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Distributed Robust Adaptive Frequency Control of
Power Systems with Dynamic Loads

Hunmin Kim, Minghui Zhu, and Jianming Lian

Abstract—This paper investigates the frequency control of
multi-machine power systems subject to uncertain and dynamic
net loads. We propose distributed internal model controllers
that coordinate synchronous generators and demand response
to tackle the unpredictable nature of net loads. Frequency
stability is formally guaranteed via Lyapunov analysis. Numerical
simulations on the IEEE 68-bus test system demonstrate the
effectiveness of the controllers.

I. INTRODUCTION

The power grid is modernized into the smart grid. The wide
deployment of advanced information and communications
technologies facilitates real-time pricing and demand response.
In addition, centralized generating facilities are giving way to
small distributed energy resources; e.g., photovoltaic systems,
fuel cells, storage and electric vehicles. Moreover, renewable
energy; e.g., wind, solar and wave energy, has been increas-
ingly adopted due to its cleanness and profitability. Worldwide
144 countries now have their political targets for increase
in renewable generation, and especially the European Union
sets a goal of 20% share of renewable energy by 2020 [1].
However, renewable generation is hard to predict, and an in-
creasing proliferation of renewable energy imposes significant
challenges to the operation and management of the power grid.
It becomes imperative to maintain grid stability and reliability
despite the disturbances from renewable generation.

Literature review. There has been rich literature on control
of the power grid under a variety of external disturbances.
Representative techniques include Riccati equation [2], [3],
H2/H∞ control [4], [5], and LMIs [6], [7]. This set of
papers focuses on disturbance attenuation where the impacts
of external disturbances are reduced but not completely elim-
inated and so only practical stability can be achieved. Distur-
bance rejection instead aims to completely eliminate external
disturbances and recover perfect stability. The literature on
disturbance rejection in power systems is limited. A recent
work [8] develops distributed internal model controllers to
ensure optimal frequency synchronization despite uncertain
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and time-varying loads. There are a couple of distinctions
from this paper. First, work in [8] assumes that each load
consists of a set of sinusoidal functions and their frequencies
are known. The assumption of known load frequencies is
relaxed in the current paper by the technique of adaptive
internal model. Second, work in [8] studies frequency syn-
chronization (primary control) and this paper instead aims to
bring grid frequencies back to a nominal value (secondary
control). Besides, distributed control of power systems has
been receiving substantial attention (see an incomplete list [9],
[10], [11], [12]). This set of papers does not consider time-
varying external disturbances.

Contribution statement. We study the frequency control of
multi-machine power systems with uncertain and dynamic net
loads. Under the assumption that each net load consists of a set
of sinusoidal functions, two cases are studied: (1) robust adap-
tive frequency control, where the frequencies of net loads are
unknown; (2) robust frequency control, where the frequencies
of net loads are known but dynamic systems are more gen-
eral. We design distributed internal model controllers, which
coordinate synchronous generators and demand response to
address the two cases. Frequency stability is guaranteed via
Lyapunov analysis. It is the first time to study distributed
adaptive internal model control to handle external disturbances
with unknown frequencies. As a byproduct, we develop a
distributed constrained small-gain theorem. Simulations verify
the performance of the distributed controllers on the IEEE 68-
bus power system. It is assumed in this paper as in most of
the literature that there is sufficient reactive power support to
ensure voltage stability during frequency control. Preliminary
results were published in [13] where robust adaptive frequency
control was not studied and proofs were omitted.

Notations. Denote ‖x‖[t1,t2] , supt1≤t≤t2 ‖x(t)‖. Let |S|
be the cardinality of a set S. Matrix In denotes the n × n
identity matrix. Let diag(A1, · · · , An) denote a block matrix
having A1 to An as main diagonal blocks. For v ∈ Rn,
sgn(v) ∈ {−1, 0, 1}n is a sign function, where sgn(vi) = −1
if vi < 0, sgn(vi) = 0 if vi = 0, and sgn(vi) = 1 if vi > 0.
Norm ‖ · ‖F denotes Frobenius norm.

II. SYSTEM MODEL

Table I summarizes the notations in the model. We use ∆
to represent deviations from nominal values; e.g., ∆w(t) =
w(t)− w∗, where w∗ is the nominal value of w(t).

A. Power network model
The power network is described by the undirected graph

(V, E) where V , {1, · · · , N} denotes the set of buses and
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TABLE I: System variables and parameters

System variables
w angular frequency θ phase angle
PM mechanical power Pij power flow
Pv steam valve position Pref reference power
PC controllable load PL net load

System parameters
D damping constant m angular momentum
TCH charging time const. tij tie-line stiffness
TG governor time const. R feedback loop gain
Km turbine gain Ke governor gain

E ⊆ V × V denotes the set of transmission lines between the
buses. The set Ni denotes the set of neighboring buses of
i ∈ V; i.e., Ni , {j ∈ V \ {i}|(i, j) ∈ E}. Each bus is either
a generator bus i ∈ G, or a load bus i ∈ L where G and L
denote the sets of corresponding buses, respectively. Each bus
i is associated with a local control authority.

B. Load model

An electrical load can be divided to a controllable load
and an uncontrollable load [14], [15], [16]. Controllable load
∆PCi(t) is governed by the demand response [15]:

∆ṖCi(t) = bi + ci∆PCi(t)−∆λi(t) (1)

where bi+ci∆PCi(t) is marginal benefit with ci < 0 and real-
time electricity price ∆λi(t) is used as the input for i ∈ L.

For i ∈ L, net load ∆PLi(t) represents the difference
between the uncontrollable load and renewable generation.
For i ∈ G, net load ∆PLi(t) represents renewable generation.
Notice that uncontrollable loads and renewable generation are
hard to predict. We regard net loads ∆PLi(t) as external
disturbances to the power system. According to the spectral
decompositions of wind generation [17], [18] and load pat-
tern [19], we approximate each net load as the sum of a
finite number of distinct sinusoidal functions as in [8]. In
addition, any periodic function can be represented by a Fourier
series. If a function is continuous, absolutely integrable and
its derivative is absolutely integrable, then its Fourier series
converges uniformly to the function (Theorem on p.86 in [20]).
As output regulation [21], [22], the following marginally stable
exosystem is used to generate ∆PLi(t):

χ̇i(t) = Φi(ρi)χi(t), ∆PLi(t) = Ψiχi(t) (2)

where χi(t) = [χi,1(t), χ̇i,1(t), · · ·, χi,`i(t), χ̇i,`i(t)]T ∈ R2`i ,

Φi(ρi) , diag(Φi,1, · · · ,Φi,`i), Φi,l ,

[
0 1

−(ρi,l)
2 0

]
.

Each state χi,l(t) is a sinusoidal function with frequency ρi,l.
The output ∆PLi(t) is then a linear combination of sinusoidal
functions with frequencies ρi = {ρi,1, · · · , ρi,`i}.

Assumption 2.1: The pair (Ψi,Φi(ρi)) is observable.

C. Dynamic model of the generator buses

Consider the synchronous power generator from [23]:

∆θ̇i(t) = ∆wi(t)

∆ẇi(t) = − 1

mi

(
(DGi +DLi)∆wi(t) +

∑
j∈Ni

∆Pij(t)

+ ∆PLi(t)−∆PMi
(t)
)

∆ṖMi(t) = − 1

TCHi

(
∆PMi(t)−Kmi∆Pvi(t)

)
∆Ṗvi(t) = − 1

TGi

(
∆Pvi(t) +

Kei

Ri
∆wi(t)−∆Prefi(t)

)
(3)

for i ∈ G, where DGi is mechanical damping constant,
and DLi is load damping constant corresponding to net load
(renewable generation). Power flow ∆Pij(t) is described by
∆Pij(t) = tij(∆θi(t) − ∆θj(t)). The first equation in (3)
indicates the evolution of phase angle ∆θi(t). The second
equation is referred to as swing dynamics, indicating frequency
fluctuations due to power imbalances. The third and fourth
equations represent turbine governor dynamics with reference
input ∆Prefi(t).

D. Dynamic model of the load buses

A load bus i ∈ L can be modeled by the following phase
angle dynamics and swing dynamics [24], where mi is the
effective moment of a postulated load model:

∆θ̇i(t) = ∆wi(t)

∆ẇi(t) = − 1

mi

(
DLi∆wi(t) +

∑
j∈Ni

∆Pij(t) + ∆PCi

+ ∆PLi(t)
)

(4)

where DLi is load damping constant corresponding to net load
which is the difference between the uncontrollable load and
renewable generation.

E. Outputs and inputs

Control authority i can access ∆yi(t) = [∆wi(t),
∆PMi

(t),∆Pvi(t),∆PNi(t)]
T for i ∈ G, and ∆yi(t) =

[∆wi(t),∆PCi(t),∆PNi(t)]
T for i ∈ L, where ∆PNi(t) ,∑

j∈Ni ∆Pij(t). Local inputs are ui(t) = ∆Prefi(t) for
i ∈ G, and ui(t) = ∆λi(t) for i ∈ L.

III. PROBLEM STATEMENT

In this paper, we investigate the frequency control; i.e.,
controlling ∆wi(t) to zero, and discuss two cases where the
frequencies ρi of net loads are known or unknown. We drop
∆ in the rest of the paper for notational simplicity. Also, we
use Di = DGi +DLi for i ∈ G and Di = DLi for i ∈ L.
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A. Case 1: Robust frequency control.

To stabilize the frequencies, each generator bus i ∈ G aims
to approach the following manifolds:

w∗i = 0, P ∗Mi
(t) = PLi(t) + PNi(t),

P ∗vi(t) =
TCHi
Kmi

Ṗ ∗Mi
(t) +

1

Kmi

P ∗Mi
(t)

P ∗refi(t) = TGi Ṗ
∗
vi(t) + P ∗vi(t) (5)

which can be easily derived from system (3). Similarly, each
load bus i ∈ L is expected to stay on the following manifolds:

w∗i = 0, P ∗Ci(t) = −PLi(t)− PNi(t),
λ∗i (t) = bi + ciP

∗
Ci(t)− Ṗ

∗
Ci(t) (6)

which can be derived from systems (1) and (4). Superscript
∗ denotes the manifold; e.g., λ∗i (t) denotes the manifold of
∆λi(t). We desire to design a distributed controller which
steers the system states and inputs to their manifolds (5)
and (6). In this case, control authority i knows ρi, Ψi and
Φi(ρi) but is unaware of initial state χi(0) and state χi(t) of
exosystem (2). That is, control authority i knows the number
of sinusoidal signals, and their frequencies, but not their phase
shifts and magnitudes.

Assumption 3.1: All the frequencies ρi,1, · · · , ρi,`i in (2)
of net load PLi(t) are known to local control authority i.

B. Case 2: Robust adaptive frequency control.

There are a couple of distinctions from Case 1. First, control
authority i is unaware of frequencies ρi and Assumption 3.1
is weakened into the following one:

Assumption 3.2: Control authority i knows the value `i and
an upper bound ρmax ≥ maxi,l ρi,l.
Secondly, we use the following simplified synchronous gener-
ator model [23]:

θ̇i(t) = wi(t)

ẇi(t) = − 1

mi

(
Diwi(t) +

∑
j∈Ni

Pij(t) + PLi(t)− PMi
(t)
)
(7)

and simplified demand response model; i.e., local control
authority i controls PCi(t) directly. Remark 5.1 in Section V-C
discusses why the simplified models are needed for Case 2.
For this case, the corresponding manifolds are

w∗i = 0, P ∗Mi
(t) = PLi(t) + PNi(t), i ∈ G

w∗i = 0, P ∗Ci(t) = −PLi(t)− PNi(t), i ∈ L. (8)

IV. CONTROLLER SYNTHESIS FOR ROBUST FREQUENCY
CONTROL

In this section, we present a solution of the robust frequency
control described in Section III-A.

A. Local internal models

Net loads PLi(t) cannot be measured and thus manifolds (5)
and (6) cannot be used for feedback control. We adopt the
methodology of internal models to tackle this challenge [22],
[25]. Recall that PLi(t) is the output of exosystem (2). Hence,
for i ∈ G, the second equation in (5) can be written as:

P ∗Mi
(t)− PNi(t) = PLi(t) = Ψiχi(t). (9)

Under Assumption 2.1, for any controllable pair (Mi, Ni) with
Mi ∈ R2`i×2`i being Hurwitz and Ni ∈ R2`i , there exists a
non-singular matrix Ti(ρi) ∈ R2`i×2`i as the unique solution
of the following Sylvester equation [26]:

Ti(ρi)Φi(ρi)−MiTi(ρi) = NiΨi. (10)

With ϑi(t) , Ti(ρi)χi(t), (9) becomes

P ∗Mi
(t)− PNi(t) = Ψiχi(t) = ΨiT

−1
i (ρi)ϑi(t).

Now consider a local internal model candidate:

η̇i(t) = Miηi(t) +Ni(PMi
(t)− PNi(t)) (11)

where ηi(t) ∈ R2`i . Internal model (11) behaves as an
estimator and its states ηi(t) are expected to asymptotically
track unmeasurable exosystem states ϑi(t). The manifolds of
ηi(t) are η∗i (t) = ϑi(t) in this case. It is expected to stabilize
the dynamics of error ηi(t)−ϑi(t). According to the certainty
equivalence principle [27], internal model states ηi(t) are used
to replace ϑi(t) in manifolds (5) and then in feedback control.

For load bus i ∈ L, we derive a similar internal model
candidate by replacing PMi

(t) with −PCi(t):

η̇i(t) = Miηi(t)−Ni(PCi(t) + PNi(t)). (12)

For notional simplicity, we will use the augmented states
xi(t) = [xi,1(t), xi,2(t), xi,3(t), xTi,4(t)]T = [wi(t), PMi

(t),
Pvi(t), η

T
i (t)]T and manifolds x∗i (PLi(t), t) = [x∗i,1(t),

x∗i,2(t), x∗i,3(t), (x∗i,4(t))T ]T = [w∗i (t), P ∗Mi
(PLi(t), t),

P ∗vi(PLi(t), t), ϑ
T
i (t)]T for i ∈ G and use the augmented states

xi(t) = [xi,1(t), xi,2(t), xTi,4(t)]T = [wi(t), PCi(t), η
T
i (t)]T

and manifolds x∗i (PLi(t), t) = [x∗i,1(t), x∗i,2(t), (x∗i,4(t))T ]T =
[w∗i (t), P ∗Ci(PLi(t), t), ϑ

T
i (t)]T for i ∈ L, where the

dependency of x∗i on PLi(t) is emphasized.

B. Controller design

We first conduct a coordinate transformation to convert the
frequency control problem into a global stabilization problem
of the error dynamics with respect to manifolds (5) and (6).
We make use of its unique lower triangular structure and apply
a backstepping technique [28] to stabilize the error dynamics
from the outer state to the inner state progressively.

Since internal model states ηi(t) are expected to track
ϑi(t) asymptotically for ∀i ∈ V , the estimation errors
‖ΨiT

−1
i (ρi)ηi(t) − ΨiT

−1
i (ρi)ϑi(t)‖ are expected to di-

minish. By the certainty equivalent principle, we use the
known term ΨiT

−1
i (ρi)ηi(t) to replace unknown PLi(t) =

ΨiT
−1
i (ρi)ϑi(t) when constructing the error dynamics.

Let us defined the tracking errors as follows:

x̃i(t) , xi(t)− x∗i (ΨiT
−1
i (ρi)ηi(t), t) (13)
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for ∀i ∈ V . Error dynamics for i ∈ G become

˙̃xi,1(t) = − 1

mi
(Dix̃i,1(t)−ΨiT

−1
i (ρi)x̃i,4(t)− x̃i,2(t))

˙̃xi,2(t) = − 1

TCHi
(x̃i,2(t)−Kmi x̃i,3(t))

˙̃xi,3(t) = − 1

TGi
(x̃i,3(t) +

Kei

Ri
x̃i,1(t)− P̃refi(t))

+
∑
j∈Ni

tij(ΨiT
−1
i (ρj)x̃i,4(t)−ΨjT

−1
j (ρj)x̃j,4(t))

˙̃xi,4(t) = Φi(ρi)x̃i,4(t) +Nix̃i,3(t) (14)

where P̃refi(t) , Prefi(t) − P ∗refi(ΨiT
−1
i (ρi)xi,4(t), t). All

the eigenvalues of Φi(ρi) are on the imaginary axis. Coordi-
nate transformation x̂i,4(t) , x̃i,4(t)− x̂∗i,4(t) leads to

˙̂xi,4(t) = Mix̂i,4(t) + (miMi +DiI2`i)Nix̃i,1(t)

where x̂∗i,4(t) = miNixi,1(t). Since matrix Mi is Hurwitz,
the subsystem x̂i,4(t) is input-to-state stable (ISS) regarding
x̃i,1(t) as an external input.

Consider subsystem x̃i,l−1(t) in (14) for l = 2, 3 and
regard x̃i,l(t) as an external input. Tracking error x̃i,l(t) is
designed to stabilize x̃i,l−1(t); i.e., the manifold x̂∗i,l(t) of
x̃i,l(t) cancels all the measurable terms in the dynamics of
x̃i,l−1(t) and stabilizes it via −ki,l−1x̃i,l−1(t). Apply the same
idea to i ∈ L, then we have

x̂i(t) , x̃i(t)− x̂∗i (t) (15)

and inputs

Prefi(t) = P ∗refi(ΨiT
−1
i (ρi)xi,4(t), t) + (

Kei

Ri
+
TCHi
Kmi

TGi

× (e∗i + ki,1)(e∗i + ki,2)(Di −miΨiT
−1
i (ρi)Ni))xi,1(t)

− TCHi
Kmi

TGi(e
∗
i + ki,1)(e∗i + ki,2)(xi,2(t)− x∗i,2(t))

+ TGi(
1

Kmi

− TCHi
Kmi

(e∗i + ki,1 + ki,2))(ẋi,2(t)− ẋ∗i,2(t))

+ (xi,3(t)− x∗i,3(t))− ki,3TGi x̂i,3(t)

λi(t) = λ∗i (ΨiT
−1
i (ρi)xi,4(t), t) +mi(e

∗
i + ki,1)(ci + ki,1)

× xi,1(t) + (ci + e∗i + ki,1 + ki,2)x̂i,2(t) (16)

where e∗i , ΨiT
−1
i (ρi)Ni − Di

mi
, x̂∗i,1(t) = 0, x̂∗i,2(t) =

−mi(e
∗
i +ki,1)xi,1(t), and x̂∗i,3(t) = −mi

TCHi
Kmi

(e∗i +ki,1)(e∗i +

ki,2)xi,1(t)−( 1
Kmi
− TCHi

Kmi
(e∗i +ki,1 +ki,2))(xi,2(t)−x∗i,2(t)).

Through transformations (13), (15) and input (16), the aug-
mented system, including (1), (3), (4), (11) and (12), becomes

˙̂xi(t) = Aix̂i(t) +
∑
j∈Ni

Bij x̂j,4(t) (17)

where

Ai =


−ki,1 1/mi 0

ΨiT
−1
i (ρi)

mi
0 −ki,2 Kmi/TCHi Ai(2, 4)
0 0 −ki,3 Ai(3, 4)

Ai(4, 1) 02`i×1 02`i×1 Mi

 , i ∈ G

Ai =

 −ki,1 1/mi ΨiT
−1
i (ρi)/mi

0 −ki,2 Ai(2, 4)
Ai(4, 1) 02`i×1 Mi

 , i ∈ L (18)

Ai(2, 4) = −(e∗i + ki,1)ΨiT
−1
i (ρi), Ai(4, 1) = (miMi+

DiI2`i)Ni, Ai(3, 4) = − 1
Kmi

(TCHi(e
∗
i + ki,1)(e∗i +

ki,2) +
∑
j∈Ni tij)ΨiT

−1
i (ρi), and Bij = [0T1×2`i

,0T1×2`i
,

− tij
Kmi

(ΨjT
−1
j (ρj))

T , 0T2`i×2`i
]T for i ∈ G, Bij = 0(2`i+1)×1

for i ∈ L. By the backstepping technique, the ki submatrix
in (18) is an upper-triangular Hurwitz matrix and Mi is Hur-
witz. This property is crucial for the stability of system (17).

The network-wide system becomes ˙̂x(t) = Ax̂(t) where
x̂(t) = [x̂T1 (t), · · · , x̂TN (t)]T . Since x̂∗i (t) in (15) does not
change the origin, the exponential stability of x̂i(t) im-
plies that the original system states xi(t), and inputs ui(t)
in (1), (3), (4), (11) and (12) exponentially track their mani-
folds (5), (6) and ϑi(t).

C. Frequency stability guarantee
The following theorem summarizes the exponential stabil-

ity of system states xi(t) under distributed internal model
controller (11), (12) and (16) with respect to their mani-
folds (5), (6) and ϑi(t).

Theorem 4.1: Consider distributed control law (11), (12)
and (16). Under Assumptions 2.1 and 3.1, system states x(t)
are exponentially stable with respect to their manifolds (5), (6)
and ϑi(t) if matrix A is Hurwitz. In addition, there always
exists a set of matrices Mi, Ni and gains ki,1, ki,2, ki,3 such
that matrix A is Hurwitz.

In the proof, we provide Algorithm 1 to identify a set of
gains and matrices in a distributed way such that A is Hurwitz.

V. CONTROLLER SYNTHESIS FOR ROBUST ADAPTIVE
FREQUENCY CONTROL

In this section, we study the case where the frequencies ρi
in exosystem (2) are unknown. Internal models (11) and (12)
will be used, but T−1

i (ρi) in (10) is uncertain to control
authority i due to the unknown frequencies ρi. To address
the challenge, we propose a new distributed adaptive internal
model controller.

Let us define the augmented state xi(t) = [xi,1(t),
xi,2(t), xTi,3(t)]T = [wi(t), PMi

(t), ηTi (t)]T (or xi(t) =
[xi,1(t), xi,2(t), xTi,3(t)]T = [wi(t), PCi(t), η

T
i (t)]T for i ∈ L)

and corresponding manifolds x∗i (t).

A. Controller design
Like Section IV-B, a coordinate transformation is conducted

to convert the global control problem into a global stabilization
problem of the error dynamics. Also, a backstepping approach
is applied to ensure the stability of the error dynamics.
Consider the transformation

x̂i(t) , xi(t)− x∗i (Λi(t)xi,2(t), t)− x̂∗i (t) (19)

where x̂∗i,1(t) = 0, x̂∗i,2(t) = miNixi,1(t). The first two terms
in (19) define the tracking error and the third term is introduced
by a backstepping technique to stabilize the error dynamics
as (15). Consider inputs

PMi
(t) = P ∗Mi

(Λi(t)xi,3(t), t)−mi(ki −
Di

mi
)xi,1(t)

PCi(t) = P ∗Ci(Λi(t)xi,3(t), t) +mi(ki −
Di

mi
)xi,1(t). (20)
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Under coordinate transformation (19), the frequency control
problem is transformed to a stabilization problem for the same
reason as (15). The difference is that we use estimated vector
Λi(t) instead of true vector Λ∗i (ρi) = ΨiT

−1
i (ρi). The origin

of the error dynamics does not change by x̂∗i (t).
Through coordinate transformation (19) and input (20),

systems (4), (7) and internal model (11) become

˙̂xi(t) = Ai(Λ
∗
i (ρi))x̂i(t) +Bi(Λ̂i(t))xi,3(t) (21)

for ∀i ∈ V where Λ̂i(t) , Λi(t) − Λ∗i (ρi) is the estimation
error and

Ai(Λ
∗
i (ρi)) =

[
−ki + Λ∗i (ρi)Ni

1
mi

Λ∗i (ρi)

(miMi +DiI)Ni Mi

]
,

Bi(Λ̂i(t)) =

[
Λ̂i(t)
mi

02`i×2`i

]
.

B. Projected parameter estimator

The quantity Λi(t) is an estimate of Λ∗i (ρi) and its update
law is given by:

Λ̇Ti (t) = Ji(t)− (‖Ji(t)‖+ γi)

× (sgn(Λi(t)− ‖
(ρ2

max + 1)`i + ‖Mi‖F
‖Ni‖

‖12`i×1)/2

+ sgn(Λi(t) + ‖ (ρ2
max + 1)`i + ‖Mi‖F

‖Ni‖
‖12`i×1)/2) (22)

where Ji(t) = − x̂i,1(t)
mi

xi,3(t) and γi > 0 is an arbitrary
constant. The first term Ji(t) in (22) is designed to cancel
cross term Λ̂i(t)

x̂i,1(t)
mi

xi,3(t) by Λ̂i(t)
˙̂
ΛTi (t) in the Lyapunov

analysis. The additional terms in (22) speed up the con-
vergence rate by restricting the parameter estimates within
‖Λi(t)‖ ≤

√
2`i((ρ

2
max + 1)`i + ‖Mi‖F )/‖Ni‖. The bound

is shown in Claim B in the proof of Theorem 5.1.

C. Frequency stability guarantee

The following theorem summarizes the asymptotic conver-
gence of system states xi(t) to their manifolds (8) and ϑi(t).
Consider matrix

Āi =

[
Āi(1, 1) ((miMi +DiI)Ni)

T /2
(miMi +DiI)Ni/2 (Mi +MT

i )/2 + 2I2`i×2`i

]
Āi(1, 1) = −ki + (ρ2

max + 1)`i + ‖Mi‖F
+ ((ρ2

max + 1)`i + ‖Mi‖F )2/(4m2
i ‖Ni‖2). (23)

Theorem 5.1: Consider distributed control law (11), (12)
and (20) and adaptive law (22). Under Assumptions 2.1
and 3.2, system states x(t) are asymptotically convergent to
their manifolds (8) and ϑi(t), if matrix Āi is negative definite
for ∀i ∈ V . In addition, there always exists a set of matrices
Mi, Ni and gain ki such that matrix Āi is negative definite.

In the proof, we provide Algorithm 2 to identify a set of
control gain and matrices in a distributed way such that Āi is
negative definite.

Remark 5.1: Simplified synchronous generator model (7)
(as well as the simplified controllable load model) prevent
potential problems where the adaptive law relies on unmea-
surable values ϑi(t) and T−1

i (ρi) to eliminate cross terms. �

Algorithm 1 Distributed selection of control gains

1: for i ∈ V do
2: Choose a controllable pair (Mi, Ci) such that Mi is

Hurwitz and λmax(
Mi+M

T
i

2 ) < −3.5−|Ni|/(|Ni|+2)2;

3: Choose 0 < αi <
2(−λmax(

Mi+M
T
i

2 )−3.5− |Ni|
(|Ni|+2)2

)
1
2

‖(miMi+DiI2`i )Ci‖
;

4: Ni = αiCi;
5: Find the solution T−1

i (ρi) of Sylvester equation (10);
6: end for
7: for i ∈ V do
8: Choose ki,1, ki,2, ki,3 sequentially such that

ki,1 > ‖ΨiT
−1
i (ρi)‖2/(4m2

i ) + 1/(4m2
i ) + 1.5,

ki,2 >
K2
mi

4T 2
CHi

+ (e∗i + ki,1)2‖ΨiT
−1
i (ρi)‖2/4 + 1.5,

ki,3 > T 2
CHi

(e∗i + ki,1)2(e∗i +

ki,2)2‖ΨiT
−1
i (ρi)‖2/(4K2

mi) +
∑
j∈Ni t

2
ij(|Ni| +

2)2(‖ΨiT
−1
i (ρi)‖2 + ‖ΨjT

−1
j ‖2)/(4K2

mi) + 1.5.
9: end for

VI. ANALYSIS

This section presents the proofs of Theorem 4.1 and 5.1.

A. Proof of Theorem 4.1

Assume that A is Hurwitz. Then, linear time invariance
system ˙̂x(t) = Ax̂(t) is exponentially stable. Since coordinate
transformation x̂∗i (t) in (15) does not change the origin, this
further implies that x(t) in (3) is exponentially stable with
respect to their manifolds (5), (6) and ϑi(t). One can prove
the necessity part by reversing the steps above.

Now we proceed to prove the existence of control gains
and matrices by construction. Consider system (17) where
matrices and control gains are chosen by Algorithm 1. We
will show that A is Hurwitz by verifying that the system is
exponentially stable. Consider Lyapunov function candidate
Vi(t) = 1

2‖x̂i(t)‖
2 for ∀i ∈ V . Since x̂Ti (t)Aix̂i(t) ∈ R,

x̂Ti (t)Aix̂i(t) = (x̂Ti (t)Aix̂i(t))
T . Hence, the Lie derivative

of Lyapunov function candidate along the trajectories of sys-
tem (17) becomes

V̇i(t) = x̂Ti (t)Aix̂i(t) +
∑
j∈Ni

x̂i(t)Bij x̂j,4(t)

= x̂Ti (t)
Ai +ATi

2
x̂i(t) +

∑
j∈Ni

x̂i(t)Bij x̂j,4(t).

Since x̂i(t)Bij x̂j,4(t) ≤ δ
2‖x̂i,3(t)‖2 +

‖Bij‖2
2δ ‖x̂j,4(t)‖2 with

δ =
tij
Kmi

(|Ni|+ 2)2‖ΨjT
−1
j (ρj)‖/2, we have

V̇i(t) ≤ x̂Ti (t)Āix̂i(t) +
∑
j∈Ni

x̂Tj (t)B̄ij x̂j(t)

where

Āi =
Ai +ATi

2
+

 02×2 02×1 02×2`i

01×2 Pi(2, 2) 01×2`i

02`i×2 02`i×1 02`i×2`i
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and Pi(2, 2) =
∑
j∈Ni

t2ij
K2
mi

(|Ni| + 2)2‖ΨjT
−1
j (ρj)‖2/4 for

i ∈ G and Āi =
Ai+A

T
i

2 for i ∈ L, and ‖B̄ij‖ ≤ 1
(|Ni|+2)2 .

Claim A: It holds that x̂Ti (t)Āix̂i(t) ≤ −0.5‖x̂i(t)‖2.
Proof: Since x̂Ti,l(t)Āi(l, p)x̂i,p(t) ≤ δ

2‖x̂i,l(t)‖
2 +

‖Āi(l,p)‖2
2δ ‖x̂i,p(t)‖2 for any δ > 0 and x̂Ti,4(t)Mix̂i,4(t) =

x̂Ti,4(t)(
Mi+M

T
i

2 )x̂i,4(t) ≤ λmax(
Mi+M

T
i

2 )‖x̂i,4(t)‖2 by the
Rayleigh quotient [29], we have

x̂Ti (t)Āix̂i(t) ≤ x̂Ti (t)A′ix̂i(t) (24)

where A′i = diag(A′i(1, 1), A′i(2, 2), A′i(3, 3), A′i(4, 4)) for i ∈
G and A′i = diag(A′i(1, 1), A′i(2, 2), A′i(4, 4)) for i ∈ L, and

A′i(1, 1) = −k1,k +
‖ΨiT

−1
i (ρi)‖2

4m2
i

+
1

4m2
i

+ 1

A′i(2, 2) = −k2,k +
K2
mi

4T 2
CHi

+
(e∗i + ki,1)2‖ΨiT

−1
i (ρi)‖2

4
+ 1

A′i(3, 3) = −k3,k + 1

+ T 2
CHi(e

∗
i + ki,1)2(e∗i + ki,2)2‖ΨiT

−1
i (ρi)‖2/(4K2

mi)

+
∑
j∈Ni

t2ij
4K2

mi

(|Ni|+ 2)2(‖ΨiT
−1
i (ρi)‖2 + ‖ΨjT

−1
j (ρj)‖2)

A′i(4, 4) = (λmax(
Mi +MT

i

2
) +
‖(miMi +DiI2`i)Ni‖2

4
+ 3 + |Ni|/(|Ni|+ 2)2)I2`i .

Algorithm 1 ensures A′i(l, l) < −0.5, and thus diagonal
matrix A′i satisfies λmax(A′i) < −0.5. Hence, by (24) and
the Rayleigh quotient, x̂Ti (t)Āix̂i(t) ≤ λmax(A′i)‖x̂i(t)‖2 ≤
−0.5‖x̂i(t)‖2.

By Claim A,

V̇i(t) ≤ −Vi(t) +
∑
j∈Ni

‖x̂j(t)‖2

(|Ni|+ 2)2
.

Consider Ui(t) = 1
2‖x̂i(t)‖

2 and U̇i(t) = −Ui(t) +∑
j∈Ni

‖x̂j(t)‖2
(|Ni|+2)2 . By the comparison lemma (Lemma

3.4 [30]), it holds that Vi(t) ≤ Ui(t) for t ≥ 0 when
Vi(0) ≤ Ui(0). The general solution Ui(t) of the linear
differential equation satisfies

Ui(t) = e−tUi(0) +
∑
j∈Ni

∫ t

0

e−(t−τ) ‖x̂j(τ)‖2

(|Ni|+ 2)2
dτ

≤ e−tUi(0) +
∑
j∈Ni

‖x̂j‖2[0,t]
(|Ni|+ 2)2

∫ t

0

e−(t−τ)dτ

≤ e−tUi(0) +
∑
j∈Ni

‖x̂j‖2[0,t]
(|Ni|+ 2)2

(1− e−t)

≤ e−tUi(0) +
∑
j∈Ni

‖x̂j‖2[0,t]
(|Ni|+ 2)2

.

Given Vi(0) = Ui(0), it follows from Vi(t) ≤ Ui(t) that

Vi(t) ≤ e−tVi(0) +
∑
j∈Ni

‖x̂j‖2[0,t]
(|Ni|+ 2)2

.

By taking norm, Cauchy-schwarz inequality and square-root
to the above inequality, we have

‖x̂i(t)‖ ≤ e−0.5t‖x̂(0)‖+
∑
j∈Ni

‖x̂j‖[0,t]
|Ni|+ 2

≤ max{(|Ni|+ 1)e−0.5t‖x̂i(0)‖, |Ni|+ 1

|Ni|+ 2
max
j∈Ni
{‖x̂j‖[0,t]}}.

(25)

Inequality (25) implies that x̂i(t) is input-to-state stable
(ISS) [31] with respect to each x̂j(t) with a contractive
linear gain. By distributed constrained small-gain theorem A.1,
x̂(t) is exponentially stable. The exponential stability of x̂(t)
implies that matrix A is Hurwitz. �

B. Proof of Theorem 5.1

Consider Lyapunov function candidate

V (t) =
1

2
‖x̂(t)‖2 +

1

2

∑
i∈V
‖Λ̂i(t)‖2.

The Lie derivative of Lyapunov function candidate along the
trajectories of system (21) becomes

V̇ (t) = x̂T (t)A(Λ∗(ρ))x̂(t) +
∑
i∈V

Λ̂i(t)(
˙̂
ΛTi (t)− Ji(t))

(26)

where A(Λ∗(ρ)) = diag(A1(Λ∗i (ρi)), · · · , A|V|(Λ∗i (ρi))).
Claim B identifies an upper bound of uncertain term Λ∗i (ρi).

Claim B: ‖Λ∗i (ρi)‖ ≤ ((ρ2
max + 1)`i + ‖Mi‖F )/‖Ni‖.

Proof: By post-multiplying T−1
i (ρi) and taking Frobenius

norm on both sides of Sylvester equation (10), we have

‖NiΛ∗i (ρi)‖F ≤ ‖Ti(ρi)Φi(ρi)T−1
i (ρi)‖F + ‖Mi‖F . (27)

By the definition of Frobenius norm, it holds that

‖NiΛ∗i (ρi)‖F =

√√√√ 2`i∑
p=1

2`i∑
l=1

N2
i,p(Λ

∗
i,l(ρi))

2

=

√√√√(

2`i∑
p=1

N2
i,p)(

2`i∑
l=1

(Λ∗i,l(ρi))
2) = ‖Ni‖F ‖Λ∗i (ρi)‖F . (28)

By (28) and ‖·‖F ≤ ‖·‖tr (Lemma 10 in [32]), (27) becomes

‖Ni‖F ‖Λ∗i (ρi)‖F ≤ ‖Ti(ρi)Φi(ρi)T−1
i (ρi)‖tr + ‖Mi‖F

= ‖Φi(ρi)‖tr + ‖Mi‖F ≤ (ρ2
max + 1)`i + ‖Mi‖F .

Note that ‖ · ‖F = ‖ · ‖2 for a vector.

Claim C shows that Λ̂i(t)(
˙̂
ΛTi (t)− Ji(t)) is non-positive.

Claim C: Λ̂i(t)(
˙̂
ΛTi (t)− Ji(t)) ≤ 0.

Proof: If |Λ̂i,l(t)| < ‖ (ρ2max+1)`i+‖Mi‖F
‖Ni‖ ‖ for all l, then

Λ̂i(t)(
˙̂
ΛTi (t) − Ji(t)) = 0. Assume there exists l such that

|Λ̂i,l(t)| ≥ ‖ (ρ2max+1)`i+‖Mi‖F
‖Ni‖ ‖. Let S+

i,l(t) denote a set of
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indices l such that Λ̂i,l(t) ≥ ‖ (ρ2max+1)`i+‖Mi‖F
‖Ni‖ ‖. Likewise,

S−i,l(t) , {l|Λ̂i,l(t) ≤ −‖
(ρ2max+1)`i+‖Mi‖F

‖Ni‖ ‖}. Then, we have

Λ̂i(t)(
˙̂
ΛTi (t)− Ji(t))

≤ (
∑

l∈S+
i,l(t)

−Λ̂i,l(t)(‖Ji(t)‖+ γi)

+
∑

l∈S−i,l(t)

Λ̂i,l(t)(‖Ji(t)‖+ γi))

≤ −γi(
∑

l∈S+
i,l(t)

|Λ̂i,l(t)|+
∑

l∈S−i,l(t)

|Λ̂i,l(t)|) ≤ 0

where Λ̂i,l(t) = |Λ̂i,l(t)| for l ∈ S+
i,l(t) and Λ̂i,l(t) =

−|Λ̂i,l(t)| for l ∈ S−i,l(t) are applied.
By Claim B, we have

‖x̂Ti,1(t)Λ∗i (ρi)x̂i,3(t)‖ ≤ ‖x̂Ti,1(t)‖‖Λ∗i (ρi)x̂i,3(t)‖

≤ (ρ2
max + 1)`i + ‖Mi‖F

‖Ni‖
(
δ‖x̂i,1(t)‖2

2
+
‖x̂i,3(t)‖2

2δ
)

and then

x̂T (t)A(Λ∗(ρ))x̂(t) ≤ x̂T (t)Āx̂(t) (29)

Symmetric matrix Ā = diag(Ā1, · · · , Ā|V|) is negative def-
inite where Āi is defined in (23). Thus, Claim C and (29)
lead (26) to

V̇ (t) ≤ x̂T (t)Āx̂(t) ≤ λmax(Ā)‖x̂(t)‖2. (30)

Take the integral from 0 to t on both sides of (30), then

−λmax(Ā)

∫ t

0

‖x̂(τ)‖2dτ ≤ −
∫ t

0

V̇ (τ)dτ ≤ V (0) <∞

where V (t) ≥ 0 is applied. Since
∫ t

0
‖x̂(τ)‖2dτ is non-

decreasing and upper bounded by −V (0)/λmax(Ā), the limit
limt→∞

∫ t
0
‖x̂(τ)‖2dτ exists. Moreover, ‖x̂(t)‖2 is uniformly

continuous as shown in Claim D.
Claim D: ‖x̂(t)‖2 is uniformly continuous.

Proof: Recall V̇ (t) is non-positive. There exists a constant
U > 0 such that ‖x̂(t)‖ ≤ U for t ∈ [0,∞). Consider

|‖x̂(t+ s)‖2 − ‖x̂(t)‖2|

=
∑
i∈V
|

3∑
l=1

(‖x̂i,l(t+ s)‖2 − ‖x̂i,l(t)‖2)|

≤
∑
i∈V
|

3∑
l=1

|‖x̂i,l(t+ s)‖2 − ‖x̂i,l(t)‖2| |. (31)

The term x̂i,l(t + s) is given by x̂i,l(t + s) = x̂i,l(t) +∫ t+s
t

˙̂xi,l(τ)dτ . By uniform boundedness of all x̂i,l(t), for
l = 1, 2 and any s > 0, we have

x̂i,l(t)− ai,ls ≤ x̂i,l(t+ s) ≤ x̂i,l(t) + ai,ls

where ai,1 is a positive constant and ai,2 = a[1, · · · , 1]T is a
vector with a positive constant a. Therefore,

|‖x̂i,l(t+ s)‖2 − ‖x̂i,l(t)‖2| ≤ ‖2aTi,lx̂i,l(t)s‖+ ‖aTi,lai,ls2‖
≤ ‖2ai,ls‖U + ‖aTi,lai,ls2‖

Algorithm 2 Distributed selection of control gains

1: for i ∈ V do
2: Choose a controllable pair (Mi, Ci) such that Mi is

Hurwitz and λmax(
Mi+M

T
i

2 ) < −1;

3: Choose 0 < αi <
2(−λmax(

Mi+M
T
i

2 )−1)
1
2

‖(miMi+DiI2`i )Ci‖
;

4: Ni = αiCi;
5: Choose ki such that ki > (ρ2

max + 1)`i +
((ρ2max+1)`i+‖Mi‖F )2

4m2
i ‖Ni‖2

+ 1 + ‖Mi‖F .
6: end for

where the right hand side is strictly increasing in s and
lims→0 ‖2ai,ls‖U + ‖aTi,lai,ls2‖ = 0. By applying the above
bound to (31), we can prove the uniform continuity of ‖x(t)‖2;
i.e., for any ε > 0, there always exists δ > 0 such that for all
t and 0 ≤ s ≤ δ, |‖x(t+ s)‖2 − ‖x(t)‖2| ≤ ε.

It has been shown that ‖x̂(t)‖2 is uniformly continuous, and
limt→∞

∫ t
0
‖x̂(τ)‖2dτ exists and is finite. By the Barbalat’s

lemma (Lemma 8.2 in [30]), ‖x̂(t)‖2 asymptotically converges
to zero.

Now we proceed to prove the existence of matrices and
control gain such that matrix Āi is negative definite by
construction. Consider a set of matrices and control gain
by Algorithm 2. Since x̂Ti,l(t)Āi(l, p)x̂i,p(t) ≤ δ

2‖x̂i,l(t)‖
2 +

‖Āi(l,p)‖2
2δ ‖x̂i,p(t)‖2 for any δ > 0 and x̂Ti,2(t)Mix̂i,2(t) =

x̂Ti,2(t)
Mi+M

T
i

2 x̂i,2(t) ≤ λmax(
Mi+M

T
i

2 )‖x̂i,2(t)‖2, we have

x̂Ti (t)Āix̂i(t) ≤ x̂Ti (t)A′ix̂i(t)

where A′i = diag(A′i(1, 1), A′i(2, 2)) and A′i(1, 1) = −ki +

(ρ2
max + 1)`i + ‖Mi‖F + 1 +

((ρ2max+1)`i+‖Mi‖F )2

4m2
i ‖Ni‖2

, A′i(2, 2) =

(λmax(
Mi+M

T
i

2 ) + ‖(miMi+IDi)Ni‖2
4 + 1)I2`i . Algorithm 2

ensures A′i(l, l) < 0, and thus diagonal matrix A′i is negative
definite. This implies that Āi is also negative definite. �

VII. SIMULATION

In this section, we present simulations to show the per-
formance of the proposed distributed controllers. All of the
parameters are adopted from [15], [33]. Consider the single
line diagram of the IEEE 68-bus test system topology shown
in [34], [35]. The network includes 16 generators (|G| =
16) and 52 load buses (|L| = 52). We assume that each
generator/load bus i ∈ G,L has (unknown) local net load
PLi(t) = 0.05 sin(0.1t)+0.05 sin(0.2t) with Ψi = [1, 0, 1, 0].
Frequency upper bound is given by ρmax = 0.9.

System and controller parameters. The generator param-
eters are adopted from page 598 in [33]: Ri = 0.05, TCHi =
0.3, TGi = 0.2, Kmi = 1 and Kei = 1 for ∀i ∈ G, and
mi = 10, Di = 1 and tij = 1.5 for ∀i ∈ V . Demand
response parameters bi = (40$/MWh)/(150s) and ci =
(−0.8$/MW 2h)/(150s) for i ∈ L are borrowed from [15].
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Fig. 1: Simulation results (the solid lines for Case1, and the
dashed lines for Case 2).

For the robust frequency control, we choose ki =
[1, 26, 99]T and matrices

Mi =


−5.9 −2.1 −0.1 1.5
2.4 −6.3 −0.2 2.9
0.8 0.9 −6.6 2.5
1.6 0.3 0.8 −7

 , Ni =


0.11
−0.1
0.12
0.12


which satisfy that matrix A is Hurwitz in Theorem 4.1. For
the robust adaptive frequency control problem, we choose
ki = 45.5 and the above matrices, which guarantee that Āi is
negative definite in Theorem 5.1.

Simulation Results. The solid lines in Figure 1 summarize
the results for the robust frequency control. In each subfigure,
the horizontal axis represents time in log-scale or linear-
scale, and the vertical axis represents corresponding values
in per unit. The first subfigure shows that the total state
errors ‖x̂(t)‖1 are exponentially stable (Y-axis on the left is
for Case 1); i.e., the designed distributed controller achieves
the objective and eventually steers network-wide frequency
deviations to 0. This implies that the signals of controllable
load PCi(t) of bus i ∈ L and mechanical power PMi

(t) for
i ∈ G track desired manifolds that reject uncertain net loads;
e.g., mechanical power PM68

(t) for 68 ∈ G rejects net loads
as shown in the third and fourth subfigures. Moreover, the
frequency errors ∆wi(t) are stable; e.g., frequency of bus 68
is shown in the second subfigure.

The dashed lines in Figure 1 summarize the results for the
robust adaptive frequency control. The first subfigure shows
that network-wide state errors converge to zero (Y-axis on the
right is for Case 2), implying that the angular frequencies are
controlled to 60Hz; e.g., the second subfigure, and PCi(t) and
PMi(t) balance the local power demand and generation (as
well as incoming and outgoing power).

The transient performance of the both cases in Figure 1
look similar to each other, while their theoretic guarantees in
the theorems are different. The theoretic guarantees are valid

for the worst case. That is, no matter what system parameters
are, the robust controller always ensures exponential stability
and the robust adaptive controller always ensures asymptotic
stability. However, there could be some instances where the
robust adaptive controller performs as good as or even better
than the robust controller. The simulation in the article is
actually one of these cases, and both controllers achieve
exponential stability. These cases do not violate the theorems.

VIII. CONCLUSION

We have investigated the frequency control of multi-
machine power systems subject to uncertain and dynamic
net loads. The proposed distributed internal model controllers
coordinate synchronous generators and demand response to
ensure frequency stability. Simulations on the IEEE 68-bus
test system demonstrate the performance of the controllers.
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APPENDIX

Distributed constrained small-gain theorem is introduced in
this appendix. The theorem is an extension of constrained
small-gain theorem in [36] to a network set-up.

Consider an undirected graph (V, E) and set Ni , {j ∈
V \{i}|(i, j) ∈ E}. The dynamic system associated with node
i is given by

ẋi(t) = fi(x(t), di(t), t) (32)

where xi(t) and di(t) denote system state and uncertainty
respectively.

Assumption A.1: The system (32) is input-to-state stable
with respect to neighboring states. Equivalently, there exist
class KL function βi and class K functions γid and γij such
that for ∀t ≥ t0 and ∀i ∈ V ,

‖xi(t)‖ ≤ max{βi(‖xi(t0)‖, t− t0), γid(‖di‖[t0,t]),
max
j∈Ni
{γij(‖xj‖[t0,t])}}. (33)

Assumption A.2: Gain functions γij are contraction map-
pings for (i, j) ∈ E ; i.e., γij(s) < s for all s > 0.

Theorem A.1: (Distributed constrained small-gain theo-
rem) Under Assumptions A.1 and A.2, the system (32) is ISS

with respect to d. Equivalently, there exists class KL function
β and class K function γid such that for all xi(t0) ∈ X̂i and
‖d‖[t0,∞) < ∆̂d, the solution of (32) exists and for ∀t ≥ t0,

‖x(t)‖ ≤ max{β(‖x(t0)‖, t− t0), γid(‖d(t)‖[t0,t]). (34)

Moreover, the function β(x, t) = |V|
∑
i∈V βi(|V|

∑
k∈V

βk(x, 0), t
(2L)|V|−1 ) is a class KL function candidate of β(·)

in (34) where L > 1 is a constant.
Proof: For the notational simplicity in the sequent proof,

we assume that V is complete; i.e., Ni = V \{i}. If (i, j) /∈ E ,
then γij(s) = s. We divide the remaining of the proof into
three claims.

Claim E: The following hold for i ∈ S` , {1, · · · , `}:

‖xi‖[t0,T ] ≤ max{βi(‖xi(t0)‖, 0),

max
(i,i1,··· ,iκ)∈Piiκ
i1,··· ,iκ∈S`

γii1 ◦ · · · ◦ γiκ−1iκ ◦ γiκd(‖diκ‖[t0,T ]),

max
j∈S`\{i}

max
(j,iκ,··· ,i)∈Pji
i1,··· ,iκ∈S`

γii1 ◦ γi1i2 ◦ · · · ◦ γiκj ◦ βj(‖xj(t0)‖, 0),

max
j /∈S`

max
(i,i1,··· ,iκ,j)∈Pij

i1,··· ,iκ∈S`

γii1 ◦ · · · ◦ γiκj(‖xj‖[t0,T ])}. (35)

Proof: By (33), one can see that

‖x1‖[t0,T ] ≤max{β1(‖x1(t0)‖, 0), γ1d(‖d1‖[t0,T ]),

max
j 6=1
{γ1j(‖xj‖[t0,T ])}}, (36)

and

‖x2‖[t0,T ] ≤max{β2(‖x2(t0)‖, 0), γ2d(‖d2‖[t0,T ]),

max
j 6=2
{γ2j(‖xj‖[t0,T ])}}. (37)

Substitute (37) into (36), and it renders the following:

‖x1‖[t0,T ] ≤max{β1(‖x1(t0)‖, 0), γ1d(‖d1‖[t0,T ]),

γ12 ◦ β2(‖x2(t0)‖, 0), γ12 ◦ γ2d(‖d2‖[t0,T ]),

max
j 6=2
{γ12 ◦ γ2j(‖xj‖[t0,T ])},

max
j /∈{1,2}

{γ1j(‖xj‖[t0,T ])}}. (38)

Since γ12 ◦ γ21 is a contraction mapping, it follows from (38)
that

‖x1‖[t0,T ] ≤max{β1(‖x1(t0)‖, 0), γ1d(‖d1‖[t0,T ]),

γ12 ◦ β2(‖x2(t0)‖, 0), γ12 ◦ γ2d(‖d2‖[t0,T ]),

max
j /∈{1,2}

{max{γ1j , γ12 ◦ γ2j}(‖xj‖[t0,T ])}}.

(39)

By symmetry, one can show a similar property to (39) for
‖x2‖[t0,T ]. So (35) holds for the case of ` = 2. Now assume
that (35) holds for some ` < n. Similar to (36), we have

‖x`+1‖[t0,T ] ≤ max{β`+1(‖x`+1(t0)‖, 0),

γ(`+1)d(‖d`+1‖[t0,T ]), max
j 6=(`+1)

{γ(`+1)j(‖xj‖[t0,T ])}}. (40)

Following analogous steps above, one can show that (36) holds
for `+ 1. By induction, we complete the proof.

Claim F: The solution to (32) exists and it is bounded.
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Proof: A direct result of Claim E is that the following
holds for all i ∈ V:

‖xi‖[t0,T ] ≤ max{βi(‖xi(t0)‖, 0),

max
(i,i1,··· ,iκ)∈Piiκ

i1,··· ,iκ∈V

γii1 ◦ · · · ◦ γiκ−1iκ ◦ γiκd(‖diκ‖[t0,T ]),

max
j 6=i

max
(j,iκ,··· ,i)∈Pji
i1,··· ,iκ∈V

γii1 ◦ γi1i2 ◦ · · · ◦ γiκj ◦ βj(‖xj(t0)‖, 0)}. (41)

Since all the gain functions γij are contraction mappings, (41)
renders the following:

‖xi‖[t0,T ] ≤ max{βi(‖xi(t0)‖, 0),

max
j∈Ni

γij ◦ γjd(‖dj‖[t0,T ]),max
j∈Ni

βj(‖xj(t0)‖, 0)}. (42)

Because of the choice of xi(t0) and the bound on d, the
relation (41) holds for any T . It implies that

‖xi(t)‖ ≤ max{βi(‖xi(t0)‖, 0), ∆̂d,max
j∈Ni

βj(‖xj(t0)‖, 0)}.

for all t ≥ t0 and thus is uniformly bounded. It completes the
proof.

Claim G: System (32) is ISS; i.e., the following holds for
all i ∈ S` , {1, · · · , `}:

‖xi(t)‖ ≤ max{β̃[`−1]
i (‖x‖∞, t− t0), γ

[`−1]
i (‖d‖[t0,t]),

max
j /∈S`

max
(i,i1,··· ,iκ,j)∈Pij

i1,··· ,iκ∈S`

γii1 ◦ · · · ◦ γiκj(‖xj‖[t0,t])},

(43)

for some class KL function β̃
[`−1]
i where ‖x‖∞ ,

sup{‖x(t)‖ | t ∈ [t0,∞]}.
Proof: Let ` = 2. Note that for any constant L > 1,

‖x1(t0 + T )‖ ≤ max{β1(‖x1(t0 +
2L − 1

2L
T )‖, 1

2L
T ),

γ1d(‖d1‖[t0+ 2L−1
2L T,t0+T ]),max

j 6=1
γ1j(‖xj‖[t0+ 2L−1

2L T,t0+T ])}

≤ max{β1(‖x‖∞,
1

2L
T ), γ1d(‖d1‖[t0+ 2L−1

2L T,t0+T ]),

max
j 6=1
{γ1j(‖xj‖[t0+ 2L−1

2L T,t0+T ])}}. (44)

For any τ2 ∈ [ 2L−1
2L T, T ], it holds that

‖x2(t0 + τ2)‖

≤ max{β2(‖x2(t0 +
2L − 2

2L
T )‖, τ2 −

2L − 2

2L
T ),

γ2d(‖d2‖[t0+ 2L−2
2L T,t0+τ ]),

max
j 6=2
{γ2j(‖xj‖[t0+ 2L−2

2L T,t0+τ ])}}

≤ max{β2(‖x‖∞,
1

L
T ), γ2d(‖d2‖[t0+ 2L−2

2L T,t0+T ]),

max
j 6=2
{γ2j(‖xj‖[t0+ 2L−2

2L T,t0+T ])}}. (45)

So (45) implies that

‖x2‖[t0+ 2L−1
2L T,t0+T ] ≤ max{β2(‖x‖∞,

1

L
T ),

γ2d(‖d2‖[t0+ 2L−2
2L T,t0+T ]),

max
j 6=2
{γ2j(‖xj‖[t0+ 2L−2

2L T,t0+T ])}}. (46)

Substitute (46) into (44), and we have

‖x1(t0 + T )‖

≤ max{β1(‖x‖∞,
1

2L
T ), γ1d(‖d1‖[t0+ 2L−2

2L T,t0+T ]),

γ12 ◦ β2(‖x‖∞,
1

L
T ), γ12 ◦ γ2d(‖d2‖[t0+ 2L−2

2L T,t0+T ]),

γ12 ◦ γ21(‖x1‖[t0+ 2L−2
2L T,t0+T ]),

max
j /∈S2

max{γ1j , γ12 ◦ γ2j}(‖xj‖[t0+ 2L−2
2L T,t0+T ])}. (47)

Since γ12 ◦ γ21(·) is a contraction mapping, there is class KL
function β̃1 such that

‖x1(t)‖ ≤ max{β̃1(‖x‖∞, t− t0),

γ1d(‖d1‖[t0,t]), γ12 ◦ γ2d(‖d2‖[t0,t]),
max
j /∈S2

max{γ1j , γ12 ◦ γ2j}(‖xj‖[t0,t])}. (48)

By symmetry, there is class KL function β̃2 such that

‖x2(t)‖ ≤ max{β̃2(‖x‖∞, t− t0),

γ2d(‖d2‖[t0,t]), γ21 ◦ γ1d(‖d1‖[t0,t]),
max
j /∈S2

max{γ2j , γ21 ◦ γ1j}(‖xj‖[t0,t])}. (49)

Hence, we have shown that (43) holds for ` = 2. Now
assume (43) holds for some ` < n. Recall that

‖x`+1(t)‖ ≤ max{β`+1(‖x`+1(t0)‖, t− t0),

γ`+1(‖d`+1‖[t0,t]), max
j 6=`+1

γij(‖xj‖[t0,t])}. (50)

By using similar arguments towards the case of ` = 2, one can
show (43) holds for `+ 1. Now we proceed to find a relation
between ‖x‖∞ and ‖d‖∞. Because ‖xi(t0)‖ ≤ ‖x(t0)‖, note
that

‖xi‖∞ ≤max{βi(‖x(t0)‖, 0), γid(‖di‖[t0,t]),
max
j 6=i
{γij(‖xj‖∞)}}.

Similar to (43), one can show by induction that there are class
K functions ρi and ρid such that

‖xi‖∞ ≤ max{ρi(‖x(t0)‖), ρid(‖di‖[t0,t])}. (51)

The combination of (51) and (43) achieves the desired result.

Now proceed with the proof that function β(x, t) =
|V|
∑
i∈V βi(|V|

∑
k∈V βk(x, 0), t

(2L)|V|−1 ) is a candidate of
class KL function β in (34). We first find candidates of
functions β̃[`−1]

i in (43) and ρi in (51) and then combine them
together. Note that by substituting (46) into (44), we have
equation (47). Consider class KL functions in equation (47):

‖x1(t0 + T )‖

≤ max{β1(‖x‖∞,
1

2L
T ), γ12 ◦ β2(‖x‖∞,

1

L
T )}

≤ max{β1(‖x‖∞,
1

2L
T ) + β2(‖x‖∞,

1

2L
T )}.
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This implies that, in (48), β̃1(x, t) =
∑2
k=1 βk(x, t

2L ) is a KL
function candidate. Likewise, in (43),

β̃
[`−1]
i (x, t) =

∑̀
k=1

βk(x,
t

(2L)`−1
) (52)

is a KL function candidate for ∀i ∈ S` because we conduct
`−1 times of the substitutions. In a similar way, one can show
that, in (51),

ρi(x) =
∑̀
k=1

βk(x, 0) (53)

is a class K function candidate for ∀i ∈ S`. Now we proceed
to find a relation between β̃[`−1]

i and ρi when S` = V . With
equation (51),

‖x‖∞ ≤
∑
i∈V
‖xi‖∞

≤ |V|max
i∈V
{ρi(‖x(t0)‖), ρid(‖di‖[t0,t])}. (54)

By combining (43) and (54),

‖xi(t)‖ ≤ max{β̃[|V|−1]
i (|V|max

k∈V
ρk(‖x(t0)‖), t− t0),

γ
[`−1]
i (‖d‖[t0,t])}.

This implies that

β(x, t) = |V|max
i∈V

β̃
[|V|−1]
i (|V|max

k∈V
ρk(x), t) (55)

is one of the class KL function candidates. By applying (52)
and (53) to (55), we have the result.

Remark A.1: If functions βi(·) in (33) for ∀i ∈ V are
βi(x, t) = a

−pi(t)
i ri(x), then β(·) in (34) is also in the

same form: β(x, t) = a−p(t)r(x) where a, ai > 0 are
constants, p(t), pi(t) are increasing functions without bound
and r(x), ri(x) are class K functions. �
Remark A.1 indicates that if functions βi(·) are exponential
functions, then β(·) is also an exponential function.
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