AG = AḠ +A∆G ,

where AḠ denotes the adjacency matrix of the nominal
(weighted) network Ḡ and A∆G denotes a nonnegative matrix
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representing the uncertainty. For simplicity, we assume that
only a bound on the norm of the uncertainty A∆G is known as

‖A∆G‖ ≤ ε (49)

for a positive constant ε .

We consider the following standard epidemiological prob-
lem (see [42] for the case where no uncertainty exists in
the underlying network). We assume that we can distribute
within the network vaccines for reducing the infection rates of
individuals, and antidotes for increasing their recovery rates.
Let us suppose that the infection and recovery rates can be
tuned within the intervals

¯
β ≤ βi ≤ β̄ ,

¯
δ ≤ δi ≤ δ̄ . (50)

Let f (βi) denote the cost for setting the infection rate of
node i to βi. Likewise, let g(δi) denote the cost for setting the
recovery rate of node i. Then, the total cost L for achieving
a set of infection and recovery rates (β1, . . . ,βN ,δ1, . . . ,δN)
equals

L =
N

∑
i=1

( f (βi)+g(δi)). (51)

Through the resource distribution, we aim for increasing the
exponential decay rate of the epidemic process defined by

ρ =− sup
V0⊂V

limsup
t→∞

log∑
N
i=1 pi(t)
t

,

where V0 denotes the set of initially infected nodes and pi(t)
denotes the probability that node i is infected at time t. We
can now state the resource distribution problem studied in this
section.

Problem 9.1: Let a minimum required exponential decay
rate, denoted by γ > 0, be given. Find the set of infection
rates {βi}N

i=1 and recovery rates {δi}N
i=1 that minimizes the

total cost L given by (51), while satisfying the following robust
stability condition

inf
∆G : ‖A∆G‖≤ε

ρ > γ. (52)

The computation of the exponential decay rate ρ is very
hard for contact networks of large size because of the huge
size of the state space of the SIS model (as a Markov process).
A popular approach to simplify the analysis of this type of
Markov processes is to consider upper-bounding linear models
(see, e.g., [42]), from which we obtain

ρ ≥−λmax(diag(β )AG −diag(δ )).

Therefore, to satisfy the robust stability condition (52), it is
sufficient to achieve that

sup
∆G : ‖A∆G‖≤ε

λmax
(
diag(β )(AḠ +A∆G)−diag(δ )

)
<−γ. (53)

We use this fact to reduce Problem 9.1 into a robust stabiliza-
tion problem of the form (36). Let us introduce the vectorial
parameter

θ = [β1, . . . ,βN , δ1, . . . , δN ]
>. (54)

Fig. 3. Cost functions for infection and recovery rates.

Fig. 4. The amount of optimal total investments L? versus the relative
maximum size ε/‖AG‖ of the additive uncertainty ‖A∆G‖

Define
A(θ) = diag(β )AG −diag(δ ), (55)

B(θ) = diag(β ), and C(θ) = I. Then, we can rewrite the
requirement (53) as (36b). Therefore, Problem 9.1 reduces to
the robust stabilization problem (36) studied in Section VI.

In order to apply Theorem 6.2 for solving Problem 9.1 via
geometric programming, we need to confirm that Assump-
tions 2.2 and 2.4 hold true. It is easy to see that Assumption 2.2
is satisfied because, for the diagonal matrix

R(θ) = diag(δ ) (56)

with monomial diagonals, each entry of the matrix func-
tion Ã(θ) = A(θ)+R(θ) = diag(β )AG is either a posynomial
with respect to the variables in (54) or zero. To guarantee
that Assumption 2.4 holds true, let us use the following cost
functions similar to the ones used in [42]:

f (βi) =
β
−p
i − β̄−p

¯
β−p− β̄−p

, g(δi) =
δ

q
i − ¯

δ q

δ̄ q−
¯
δ q

, (57)

where p > 0 and q > 0 are constants to tune the shape of the
cost functions. Notice that the cost function f is normalized as
f (

¯
β ) = 1 and f (β̄ ) = 0. This indicates that β̄ is the nominal

infection rate of nodes, and that a unit investment improves the
nominal rate to the minimum possible infection rate

¯
β . The

same interpretation applies to the cost function g for recovery
rates. When the above cost functions are used, the total cost L
in (51) satisfies Assumption 2.4.1) with the constant

L0 = N

(
β̄−p

¯
β−p− β̄−p

+ ¯
δ q

δ̄ q−
¯
δ q

)
.
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(a) ε = 0

(b) ε = 0.4 · ‖AG‖

Fig. 5. Optimal investments f (β ?
i ),g(δ

?
i ) on individual nodes versus the

PageRank centralities of the nodes.

Also, the box constraints (50) can be easily converted to con-
straints in terms of posynomials. Therefore, Assumption 2.4
is satisfied as well.

In this numerical simulation, we let the nominal network Ḡ
be a human social network having N = 247 nodes with its
adjacency matrix having spectral radius 13.53. Suppose that

¯
β = 0.1, β̄ = 0.2,

¯
δ = 1, and δ̄ = 2. The exponents p,q in

the cost functions (57) are chosen as p = 0.1 and q = 1. The
graphs of the corresponding cost functions are shown in Fig. 3.
We require that the exponential decay rate of the SIS model
is at least γ = 0.01 for any additive uncertainty A∆G satisfying
inequality (49).

We first use Corollary 6.4 and identify the maximum
allowable size of the uncertainty as ε? = 0.471 · ‖AG‖. Then,
for various values of ε in the interval [0,ε?], we solve the
resource distribution problem to find the optimized infection
rates β ?

i and recovery rates δ ?
i by geometric programming. In

Fig. 4, we show how the optimal total cost, denoted by L?,
depends on the size of the uncertainty ε . We then investigate
how a particular value of the uncertainty size ε affects the way
in which medical resources are distributed over the complex
network. In Fig. 5, we show the amount of resources spent on
improving the infection and recovery rates of individual nodes
versus the PageRank [40] of the nodes in the nominal network,
for the cases of ε = 0 (Fig. 5a) and ε = 0.4 · ‖AG‖ (Fig. 5b),
respectively. When no uncertainty is expected (ε = 0), we

find several nodes not receiving investments on their recovery
rates. This trend drastically disappears as we increase the size
of the uncertainty to ε = 0.4 · ‖AG‖, in which case all nodes
receive at least one-fourth unit of investments on their recovery
rates. This observation indicates the importance of correctly
identifying the connectivity structure of complex networks for
effective distribution of medical resources.

Remark 9.2: The diagonal matrix R(θ) in (56) cannot be
written in the form (8). This fact seems to prevent us from
using Theorems 3.1, 5.1, and 5.4 for optimizing the H2, Han-
kel, and Schatten-p norms of the epidemic dynamics described
by the SIS model. We can, however, avoid this problem by
using a different parametrization of system matrices. Let us
parametrize the recovery rate δi as

δi = δ̄ +1− 1

δ
(c)
i

,
1

δ̄ −
¯
δ +1

≤ δ
(c)
i ≤ 1,

where δ
(c)
i is an auxiliary positive variable. Let us introduce

the notation diag(1/δ (c)) = diag(1/δ
(c)
1 , · · · ,1/δ

(c)
N ). Then,

we can rewrite the matrix (55) as A(θ) = Ã(θ)−R(θ) for
Ã(θ) = diag(β )AG+diag(1/δ (c)) and R(θ) =−(δ̄ +1)I. This
R(θ) now is of the form (8). Furthermore, each entry of
the matrix Ã(θ) is indeed a posynomial of the variables, as
desired.

X. CONCLUSIONS AND DISCUSSION

In this paper, we have presented geometric programming-
based frameworks for the parameter tuning problem of positive
linear systems constrained by a parameter tuning cost as well
as system norms or stability properties. We have considered
the following standard system norms; the H2 norm, H∞ norm,
Hankel norm, and Schatten p-norm. We have also shown that
the robust stabilization problem under structured uncertainties,
as well as a mixed-constraint parameter tuning problem for
delayed positive linear systems can be numerically efficiently
solved. We have illustrated the effectiveness of our theoretical
results via numerical simulations on dynamical buffer net-
works and networked epidemic spreading processes.

There are several research directions that should be further
pursued. One such direction is the synthesis of switched posi-
tive linear systems [4], [25], [56]. In particular, it is of theoreti-
cal interest to investigate if we can utilize linear programming-
based results for the analysis of positive Markov jump linear
systems (see, e.g., [5]) to obtain geometric programs for syn-
thesis problems. Another research direction of interest is the
synthesis of cone-preserving linear systems. It has been found
in the literature [46], [47], [52] that linear systems leaving a
cone invariant share several interesting properties with positive
linear systems. In this direction, it is left as an open problem to
examine if the current geometric programming-based approach
can be applied to cone-preserving linear systems.

REFERENCES

[1] H. Adeli and O. Kamal, “Efficient optimization of space trusses,”
Computers & Structures, vol. 24, pp. 501–511, 1986.

[2] M. Ait Rami and F. Tadeo, “Controller synthesis for positive linear
systems with bounded controls,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 54, pp. 151–155, 2007.



15

[3] M. K. Belete and G. Balázsi, “Optimality and adaptation of phenotyp-
ically switching cells in fluctuating environments,” Physical Review E,
vol. 92, p. 062716, 2015.

[4] F. Blanchini, P. Colaneri, and M. E. Valcher, “Co-positive Lyapunov
functions for the stabilization of positive switched systems,” IEEE
Transactions on Automatic Control, vol. 57, pp. 3038–3050, 2012.

[5] P. Bolzern, P. Colaneri, and G. De Nicolao, “Stochastic stability of
Positive Markov Jump Linear Systems,” Automatica, vol. 50, pp. 1181–
1187, 2014.

[6] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi, “A tutorial on
geometric programming,” Optimization and Engineering, vol. 8, pp. 67–
127, 2007.

[7] S. P. Boyd, S.-J. Kim, D. D. Patil, and M. A. Horowitz, “Digital circuit
optimization via geometric programming,” Operations Research, vol. 53,
pp. 899–932, 2005.

[8] J. Brewer, “Kronecker products and matrix calculus in system theory,”
IEEE Transactions on Circuits and Systems, vol. 25, pp. 772–781, 1978.

[9] C. Briat, “Robust stability and stabilization of uncertain linear positive
systems via integral linear constraints: L1-gain and L∞-gain characteri-
zation,” International Journal of Robust and Nonlinear Control, vol. 23,
pp. 1932–1954, 2013.

[10] V. Chandrasekaran and P. Shah, “Relative entropy relaxations for signo-
mial optimization,” SIAM Journal on Optimization, vol. 26, pp. 1147–
1173, 2016.

[11] M. Chiang and S. Boyd, “Geometric programming duals of channel
capacity and rate distortion,” IEEE Transactions on Information Theory,
vol. 50, pp. 245–258, 2004.

[12] M. Chiang, C. W. Tan, D. P. Palomar, D. O’Neill, and D. Julian, “Power
control by geometric programming,” IEEE Transactions on Wireless
Communications, vol. 6, pp. 2640–2650, 2007.

[13] P. Colaneri, R. H. Middleton, Z. Chen, D. Caporale, and F. Blanchini,
“Convexity of the cost functional in an optimal control problem for a
class of positive switched systems,” Automatica, vol. 50, pp. 1227–1234,
2014.

[14] M. Colombino, N. K. Dhingra, M. R. Jovanović, A. Rantzer, and R. S.
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